
MATH 18.966: HOMEWORK 4

DUE TUESDAY, MAY 7, 2019

(1) In this exercise you will prove the following

Lemma 0.1. Let (M, g) be a Riemannian manifold, and suppose
that the sectional curvature satisfies K(g) 6 κ. Fix a point p ∈ M ,
then

inj (p) > min{ π√
κ
,
1

2
length of shortest geodesic loop passing through p}

In particular,

inj (M, g) > min{ π√
κ
,
1

2
length of shortest geodesic loop in (M, g)}

As usual, we use the convention that if κ 6 0, then we just ignore
the symbol π√

κ
. This estimate is called Klingenberg’s estimate.

(a) First recall that we proved that the distance to the conjugate
locus of p is no less that π√

κ
as a consequence of Rauch’s the-

orem, (or our proof of Bishop-Gromov volume comparsion, for
example). So we just need to show that if q is in the cut locus of
p, inj(p) = d(p, q) but q is not a conjugate point, then there is a
geodesic loop containing p and q. To do this let v1, v2 ∈ TpM be
unit length vectors so that γ1(t) := expptv1 and γ2(t) := expptv2
have γ1(1) = γ2(1) = q. It suffices to show that γ′1(1) = −γ′2(1),
since implies that γ1, γ2 can be combined to form a closed ge-
odesic loop. Suppose not. Argue that there is w ∈ TqM such
that 〈w, γ′1(1)〉 < 0 and 〈w, γ′2(1)〉 < 0.

(b) For s ∈ (0, ε) consider the points q(s) := expq(sw). Show that
d(p, q(s)) < d(p, q) for s > 0.

(c) Now argue that there are distinct tangent vectors v1(s), v2(s)
such that expp(v1(s)) = expp(v2(s)). Explain why this contra-
dicts the fact that d(p, q) = inj(p).

(2) Next you will prove a lemma relating volume non-collapsing and the
injectivity radius, under a bound for the sectional curvature. This
result is originally due to Cheeger with a different argument.
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Lemma 0.2. Given n > 2, ν, κ > 0, there is a constant R =
R(ν, κ, n) > 0 such that any compact manifold (Mn, g) with |K(g)| 6
κ, and Vol(B(p, 1)) > ν for all p ∈M has inj(M, g) > R.

The argument is by contradiction. Assume the result is false, so
that there is a sequence (Mi, gi) with n fixed, sectional curvature
bounded by κ, and Vol(Bi(p, 1)) > ν for any p ∈Mi.

(a) Rescale the manifolds to get (Mi, ḡi) with inj(M, ḡi) = 1. What
happens to the sectional curvature?

(b) Choose points pi ∈ Mi achieving the injectivity radius. Show
that the sequence (Mi, ḡi, pi) converges in the pointed C1,α

topology to a flat manifold (M∞, g∞, p∞). By applying by Klin-
genberg’s lemma to (Mi, ḡi), argue that there must be a geodesic
loop of length 2 in (M∞, g∞) passing through p∞. In particular,
inj(M∞, g∞) 6 1

(c) Using the volume comparison theorem, prove the following claim:
Claim: There is a constant ν ′ > 0 depending only on ν,K, n
such that

Vol(B∞(p∞, r)) > ν ′rn

for all r > 0.

In order to obtain a contradiction, note that by (b) it suffices to
prove that (M∞, g∞) = (Rn, gEuc). To do this, you will prove the
following lemma

Lemma 0.3. Suppose (M, g) is a flat manifold which is not simply
connected. Then, for any p ∈M we have

lim
r→∞

Vol(B(p, r))

rn−1
< +∞

As a first step toward proving this result recall that by the clas-
sification of manifolds with constant sectional curvature, (M, g) is
the quotient of (Rn, gEuc) by a group of isometries Γ acting totally
discontinuously (in particular without fixed points). The goal is to
argue that if Γ acts non-trivially, and totally discontinuously and
π : Rn → Rn/Γ = M is a covering map and a local isometry, then
the volume of any ball B(p,R) in M grows at most like Rn−1 for
R � 0. To build some intuition, consider the case when Γ acts by
translation along a fixed vector!

(d) Begin by recalling that any isometry of Rn is given by h(v) =
Av + w for some A ∈ O(n), and w ∈ Rn. It follows that
0, w are identified under the quotient map π. Argue that the



MATH 18.966: HOMEWORK 4 3

curve γ(t) = tw descends to a closed geodesic γ̄ ⊂ (M, g) with
γ̄(0) = γ̄(1) and γ̄′(0) = γ̄′(1).

(e) Next we argue that Aw = w. If not, then the curve h(tw) =
w+tAw descends to γ̄(t) under the projection map. Argue that
this implies that the covering map π cannot be a local diffeo-
morphism (Hint: Consider dπ|w : Rn → Tπ(p)M).

(f) By a rotation we can assume w = (a, 0, . . . , 0) for some a > 0.
Identify (0, x2, . . . , xn) with Rn−1. Show that A has the block
diagonal form (

1 0
0 A′

)
where A′ ∈ O(n−1). Conclude that [0, a)×Rn−1 covers (M, g).
Argue that this implies the lemma. (Note: This is an ad-hoc
argument to understand a part of the group of deck transfor-
mations acting on the universal cover).

(g) Find a counterexample to Lemma 0.1 if we drop the assumption
Vol(B(p, 1)) > ν for all p ∈M .

(3) Use Lemma 0.1 together with results proved in class to prove Cheeger’s
finiteness theorem.

Theorem 0.4 (Cheeger’s finiteness theorem). Let n > 2, and fix
constants κ,D, ν > 0. The class of Riemannian manifolds (Mn, g)
satisfying the bounds

|K(g)| 6 κ

diam(M, g) 6 D

Vol(M, g) > ν

contains only finitely many diffeomorphism types.


