
18.965: HOMEWORK 6

DUE: TUESDAY, DECEMBER 3

(1) Let (M.g) be a complete Riemannian manifold, and f : U → R
a smooth function. Recall that we defined f to be a generalized
distance function if |∇f | ≡ 1. Show that the Second fundamental
form of the smooth submanifold Nc = {f = c} with respect to the
normal vector ∇f is A = −Hessf . Conclude that the shape operator
of Nc is give by (Sc)

i
k = −gij(Hessf )jk.

(2) We showed in class that the integral curves of gradf are geodesics.
Prove the following generalization of the Bochner formula: Let γ(t)
be a geodesic with γ̇ = gradf , and let St denote the shape operator
of Nt = {f(x) = f(γ(t))}. Let V = V (t) and W = W (t) be parallel
unit vector fields along γ(t), such that W,V are orthogonal gradf
(and hence W (t), V (t) ∈ Tγ(t)Nt. Then we have

d

dt
〈StV,W 〉 = R(gradf, V,W, gradf) + 〈S2

t V,W 〉

where S2
t = St ◦St : Tγ(t)Nt → Tγ(t)Nt. Using Cauchy-Schwarz show

that if (M, g) has sectional curvature bounded from below by K,
then

d

dt
〈StV, V 〉 > (〈StV, V 〉)2 +K

and therefore 〈StV, V 〉 is also a supersolution of the Ricatti equation.
Let now f(x) = r(x) = d(p, x). Using the preceding formula and
the Ricatti comparison theorem show that if (M, g) has sectional
curvature K(g) > κ then

〈SV (t), V (t)〉 > −s
′
κ(t)

sκ(t)

(3) Using the previous problem, show that if J is a Jacobi field along

an arc-length parametrized geodesic γ(t), such that J(0), J̇(0) are
orthogonal γ̇, then

∇γ̇J(t) = −StJ(t).

Using this and the preceding problem prove the generalized Rauch
theorem: Suppose (M, g) has sectional curvature K(g) > κ and γ(t)
is an arc-length parametrized geodesic with γ(0) = p, such that γ(t)
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is disjoint from Cut(p) on [0, T ]. Then, for any Jacobi field J(t)
along γ(t) we have

d

dt

|J(t)|
sκ(t)

6 0

on [0, T ].

(4) Show that the previous result implies the following theorem of Rauch
(see e.g. do Carmo Chapter 10). Suppose (M, g) has sectional cur-
vature K(g) > κ and γ(t) is an arc-length parametrized geodesic
with γ(0) = p such that γ(t) is disjoint from Cut(p) on [0, T ]. Let

J(t) be a Jacobi field along γ(t) with J(0) = 0, 〈J̇(0), γ̇(0)〉 = 0. Let
(MK , gK) be the simply connected space form with constant curva-
ture K, and let γK be a unit speed geodesic in (MK , gK). Let JK(t)

be a Jacobi field along γK such that JK(0) = 0, 〈J̇K(0), γ̇K(0)〉 = 0,

and |J̇K(0)| = |J̇(0)|. Then

|J(t)| 6 |JK(t)|
on [0, T ]. This result says that geodesics tend to spread apart faster
when the curvature is smaller (ie. more negative).

(5) Prove that the Laplacian has the following coordinate expression;

∆f =
1√

det g
∂j

(
gij
√

det g ∂if
)

(6) It’s possible to make sense of ∆f for functions that have less than
two derivatives worth of regularity (e.g. the distance function near
the cut locus). We will explain one way of doing this. Let f be a
continuous function defined on (M, g).

Definition 0.1. (i) We say that a C2 function u is a upper barrier
for f at p if there is an open set U 3 p such that u(x) > f(x)
for all x ∈ U , and u(p) = f(p). We define the concept of a
lower barrier similarly.

(ii) We say that ∆f(p) 6 c if, for all ε > 0 there is an upper barrier
uε for f at p, and ∆u(p) 6 c+ ε. Using lower barriers we may
similarly define ∆f(p) > c, and hence also ∆f(p) = c.

