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DUE THURSDAY, APRIL 4, 2019

1. Cohomology

This section will discuss the notion of cohomology on a manifold. Re-
call that, on a smooth manifold M , we have the de Rham differential
d : C∞(M,ΛpT ∗M) → C∞(M,Λp+1T ∗M), where C∞(M,ΛpT ∗M) denotes
the space of smooth p-forms on M . We define the de Rham cohomology of
M by

Hp
dR(M,R) =

{Kerd : C∞(M,ΛpT ∗M)→ C∞(M,Λp+1T ∗M)}
{Imd : C∞(M,Λp−1T ∗M)→ C∞(M,ΛpT ∗M)}

where, by convention, C∞(M,Λ0T ∗M) = C∞(M,R), the space of smooth
functions on M and C∞(M,Λ−1T ∗M) = ∅.

(0) Show that Hp
dR(M,R) naturally has the structure of a vector space

over R.
(1) Prove that if f : M → N is a diffeomorphism, then we have an iso-

morphism Hp
dR(M,R) ∼= Hp

dR(N,R). In particular, the cohomology
groups are (at the very least) invariants of the smooth structure of
M (in fact, they topological invariants).

(2) Consider the case of S1 = R/Z. Show that

H0(S1,R) = R, H1(S1,R) = R

(3) More generally, consider the n-torus Tn = S1 × · · · × S1. Compute
H1(Tn,R). Briefly explain how you could similarly compute all the
cohomology groups of Tn.

2. The Hodge Laplacian

In the following two sections we will explain the central result of Hodge
theory, which says that the topological invariants constructed in the previous
section can also be understood analytically. We will begin by studying the
Hodge laplacian.

Let (M, g) be an orientable, compact Riemannian manifold, and let C∞(M,ΛpT ∗M)
denote the space of smooth p-forms on M . The metric g induces a natural
metric on ΛpT ∗M .

(1) We define the Hodge-∗ operator by the following formula; for two
p-forms α, β, we define ∗β ∈ Λn−pT ∗M by

〈α, β〉gdVolg = α ∧ ∗β.
1
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In fact, this is just a construction from linear algebra, and makes
sense for any vector space with an inner product. Describe how to
compute ∗α by reducing to, and then computing, ∗(ei1 ∧ · · · ∧ eip)
where {ei} an orthonormal basis of 1-forms. Show, in general, that

∗2α = (−1)p(n−p)α. Note that when n = 2, then ∗ : T ∗M → T ∗M
and ∗2α = −α. This is a special case of a complex structure. Note
also when n = 4, then ∗ : Λ2T ∗M → Λ2T ∗M has ∗2α = α, and so
Λ2T ∗M decomposes into ±1 eigenspaces; these are called the self-
dual, and anti-self dual forms, and play an important role in the
study of gauge theory and topology on 4-manifolds.

(2) We can define a natural L2 inner-product on C∞(M,ΛpT ∗M) by

〈α, β〉L2 =

∫
M
〈α, β〉gdVolg =

∫
M
α ∧ ∗β

Using this formula, together with the covariant derivative on (M, g),
define W k,2(M,ΛpT ∗M), the space of W k,2 sections of ΛpT ∗M .

(3) The next step is to construct an adjoint operator to d. Namely, recall
that from the “Cohomology” section we have

d : C∞(M,ΛpT ∗M)→ C∞(M,Λp+1T ∗M).

This descends to an operator

d : W k,2(M,ΛpT ∗M)→W k−1,2(M,Λp+1T ∗M)

We define the adjoint operator d∗ : W k,2(M,Λp−1T ∗M)→W k−1,2(M,ΛpT ∗M)
by the following equation: for a p-form β we define d∗β by requiring
that, for ever p− 1 form α, we have

〈dα, β〉L2 = 〈α, d∗β〉L2

In essence, this is nothing but integration by parts. Compute, ex-
plicitly, a local expression for d∗β for β a p-form, p = 0, 1, 2. Note
that, in general, by Stoke’s theorem (since ∂M = ∅) we have we have

〈dα, β〉L2 =

∫
M
dα ∧ ∗β =

∫
M
d(α ∧ ∗β) + (−1)p−1α ∧ d ∗ β

= (−1)p
∫
M
α ∧ d ∗ β

From this formula, and part (1), we see that

d∗β = (−1)n(n−p)+1 ∗ d ∗ β.

