
MATH 18.966: HOMEWORK 2

DUE TUESDAY, MARCH 19, 2019

(1) Here is another application of the Riccati technique, which is fairly
down to earth, and makes explicit our claim that “larger sectional
curvature makes the metric smaller”. You will prove the following

Proposition 0.1. Suppose (M, g) is a complete, Riemannian man-
ifold, p ∈ M . Let r(p) denote the injectivity radius of (M, g) at p.
Suppose that the sectional curvature satisfies K(y) > −κ0 for all
y ∈ Br(p)(p), and all two-planes in TyM . Then on Br(p)(p), which
we identify with Br(p)(0) ⊂ Rn we have

g 6 g−κ0

where g−κ0 is the metric of constant sectional curvature −κ0 on
Br(p)(0). Furthermore, if also K(y) < κ1 for all y ∈ Br(p)(p), and
all two-planes in TyM then, with the same notation

g > gκ1 .

In particular, if −κ < K(y) < κ for all y ∈ Br(p)(p), then there is a

universal constant R > 0 so that, if r 6 min{r(p), Rκ−
1
2 }, then

1

2
gEuc 6 g 6 2gEuc

on Br(p), where gEuc denotes the Euclidean metric from Rn.

For simplicity we will assume that κ0 = κ1 = κ is positive, but
this isn’t necessary. It just saves you from some annoying symbol-
ogy. If you want, just prove the result in full generality.

(a) Let (M, g) be a Riemannian manifold, p ∈M , and let (r, x1, . . . , xn−1)
be normal spherical coordinates on TpM . In particular (x1, . . . , x,n− 1)
are coordinates on Sn−1. For simplicity we will set r = x0,
and use the following notation. Greek indices {α, β, η} run over
{0, . . . , n−1}, while Roman indices {i, j, k} run over {1, . . . , n−
1}. Show that the Christoffel symbols are given simply by

Γα00 ≡ 0, Γ0
0p ≡ 0, Γ`0p =

1

2
g`k∂0gpk.

Show that the curvature is given by

(0.1) R0`
p

0 = ∂0Γp0` + Γp0sΓ
s
0`.

1
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In particular, if we view Γ0 as an endomorphism of the the tan-
gent bundle, the Γ0 satisfies a Riccati equation.

(b) To expand on this last remark, recall that Γ0 is only a locally
well-defined endomorphism of the tangent bundle. Neverthe-
less, show that if V (r) is a unit vector parallel along ∂r, satis-
fying 〈V, ∂r〉 = 0, then we have

∂

∂r
〈Γ0V (r), V (r)〉 6 κ0 − (〈Γ0V (r), V (r)〉)2

provided K(y) > −κ0. Show that Γp0` approaches 1
r δ
p
` as r → 0,

where δp` is the identity matrix tangent to Sn−1.

(c) Use the Riccati comparison argument to conclude that, for any
V (r) as above we have

〈Γ0V (r), V (r)〉 6
√
κ0 cosh(

√
κ0r)

sinh(
√
κr)

.

By applying the formula for Γ0, and showing that

lim
r→0

1

r2
gpk = gSn−1

conclude that

g = (dr)2 + gpkdxp ⊗ dxk 6 (dr)2 +
1

κ0
sinh2(

√
κ0r)gSn−1 .

which is our upper bound.

The lower bound is a little different, since the Cauchy-Schwarz in-
equality does not allow us to obtain the Riccati equation from (0.1).
It turns out that the sectional curvature upper bound can be used
by reducing to a 2-dimensional submanifold.

(d) Consider the (local) submanifold (S, g) of (M, g) defined by
(x0, 0, . . . , xp, 0 . . . , 0). Use the Gauss-Codazzi equation, to-
gether with ∇∂r∂r = 0 to show that S has sectional curvature
bounded above by κ1.

(e) Write the induced metric on S as dr2+Gp(r, xp)dx
2
p. Apply (0.1)

on S, and the Riccati comparison argument to show that

Gp >
1

κ1
sin2(

√
κ1r)

(f) Conclude that

g > dr2 +
1

κ1
sin2(

√
κ1r)gSn−1
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(g) Finish the proof of the proposition by noting that

1

2
r2 6

1

κ
sin2(

√
κr)gSn−1 6

(
1√
κ

sinh(
√
κr)

)2

gSn−1 6 2r2

for r < R(κ)−
1
2 for some universal R.

(2) Next we give a more streamlined derivation of the Laplacian com-
parison theorem for manifolds with Ricci curvature lower bounds.
Let (M, g) be a Riemannian manifold, and f, h : M → R a smooth
functions (we will also consider the case when f, h are only locally
defined).

