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1. Introduction

1.1. Discrete and Continuous Settings. Imagine that on Zn, we could measure how many
“heat particles” are at any lattice point. Let pk(x) be the number of heat particles at x ∈ Zn at
time k ∈ R≥0. The neighbors of x are the points y ∈ Zn such that |x − y| = 1 (so there are 2n
many neighbors for any x). In this case we will write x ∼ y. We assume that each heat particle
will move to one of its neighbors (randomly chosen) in each unit of time. Then we derive

pk+1(x) =
1

2n

∑
y∼x

pk(y).

As a result,

pk+1(x)− pk(x) =
1

2n

∑
y∼x

(pk(y)− pk(x)).

Thus for a function u : Zn → R, we define the discrete laplacian of u by

(1.1) ∆u(x) :=
1

2n

∑
y∼x

(u(y)− u(x)),

based on which we have

pk+1(x) − pk(x) = ∆pk(x).

We could formulate it as

(1.2) ∂tpk(x) = ∆pk(x),

where ∂t is the discrete time derivative. (1.2) is called the discrete heat equation.

The reason why we define ∆ as in (1.1) could be seen from the following. Let u : Rn → R. For
x ∈ Rn and r > 0, we know

Vol(∂Br(x)) = cnr
n−1

where cn is the volume of the unit sphere in Rn. As a result, the average of u over ∂Br(x) is

I(r) :=
1

cnrn−1

ˆ
∂Br(x)

u.

Then using the polar coordinate,

I ′(r) =
1

cnrn−1

ˆ
∂Br(x)

d

dr
u =

1

cnrn−1

ˆ
Br(x)

∆u

by Stokes’ theorem. This provides a heuristic viewpoint to the laplacian (for both discrete and
continuous setting).

Now we talk about the continuous analog. Let u : Rn × [a, b] → R where we write (x, t) ∈
Rn × [a, b]. Then the heat equation is

∂t = ∆u,

or

(∂t −∆)u = 0
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where ∂t−∆ is called the heat operator. One way to see the heat equation is the gradient flow for
the energy functional. For a smooth function u : Ω→ R, its energy is defined by

E(u) =

ˆ
Ω

|∇u|2.

We would like to look at variations of u boundary conditions fixed. Thus take ϕ : Ω → R with
ϕ|∂Ω = 0, and consider vs := u+ sϕ. Then

E(vs) =

ˆ
Ω

|∇(u+ sϕ)|2 =

ˆ
Ω

(|∇u|2 + 2s 〈∇u,∇ϕ〉+ s2|∇ϕ|2),

so
d

ds
E(vs)|s=0 = 2

ˆ
Ω

〈∇u,∇ϕ〉 = −2

ˆ
Ω

ϕ∆u.

Thus if we want E(vs) to go down as fast as possible, we must let

d

ds
vs|s=0 = ϕ = ∆u.

This is what it means to be the negative gradient flow for this functional. i.e., if

∂tu = ∆u,

then E(u) goes down as fast as possible along the flow.

1.2. Uniqueness. Suppose u and v satisfy the heat equation on a compact domain Ω× [a, b] with
u(·, a) = v(·, a) and u = v on ∂Ω × [a, b]. Then it turns out that u = v everywhere. To see this,
let w := u − v, which also satisfies the heat equation and vanishes at the initial time and the
boundary. Then

d

dt

ˆ
|∇w|2 = 2

ˆ
Ω

〈∇wt,∇w〉 = 2

ˆ
Ω

〈∇∆,∇w〉 = −2

ˆ
Ω

|∆w|2.

That is to say, the energy E(w(·, t)) is decreasing. However, the initial energy of w is 0, so it
should be 0 at any time and hence w = 0, i.e., u = v.

If we consider solutions u, v : Rn × [a, b]→ R to the heat equation and would like to considerˆ
Rn
|∇u|2,

we need them to decay fast near infinity. If it is the case, the argument above still holds. In
most cases, one has uniqueness. However, there is a famous example of Tychonoff. That function
u : R × R → R has properties that u = 0 for t ≤ 0 and it grows incredibly fast when t > 0.
Explicitly, if we let {

e−
1
t2 if t > 0

0 if t ≤ 0
,

then Tychonoff’s example is

u(x, t) :=
∞∑
n=0

ϕ(n)(t)
x2n

2n!
.

We could see that at any t > 0, u(·, t) grows faster than any exponential functions.
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The uniqueness property also gives rise to the heat semigroup property. Let u(x, t) be a solution
to the heat equation on Rn × [0, T ] → R, with u(x, 0) = u0(x). If we have uniqueness (in either
case we discuss above), we could consider an operator Pt by defining

Ptu0(x) := u(x, t).

Then it satisfies

Ps(Ptu0) = Ps+tu0

by the uniqueness property. This is called the semigroup property of the heat equation.

A crucial property of the heat equation is scaling. Suppose u : Rn × R→ R is a solution to the
heat equation. Then for c > 0, we define

uc(x, t) := u(cx, c2t)

for (x, t) ∈ Rn × R. Then

∂tuc = c2∂tu = c2∆u = ∆uc,

so uc is also a solution to the heat equation.

Next we talk about the static solutions to the heat equations, which are harmonic functions,
i.e., those u : Rn → R with ∆u = 0. We can view u as u : Rn × R → R by defining u(x, t) = u(x).
Then

∂tu = 0 = ∆u

if the original u is harmonic.

If u : Rn → R satisfies

∆u+ λu = 0

for some λ, i.e., u is an eigenfunction with eigenvalue λ, then we consider

v(x, t) := e−λtu(x),

which satisfies

∂tv = −λv = ∆v.

A particular example here happens when u = ei〈y,x〉, called the plane wave, where y ∈ Rn is a
constant vector. In this case,

∆u =
n∑
j=1

−y2
ju = −|y|2u.

Hence

v(x, t) = e−|y|
2tei〈y,x〉,

called the traveling wave, is a solution to the heat equation.

The single most important solution to the heat equation is the fundamental solution

u(x, t) := (4πt)−
n
2 e−

|x|2
4t

for (x, t) ∈ Rn × R>0. Direct computation shows that it satisfies the heat equation. We will come
back to this soon.
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1.3. Other Interesting Topics. We have no time to discuss some other related interesting topics,
such as porous media equations, which is of the form

∂tu = ∆u2 = 2u∆u+ |2∇u|2

for u > 0. It also has no finite propagation speed.

2. Dynamics of the Heat Equation

Let u : Ω × R>0 → R be a solution to the heat equation, with u(·, t)|∂Ω = 0. When u comes
from a harmonic function, by the maximum principle (assuming Ω is compact), we know u = 0,
so the only static solution here is 0. In general, we will consider the energy again. We assume the
Neumann boundary condition, i.e.,

∂u

∂n
= 0 on ∂Ω.

We would like to study the dynamics of this heat flow. The first thing we observe is

(2.1)
d

dt

ˆ
Ω

u(·, t) =

ˆ
Ω

∆u =

ˆ
∂Ω

∂u

∂n
= 0

by Stoke’s theorem and our Neumann boundary condition. Thus the average of u is constant (in
t). We would like to see the behavior as t becomes large. In sight of the static solution, we may
expect it converges to a harmonic function. We already know

(2.2)
d

dt

ˆ
Ω

|∇u|2 = 2

ˆ
Ω

〈∇ut,∇u〉 = −2

ˆ
Ω

(∆u)2.

To see that u converges to a constant function very fast, we hope to see thatˆ
Ω

|∇u|2 → 0

very fast. Based on (2.1), we may assume
´

Ω
u = 0 by adding a constant. Next, we need the

Poincaré inequality, i.e.,

(2.3)

ˆ
Ω

u2 ≤ C(Ω)

ˆ
Ω

|∇u|2.

The easiest case is when Ω is an interval, in which case the inequality follows from the fundamental
theorem of calculus and Cauchy-Schwarz inequality. Since

ˆ
Ω

|∇u|2 = −
ˆ

Ω

u∆u ≤
(ˆ

Ω

u2

) 1
2
(ˆ

Ω

(∆u)2

) 1
2

,

the Poincaré inequality (2.3) implies

ˆ
Ω

|∇u|2 ≤
(
C(Ω)

ˆ
Ω

|∇u|2
) 1

2
(ˆ

Ω

(∆u)2

) 1
2

so ˆ
Ω

|∇u|2 ≤ C(Ω)

ˆ
Ω

(∆u)2.
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Hence combining this with (2.2),

d

dt

ˆ
Ω

|∇u|2 = −2

ˆ
Ω

(∆u)2 ≤ − 2

C

ˆ
Ω

|∇u|2.

Thus if we write

E(t) :=

ˆ
Ω

|∇u|2,

we have
E ′ ≤ −C̃E,

which means
(eC̃tE)′ ≤ 0,

implying that E decays exponentially fast to 0 as t→∞. This is the case when we normalize that´
u = 0. In general it will converge to a constant function.

3. Parabolic Maximum Principle

Theorem 3.1. Let Ω be a compact domain and assume u : Ω × [a, b] → R satisfies the heat
equation. Then

(3.2) max
Ω×[a,b]

u = max
Ω×{0}∪∂Ω×[a,b]

u.

In fact we only need u to be a subsolution to the heat equation, i.e.,

(∂t −∆)u ≤ 0.

(Proof of (3.2).) First we assume a special case that

(3.3) (∂t −∆)u < 0,

and say the maximum is achieved at some (x0, t0). We may assume this point is not on Ω× {0} ∪
∂Ω× [a, b], so x0 is in the interior of Ω. Thus

(3.4) ∆u(x0, t0) ≤ 0,

and

(3.5) ut(x0, t0) ≥ 0.

To see (3.5), if ut < 0 at that point, the maximality would be violated at some t0 − ε. Now (3.4)
and (3.5) give

(∂t −∆)u(x0, t0) ≥ 0,

contradicting our assumption (3.3).

In general, if (∂t −∆)u ≤ 0, we consider

vε(x, t) := u(x, t)− εt
for ε > 0. Then

(∂t −∆)vε = (∂t −∆)u− ε < 0.

Thus by the previous case we know

max
Ω×[a,b]

vε = max
Ω×{0}∪∂Ω×[a,b]

vε.
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This holds for any ε > 0, so (3.2) follows. �

4. Discrete Heat Equation

4.1. Background Setting. We come back to the discrete setting. We could do it more generally.
Let Γ be a finite graph, i.e., it consists of a finite set of points, called the vertices, and pairs of
some vertices, called edges. We would look at simple graphs, i.e., every vertex is not connected to
itself.

