Main Reference
[Gee] Modularity Lifting Theorems - Notes for AWS
More References
Books
[BH] Bushnell and Henniart, The Local Langlands Conjecture for GL(2), Springer
[CF] Algebraic Number Theory ("Cassels-Frohlich")
[FLT-yellow] Modular forms and Fermat's last theorem, Springer, 1997
[FLT-red] Elliptic curves, modular forms Fermat's last theorem, International Press, 1997
[FLT-white] Seminar on Fermat's Last Theorem, AMS, 1995
[Mat-CRT] Matsumura, Commutative Ring Theory, Cambridge
[Neu] J. Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften, 322. Springer-Verlag, 1999
[Ser-GC] J.-P. Serre, Galois Cohomology 2nd Ed., Springer, 2002
[Ser-LF] J.-P. Serre, Local fields, GTM 67, Springer-Verlag, 1979
Articles
[AW] M. Atiyah and C. Wall, Cohomology of groups (in [CF])
[Bad08] I. Badulescu, Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations. With an appendix by Neven Grbac. Invent. Math. 172 (2008), no. 2, 383-438
[Ber04] L. Berger, An introduction to the theory of p-adic representations
[Bor79] A. Borel, Automorphic L-functions. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math. XXXIII), Part 2, pp. 27-61, AMS, 1979
[Car79] P. Cartier, Representations of p-adic groups: a survey (Proc. Sympos. Pure Math. XXXIII), Part 1, pp. 111-155, AMS, 1979
[Cas] Intro to the theory of admissible representations of p-adic reductive groups
[DDT] H. Darmon, F. Diamond, and R. Taylor, Fermat's Last Theorem (in [FLT-red])
[DKV84] P. Deligne, D. Kazhdan, M.-F. Vigneras, Representations des algebres centrales simples p-adiques. Travaux en Cours, Hermann, Paris, 1984.
[Fro-LF] A. Frohlich, Local fields, in [CF]
[Gro99] B. Gross, Algebraic modular forms. Israel J. Math. 113 (1999), 61-93
[Kis07] M. Kisin, Modularity of 2-dimensional Galois representations. Current developments in mathematics, 2005, 191-230, Int. Press, Somerville, MA, 2007
[Kud94] S. Kudla, The local Langlands correspondence: the non-Archimedean case. Motives (Seattle, WA, 1991), 365-391, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994
[Maz89] B. Mazur, Deforming Galois representations (in Galois groups over Q), 1989
[Maz97] B. Mazur, An introduction to the deformation theory of Galois representations (in [FLT-yellow])
[Mil-ADT] J. Milne, Arithmetic Duality Theorems
[Mil-ANT] J. Milne, Algebraic Number Theory
[Mil-CFT] J. Milne, Class Field Theory
[NS07] N. Nikolov and D. Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), no. 1, 171-238
[Pil] V. Pilloni, The study of 2-dimensional p-adic Galois deformations in the l not p case
[Rog83] J. Rogawski, Representations of GL(n) and division algebras over a p-adic field. Duke Math. J. 50 (1983), no. 1, 161-196.
[ST68] J.-P. Serre, and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968)
[Tho12] J. Thorne, On the automorphy of l-adic Galois representations with small residual image. With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Thorne. J. Inst. Math. Jussieu 11 (2012), no. 4, 855-920
Stanford Modularity Seminar notes
Click here for the list of notes.[Stanford-N] means the N-th article in the above link.