
18.965: HOMEWORK 5

DUE: TUESDAY, NOVEMBER 19

(1) Let (M, g|M ) ↪→ (N, g) be an isometrically embedded submanifold.
Let RM denote the Riemann curvature tensor of M , RN denote
the Riemann curvature tensor of N , and let A denote the second
fundamental form of M in N . Prove the Gauss-Codazzi equation:
for X,Y, Z,W ∈ TM we have

RN (X,Y, Z,W ) = RM (X,Y, Z,W )+〈A(X,Z), A(Y,W )〉−〈A(Y, Z), A(X,W )〉
Note, in particular, that if (N, g) has constant sectional curvature,
then the curvature of M is determined by the second fundamental
form.

(2) Suppose now that dimM = n, and dimN = n + 1 so that M has
codimension 1. Let ν be a unit normal vector to M defined on an
open subset U ⊂ M . If M is orientable, we may assume that ν is
globally defined, but in general the existence of a global unit normal
is equivalent to an orientation. Recall that for p ∈ U the shape
operator is the map Sν : TpM → TpM defined by

Sν(X) = −πTM (∇NXν)

where πTM denotes the orthogonal projection to TpM ⊂ TpN , and
∇N is the Levi-Civita connection of (N, g). The shape operator
satisfies

〈A(X,Y ), ν〉 = 〈Sν(X), Y 〉
Since A(X,Y ) = A(Y,X) we see that Sν : TpM → TpM is a self-
adjoint endomorphism. Therefore, there is an orthonormal basis
X1, . . . , Xn of TpM consists of eigenvectors for Sν with eigenvalues
SνXi = λiXi, for λ1, . . . , λn ∈ R. Suppose there is a point p ∈ M
where either 0 < λi for all i, for 0 > λi for all i. Show that at p the
sectional curvatures of M satisfy

KM (σ) < KN (σ)

for all 2-planes σ ⊂ TpM .

(3) Consider a (local) graph in Rn+1. That is, if (x1, . . . , xn, y) = (x, y)
are coordinates on Rn+1, U ⊂ Rn is open and f : U → R is a smooth
function, consider the locally defined surface

y = f(x1, . . . , xn).
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Without loss of generality, we may perform a rotation and a transla-
tion so that the the tangent space of the surface {y = f(x)} at x = 0
agrees with the plane {y = 0}. That is, without loss of generality
we may assume that f(0) = 0 and ∇f(0) = 0. Compute the second
fundamental form, and the mean curvature of the graph. Note in
particular how the formulas simplify at x = 0. Since any hypersur-
face is locally a graph, this should give some insight into what the
second fundamental form and mean curvature measure.

(4) Using exercises (1), (3), prove that the sphere Sn = {x21+· · ·+x2n+1 =

1} ⊂ Rn+1 has constant sectional curvature.

(5) Show that the hyperbolic space has constant sectional curvature.

(6) Suppose M ⊂ Rn+1 is a compact manifold of codimension 1. Show
that there is a point p ∈M where either 0 < λi for all i, for 0 > λi for
all i (which case occurs depends on your choice of normal vector).
Conclude, in particular that : (i) there are no compact minimal
hypersurfaces in Rn, and (ii) no compact flat manifold (eg. the flat
torus) can be isometrically embedded in Rn+1 as a hypersurface.

(7) Recall that we have defined the lie derivative L on vector fields in
the following way. If X,V are vector fields on M , and ϕt denotes
the time t-flow of X then

LXV (p) = lim
t→0

dϕ−tV − V
t

where dϕ−t : Tϕt(p)M → TpM . This can be extended to tensor fields

in an obvious way. Namely, if T is a section of TM⊗r⊗T ∗M⊗s then

LXT = lim
t→0

(ϕ−t)∗T − T
t

where (ϕ−t)∗ = dϕ−t : Tϕt(p)M → TpM is the push-forward on
tangent vectors, and (ϕ−t)∗ = ϕ∗t : T ∗ϕt(p)

M → T ∗pM is the pull-

back. Prove the following basic properties.
(a) If f is a function (which we think of as a 0-form), then with this

definition we have

LXf = Xf = df(X)

(b) If T, S are tensors then the Lie derivative satisfies the product
rule.

LXT ⊗ S = LXT ⊗ S + T ⊗ LXS.
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(c) Since we know how to compute the Lie derivative of functions
and vector fields, it suffices to compute the Lie derivative of a
1-form by (b). Show that if α is a 1-form and V is any vector
field then we have

(ϕ−t)∗(α(V )) = ((ϕ−t)∗α) [((ϕ−t)∗V )] .

Using the product rule, deduce that

X(α(V )) = (LXα)(V ) + α([X,V ])

(d) Define the interior product on k-forms in the following way.
Give a k-form β, and a vector field X we define a k − 1-form
ιXβ called the interior product of X and β by the formula

ιXβ(Y1, . . . , Yk−1) = β(X,Y1, . . . , Yk−1).