(4) We define the Hodge Laplacian by

�α = −(dd∗ + d∗d)α
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This defines a map � : W k,2(M,ΛpT ∗M) → W k−2,2(M,ΛpT ∗M).
Show that

〈�α, β〉L2 = −〈dα, dβ〉L2 − 〈d∗α, d∗β〉L2 = 〈α,�β〉L2

In particular, show that �α = 0 if and only if dα = 0 and d∗α = 0.

(5) Find an explicit expression for � on 1-forms in local coordinates,
and check that � is elliptic, and of divergence form with respect to
the volume form on (M, g).

(6) Define the rough laplacian on p forms by

∆α = gij∇i∇jα = ∇i(gij∇jα)

and note that, by integration by parts, we have

〈∆α, β〉 = −〈∇α,∇β〉L2

Using your solution to the previous problem, find an expression for
�−∆ acting on 1-forms in terms of curvature. This is the Bochner
formula.

3. Hodge Theory

We are now going to use the elliptic theory we have developed in class
to prove the Hodge theorem. We will make some use of Hilbert spaces. If
you are unfamiliar with Hilbert spaces, it may be worth taking a moment to
familiarize yourself with the definition, and some simple examples– partic-
ularly the Sobolev spaces W k,2, keeping in mind problem (2) from the last
section.

In what follows we will need the following three results.

Theorem 3.1 (Elliptic regularity in Sobolev spaces). Suppose k > 2, and
α ∈ W k,2(M,ΛpT ∗M) is a p-form, satisfying �α = β, where β ∈ W k,2.
Then α ∈W k+2,2(M,ΛpT ∗M), and has

‖α‖Wk+2,2 6 C1 (‖β‖Wk,2 + ‖α‖Wk,2)

where C1 is a constant depending on (M, g) and k, but not on α or β.

This result is a direct consequence of the elliptic theory we covered in
class, together with the existence of partitions of unity.

Theorem 3.2 (The Sobolev Imbedding Theorem). If 2k > n, then the
Sobolev spaces embed into the Schauder spaces

W k,2(M,ΛpT ∗M) ⊂ Ck−1−[
n
2
],µ(M,ΛpT ∗M)

where [n2 ] is the integer part of n/p, and µ = [n2 ] + 1 − (n/p) is n/p is not
an integer, and µ ∈ (0, 1) otherwise.
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Theorem 3.3 (Rellich’s Theorem). The natural inclusionW k,2(M,ΛpT ∗M) ↪→
W p,2(M,ΛpT ∗M) for k > p is compact. That is, if {αj} is a bounded se-

quence in W k,2(M,ΛpT ∗M), then it contains a convergent subsequence in
W p,2(M,ΛpT ∗M).

You can think of this as a version of Arzela-Ascoli: you pay a derivative
to get a convergent subsequence.

(0) Consider the Hodge laplacian as a continuous (ie. bounded) linear
operator � : W 2,2(M,ΛpT ∗M) → L2(M,ΛpT ∗M). Suppose α ∈
W 2,2(M,ΛpT ∗M) satisfies

�α = λα.

Show that λ 6 0, and α is smooth. : Hint: For the first part, use
the integration by parts formula from the previous section. For the
second part, “bootstrap”, by repeatedly applying the elliptic regu-
larity theorem, then apply the Sobolev Imbedding theorem.