For vertices v1, v2 ∈ Γ, the graph distance between them is the smallest number of edges that
connect v1 and v2. Then we define the neighbor of a vertex x to be those vertices that of distance
1 to x. We would write y ∼ x, by which we mean y is a neighbor of x. The number of its neighbor
is called the degree of x, denoted by degx .

The laplacian on the graph is defined for u : Γ→ R by

∆u : Γ→ R, x 7→ 1

degx

∑
y∼x

(u(y)− u(x)),

which generalizes what we defined before. Obviously ∆ is a linear operator. The discrete heat
equation for u : Γ× {0, 1, 2, 3, · · · } → R is

(4.1) ∂tu = ∆u,

where ∂t is the discrete time derivative, which operates as

∂tu(x, t) := u(x, t+ 1)− u(x, t).

We could rewrite (4.1) as

u(x, t+ 1)− u(x, t) =
1

degx

∑
y∼x

(u(y, t)− u(x, t))

=
1

degx

∑
y∼x

u(y, t)− u(x, t),

i.e.,

u(x, t+ 1) =
1

degx

∑
y∼x

u(y, t),

which fits our expectation.

4.2. Adjancecy Map. There is another viewpoint. For u : Γ → R, we could define Au : Γ → R
by

Au(x) :=
1

degx

∑
y∼x

u(y).

This A is called the adjacency map. Thus the heat equation is equivalent to

(4.2) u(x, t+ 1) = Au(x, t).
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For u : Γ→ R, the total integral u is defined by∑
x∈Γ

degx ·u(x).

Thus the total integral of ∆u is∑
x∈Γ

degx ·∆u(x) =
∑
c∈Γ

degx ·

(
1

degx

∑
y∼x

(u(y)− u(x))

)
=
∑
x

∑
y∼x

(u(y)− u(x))

=
∑
x

∑
y∼x

u(y)−
∑
x

degx ·u(x)

=
∑
x

degy ·u(y)−
∑
x

degx ·u(x)

= 0.

In the continuous setting, we have seen that the Neumann boundary condition guarantees
d
dt

´
u = 0, which is the first law of thermodynamics (conservation of energy). In the discrete

setting, since ∑
x∈Γ

degx ·∆u(x, t) = 0,

we get ∑
degx ·∂tu(x, t) =

∑
x∈Γ

degx ·∆u(x, t) = 0

if u satisfies the discrete heat equation. Thus∑
x

degx(u(x, t+ 1)− u(x, t)) = 0,

that is to say, ∑
x

degx ·u(x, t+ 1) =
∑
x

degx ·u(x, t).

This is the discrete version of the first law of thermodynamics (conservation of heat particles).

Now for any function u : Γ→ R, we have defined

Au(x) :=
1

degx

∑
y∼x

u(y).

Clearly A is also a linear operator, and by (4.2) we could formulate the heat equation as

(4.3) un(x) := u(x, n) = Anu0(x).

In fact, we could view A as a self-adjoint operator with respect to a natural inner product. For
u, v : Γ→ R, we consider

〈u, v〉 :=
∑
x∈Γ

degx ·u(x)v(x).
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Then

〈Au, v〉 =
∑
x

degx ·Au(x)v(x)

=
∑
x

degx ·

(
1

degx

∑
y∼x

u(y)

)
v(x)

=
∑
x

∑
y∼x

u(y)v(x)

=
∑
y

∑
x∼y

u(x)v(y) = 〈u,Av〉 ,

which justifies what we just said.

We could identify the space of functions Γ→ R as RΓ (noting |Γ| <∞), and view

A : RΓ → RΓ.

Thus it admits a basis of eigenfunctions. What are the possible eigenvalues? (Our convention here
is that λ is an eigenvalue if Au + λu = 0.) From now on we assume Γ is connected, i.e., any two
different vertices are connected. It turns out that there exists a constraint on the eigenvalues.

Theorem 4.4. If Au+ λu = 0, then λ ∈ [−1, 1].

(Proof.) Suppose Au+ λu = 0. i.e.,

−λu(x) =
1

degx

∑
y∼x

u(y).

If |u| achieves its maximum at xM , then

|λ||u(xM)| ≤ 1

degxM

∑
y∼xM

|u(y)| ≤ 1

degxM

∑
y∼xM

|u(xM)| = |u(xM)|

so |λ| ≤ 1. �

Note that if λ = −1, then Au = u, which means that u is harmonic. Looking at its value at its
maximum, we get that u should be constant (on each connected component). (Otherwise, it could
not equal its average.) Equivalently, we prove that harmonic functions are all constant.

When λ = 1, the graph is very special. It is called a bi-partite graph, in the sense that Γ = Γ1∪̇Γ2

and any edge of Γ goes from a vertex of Γ1 to one of Γ2. To prove this, note that it implies

u(x) = − 1

degx

∑
y∼x

u(y),

so
u(y) = −u(xM)

for y ∼ xM if |u| achieves its maximum at xM (as above). Thus we can define Γ1 = {x : u(x) =
u(xM)} and Γ2 = {x : u(x) = −u(xM)}.
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Thus if u is not harmonic and Γ is not bi-partite, then it will be contract under A, i.e.,

|u(·, d)|L2 ≤ λd|u(·, 0)|L2

for some λ ∈ (0, 1).

4.3. On Integral Lattices. Next, we consider u : Zn × Z+ → R, with ∆u defined in the same
way, so

(∆u)(x) =
1

2n

∑
y∼x

(u(y)− u(x)).

We may define it a little different, in the sense that

(∆u)(x) =
1

2nδ

∑
y∼x

(u(y)− u(x))

for u :
√
δZn × δZ+ → R. In this way, the speed is

√
δ

δ
=

1√
δ
→∞

as δ → 0. Why do we consider this kind of scaling? Note that if (∂t −∆)u = 0, then

ua(x, t) := u(ax, a2t)

also solves the heat equation for a > 0. Thus there is a2 in time and a in space. In fact, as δ → 0,
the solution to the above scaled heat equation will converge to that to the continuous heat equation
(with the help of some gradient estimate).

5. Heat Kernel on the Euclidean Space

5.1. Fundamental Solutions. Consider h : Rn × R>0 → R defined by

h(x, t) := (4πt)−
n
2 e−

|x|2
4t .

We claim that h satisfies the heat equation. Before proving that we start with a lemma.

Lemma 5.1. Let u : Rn × [a, b]→ R and f : R→ R. Then

(∂t −∆)f(u) = f ′(u)(∂t −∆)u− f ′′(u)|∇u|2.

(Proof of lemma 5.1.) Note
∇f(u) = f ′(u)∇u.

Thus
∆f(u) = div(∇f(u)) = f ′′|∇u|2 + f ′∆u.

On the other hand,
∂tf(u) = f ′∂tu.

Combining these gives the result. �

Now we apply lemma 5.1 to

f(s) := es and u := −n
2

log t− |x|
2

4t
,
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which gives

f(u) = t−
n
2 e−

|x|2
4t = (4π)

n
2 h.

Hence it is equivalent to prove that f(u) is a solution. To see that f(u) satisfies the heat equation,
note

∆u = −∆|x|2

4t
= −2n

4t
and

∇u = − x
2t
,

which tells us that

|∇u|2 =
|x|2

4t2
.

On the other hand,

ut = − n
2t

+
|x|2

4t2
.

Thus

(∂t −∆)u =
|x|2

4t2
= |∇u|2.

Hence lemma 5.1 implies

(∂t −∆)f(u) = eu(∂t −∆)u− eu|∇u|2 = 0.

In conclusion, we derive that h(x, t) is a solution to the heat equation on the euclidean space, and
we call h the fundamental solution (the reason of which could be seen later).

5.2. Heat Kernels. Now we assume u(x, t) is a solution to the heat equation. Then for any
y ∈ Rn,

v(x, t) := u(x− y, t)
also solves the heat equation. This means that

H(x, y, t) := h(x− y, t) = (4πt)−
n
2 e−

|x−y|2
4t

is a solution to the heat equation (in (x, t)). Notice that H is symmetric in x and y, i.e., H(x, y, t) =
H(y, x, t). Then the fact that

(∂t −∆x)H = 0

implies

(∂t −∆y)H = 0

also.

Another nice property, which explains why 4π comes in, is that the integral of h isˆ
Rn
h(x, t)dx =

ˆ
Rn

(4π)−
n
2 e−

|z|2
4 dz = 1

for any fixed t, by a change of variable z = x√
t
.
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Observing the pattern of h (i.e., concentration to the origin as t→ 0) along with the fact that
it has integral 1, for any continuous and bounded u, we have the limit

lim
t→0+

ˆ
Rn
h(x, t)u(x)dx = u(0).

Thus

lim
t→0+

ˆ
Rn
H(x, y, t)u(y)dy = u(x).

To be more precise, for a continuous and bounded v : Rn → R, consider

u(x, t) :=

ˆ
Rn
H(x, y, t)v(y)dy.

Then u satisfies, as mentioned above,

lim
t→0+

u(x, t) = v(x)

and furthermore,

(∂t −∆x)u =

ˆ
Rn

((∂t −∆x)H) (x, y, t)v(y)dy = 0.

That is, u is a solution to the heat equation with initial value u(x, 0) = v(x). This explains the
terminology of the fundamental solution. (Beware that we need some mild condition on the initial
data v. Here of course boundedness suffices.)

We summarize the properties of H(x, y, t).

1. H(x, y, t) = H(y, x, t).

2. (∂t −∆x)H = (∂t −∆y)H = 0.

3. Reproducing property: u(x, t) :=
´

Rn H(x, y, t)v(y)dy. solves the heat equation with initial
data v with mild growth.

The next question is if this applies when we change Rn to other spaces. For example, consider
the circle S1. Functions on S1 could be viewed as periodic functions on R. We need to recall some
Fourier analysis. Let

ck :=
sin kx√

π
and sk :=

sin kx√
π
.

Then

c2
k + s2

k =
1

π
(cos2 kx+ sin2 kx) =

1

π
.

Thus ˆ 2π

0

c2
k +

ˆ 2π

0

s2
k = 2,

in which we have ˆ 2π

0

c2
k =

ˆ 2π

0

s2
k = 1.