(a) Recall that ∆f := TrgHess(f). Show that, in local coordinates
(x1, . . . , xn), we can write

∆f =
1√

det g
∂i

(√
det g gij∂jf

)
.

In particular, show that

∆f =
∑
ij

gij∂i∂jf +
∑
j

∂jf∆xj .

(b) Show that

∆
1

2
〈∇f,∇h〉 = 〈Hess(f),Hess(h)〉+〈∇f,∇∆h〉+〈∇∆f,∇h〉+Ric(∇f,∇h).

Apply this with g = f to obtain Bochner’s formula. Formulas
of this type play a fundamental role in geometry by linking cur-
vature with analysis.

(c) Fix a point p ∈ M , and let r = d(p, ·), which is smooth away
from cut(p). Apply the above formula to derive

∂r∆r = −Ric(∂r, ∂r)− |Hess(r)|2.

In particular, if Ric > (n− 1)ρ, then

∂r∆r 6 −(n− 1)ρ− 1

n− 1
(∆r)2.

Apply the Riccati comparison argument to deduce that

∆r 6 (n− 1)
s′ρ
sρ

= ∆ρrρ

where rρ is the distance from a point in the model space with
constant curvature ρ, and ∆ρ is the Laplacian in (Mρ, gρ).
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(d) Assume (M, g) has Ric(g) > 0, h : M → R is harmonic (ie.
∆h = 0), and |∇h|2 = 1. Show that Hessh ≡ 0. In particular,
we can think of such functions as the analog of linear functions.

(e) Assume now that we have coordinates (x1, . . . , xn) defined in
an open neighborhood of p ∈ M such that ∆xi = 0. Such co-
ordinates are called harmonic coordinates and will play a fun-
damental role in what we study this semester. Let gij be the
components of the metric in this coordinate system, regarded
as functions on our local patch. Using part (b), show that

∆gij = −2Ricij +Qij(g, ∂g)

where Qij is quadratic in g, and ∂g. In particular, this formula
shows that Ricci curvature bounds can be thought of as bounds
for the Laplacian of the metric. Once we have developed a little
bit of elliptic regularity theory, we will see why such bounds
should imply good regularity properties for the metric.

(3) This problem works out the completeness of the Gromov-Hausdorff
metric by proving an (a priori) simpler result which goes back to
Hausdorff. Let (X, d) be a metric space. For any subset A ⊂ X, and
any ε > 0 we set

Bε(A) =
⋃
p∈A

Bε(p),

whereBε(p) is the ball of radius ε around p. This is the “ε- fattening”
of A. For Y,Z compact subsets of X define the Hausdorff distance
between Y and Z by

dH(A,B) := inf
{
ε > 0

∣∣Y ⊂ Bε(Z), Z ⊂ Bε(Y )
}
.

(a) Show that dH defines a metric on the set

X̃ := {A ⊂ X
∣∣A is compact}.

(b) Show that (X̃, dH) is a complete metric space if and only if
(X, d) is complete. As a hint, suppose X is complete and {Aj}
is a Cauchy sequence in X̃. Consider “discretizing” Aj at scale
N−1 using a collection of points. Do this for a sequence of scales
going to zero.

(c) For compact metric spaces (X, dX), (Y, dY ) (or pointed, proper
spaces (X, dX , p), (Y, dY , q)), define an admissible metric d on
XtY to be a metric such that d|X = dX , and d|Y = dY . Define

d̂GH = inf{ε > 0 : ∃ d admissible metric on X tY such that dH(X,Y ) < ε}
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where dH denotes the Hausdorff metric. In the pointed case,
denote by Bε−1(p) the closed ball of radius ε−1 in X, and simi-

larly for Y . Define d̂pGH to be the infimum over ε > 0 such that
there exists an admissible metric d on X t Y such that

dH(Bε−1(p), Bε−1(q)) + d(p, q) < ε

Show that d̂GH (resp. d̂pGH) defines a notion of Gromov-Hausdorff
(resp. pointed Gromov-Hausdorff) distance which is equivalent
to the one defined in class. As a hint, given f : X → Y an
ε-isometry, define an admissible metric d on X t Y by

d(x, y) = inf{dX(x, x′) + dY (y, y′) + ε : d(y′, f(x′)) < ε}.
Prove that this defines an admissible metric and that dH(X,Y ) <
2ε.