(1) Consider the Hodge laplacian� : W 2,2(M,ΛpT ∗M)→ L2(M,ΛpT ∗M).
Let Ker� denote the kernel of this map. Show that Ker� is finite
dimensional. Hint: Suppose not. Let {α`} be an infinite, orthonor-
mal basis (this exists, since the Hilbert spaces we’re studying are
separable). Then

‖α` − αj‖W 2,2 =
√

2

Using elliptic regularity and Rellich’s theorem, obtain a contradic-
tion. Note that this argument also works to prove that, for each
λ ∈ R, the space {α ∈ W 2,2 : �α = λα} is either empty, or finite
dimensional.

(2) Prove the following “improved” version of elliptic regularity. There
is a constant C > 0 such that, if α ∈ W 2,2(M,ΛpT ∗M), and α is
orthogonal to Ker�, then

‖α‖ 6 C‖�α‖L2 .

Hint: Suppose not, then there are W 2,2 p-forms αn orthogonal to
Ker� such that ‖αn‖W 2,2 > n‖αn‖L2 . Define α̃n = αn

‖αn‖W2,2
, use

elliptic regularity and Rellich’s lemma to obtain a contradiction.

(3) Define Range(�) = �(W 2,2) to be the range of �. Prove that
Range(�) is closed; that is, if βn = �αn, and βn → β in L2, then
β = �α for some α ∈ W 2,2. Hint: Use the estimate from the last
problem.

(4) Since Range(�) is closed, we can define an orthogonal decomposition

L2 = Range(�)⊕ Range(�)⊥
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Concretely, for any β ∈ L2 we can write

(3.1) β = �α+ β0

for α ∈ W 2,2, and β0 orthogonal (in L2) to Range(�). We claim
that there is a natural identification

Range(�)⊥ ←→ Ker(�)

To see this, note that for β ∈ Range(�)⊥, then for any smooth
p-form ϕ we have

〈β,�ϕ〉L2 = 0

We noted (but didn’t prove) in class that, for elliptic operators of
divergence form, this type of formula implies β is in fact smooth,
and satisfies �β = 0. Conversely, if β ∈ W 2,2 has �β = 0, show
that β is orthogonal to Range(�) in L2. Show that this implies an
orthogonal decomposition

L2 = Ker�⊕ Range(d)⊕ Range(d∗)

where

Range(d) = {dη : η ∈W 2,1(M,Λp−1T ∗M)}
Range(d∗) = {d∗η : η ∈W 2,1(M,Λp+1T ∗M)}

(5) Show that the last result implies that

Hp
dR(M,R) ∼=

{
Ker(�) ⊂W 2,2(M,ΛpT ∗M)

}
and in particular, Hp

dR(M,R) is finite dimensional. This is the fun-
damental result of Hodge theory. It says that cohomology is detected
by the kernel of a certain Laplace operator. This is a very general
story, that works in a wide variety of situations.

(6) Finally, in the notation of (3.1), define G : L2 → W 2,2 by Gβ = α;
this is called the Green’s function, it “inverts the Laplacian”. Show
that

�Gβ = (1− π)β

G�α = α

where π is the orthogonal projection in L2 to Ker(�). Show also
that

‖Gβ‖W 2,2 6 C‖β‖L2

so G is a bounded linear operator from L2 →W 2,2.

(7) Finally, we arrive at the punchline. Combine Problem (6) above,
with Problem (6) from the last section to show that if Ric > 0,
then H1

dR(M,R) = 0. Note that this implies, for example, that the
torus cannot admit a metric of positive Ricci curvature. Further-
more, show that if Ric > 0, then dimRH

1
dR(M,R) 6 n, by observing
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that Bochner’s formula implies harmonic forms are parallel. In fact,
you can show (see, for example Petersen, Corollary 9.2.5) that if
dimRH

1
dR(M,R) = n, then (M, g) is isometric to a flat n-torus. Re-

call that a flat n−torus is the product of n circles S1 = R/Z each
equipped with the metric adx2 for some a > 0, and x is the coordi-
nate on R. So a flat n-torus is

S1 × · · · × S1, g = a1dx
2
1 + · · · andx2n.