In fact, ck’s and sk’s (k ∈ N) along with 1 form an orthonormal basis for all L2 functions on S1.
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Note that

∆ck = c′′k = −k2ck

and likewise

∆sk = −k2sk.

These lead to considering

H(x, y, t) :=
∑
k

(
ck(x)ck(y)e−k

2t + sk(x)sk(y)e−k
2t
)

= H(y, x, t),

which is well-defined for any t > 0 (by the boundedness of ck and sk and the fast decay of the
exponential function). The reason to add the exponential function is the following observation

(∂t −∆)(cke
−k2t) = −k2cke

−k2t + k2e−k
2t = 0.

Similarly we have (∂t −∆)(ske
−k2t) = 0. Thus we conclude

(∂t −∆)H = 0.

Next we look at the reproducing property. For a continuous function v, we can write it as

v(y) =
∑
k

(akck(y) + bksk(y))

where ak and bk are its Fourier coefficients. Then by the orthogonality,ˆ
S1

H(x, y, t)v(y)dy =
∑
k,l

ˆ
S1

(
ck(x)ck(y)e−k

2talcl(y) + sk(x)sk(y)e−k
2tblsl(y)

)
dy

=
∑
k

(ck(x)ak + sk(x)bk) e
−k2t → v(x)

as t→ 0+ for any x ∈ S1. Thus we are fine.

The third example is in the discrete setting. Recall what we did in the section 4. Let Γ be
a finite simple graph which is not bi-partite. If u is a solution (to the discrete heat equation)
orthogonal to constant, i.e., 1

degx

∑
y∼x u(y) = 0, we have ‖Au‖ ≤ µ‖u‖ for some µ < 1. Thus by

(4.3),

‖u(·, n)‖ ≤ µk‖u(·, 0)‖.
Hence u(·, n)→ 0 exponentially fast. In general, since A1 = 1, we can find c such that u(·, 0)−c ⊥
1, so u(·, n)→ c.

Note that we can write ∆ = A − 1 (where 1 means the identity map). Thus by theorem 4.4,
its eigenvalues lie in [0, 2]. Also, the same arguments as that for A shows that we have an ONB of
eigenfunctions, say ϕi’s with eigenvalues λi’s (i = 1, 2, · · · , |Γ|). Then we consider (a finite sum)

H(x, y, t) :=
∑
i

ϕi(x)ϕi(y)(1− λi)t.

13



We check that this is the heat kernel. It is clear that it is symmetric in x and y. To see that it is
a solution, note

H(x, y, t+ 1)−H(x, y, t) =
∑
i

ϕi(x)ϕi(y)(1− λi)t+1 −
∑
i

ϕi(x)ϕi(y)(1− λi)t

=
∑
i

ϕi(x)ϕi(y)(1− λi)t · (−λi).

On the other hand,

∆xH =
∑
i

−λiϕi(x)ϕi(y)(1− λi)t,

so ∂tH = ∆xH.

The next thing to prove is the reproducing property. For a function v on Γ, consider

u(x, t) :=
∑
y∈Γ

degyH(s, y, t)v(y) =
∑
y

∑
i

degy ϕi(x)ϕi(y)(1− λi)tv(y)

Clearly u satisfies the heat equation. Furthermore,

u(x, 0) =
∑
y

∑
i

degy ϕi(x)ϕi(y)v(y)

=
∑
i

ϕi(x)
∑
y

degy ϕi(y)v(y)

=
∑
i

ϕi(x) 〈v, ϕi〉 = v(x)

since ϕi’s form an ONB.

5.3. Green Functions. Recall the heat kernel

H(x, y, t) = (4πt)−
n
2 e−

|x−y|2
4t

on Rn. Here we assume n ≥ 3 (to make the function integrable). Then we define

G(x, y) =

ˆ ∞
0

H(x, y, t)dt.

Since

lim
t→0+

H(x, y, t) = 0

for x 6= y (by the concentration nature of H), we have

∆xG(x, y, t) =

ˆ ∞
0

∆xH(x, y, t)dt =

ˆ ∞
0

Ht(x, y, t)dt = 0

by the fundamental theorem of calculus.

14



We can use the function G, called the Green function, to solve the Poisson equation. To be
precise, for a given function f, Poisson problem asks for the solution to ∆u = f. Indeed, if we
assume f has compact support, and consider

u(x) := −
ˆ

Rn
G(x, y)f(y)dy,

then

∆xu = −∆x

ˆ
Rn

(ˆ ∞
0

H(x, y, t)dt

)
f(y)dy

= −
ˆ

Rn

(ˆ ∞
0

∆xH(x, y, t)dt

)
f(y)dy

= −
ˆ

Rn

(ˆ ∞
0

d

dt
H(x, y, t)dt

)
f(y)dy

= −
ˆ ∞

0

(
d

dt

ˆ
Rn
H(x, y, t)f(y)dy

)
dt = −(0− f(x)) = f(x).

5.4. Parabolic Mean Value Inequalities. Let u : Rn × [−T, 0] → R with (∂t − ∆)u ≤ 0. We
want to estimate u(0, 0). First, consider

Hb(x, t) = (−4πt)−
n
2 e
|x|2
4t = h(x,−t)

where h is the fundamental solution. Then

∂tHb = −∂th = −∆h = −∆Hb.

That is to say, Hb satisfies the backward heat equation (∂t + ∆)Hb.

Next, if we let

I(t) := (−4πt)−
n
2

ˆ
Rn
u(x, t)e

|x|2
4t dx =

ˆ
Rn
u(x, t)Hb(x, t)dx,

then

(5.2) I ′ =

ˆ
utHb +

ˆ
u(Hb)t ≤

ˆ
∆u ·Hb −

ˆ
u∆Hb = 0

after integration by parts. (Here of course we need to assume u does not grow too fast.) Thus we
know that I is decreasing.

Note that
lim
t→0−

I(t) = u(0, 0)

by the property of the heat kernel, and since I is decreasing,

(4πt)−
n
2

ˆ
u(x, t)e−

|x|2
4T dx = I(−T ) ≥ I(0−) = u(0, 0).

This is the simplest form of the parabolic mean value inequality.

15



6. Central Limit Theorem

Assume u : Rn× R≥0 → R satisfies (∂t−∆)u = 0 and
´
u0dx = 1. Then with some mild growth

assumption, we know

u(x, t) =

ˆ
H(x, y, t)u0(y)dy.

If we consider
v(x, t) := t

n
2 u(
√
tx, t),

it turns out that

(6.1) v(x, t)→ (4π)−
n
2 e−

|x|2
4

as t→∞. To see (6.1), note

v(x, t) = (4π)−
n
2

ˆ
u0(y)e−

|
√
tx−y|2
4t dy

= (4π)−
n
2

ˆ
u0(y)e−

|x|2
4 · e−

|y|2
4t

+ 1
2
√
t
〈x,y〉

dy.

By dominated convergence theorem,

v(x, t)→ (4π)−
n
2

ˆ
u0(y)e−

|x|2
4 dy

= (4π)−
n
2 e−

|x|2
4

ˆ
u0(y)dy

and by our assumption of unit integral, (6.1) follows. We will use (6.1), together with the mono-
tonicity (5.2), to show inequalities not directly related to the heat equation.

We will use the theorem to prove some functional inequalities.

6.1. Application 1. Hölder Inequality.

Theorem 6.2. Let h1 and h2 be C1 functions with compact support. Then for 1 < p, q <∞ with
1
p

+ 1
q

= 1, we have

(6.3)

ˆ
|h1h2| ≤ ‖h1‖Lp‖h2‖Lq

and the equality holds if and only if f = cg for some c ∈ R.

Before proving this inequality, we first observe that if f and g are positive subsolutions to the
heat equation, then by letting

u := log
(
f

1
p g

1
q

)
=

1

p
log f +

1

q
log g,

we have

(6.4) ∇u =
1

p

∇f
f

+
1

q

∇g
g

16



and

∆u =
1

p

(
∆f

f
− |∇f |

2

f 2

)
+

1

q

(
∆g

g
− |∇g|

2

g2

)
.

Thus

(∂t −∆)u =
1

p

(
(∂t −∆)f

f
+
|∇f |2

f 2

)
+

1

q

(
(∂t −∆)g

g
+
|∇g|2

g2

)
≥ 1

p

|∇f |2

f 2
+

1

q

|∇g|2

g2
,

so by (6.4),

(∂t −∆)eu = eu
(
(∂t −∆)u− |∇u|2

)
≥ eu

1

p

(
(∂t −∆)f

f
+
|∇f |2

f 2

)
+

1

q

(
(∂t −∆)g

g
+
|∇g|2

g2

)
≥ 1

p

|∇f |2

f 2
+

1

q

|∇g|2

g2
−
∣∣∣∣1p∇ff +

1

q

∇g
g

∣∣∣∣2 .
After simplification, we obtain

e−u(∂t −∆)eu =
1

pq

(
|∇f |2

f 2
+
|∇g|2

g2
− 2 〈∇f,∇g〉

fg

)
≥ 1

pq

∣∣∣∣∇ff − ∇gg
∣∣∣∣2

=
1

pq

∣∣∣∣∇ log
f

g

∣∣∣∣2 .
Thus

(∂t −∆)(f
1
p g

1
q ) ≥ f

1
p g

1
q

qp

∣∣∣∣∇ log
f

g

∣∣∣∣2 ≥ 0.

If we consider

I(t) :=

ˆ
Rn×{t}

f
1
p g

1
q ,

then by integration by parts (and mild growth assumption of f and g)

I ′(t) =

ˆ
Rn×{t}

∂t

(
f

1
p g

1
q

)
=

ˆ
Rn×{t}

(∂t −∆)
(
f

1
p g

1
q

)
≥ 0

and if I ′(t) = 0, we get f = cg.

(Proof of (6.3).) We may assume h1 and h2 are non-negative, by seeing their absolute values. In
fact, we let

f := |h1|p and g := |h2|q.
What we really want to do is the following. We also write f and g be the solutions to the heat
equation with initial data

f(·, 0) = |h1|p and g(·, 0) := |h2|q.
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Then the parabolic maximum principle implies f and g are non-negative, with

(∂∆)f = (∂∆)g = 0.