(a) Show that if f is C2 at p then ∆f = c in the barrier sense if
and only if ∆f = c in the classical sense.

(b) Consider the function f(x) = 1− |x|. Prove that ∆f(0) 6 0 in
the sense of barriers. Show also that f does not admit a lower
barrier at 0, and hence ∆f has no lower bound in the sense of
barriers.



18.965: HOMEWORK 6 3

(7) The function in the preceding problem is a model for the behavior of
the distance function near the cut locus. In this problem we prove
that the Laplacian comparison theorem extends over the cut locus,
in the sense of barriers. Suppose (M, g) is a Riemannian manifold
with Ric(g) > (n − 1)Kg. Let p ∈ M , r = d(p, ·). We have shown
that if x /∈ Cut(p) then we have

∆r(x) 6 ∆KrK(|x|) =
(n− 1)s′K(|x|)

sK(|x|)

where |x| = d(p, x). We will show this extends over the cut locus. Fix
a point x ∈ Cut(p), and let γ(t) be the length minimizing geodesic
from p to x. The key is the following result. Fix 0 < η � 1, and
define

uη(y) = η + d(γ(η), y) = d(p, γ(η)) + d(γ(η), y)

Show that uη(y) is an upper barrier for r at x, and that

∆uη 6
(n− 1)s′K(d(γ(η), y))

sK(d(γ(η), y))

Conclude that ∆r(x) 6
(n−1)s′K(|x|)

sK(|x|) on all of (M, g) in the barrier
sense.

(8) In this problem we prove the maximum principle for uniformly ellip-
tic operators. Let u be a C2 function defined on a domain Ω ⊂ Rn.
Define

Lu = aijuij + biui

where aij is a continuous n × n-matrix valued function, and bi is a
continuous map taking values in Rn. We furthermore assume this
operator is uniformly elliptic; ie. there are constants 0 < λ < Λ <
+∞ satisfying

0 < λ|ξ|2 6 aijξiξj < Λ|ξ|2

for all vectors ξ ∈ Rn. Note that, in local coordinates, the Laplacian
on (M, g) is precisely of this form.

(i) Prove that if Lu > 0, then u cannot have a maximum in the
interior of Ω. Similarly, if Lu < 0 then u cannot have an interior
minimum.

(ii) Now suppose that f is a continuous function on a connected
open set Ω ⊂ (M, g), ∆f 6 0 in the sense of barriers. We will
show that if f has an interior minimum in Ω, then f is constant.
Suppose not. By subtracting a constant we can assume the
minimum of f is 0. Argue that there is a point 0 ∈ Ω such
that, for any δ > 0 sufficiently small there is a point pδ ∈
Bδ(0)\B 1

2
δ(0) with f(pδ) > 0.
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(iii) Choosing coordinates and δ > 0 we can assume that 0 =
(0, . . . , 0), and pδ = (δ, 0, . . . , 0) ∈ ∂Bδ(0). By continuity there
is a τ > 0 such that 0 < 1

2f(pδ) 6 f(x) for all x ∈ Bτ (pδ).
Consider the function

ϕ(x) = x1 −A(x22 + · · ·+ x2n)

Argue that you can choose A so large that ϕ(x) < 0 whenever
d(x, pδ) > τ and x ∈ ∂Bδ(0).

(iii) Define ψ(x) = eaϕ(x) − 1 where a � 1 is a constant to be
determined. Show that you can choose a large so that ∆ψ > ε
for some ε > 0.

(iv) Now consider f̂ := f−ηψ for η > 0. Argue that you can choose
η > 0 such that

f̂ > 0 on Bδ(0)

f̂ > 0 on ∂Bδ(0)

(v) On the other hand, since f̂(0) = 0, it follows that f̂ has an

interior minimum, while ∆f̂ 6 −ηε < 0 in the sense of barriers.
Show that this contradicts (i).