(d) Now we can prove that the space of compact metric spaces (resp.
proper, pointed metric spaces) equipped with the Gromov-Hausdorff
metric is complete. I will explain how to do this in the non-
pointed case. Your task is to check the details, and generalize
everything to the case of pointed metric spaces. Given a Cauchy
sequence of compact metric spaces (Xi, dXi) with

dGH(Xi, Xi+1) <
1

2
2−i

define Y = tiXi. By part (c), for each i we have an admissible
metric d(i,i+1) on Xi tXi+1 such that

d(i,i+1),H(Xi, Xi+1) < 2−i.

This allows us to measure distances between nearest neighbors
in Y . We extend this to an admissible metric on Y in the
obvious way. For xi ∈ Xi, xi+k ∈ Xi+k define

dY (xi, xi+k) = inf
{yi+j∈Xi+j :16j6k−1}

d(i,i+1)(xi, yi+1)

+

k−2∑
j=1

d(i+j,i+j+1)(yi+j , yi+j+1)

+ d(i+k−1,i+k)(yi+k−1, xi+k)

(it may help to draw a picture). Show that the compact sets
Xi are Cauchy with respect to the Hausdorff metric on (Y, dY ).

(e) We can invoke (a) to conclude that the Xi converge, once we
show that (Y, dY ) is complete. This is not the case, however,
because of Cauchy sequences like {xi} where xi ∈ Xi. But we
can just take the completion of (Y, dY ) in the usual way to get
(Y , dY ), adding to Y equivalence classes of Cauchy sequences,
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and extending dY . With this detail taken care of, we can in-
voke the Hausdorff compactness result from (a) to conclude that
the set of compact metric spaces is complete with the Gromov-
Hausdorff distance. Note, in fact, that the Gromov-Hausdorff
limit of the Xi is precisely (Ȳ \Y, dY ). Think about how this
works for Xk = {nk : n ∈ Z, |n| 6 k} with metric induced from
R.

1. Analysis

Finally, we’re going to do a little analysis. Consider Ω ⊂ Rn an open set.
Let C∞c (Ω) denote the space of smooth functions compactly supported in
Ω, which is a vector space in the obvious way. A distribution T is a linear
map T : C∞c (Ω) → R (or C) such that, for every compact set K ⊂ Ω there
is a constant CK and a number NK > 0 with

|T (ϕ)| 6 CK

(
NK∑
`=0

sup
K
|∇`ϕ|

)
for all functions ϕ with support contained in K, and where ∇`ϕ denotes the
`-th derivative of ϕ.

(4) Show that the following give examples of distributions.
(a) If f ∈ L1

loc(Rn), then Tf (ϕ) :=
∫
fϕdx.

(b) The Dirac delta function δ0(ϕ) = ϕ(0).
(c) Any differential operator of the following form. Fix (α1, . . . , αn) ∈

Nn, and let |α| =
∑

i αi. Then

∂α(f) =
∂|α|f

∂xαi
1 · · · ∂x

αn
n

(d) Any linear combination of distributions.
A particularly useful fact, which is essentially trivial, is that we

can differentiate distributions using “integration by parts”. Namely,
with notation as above we define ∂αT to be the distribution

∂αT (ϕ) = (−1)|α|T (∂αϕ)

For example, this allows us to define the derivatives of any locally
Lp functions for p > 1.
(e) Let f be differentiable. Show that ∂Tf = T∂f .
(f) Let H(x) be the Heaviside function on R. That is, H(x) = 0 if

x < 0, and H(x) = 1 if x > 0. Clearly H is locally L1 so we
can define

TH(ϕ) =

∫
Hϕdx

Compute ∂TH , which we denote by ∂H. Is ∂H the distribution
associated to a function? Is it a measure?
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(g) In R2 compute ∆ log(x2 + y2) as a distribution, where

∆f =
∂2f

∂x2
+
∂2f

∂y2

One point to take away from this is that not all functions, even
bounded functions, have distributional derivatives which are them-
selves associated with functions. For a domain Ω ⊂ Rn we define

W k,p(Ω) = {f ∈ Lp : ∇`f ∈ Lp(Ω) for all 0 6 ` 6 k}.
That is, W k,p consists of those Lp functions whose distributional
derivatives up to, and including order k, are associated with Lp

functions. This space comes with a norm

‖f‖Wk,p(Ω) =
k∑
`=0

‖∇`f‖Lp(Ω)

and this norm makes W k,p into a Banach space. If p = 2, this space
is a Hilbert space. These spaces play an important role in the elliptic
regularity, and Hodge theory.