By the observation above, the quantity ˆ
f

1
p g

1
q

is increasing. Now we consider

u(x, t) := t
n
2 f(
√
tx, t)

and
v(x, t) := t

n
2 g(
√
tx, t),

we have

u(x, t)→ cf (4π)−
n
2 e−

|x|2
4

and

v(x, t)→ cg(4π)−
n
2 e−

|x|2
4

as t→∞ by the central limit theorem, with the constants cf =
´
f and cg =

´
g. Note that

(6.5)

ˆ
f

1
p g

1
q =

ˆ
u

1
pv

1
q

since

u
1
pv

1
q =

(
t
n
2 f(
√
tx, t)

) 1
p
(
t
n
2 g(
√
tx, t)

) 1
q

= t
n
2 f

1
p (
√
tx, t)g

1
q (
√
tx, t)

by the exponent assumption. By a change of variable, (6.5) follows (at a specific time). Since (6.5)
is increasing and we have the convergence

ˆ
u

1
pv

1
q →

ˆ (
cf (4π)−

n
2 e−

|x|2
4

) 1
p
(
cg(4π)−

n
2 e−

|x|2
4

) 1
q

= c
1
p

f c
1
q
g

ˆ
(4π)−

n
2 e−

|x|2
4

= c
1
p

f c
1
q
g

=

(ˆ
f

) 1
p
(ˆ

g

) 1
q

=

(ˆ
|h1|p

) 1
p
(ˆ
|h2|q

) 1
q

.

In particular, by the monotonicity,(ˆ
|h1|p

) 1
p
(ˆ
|h2|q

) 1
q

≥
ˆ
f

1
p (x, 0)g

1
q (x, 0) =

ˆ
|h1h2|

and the inequality follows. When we have equality, the monotonicity implies the integral I(t) is
constant in time, in which case we know f = cg since I ′(t) = 0. �
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The spirit is that we use the monotonicity of a quantity to reduce the proof to a limiting case,
in which some quantities are equal, or easy to compare.

6.2. Generalizations. Let F : R2 → R, and u, v : Rn × [0,∞) → R. (In the case of the Höler

inequality, F (x, y) = x
1
py

1
q .) Then we have the following generalized result.

Proposition 6.6. Suppose F = F (x, y) satisfies Fx ≥ 0, Fy ≥ 0 and that F is concave, which is
equivalent to say that HessF is negative semi-definite. If (∂t −∆)u ≥ 0 and (∂t −∆)v ≥ 0, then
(∂ −∆)F (u, v) ≥ 0.

(Proof.) Let w := F (u, v). Then

∇w = Fx∇u+ Fy∇v, wt = Fxut + Fyvt,

and

∆w = Fx∆u+ Fy∆v + Fxx|∇u|2 + Fyy|∇v|2 + 2Fxy 〈∇u,∇v〉 .
Therefore, by assumptions we have

(∂t −∆)w = Fx(∂t −∆)u+ Fy(∂t −∆)v − Fxx|∇u|2 − Fyy|∇v|2 − 2Fxy 〈∇u,∇v〉
≥ −Fxx|∇u|2 − Fyy|∇v|2 − 2Fxy 〈∇u,∇v〉 .

We would like to see that this sum is also non-negative. In fact, it is at least,(
|∇u| |∇v|

)(Fxx Fxy
Fxy Fyy

)(
|∇u|
|∇v|

)
,

so by the concavity assumption, we are done. �

If we write I(t) =
´
F (u, v), with some mild growth assumptions, again we can use integration

by parts to derive

I ′(t) =

ˆ
(∂t −∆)F (u, v) ≥ 0

with the proposition 6.6

In the Hölder inequality case, we can compute Fx, Fy, Fxx and Fyy directly and see that Fx, Fy ≥
0, Fxx + Fyy ≤ 0 and FxxFyy − (Fxy)

2 ≥ 0. Thus the observation in the section 6.1 is covered.

We ould also obtain another interesting inequality, as follows. If we consider

F (x, y) :=
xy

x+ y

for x, y > 0, then we can check that F satisfies the assumption of the proposition 6.6. Thus if u
and v solve the heat equation, then (∂t −∆)F (u, v) ≥ 0, and hence again we get

d

dt

ˆ
F (u, v) ≥ 0
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with some mild growth assumptions on u and v. Using the central limit theorem and this mono-
tonicity, we can derive ˆ

uv

u+ v
≤
´
u
´
v´

u+
´
v
.

7. Drift Laplacian

Let u, v : Rn → R be smooth with compact support. Then we could consider

〈u, v〉 =

ˆ
uv

and

〈〈∇u,∇v〉〉 =

ˆ
〈∇u,∇v〉 = −

ˆ
u∆v.

Thus ∆ is self-adjoint with respect to this inner product.

We could also consider weighted inner product. For example, for ϕ : Rn → R, we could consider

〈u, v〉ϕ =

ˆ
uve−ϕ

and

〈〈∇u,∇v〉〉 =

ˆ
〈∇u,∇v〉 e−ϕ.

With respect to this weighted inner product, ∆ is not self-adjoint any more. However, note that

div(ue−ϕ∇v) = 〈∇u,∇v〉 e−ϕ − u 〈∇ϕ,∇v〉 e−ϕ + ue−ϕ∆v,

which, by the Stokes’ theorem, implies

〈〈∇u,∇v〉〉ϕ =

ˆ
〈∇u,∇v〉 e−ϕ

= −
ˆ

(u∆v − u 〈∇ϕ,∇v〉)e−ϕ

Thus if we define
Lϕv := ∆v − 〈∇ϕ,∇v〉 ,

we obtain ˆ
〈∇u,∇v〉 e−ϕ = −

ˆ
(uLϕv)e−ϕ.

Lϕ is called the drift Laplacian, and the inner product term is called the drift term.

Example 1. When ϕ is constant, Lϕ = ∆.

Example 2. When ϕ = |x|2
4
, we have

(7.1) Lϕv = ∆v − 1

2
〈x,∇v〉 ,

called the Ornstein-Uhlenbeck operator, which plays a crucial role when we try to under-
standing the scaling of the heat equation.
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Example 3. When ϕ = − |x|
2

4
, we have

Lϕv = ∆v +
1

2
〈x,∇v〉 ,

closely related to the Mehler operator.

7.1. Reverse Poincaré Inequality. In general, if u is a drift harmonic function, in the sense
that Lϕu = 0, then we have the following reverse Poincaré inequality.

Theorem 7.2. If Lϕu = 0, thenˆ
Br

|∇u|2e−ϕ ≤ 4

r2

ˆ
B2r\Br

u2e−ϕ.

(Proof.) Let η ≥ 0 be a smooth function with compact support. Then

0 =

ˆ
η2uLϕue

−ϕ

= −
ˆ 〈
∇(η2u),∇u

〉
e−ϕ

= −2

ˆ
ηu 〈∇η,∇u〉 e−ϕ −

ˆ
η2|∇u|2e−ϕ.

Thus by the Cauchy-Schwarz inequality and the AM-GM inequality,ˆ
η2|∇u|2e−ϕ = −2

ˆ
ηu 〈∇η,∇u〉 e−ϕ

≤ 1

2

ˆ
η2|∇u|2e−ϕ + 2

ˆ
u2|∇η|2e−ϕ,

so ˆ
η2|∇u|2e−ϕ ≤ 4

ˆ
u2|∇η|2e−ϕ.

Now by considering η to be 1 on Br and 0 outside B2r with |∇η| ≤ 1
r
, the conclusion follows. �

Corollary 7.3. If u ∈ L2
ϕ (in the sense that

´
u2e−ϕ < ∞) satisfies Lϕu = 0, then u must be

constant.

(Proof.) We have ˆ
Br

|∇u|2e−ϕ ≤ 4

r2

ˆ
B2r\Br

u2e−ϕ → 0

as r →∞. �

We would like to look at some slight generalization.
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Theorem 7.4. Suppose V is a bounded function. If Lϕu+ V u = 0, then
ˆ
Br

|∇u|2e−ϕ ≤ 4

r2

ˆ
B2r\Br

u2e−ϕ + 2

ˆ
B2r

V u2e−ϕ.

(Proof.) For any cut-off function η,

0 =

ˆ
η2u(Lϕu+ V u)e−ϕ

= −2

ˆ
ηu 〈∇η,∇u〉 e−ϕ −

ˆ
η2|∇u|2e−ϕ +

ˆ
η2V u2

so ˆ
η2|∇u|2e−ϕ = −2

ˆ
ηu 〈∇η,∇u〉 e−ϕ +

ˆ
η2V u2

≤ 1

2

ˆ
η2|∇u|2e−ϕ + 2

ˆ
u2|∇η|2e−ϕ +

ˆ
V η2u2

which implies ˆ
η2|∇u|2e−ϕ ≤ 4

ˆ
u2|∇η|2e−ϕ + 2

ˆ
V η2u2.

By taking the same cut-off function as in the previous theorem, we get the result. �

Corollary 7.5. If V is bounded, Lϕu+ V u = 0, and u ∈ L2
ϕ in the sense that

´
u2e−ϕ <∞, then

|∇u| ∈ L2
ϕ.

(Proof.) By letting r →∞ in theorem 7.4, the bound follows. �

7.2. Eigenfunctions of the Drift Laplacian. Suppose

Lϕu+ λu = 0.

We know if u ∈ L2
ϕ, then |∇u| ∈ L2

ϕ by the corollary 7.5. Thus if v is another eigenfunction
satisfying

Lϕv + µv = 0

with µ 6= λ, then

−λ
ˆ
uve−ϕ =

ˆ
Lϕu · ve−ϕ =

ˆ
Lϕv · ue−ϕ = −µ

ˆ
uve−ϕ

so ˆ
uve−ϕ = 0.
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7.3. Maximum Principle. Another important propety is the maximum principle for the drift
Laplacian.

Theorem 7.6. Let Ω be a compact domain in Rn. If Lϕu > 0 on Ω, then

max
Ω

u = max
∂Ω

u.

(Proof.) Suppose x ∈ intΩ satisfied u(x) = maxu. Then by calculus we know

∇u(x) = 0 and ∆u(x) ≤ 0,

but this implies

Lϕu(x) = ∆u(x)− 〈∇ϕ,∇u〉 (x) ≤ 0,

contradicting to the assumption. �

In genera, we have a stronger result.

