
18.965: HOMEWORK 4

DUE: TUESDAY, NOVEMBER 5

1. The Learning Part

In this section we will discuss the notion of curvature for general vector
bundles, and some applications. This is going to combine our discussions
from the last two homeworks on vector bundles, and Lie groups in a way
which I hope you find interesting. A good reference for this material is
Taubes’ book “Differential geometry: Bundles, Connections, Metrics and
Curvature”. Roughly, we will discuss Chapters 12 and 14 from Taubes’ book,
though some material from earlier chapters may also be useful. However,
everything we’re going to use (and indeed, essentially all the basic theory of
vector bundles) boils down more or less to linear algebra. If you get stuck,
write things out in a trivialization! Or look at a book! If you feel really
stuck, send me an email.

First, recall that in Homework 2 we discussed the notion of a real vector
bundle. In this homework we will use the notion of a complex vector bundle.

Definition 1.1. A smooth complex vector bundle E of complex rank k over
M is a manifold E with a surjective, continuous map π : E → M with the
following properties

(i) For each p ∈M the set π−1(p) has the structure of a k-dimensional
vector space over C.

(ii) For each p ∈ M there is an open neighborhood U ⊂ M and a map
ϕU : π−1(U)→ U × Ck, called a local trivialization, such that

π(ϕ−1(x, v)) = x

and, for each x ∈ U the map ϕ−1(x, ·) : Ck → π−1(x) is a C-linear
isomorphism of vector spaces.

(iii) For open sets U, V ⊂ M , with U ∩ V 6= ∅, if ϕU , ϕV are local trivi-
alizations, then

ϕU ◦ ϕ−1V : U ∩ V → GL(k,C)

is a smooth map.

Definition 1.2. Let E → M be a real vector bundle. An almost complex
structure on E is a section J ∈ End(E) such that J2 = −IE where IE ∈
End(E) denotes the identity map.
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(1) Show that a complex vector bundle of complex rank k can be re-
garded as a real vector bundle of rank 2k together with an almost
complex structure. Prove conversely that any real complex vector
bundle with an almost complex structure has even rank 2k and can
be given the structure of a complex vector bundle of complex rank
k.

Note that if J is an almost complex structure then so is −J . If E is the
complex vector bundle with almost complex structure J we denote by E the
complex vector bundle with almost complex structure −J . Equivalently, E
is the vector bundle constructed from E by taking the complex conjugate of
the trivializations; ϕU : π−1(U)→ C.

Let F denote either R or C. Let G ⊂ GL(k,F) be a Lie group. We
introduce the notion of a structure group;

Definition 1.3. We say that a F-vector bundle E of rank k over M (where
F = R, or C) has structure group G ⊂ GL(k,F) if M admits a cover by open
sets Uα such that for each Uα there is a local trivialization ϕα : π−1(U) →
U × Fk with the following property: if Uα ∩ Uβ 6= 0 then the transition
functions are valued in G; ie.

(1) ϕα ◦ ϕ−1β : Uα ∩ Uβ → G ⊂ GL(k,F)

For simplicity, a bundle E with structure group G is always equipped with a
maximal atlas of local trivializations satisfying (1). A local frame {σ1, . . . , σk}
of E induced by an element of this atlas is called a G-frame.

Here is an easy way to reduce the structure group.

Definition 1.4. (a) Let E be a real vector bundle over M . A metric on
E is a smooth section H ∈ E∗ ⊗ E∗ which, over each point p ∈ M
induces an inner product on the fiber Ep = π−1(p).

(b) Let E be a complex vector bundle over M . A hermitian metric on
E is a smooth section H ∈ E∗ ⊗ E∗ which, over each point p ∈ M
induces a non-degenerate hermitian inner product on the fiber Ep =
π−1(p)

Using local trivializations and a partition of unity it is not hard to show that
any real (resp. complex) vector bundle admits a metric (resp. hermitian
metric).

(2) Prove that if E is a real (respectively complex) vector bundle of rank
k which admits a metric (resp. hermitian metric) then the structure
group reduces to O(k) (resp. U(k)).