If k = 0 we just define ιXβ = 0. Prove that the interior product
satisfies: if β is a k-form and η another form, then

ιX(β ∧ η) = ιXβ ∧ η + (−1)kβ ∧ ιXη.

(e) Using the formula for the de Rham differential that you proved
in Homework 3, together with the (b), (c), (d) show that the
Lie derivative of a k-form β is given by Cartan’s magic formula

LXβ = dιXβ + ιXdβ

(f) Prove that the Riemannian volume form ν :=
√

det gdxi ∧ · · · ∧
dxn satisfies

LXν = div(X)ν

(g) We can now give an easy proof of Gauss’ theorem for mani-
folds. Suppose (M, g) is an oriented, compact manifold (with-
out boundary), and suppose that X is a vector field on M . Let
ϕt denote the flow of X, which is a diffeomorphism of M to
itself, and let ν :=

√
det gdxi ∧ · · · ∧ dxn be the Riemannian

volume form. By the change of variables formula we have∫
M
ν =

∫
ϕt(M)

ν =

∫
M
ϕ∗t ν

differentiating with respect to t gives∫
M

div(X)ν = 0

which is Gauss theorem for manifolds without boundary.
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(8) We are now going to give a few applications of this result. We say
that a function u : M → R is harmonic if ∆u = 0. Using the previous
exercise, show that if M is compact, orientable without boundary,
then there are no non-constant harmonic functions. (Hint: u∆u =
udiv∇u = 1

2div∇(u2) − |∇u|2). The same argument shows that
if M is compact, orientable without boundary then there are no
non-constant functions satisfying ∆u > 0; such functions are called
sub-harmonic.

(9) Let (M, g|M ) ↪→ (N, g) be an isometrically embedded submanifold.
Let u : N → R be a smooth function. Let p ∈ M , U ⊂ M an
open set, and let ν1, . . . , νk be a set of smooth orthonormal vector
fields spanning TM⊥ at each point of U . Show that, for any vectors
X,Y ∈ TpM we have

HessM (u)(X,Y ) = HessN (u)(X,Y ) +
k∑
i=1

νi(u)〈A(X,Y ), νi〉

where HessM ,HessN denote the Riemannian hessians in M,N re-
spectively. Conclude that if M is minimal, then

∆Mu =
∑
j

HessN (u)(ej , ej)

where ej form an orthonormal basis for TpM . Conclude that if (N, g)

admits a function u : N → R with HessNu = 0 (ie. a generalized
linear function), then any compact minimal surface M ⊂ N without
boundary must be contained in a level set of u. Using this show
that there are no compact, orientable minimal surfaces in Rn (Hint:
There are many linear functions!). In fact, by using the strong max-
imum principle instead of the integration-by-parts formula we can
even drop the assumption of orientability.

(10) This problem is totally optional! It’s just for your interest
and enjoyment. You don’t have to hand it in, or even read
it, if you don’t want to.

We discussed in class the construction of the hyperbolic space
from the Minkowski space. Let’s briefly recall this. Consider the
space Rn,1, which is Rn+1 equipped with the Minkowski metric

gM = (dx1)
2 + (dx2)

2 + · · ·+ (dxn)2 − (dt)2

where (x1, . . . , xn, t) are coordinates on Rn+1. The hyperbolic space
is then a connected component of a level set of this quadratic form:

H := {x21 + · · ·+ x2n = t2 − 1, t > 1}
We showed that the induced metric on H is in fact Riemannian. In
order to study gravity and Einsteins equations, we typically want
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an n-dimensional space with a Lorentzian metric (ie. a metric with
signature (n − 1, 1) = (+, · · · ,+,−)). There is a natural general-
ization of the construction of the hyperbolic space which yields this.
Consider Rn−1,2 equipped with the quadratic form

gn−1,2 = (dx1)
2 + (dx2)

2 + · · ·+ (dxn−1)
2 − (dt1)

2 − (dt2)
2

where (x1, . . . , xn−1, t1, t2) are coordinates on Rn+1. We then con-
sider the level set of this quadratic form, which yields the Anti de
Sitter space of dimension n

AdSn := {x21 + · · ·+ x2n−1 = t20 + t21 − 1}
One can check directly that the induced metric has signature (n −
1, 1). Furthermore, this space carries an isometric action by the
group O(n− 1, 2), and hence will have constant curvature. We take
the connected component SO(n − 1, 2) consisting of elements with
determinant 1, which also acts transitively. What’s interesting is
that the group SO(n− 1, 2) is isomorphic to the group of conformal
transformations of the Minkowski space Rn−2,1, which has dimension
n − 1. This is observation is connected with the AdS/CFT corre-
spondence, which says that gravity in AdS5 is intimately connected
with conformal field theory in R3,1.