Theorem 7.7. If Lϕu ≥ 0 on a compact domain Ω, then

max
Ω

u = max
∂Ω

u.

(Proof.) Consider v = eαx1 > 0. Then ∇v = αv∂1 and ∆v = α2v, so

Lϕv = αv

(
α− ∂ϕ

∂x1

)
.

Thus we can take α so large that Lϕv > 0 since Ω is compact. Then we have

Lϕ(u+ εv) > 0

for all ε > 0. Thus

max
Ω

(u+ εv) = max
∂Ω

(u+ εv)

for all ε > 0. By taking ε→ 0, the maximum principle follows. �

7.4. Weighted Energy. We go back to the equation

Lϕu+ V u = 0

with V bounded. It turns out that there is a natural energy functional associated to this equation,
which is sort of a weighted version of the Dirichlet energy. Consider

Eϕ,V (u) =

ˆ (
|∇u|2 − V u2

)
e−ϕ.

This makes sense for u ∈ L2
ϕ based on the corollary (7.5).

We write

LV := Lϕ + V u.

23



An example is when ϕ = − |x|
2

4
and V = n

2
. In this case, the operator is called the Mehler operator,

denoted by

LM := ∆v +
1

2
〈x,∇v〉+

n

2
u.

In this case, we have the Mehler energy

EM(u) :=

ˆ (
|∇u|2 − n

2
u2
)
e
|x|2
4 .

Lemma 7.8. If there exists g > 0 such that LV g = Lϕg+V g ≤ 0, then Eϕ,V (u) ≥ 0 for all u ∈ L2
ϕ

with |∇u| ∈ L2
ϕ. Moreover, if Eϕ,V (u) = 0, then either u = 0 or u = cg with c 6= 0, in which case

LV g = 0.

(Proof.) Since g > 0, we consider

Lϕ log g =
Lϕg

g
− |∇g|

2

g2

≤ −V g
g
− |∇g|

2

g2

= −V − |∇g|
2

g2
.

Thus, for any cut-off function η,ˆ
η2u2Lϕ log ge−ϕ ≤ −

ˆ
η2u2V e−ϕ −

ˆ
η2u2 |∇g|2

g2
e−ϕ.

On the other hand, integration by parts giveˆ
η2u2Lϕ log ge−ϕ = −2

ˆ
ηu2 〈∇η,∇g〉

g
e−ϕ − 2

ˆ
uη2 〈∇u,∇g〉

g
e−ϕ.

Combining these we get

−2

ˆ
ηu2 〈∇η,∇g〉

g
e−ϕ − 2

ˆ
uη2 〈∇u,∇g〉

g
e−ϕ ≤ −

ˆ
η2u2V e−ϕ −

ˆ
η2u2 |∇g|2

g2
e−ϕ.

This is equivalent to

−2

ˆ
ηu2 〈∇η,∇g〉

g
e−ϕ ≤ 2

ˆ
uη2 〈∇u,∇g〉

g
e−ϕ −

ˆ
η2u2V e−ϕ −

ˆ
η2u2 |∇g|2

g2
e−ϕ

≤
(ˆ

η2|∇u|2e−ϕ +

ˆ
η2u2 |∇g|2

g2
e−ϕ
)
−
ˆ
η2u2V e−ϕ −

ˆ
η2u2 |∇g|2

g2
e−ϕ

=

ˆ
η2(|∇u|2 + V u2)e−ϕ

where we use the AM-GM inequality.

Intuitively, we would like to choose η = 1, which seems to imply 0 ≤ Eϕ,V (u). But in this case
the integral may converge in general.
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First by putting η = 1, we prove that Eϕ,V (u) ≥ 0 if u has compact support, and the energy
vanishes if and only if ∇ log u

g
= 0. In general, we may take η approximating the identity (i in

Br and linearly decreasing on B2r \ Br). In this case, if Eϕ,V (u) = 0, we can prove by a limiting
argument that ∣∣∣∣u∇gg −∇u

∣∣∣∣ = 0.

If u = cg for some c 6= 0, then

0 = Eϕ,V (u) =

ˆ
(|∇u|2 − V u2)e−ϕ = −

ˆ (
uLϕu+ V u2

)
e−ϕ

since u,∇u ∈ L2
ϕ. �

Note that no integrability condition on g is assumed in this lemma.

The case we are most interested in is the Mehler operator, that is,

LMu = e−
|x|2
4 div(e

|x|2
4 ∇u) +

n

2
u = ∆u+

1

2
〈x,∇u〉+

n

2
u.

If we take g = e−
|x|2
4 > 0, then

LMg = e−
|x|2
4 div

(
−x

2

)
+
n

2
e−
|x|2
4 = 0.

Thus by the lemma,

EM(u) =

ˆ (
|∇u|2 − n

2
u2
)
e
|x|2
4 ≥ 0

if u and ∇u are in L2

− |x|
2

4

, and EM(u) = 0 if and only if u = ce−
|x|2
4 .

7.5. Relations to the Heat Equation and the Mehler Flow. Now we go back to the heat
equation. Recall the scaling property of the heat equation. That is, if u is a solution to the heat
equation, then

vc(x, t) := u(cx, c2t)

is also a solution. Also, we established the central limit theorem (6.1). That is, if u is a solution
with mild growth and u(·, 0) = u0, then

v(x, t) = t
n
2 u(
√
tx, t)→ Ce−

|x|2
4 .

as t→∞. If we consider
w(x, s) := v(x, es) = e

n
2
su(e

s
2x, es),

it satisfies the Mehler flow equation

(7.9) ∂sw = LMw = ∆w +
1

2
〈x,∇w〉+

n

2
w.

To see this, note

∂sw =
n

2
w +

1

2
e
n
2
s
〈
e
s
2x,∇u

〉
+ e

n
2
sut · es.
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On the other hand,

∇w = e
n
2
se

s
2∇u

and

∆w = e
n
2
ses∆u,

which implies

∂sw =
n

2
w +

1

2
e
n
2
s
〈
e
s
2x,∇u

〉
+ e

n
2
s∆u · es

=
n

2
w +

1

2
〈x,∇w〉+ ∆w = LMw.

In summary, if u0 has compact, then we could construct a solution to the heat equation with
its initial data u0, and construct such a solution w to the Mehler flow equation (7.9). In fact, as
s→∞, w(s, t) will converge to a solution g to the Mehler equation LMg = 0.

7.6. Ornstein-Uhlenbeck Operator from the heat equation. Suppose (∂t − ∆u) = 0. We
may want to start the time from any t0, but we may assume t0 = 0 by translation. Then take the
following rescaling and set

v(x, t) = u(
√
|t|x, t)

and

w(x, s) = u
(√

e−sx,−e−s
)
.

We put the minus sign to make the time to approach 0. Then we see that

∂sw = −1

2
e−

s
2 〈x,∇u〉+ e−sut,

∇w = e−
s
2∇u,

∆w = e−s∆u,

and hence

∂sw = ∆w − 1

2
〈x,∇w〉 = LOUw,

where LOU is the Ornstein-Uhlenbeck operator (7.1).

In general, for u : Rn × [a, b]→ R. If we consider a general energy

E(u) =

ˆ (
|∇u|2 − V u2

)
e−ϕ,
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then we get

d

dt
E(u) =

d

dt

ˆ (
|∇u|2 − V u2

)
e−ϕ

= 2

ˆ
(〈∇u,∇ut〉 − V uut)e−ϕ

= −2

ˆ
(Lϕu · ut − V uut)e−ϕ

= −2

ˆ
utLu · e−ϕ

if we define L = Lϕ + V, where we need some assumption on decays to integrate them by parts
without boundary terms. Thus if u satisfies

(7.10) ∂t = Lu,

then
d

dt
E(u) = −2

ˆ
|Lu|2e−ϕ.

That is to say, up to a constant, (7.10) is the negative gradient flow of E.

8. Central Limit Theorem from the Variational Viewpoint

The variational point of view is opposed to the representation formula (though in this case it
does not prove anything new here).

First we note that the Mehler flow sits inside a larger class of examples. We define

Lu := ∆u− div(u∇ϕ) = ∆u− 〈∇u,∇ϕ〉 − u∆ϕ = Lϕu− u∆ϕ.

That is, we choose V = −∆ϕ. In particular, if we take ϕ = − |x|
2

4
, then

Lu = L |x|2
4

u+
n

2
u

is the Mehler operator LM . In general, ˆ
Lu = 0

if there is no boundary term. Thus if u satisfies ∂tu = Lu, then

d

dt

ˆ
u =

ˆ
Lu = 0.

In the special case that L = LM , we know
´
u is conserved. Suppose u : Rn × R≥0 → R satisfies

∂tu = LMu. Assume that

(8.1)

ˆ
u2e

|x|2
4 and

ˆ
|∇u|2e

|x|2
4 <∞
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for each time (not in a uniform sense). Then

d

dt

ˆ
u2e

|x|2
4 = 2

ˆ
utue

|x|2
4

= 2

ˆ
uLMue

|x|2
4

= 2

ˆ
u
(
L
− |x|

2

4

u+
n

2
u
)
e
|x|2
4

= −2

ˆ (
|∇u|2 − n

2
u2
)
e
|x|2
4 = −2EM(u).

We already know that EM(u) ≥ 0, so we know that the L2 weighted norm d
dt

´
u2e

|x|2
4 is decreasing.

Besides, we already know that

d

dt
EM(u) = −2

ˆ
|LMu|2e

|x|2
4

so EM(u) is also decreasing. Hence we indeed have a uniform bound on
´
|∇u|2e

|x|2
4 .

Proposition 8.2. As t→∞, EM(u(·, t))→ 0.

(Proof.) We know
d

dt

ˆ
u2e

|x|2
4 = −2EM(u).

Hence we could take a sequence ti →∞ such that E(u(·, ti))→ 0. Since the energy in monotone,
we get the conclusion. �

What we aiming at is to show that u(·, t) converges to ce−
|x|2
4 . In practice, we would like to

prove that u(·, t)→ g with EM(g) = 0. However, we are afraid that the convergence is weak.

To deal with this issue, note that EM(u) is bounded from below, in the sense thatˆ
|∇u− u log g|2e

|x|2
4 ≤ E(u)

where g(x) = e−
|x|2
4 , log g = − |x|

2

4
and ∇ log g = −x

2
. Thus

EM(u) ≥
ˆ ∣∣∣∇u+

x

2
u
∣∣∣2 e |x|24 .