Definition 1.5. Suppose E is a vector bundle with structure group G. We
say that a connection ∇ = d+A is compatible with the G structure if parallel
transportation along any curve takes a G-frame to a G-frame.

(3) Here is a simpler way to view the compatibility of d + A with the
G structure. Let {σ1, . . . , σk} get a local G-frame for E near p, and
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(x1, . . . , xn) be local coordinates for M centered at p. Write the
connect as ∇ = d + A where A is now a endomorphism values 1
form, which we can write in the general form

A = Aαi βdx
i ⊗ σα ⊗ (σβ)∗

where 1 6 α, β 6 k. Let γ(t) be a smooth curve, γ(0) = p and P (γ)t0
denote parallel transportation along γ from γ(0) to γ(t). Since ∇ is
compatible with the G structure, to t ∈ (−ε, ε) sufficiently small we
have

P (γ)t0σα = (g(t))βασβ

where (g(t))βα is a k× k matrix in G. Using this, prove that for each
i we have Aαi β ∈ g, where g denotes the Lie algebra of G.

(4) Consider the vector bundle TM → M . Let g be a Riemannian
metric on M . The choice of a Riemannian metric gives TM the
structure of an O(n)-bundle. Show that the Levi-Civita connection
∇ is compatible with the O(n) structure.

We now define the curvature of a connection ∇ as the failure of covariant
derivatives to commute.

Definition 1.6. Let E → M be a vector bundle (over R or C), and ∇ =
d+A a connection. We define the curvature in local coordinates (x1, . . . , xn)
as

Fij = [∇i,∇j ]dxi ⊗ dxj ∈ End(E)⊗ T ∗M ⊗ T ∗M

Note that the curvature is anti-symmetric since Fij = −Fji, thus we may
(and will) view F as a section of End(E)⊗ Λ2T ∗M .

In homework 3 we defined the de Rham differential as a map d : ΛkT ∗M →
Λk+1T ∗M . Given a choice of connection there is a natural extension of this
operator to a map

dA : E ⊗ ΛkT ∗M → E ⊗ Λk+1T ∗M

defined in the following way: for a section σ of E and a 1-form β we define

dA(σ ⊗ β) = dAσ ∧ β + σ ⊗ dβ

We can therefore compose the operators dA : E → E ⊗ T ∗M and dA :
E ⊗ T ∗M → E ⊗ Λ2T ∗M .

(5) Show that the curvature FA ∈ End(E)⊗ ∧2T ∗M satsifies

d2Aσ = FA ∧ σ

In particular, derive the formula FA = dA+ A ∧ A. Show that if E
has structure group G, then in a G-frame we have

FA ∈ g⊗ ∧2T ∗M

That is, FA is valued in the Lie algebra of G.
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Recall that in homework 3 we saw that the de Rham differential gave rise
to the de Rham cohomology

Hk(M,R) =
{Kerd : ΛkT ∗M → Λk+1T ∗M}
{Imd : Λk−1T ∗M → ΛkT ∗M}

and we saw (at least in a simple example) that these groups encode some
topological information. For bundle valued forms, the previous exercise
shows that there is no natural extension of this theory unless E admits a
connection with FA = 0. Such a bundle is called a flat bundle. Nevertheless,
we can get interesting topological data about our manifold from non-flat
vector bundles.

(6) Let E be a vector bundle and dA be a connection on E. Recall
that dA induces a natural connection on End(E) and hence using
the above construction we have natural operators

dA : End(E)⊗ ΛkT ∗M → End(E)⊗ Λk+1T ∗M.

locally, a section of τ of End(E) can be written as a matrix. Show
that, in this notation the covariant derivative on End(E) can be
written as

dAτ = dτ +Aτ − τA
where Aτ denotes left matrix multiplication by A, while τA denotes
right matrix multiplication by A. Conclude that if τ̂ ∈ End(E) ⊗
ΛkT ∗M then

dAτ̂ = dτ̂ +A ∧ τ̂ − τ̂ ∧A ∈ End(E)⊗ Λk+1T ∗M

Here we make use of the natural composition (ie. matrix multipli-
cation) on endomorphism valued forms. If we have endomorphism
τ0, τ1 ∈ End(E), and α0 is a p-form, and α1 is a q-form, then

(τ0 ⊗ α0) ∧ (τ1 ⊗ α1) = τ0τ1 ⊗ (α0 ∧ α1)

where τ0τ1 denotes the composition.