Thus we have a uniform bound (in t) forˆ ∣∣∣∇u+
x

2
u
∣∣∣2 e |x|24 .

Since
|x|2

4
u2 ≤ 1

2
|∇u|2 +

1

2

∣∣∣∇u+
x

2
u
∣∣∣2
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by the inequality (a+ b)2 ≤ 2a2 + 2b2, we thus obtain a unifrom bound for
ˆ
|x|2u2e

|x|2
4 .

Then we can estimate that
´
BR
u2e

|x|2
4 must be almost all

´
u2e

|x|2
4 . In fact, if we say

ˆ
|x|2u2e

|x|2
4 ≤ C,

then

R2

ˆ
u2e

|x|2
4 ≤

ˆ
bbRn\BR

|x|2u2e
|x|2
4 ≤ C,

so ˆ
Rn\BR

u2e
|x|2
4 ≤ C

R2
.

Then just take R sufficiently large. In conclusion, we see that
´
u2e

|x|2
4 in concentrated on a large

ball. This tells us that it will not go to infinity.

Recall our assumption (8.1), based on which we get uniform bounds for them and
´
|x|2u2e

|x|2
4 .

Then with the proposition 8.2, we could get a uniform bound for the derivatives of u (in space).
Then the Arzela-Ascoli theorem gives us a convergenct subsequence, say u(·, ti) → v with ti →
∞ as i → ∞. By the convergence of the energy, we know EM(v) = 0, which means that v is
Gaussian. Since

´
u is constant in time, we know that

´
v =
´
u0 =: c, which is independent of

the subsequence derived from the Arzela-Ascoli theorem.

We remark that this method is more robust, in the sense that it could be applied to fairly large
cases of different PDE.

Recall what we did in the section 6.1. We could give a different viewpoint now also. For non-
negative g and g with compact support (in Rn), consider f(x, t) and g(x, t) satisfying the Mehler
flow equation. If we take 1 < p, q < ∞ with 1

p
+ 1

q
= 1, then it follows from direct computation

that

(∂t − LM)f
1
p g

1
q =

1

pq

∣∣∣∣∇ log
f

g

∣∣∣∣2 f 1
p g

1
q .

Thus

∂t

ˆ
f

1
p g

1
q =

ˆ
(∂t − LM)f

1
p g

1
q +

ˆ
LM(f

1
p g

1
q ) =

1

pq

ˆ ∣∣∣∣∇ log
f

g

∣∣∣∣2 f 1
p g

1
q ≥ 0.

Since f and g converge to cf (4π)−
n
2 e−

|x|2
4 and cg(4π)−

n
2 e−

|x|2
4 with cf =

´
f and cg =

´
g, the

monotonicity proves the Hölder inequality.
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9. Shannon Entropy and Fisher Information

Let u be a positive function. Then we define

S(u) := −
ˆ
u log u

if it is finite, called the Shannon entropy. If u satisfies the heat equation, we could consider

S(t) := S(u(·, t)) = −
ˆ
u(·, t) log u(·, t),

and we get

d

dt
S(t) = −

ˆ
ut log u−

ˆ
u
ut
u

= −
ˆ

∆u log u−
ˆ

∆u

=

ˆ
|∇u|2

u
− 0

=

ˆ
|∇ log u|2u,

called the Fisher information. There are also discrete versions of these notions. Here we recall the
classic Bochner formula, which could be derived by direct computation.

Lemma 9.1. For a C2 function v, we have

1

2
∆|∇v|2 = 〈∇v,∇∆v〉+ |Hessv|2.

Also, we can derive

1

2
∂t|∇v|2 =

∑
i

∂2v

∂xi∂t

∂v

∂xi
= 〈∇vt,∇v〉 .

Combining these, if v solves the heat equation, we then have

1

2
(∂t −∆)|∇v|2 = −|Hessv|2.

Going bact to u, since

(∂t −∆)|∇ log u|2 = −2|Hesslog u|2 + 2 〈∇(∂t −∆) log u,∇ log u〉 ,
we know

(∂t −∆)(|∇ log u|2u) = (∂t −∆)|∇ log u|2u+ |∇ log u|2(∂t −∆)u− 2
〈
∇|∇ log u|2,∇u

〉
= −2|Hesslog u|2u+ 2 〈∇(∂t −∆) log u,∇ log u〉u− 2

〈
∇|∇ log u|2,∇u

〉
.

since u solves the heat equation, which also implies

(9.2) (∂t −∆) log u = |∇ log u|2.
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In conclusion, we get

(∂t −∆)(|∇ log u|2u) = −2|Hesslog u|2u+ 2
〈
∇|∇ log u|2,∇ log u

〉
u− 2

〈
∇|∇ log u|2,∇u

〉
= −2|Hesslog u|2u.

In particular, ˆ
∂t(|∇ log u|2u) = −2

ˆ
|Hesslog u|2u.

Thus if we define

F (t) = F (u(·, t)) =

ˆ
|∇ log u|2u,

then we get

F ′(t) = −2

ˆ
|Hesslog u|2u.

These quantities paly important roles in many areas, especially in the information theory.

9.1. W -functional. It is reasonable to look at a combination f + tf ′ (for example, thinking of f
as a polynomial). Thus we consider

(9.3) W (t) := S(t) + tS ′(t)− n

2
log t = S(t) + tF (t)− n

2
log t

where the last term is for normalization. This functional W is discovered by Perelman, called
Perelman’s W -functional.

Example. Suppose

u(x, t) = (4πt)−
n
2 e−

|x|2
4t .

Then

log u = −n
2

log(4πt)− |x|
2

4t
,

and

S(u) =
n

2
log(4πt)

ˆ
u+

ˆ
|x|2

4t
u =

n

2
log(4πt) +

ˆ
|x|2

4t
u.

We need to find out the second term. Consider a change of variable y = x√
t
, so if we define

v(x, t) =
|x|2

4t
u(x, t),

then

v(y, t) =
|y|2

4
e−
|y|2
4

so ˆ
|x|2

4t
u =

ˆ
|y|2

4
(4π)−

n
2 e−

|y|2
4 .

We know if we let ϕ = − |x|
2

4
, then

Lϕ = ∆− 1

2
〈x,∇(·)〉 ,

so
Lϕ|x|2 = 2n− |x|2.
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Therefore

0 =

ˆ
Lϕ|x|2e−

|x|2
4 =

ˆ
(2n− |x|2)e−

|x|2
4

and hence ˆ
|x|2

4
(4π)−

n
2 e−

|x|2
4 =

2n

4

ˆ
(4π)−

n
2 e−

|x|2
4 =

n

2
.

Putting this back to S(u), we get

S(u) =
n

2
log(4πt) +

n

2
.

This suggests the normalization in (9.3).

We can compute

W ′ =
(
S + tF − n

2
log t

)′
= 2F + tF ′ − n

2t

= 2

ˆ
|∇ log u|2u− 2t

ˆ
|Hesslog u|2u−

n

2t
.

Notice if we let

A = Hesslog u and B =
1

2t
δij,

then ∣∣∣∣Hesslog u +
1

2t
δij

∣∣∣∣2 = tr(A+B)2 = |Hesslog u|2 +
1

t
∆ log u+

n

4t2
.

Therefore, after assuming
´
u = 1 (by normalization since it is constant in time),

W ′ = −2t

ˆ (
|Hesslog u|2 +

n

4t2
− |∇ log u|2

t

)
u

= −2t

ˆ ∣∣∣∣Hesslog u +
1

2t
δij

∣∣∣∣2 u+ 2t

ˆ (
∆ log u

t
+
|∇ log u|2

t

)
u.

By (9.2), we haveˆ
|∇ log u|2u =

ˆ
((∂t −∆) log u)u =

ˆ
ut −

ˆ
(∆ log u)u = −

ˆ
(∆ log u)u

so the last term in W ′ vanishes, and finally we derive

(9.4) W ′ = −2t

ˆ ∣∣∣∣Hesslog u +
1

2t
δij

∣∣∣∣2 u.
In particular, tF is constant for the fundamental solution since in this case, S ′ = n

2t
.
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9.2. Log Sobolev Inequality. We recall the we use the methods related to the heat equation to
derive some functional inequalities. We use 1. the central limit theorem, and 2. the monotonicity.
We will use the monotonicity of the W -functional to prove the following log Sobolev inequality.

Theorem 9.5. Suppose w > 0 satisfies (2π)−
n
2

´
w2e−

|x|2
2 = 1. Thenˆ

w2 logw · e−
|x|2
2 ≤

ˆ
|∇w|2e−

|x|2
2 .

This was first proven by L. Gross, but it turns out that there is a nice proof using the W -
functional.

Note that in the usual Sobolev inequality, the power p on the left hand side should be larger
than 2. A downside is that it depends on the dimension of the space, which is not uniform. It is
not a case in the log Sobolev inequality. At the same time, we get a log term.

(Proof.) The first thing to do is to reformulate the inequality. If we consider

u := (2π)−
n
2w2e−

−|x|2
2 ,

then we get u > 0,
´
u = 1, and

w = (2π)
n
4
√
ue
|x|2
4 .

Thus

∇w =
∇u
2
√
u

(2π)
n
4 e
|x|2
4 +

x

2
w

and

|∇w|2 =
|∇u|2

4u
(2π)

n
2 e
|x|2
2 +

|x|2

4
w2 +

1

2
· w√

u
(2π)

n
2 e
|x|2
2 〈x,∇u〉 .

Therefore,

|∇w|2e
−|x|2

2 =
|∇u|2

4u
(2π)

n
2 +
|x|2

4
w2e

−|x|2
2 +

1

2
· w√

u
(2π)

n
2 〈x,∇u〉 .

On the other hand, by noting thatˆ
〈∇u, x〉 =

ˆ 〈
∇u,∇|x|

2

2

〉
= −1

2

ˆ
u∆|x|2 = −n

ˆ
u = −n,

we could translate the original inequality we want to show to

(9.6) n+
n log(2π)

2
≤ −

ˆ
u log u+

1

2

ˆ
|∇u|2

u
.

If u is a solution to the heat equation on Rn × [1
2
,∞), then

W

(
1

2

)
= −
ˆ
u

(
·, 1

2

)
log u

(
·, 1

2

)
+

1

2

ˆ
|∇u|2

u
+
n

2
log

1

2
.

Thus (9.6) is equivalent to

n+
n log(2π)

2
≤ W

(
1

2

)
+
n

2
log

1

2
.
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We know that W is decreasing by (9.4). By the central limit theorem, we know

W (t)→ the W -functional of (4π)−
n
2 e−

|x|2
4 .

Hence we get the desired inequality. �

9.3. Renyi Entropy. We could define another notion of entropy by

Rp :=
1

1− p
log

ˆ
up

for a solution u > 0 to the heat equation and p 6= 1. Then we have

∂tRp =
p

1− p
∂t
´
up´
up

=
p

1− p

´
up−1∆u´
up

=
p(p− 1)

1− p

´
|∇u|2up−2´

up
,

which proves that Rp is also monotone. If for a fixed function u, we think of Rp as a function of
p, say f(p) = log

´
up, note

(up)′ = log u · up

so

f ′(p) =

´
log u · up´

up
.

If
´
u = 1 after normalization, we have

f ′(1) =

ˆ
u log u,

which is exactly the Shannon entropy (up to a sign). In fact, we could say

lim
p→1

Rp = − lim
p→1

log
´
up − log

´
u

p− 1
= −f ′(1) = −

ˆ
u log u = S.

10. Differential Harnack Inequality

10.1. Li-Yau estimate. The first inequality in this section was established by Li and Yau [LY86].

Theorem 10.1 (Li-Yau). Suppose a positive C2 function u : Rn × [0,∞) → R solves the heat
equation. Then

|∇u|2

u2
− ut
u
≤ n

2t
.

Example. Let

u(x, t) = (4πt)−
n
2 e−

|x|2
4t .
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Then

log u = −n
2

log(4πt)− |x|
2

4t
,

∇ log u = − x
2t
,

and

(log u)t = − n
2t

+
|x|2

4t
.

Then theorem 10.1, which is equivalent to

| log u|2 − (log u)t ≤
n

2t
,

becomes
|x|2

4t2
+
n

2t
− |x|

2

4t2
=
n

2t
.

Thus the equality of the Li-Yau inequality is achieved when u is the fundamental solution, so it is
sharp.

(Proof of theorem 10.1.) Write v = log u. Then

(∂t −∆)v =
ut
u
− ∆u

u
+
|∇u|2

u2
=

(∂t −∆)u

u
+ |∇v|2 = |∇v|2.

If we define

F (x, t) = t

(
|∇u|2

u2
− ut
u

)
,

then we can derive

(10.2) (∂t −∆)F ≤ F

t
+ 2 〈∇F,∇v〉 − 2

nt
F 2.

To see (10.2), note that

(∂t −∆)F = (∂t −∆)
(
t(|∇v|2 − vt)

)
= |∇v|2 − vt + t∂t|∇v|2 − t∆|∇v|2 − t(∂t −∆)vt

=
F

t
+ t(∂t −∆)|∇v|2 − t((∂t −∆)v)t

=
F

t
+ t(∂t −∆)|∇v|2 − t(|∇v|2)t

=
F

t
+ t(∂t −∆)|∇v|2 − 2t 〈∇vt,∇v〉

=
F

t
+ t
(
2 〈∇vt,∇v〉 − 2|Hessv|2 − 2 〈∇∆v,∇v〉

)
− 2t 〈∇vt,∇v〉

=
F

t
+ t
(
2 〈∇(∂t −∆)v,∇v〉 − 2|Hessv|2

)
− 2t 〈∇vt,∇v〉

=
F

t
+ t
(
2
〈
∇|∇v|2,∇v

〉
− 2|Hessv|2

)
− 2t 〈∇vt,∇v〉

=
F

t
+ 2 〈∇F,∇v〉 − 2t|Hessv|2
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where we use the Bochner formula

∆|∇w|2 = 2|Hessw|2 + 2 〈∇∆w,∇w〉 .
Then (10.2) follows since by the Cauchy-Schwarz inequality, we have

|Hessv|2 = tr(Hessv · Hessv) ≥
1

n
trHessv =

1

n
(∆v)2

and we know

−∆v = |∇v|2 − vt =
F

t
.

Remember that we want to show F ≤ n
2
. Note that F |t=0 = 0. Now suppose F achieves its

maximum on Rn × [0, T ] at some (x0, t0). Then at (x0, t0), we have

∇F = 0,∆F ≤ 0, and ∂tF ≥ 0.

Thus (∂t −∆)F ≥ 0 at (x0, t0). Then (10.2) implies

0 ≤ (∂t −∆)F ≤ F

t
+ 2 〈∇F,∇v〉 − 2

nt
F 2 =

F

t
− 2

nt
F 2 =

F

t

(
1− 2

n
F

)
at (x0, t0). Thus either F

t
≤ 0 or 1− 2

n
F ≥ 0. Both of them imply F ≤ n

2
.

In general, when the maximum is not achieved, some cut-off functions need to be introduced,
causing some lower-order error terms, which could be addressed in a straightforward manner in
view of (10.2). �

Corollary 10.3 (Harnack inequality). If u is a positive solution to the heat equation, then for
t > s > 0 and x, y ∈ Rn,

u(x, t) ≥
(s
t

)n
2
e−
|x−y|2
4(t−s) u(y, s).

Intuitively, the heat could not completely disappear after a finite time if it initially exists, and
a reference point like this corollary could give us a rough lower bound. However, this does not say
anything if we want to compare u at the same time.

(Proof.) Again set v = log u. For r ∈ [0, t− s], consider

w(r) := v

(
x+

r

t− s
(y − x), t− r

)
,

which is v(x, t) if r = 0 and v(y, s) if r = t− s. Note

w′ =

〈
∇v, y − x

t− s

〉
− vt ≤ |∇v|2 +

|y − x|2

4(t− s)2
− vt,

which implies

w(t− s)− w(0) ≤
ˆ t−s

0

(
n

2(t− r)
+
|y − x|2

4(t− s)2

)
dr =

n

2
log

t

s
+
|y − x|2

4(t− s)
by theorem 10.1, and the conclusion follows. �
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10.2. Hamilton’s Harnack inequality. After Li and Yau’s result in 1986, Hamilton observed
in 1993 that theorem 10.1 is a special case of a much more general inequality. The reference is
[?Ham93].

Theorem 10.4 (Hamilton’s matrix differential Harnack inequality). If u is a positive solution to
the heat equation, then

Hesslog u ≥ −
δij
2t

in the matrix sense. i.e., Hesslog u +
δij
2t

is a semi-positive definite matrix.

Note that after taking the trace of the inequality in theorem 10.4, we get theorem 10.1. Also,
since Hess|x|2 = 2δij, it also implies

Hesslog u ≥ −
1

4t
Hess|x|2 ,

i.e.

Hess
log

(
ue
|x|2
4t

) ≥ 0

that is to say, f(x, t) := log
(
ue
|x|2
4t

)
is convex. Thus, we can derive

f((1− s)x+ s(y − x), t) ≤ (1− s)f(x, t) + sf(y, t)

for s ∈ [0, 1], which means

log

(
u((1− s)x+ sy, t) · e

|(1−s)x+sy|2
4t

)
≤ (1− s) log

(
u(x, t) · e

|x|2
4t

)
+ s log

(
u(y, t) · e

|y|2
4t

)
.

Thus we get

u((1− s)x+ sy) · e
|(1−s)x+sy|2

4t ≤
(
u(x, t)e

|x|2
4t

)1−s(
u(y, t)e

|y|2
4t

)s
.

This assists us to compare the information of u at the same time (which is, infact, sharp), which
is not accessible from Li and Yau’s theorem 10.1.

(Proof of theorem 10.4.) For convenience as we have done, define v = log u. Consider

M := Hessv +
1

2t
δij,

so our goal is to prove M is semi-positive definite. Note that as t→ 0+ (or at least for t very small),
M is positive (if we assume Hessv is bounded in space), so we want to see this positivity is in some
sense preserved. Therefore we will use a parabolic matrix maximum principle (c.f. theorem 10.8).

Componentwise, we have Mij = vij + 1
2t
δij. It turns out that

(10.5) (∂t −∆)(uMij) = 2uMikMkj −
2u

t
Mij.
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To see (10.5), first note that

(∂t −∆)(uvij) = vij(∂t −∆)u+ u(∂t −∆)vij − 2ukvijk

= u(∂t −∆)vij − 2ukvijk

= u ((∂t −∆)v)ij − 2ukvijk

= u
(
|∇v|2

)
ij
− 2ukvijk

= u · (2vikvjk + 2vkvijk)− 2ukvijk = 2uvikvjk

since (∂t −∆)v = (∂t −∆) log u = (∂t−∆)u
u

+ |∇v|2 and uvk = uk. On the other hand,

(∂t −∆)
( u

2t
δij

)
=

(∂t −∆)u

2t
δij −

u

2t2
δij = − u

2t2
δij.

Combining these, we get

(∂t −∆)(uMij) = 2uvikvjk −
u

2t2
δij.

To identify this in terms of M, note that

2uMikMkj −
2u

t
Mij = 2u

(
vik +

1

2t
δik

)(
vjk +

1

2t
δjk

)
− 2u

t

(
vij +

1

2t
δij

)
=

(
2uvikvjk +

2u

4t2
δij +

2u

2t
vij

)
+

(
2u

2t
vij −

2u

t
vij −

u

t2
δij

)
= 2uvikvjk −

u

2t2
δij.

Thus (10.5) follows. In matrix forms, it could be written as

(10.6) (∂t −∆)(uM) = 2uM2 − 2u

t
M.

Hence the conclusion follows from the matrix maximum principle (theorem 10.8 in the next section).
More details are duscussed after the proof of theorem 10.8. �

10.3. Matrix Maximum Principle. We will see a toy case of the matrix maximum principle
first.

Proposition 10.7. Let Q : R × Rn × R → R be a differentiable function with a property that
Q(0, x, t) ≥ 0 for all (x, t) ∈ Rn × R. If a C2 function u : Rn × R→ R satisfies

(∂t −∆)u(x, t) > Q(u(x, t), x, t)

with u(·, 0) > 0, then u > 0.

(Proof.) Suppose not. i.e., we can take the first time t0 such that u(x0, t0) = 0 for some x0 ∈ Rn.
Thus the infimum of u is achieved at x0, so

∆u(x0, t0) ≥ 0.