(7) Using the previous problem, show that dAFA = 0. This is the second
Bianchi identity. You proved a special case of this on Homework 3,
(do Carmo, chapter 4, problem 7), when E = TM , and dA is the
Levi-Civita connection on (M, g).

(8) Let E be a vector bundle (over R or C). Show that if ∇0 = d+ A0

and ∇1 = d+A1 are two connections on E, then

∇0 −∇1 = A0 −A1

is a globally defined section of End(E)⊗ T ∗M . In particular, while
the connection coefficient is not a globally defined section of End(E)⊗
T ∗M , the difference of any two connection coefficients is globally de-
fined, and transforms as a section of End(E)⊗ T ∗M . In particular,
the space of connections on E is an affine space modeled on the
global sections Γ(M,End(E)⊗ T ∗M)
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Recall that there is a well-defined trace map Tr : End(E) → C∞(M) given
explicitly in a local frame by

Tr
(
Tαβ σα ⊗ (σβ)∗

)
=
∑
α

Tαα

This is well defined since under a change of frame T 7→ g−1Tg, and Tr(g−1Tg) =
Tr(Tgg−1) = Tr(T ). It also extends in the obvious way to a map

Tr : End(E)⊗ ΛkT ∗M → ΛkT ∗M.

(9) Let E be a vector bundle with a connection dA. Show that, for any
endomorphism τ ∈ End(E) we have

dTr(τ) = Tr(dAτ)

Hint: The point here is that ifA,B are n×nmatrices then Tr([A,B]) =
0.

(10) Let E be a vector bundle with a connection dA, and let FA be the
curvature 2-form. Define

ch1(A) =
√
−12πTr(FA) ∈ Λ2T ∗M

Using the previous problems show that dch1(A) = 0. Hence c1(A)
defines a cohomology class [ch1(A)] ∈ H2(M,C)– in fact, it turns
out [ch1(A)] ∈ H2(M,R) as we will see below. Furthermore, show
that if d+A0, d+A1 are two connections on E, then

ch1(A1) = ch1(A0) + dTr(A1 −A0).

Since A1 − A0 is a globally defined endomorphism, Tr(A1 − A0) is
a smooth function and so [ch1(A0)] = [ch1(A1)]. Thus, the bundle
E gives rise to a cohomology class ch1(E) ∈ H2(M,R) which is
independent of the choice of connection. This is called the first
Chern class.

A few remarks are in order. First of all, this construction is not interesting
for real vector bundles. The reason is that we can always find a metric H
on E, and a connection dA compatible with the resulting O(n) structure.
Therefore the curvature FA ∈ o(n) ⊗ Λ2T ∗M . But on the other hand, any
matrix in B ∈ o(n) has Tr(B) = 0. Thus, for a real vector bundle ch1(E) =
0. However, this construction applied to complex vector bundles produces
interesting non-trivial cohomology classes. Note that if E is complex with a
hermitian metric then the curvature is valued in u(n)⊗Λ2T ∗M where u(n)
is the Lie algebra of U(n). Since u(n) consists of skew-hermitian matrices, it
follows that for any B ∈ u(n) the diagonal entries of B are pure imaginary,
and hence we have Tr(B) ∈

√
−1R. This explains why, for any complex

vector bundle E, we introduced the factor of
√
−1 in the definition of ch1(E);

it is necessary to have ch1(E) a real 2-form and hence [ch1(A)] ∈ H2(M,R).
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Secondly, there is a more general version of this construction, by defining

chk(A) =

(√
−1

2π

)k
Tr(FA ∧ · · · ∧ FA) ∈ Λ2kT ∗M

where we wedge FA with itself k-times. It is not too hard to show that
chk(A) are also close 2k-forms whose cohomology class is independent of
the choice of connection.

2. The Practicing Part

(1) do Carmo, Chapter 5, problem 3
(2) do Carmo, Chapter 7, problems 1, 2, 6, 8, 12