Therefore,
∂tu(x0, t0) > Q(u(x0, t0), x0, t0) + ∆u(x0, t0) > Q(0, x0, t0) ≥ 0,

which is impossible since t0 is the first time such that u vanishes somewhere. �
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Next, we consider the space Symn×n(R) of all symmetric n× n real matrices.

Theorem 10.8. Let Q : Symn×n(R)× Rn × [0,∞)→ Symn×n(R) be a differentiable function with
the null vector condition, in the sense that 〈Q(B, x, t)v, v〉 ≥ 0 for all B and v satisfying Bv = 0.
If a C2 function A : Rn × R→ Symn×n(R) satisfies

(∂t −∆)A(x, t) ≥ Q(A(x, t), x, t)

with A(·, 0) ≥ 0 (semi-positive definite), then A ≥ 0.

(Proof sketch.) First we assume (∂t−∆)A > Q(A, x, t). Using the same idea, take the first time
t0 such that A(x0, t0) admits a non-trivial kernel. i.e., there exists v 6= 0 such that

〈A(x0, t0)v, v〉 = 0.

Consider
w := 〈A(x, t)v, v〉 .

Then we have at (x0, t0),

(∂t −∆)w = 〈((∂t −∆)A)v, v〉
> 〈Q(A, x, t)v, v〉 ≥ 0

by assumption and the null vector condition, so at (x0, t0),

∂tw > ∆w ≥ 0,

contradicting to the assumption that t0 is the first time such that A admits a non-trivial kernel.

For the general case that (∂t −∆)A ≥ Q(A, x, t), consider

B = A+ ε(t+ κ)δij

for some κ > 0. Then

(∂t −∆)B = (∂t −∆)A+ εδij ≥ Q(A, x, t) + εδij.

Suppose B(x0, t0)v0 = 0 at some (x0, t0) with t0 smallest. Then Av = −ε(t + κ)v. By the null
vector condition, we can take the (positive) infimums of 〈Q(A, x, t)v, v〉 and |Av| over v ∈ (kerA)⊥

with unit length. Thus for any unit vector v,

〈Q(A, x, t)v, v〉 ≥ −C|Av|
for some C depending only on the eigenvalues of A. As a result, for any unit vector v,

〈(∂t −∆)Bv, v〉 ≥ 〈Q(A, x, t)v, v〉+ ε

≥ −C|Av|+ ε

= −Cε(t+ κ) + ε = ε (−C(t+ κ) + 1) .

This holds for any κ > 0, so after choosing κ small, we have

〈(∂t −∆)Bv, v〉 ≥ ε

2
.

However, since 〈B(x0, t0)v0, v0〉 = 0 and 〈B(x, t0)v0, v0〉 ≥ 0, we have

∆ 〈Bv0, v0〉 (x0) ≥ 0
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so ∂t 〈Bv0, v0〉 < 0, contradicting to the assumption that t0 is the first time. Hence we conclude
that B is positive for a fixed time forward (independent of ε). �

In the last step of the proof of theorem 10.4, we apply theorem 10.8 with A = uM, so (10.6)
becomes

(∂t −∆)A = 2
A2

u
− 2

A

t
,

and hence

Q(A, x, t) = 2
A2

u
− 2

A

t
= 2

(
A

u
− 1

t
δij

)
A.

Therefor, Q satisfies the null vector condition since if Av = 0, then Qv = 2
(
A
u
− 1

t
δij
)
Av = 0.

11. Other Maximum Principles

11.1. Elliptic Strong Maximum Principle. First we recall the elliptic case. Suppose u : B1 →
R is a harmonic function. The strong maximum principle asserts that if u achieves an extremum
in an interior point, then u must be constant.

To see this, consider

hα(x) := e−α|x|
2 − e−α.

Then

∆hα = −αe−α|x|2 · 2n+ α2e−α|x|
2 · 4|x|2

= 2α
(
2α|x|2 − 2n

)
e−α|x|

2

by applying with f = e−αs − e−α and g = |x|2 (so hα = f ◦ g). In particular, if we take δ ∈ (0, 1)
and a sufficiently large α, we have

(11.1) ∆hα ≥ 2α
(
2αδ2 − 2n

)
e−α|x|

2

> 0.

Based on this, we can establish Hopf’s lemma.

Theorem 11.2 (Hopf’s lemma). Let u ∈ C2(B1) be a harmonic function satisfying

u(x0) = max
B1

u > u(0)

for some x0 ∈ ∂B1. Then
∂u

∂r
(x0) > 0.

(Proof.) By continuity, we can take small δ > 0 such that

u(x0) = max
Bδ

u.

Then we can take α so large that (11.1) holds, so

∆(u+ εhα) > 0

for any ε > 0. By assumption, we can take ε so small that

u+ εhα < u(x0)
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on ∂Bδ. At the same time, we have

u+ εhα = u ≤ u(x0)

on ∂B1 by the definition of hα. The maximum principle then implies that

max
B1\Bδ

(u+ εhα) = u(x0) = (u+ εhα)(x0).

As a result,

∂(u+ εhα)

∂r
(x0) ≥ 0.

Therefore
∂u

∂r
(x0) ≥ −ε∂hα

∂r
(x0) = 2αεe−α,

which is positive. �

Based on this, we have the strong maximum principle.

Theorem 11.3 (elliptic strong maximum principle). Let u ∈ C2(Ω) be a harmonic function on a
connected domain Ω. If u achieves its maximum at an interior point, then u is constant.

(Proof.) Suppose u achieve its maximum at an interior point x0, and take Bδ(x0) contained in Ω.
Hopf’s lemma implies u is constant on Bδ(x0). This implies that the subset {u = u(x0)} is open.
Then the conclusion follows by the connectivity of Ω. �

11.2. Parabolic Strong Maximum Principle. As expected, we have a parabolic version as
follows.

Theorem 11.4. Let Ω be a connected domain and u ∈ C2(Ω× [0, T ]) satisfies (∂t −∆)u = 0. If
x0 ∈ intΩ satisfies

max
Ω×[0,T ]

u = u(x0, T ),

then u is constant.

We remark that the discrete heat equation fails the strong maximum principle. Also, this is
related to infinite propagation speed, which says that if u0 non-negative, and positive at some
point, then u(·, t) > 0 for t > 0, which could be seen from the representation formula for the
solution to the heat equation. (Note that the parabolic Harnack inequality provides a more robust
statament.) To see this, let u0 := u(·, 0), and we let

v(x, t) := (4π(t+ ε))−
n
2 e−

|x|2
4(t+ε)

be the fundamental solution (with time shifted) such that v is below u (i.e., v ≤ u). Then the
property follows from the parabolic strong maximum principle.
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11.3. More General Setting. Let M be a Riemannian manifold with a time-varying metric g(t).
For a symmetric 2-tensor A, we can define

∆A := tr(HessA),

where HessA(X, Y ) = ∇X∇YA−∇∇XYA for tangent vectors X and Y. We could also define

∂tA := ∇∂tA.

Then we can look at the inequality
(∂t −∆)A ≥ 0,

in the sense that it is semi-positive definite. The point is that what we have seen could be gneralized
to this setting. That is to say, if A ≥ 0 on the parabolic boundary, then it remains so all the time
(weak version). The idea is to prove that the smallest eigenvalue λ remains non-negative.

As an example, let Σn
t ⊆ Rn+1 and let A be its second fundamental form. Then it holds

(∂t −∆)A = |A|2A
if the hypersurfaces are flowed by the MCF. Thus the maximum principle implies that if the initial
hypersurface is convex (A ≥ 0), then it remains so for later time.

12. Growth of Solutions to Some PDEs

12.1. Laplace Equation. Fred Almgren was interested in the regularities of minimal surfaecs
(starting in 1960s). To deal with this, he did some graphical approximations by harmonic functions,
letting him understand better their grwoth.

The objects we are going to see are functions on Rn. Let u : Rn → R be a harmonic function.
Then we consider

I(r) := r1−n
ˆ
∂Br

u2,

the scale-invariant energy

D(r) := r2−n
ˆ
Br

|∇u|2,

and Almgren’s frequency

U(r) :=
D(r)

I(r)
.

(We could replace Br with Br(x) for any other x ∈ Rn.) The important things are their derivatives.
As we have seen, by a change of variable, we have

(12.1) I ′(r) = r1−n
ˆ
∂Br

(u2)r = 2r1−n
ˆ
∂Br

uur = r1−n
ˆ
Br

∆u2 = 2r1−n
ˆ
Br

|∇u|2 =
2D(r)

r

by Stokes’ theorem and the fact that u is harmonic. Next,

(12.2) D′(r) =

(
r2−n

ˆ r

0

ˆ
∂Bs

|∇u|2
)′

=
2− n
r

D(r) + r2−n
ˆ
∂Br

|∇u|2.

We introduce the Pohozaev identity, which holds for any function, but particularly useful when
the function is harmonic.
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Theorem 12.3 (the Pohozaev identity). For a C2 function u,

(2− n)

ˆ
Br

|∇u|2 +

ˆ
Br

〈
∇|x|2,∇u

〉
∆u = 2r

ˆ
∂Br

u2
r − r

ˆ
∂r

|∇u|2.

(Proof.) We want to use the divergence theorem on the vector field

X :=
〈
∇|x|2,∇u

〉
∇u− 1

2
|∇u|2∇|x|2.

Its divergence is

divX =
〈
∇|x|2,∇u

〉
∆u+

〈
∇
〈
∇|x|2,∇u

〉
,∇u

〉
− 1

2
|∇u|2∆|x|2 − 1

2

〈
∇|∇u|2,∇|x|2

〉
=
〈
∇|x|2,∇u

〉
∆u− n|∇u|2 +

〈
∇
〈
∇|x|2,∇u

〉
,∇u

〉
− 1

2

〈
∇|∇u|2,∇|x|2

〉
.

Note 〈
∇|x|2,∇u

〉
= 〈2xi∂i,∇u〉 = 2xiui,

so
∇
〈
∇|x|2,∇u

〉
= (2δijui + 2xiuij)∂j

which implies 〈
∇
〈
∇|x|2,∇u

〉
,∇u

〉
= 2u2

j + 2xiuijuj = 2|∇u|2 + 2xiuijuj
The second thing we want to calculate is〈

∇|∇u|2,∇|x|2
〉

= 2xi∂i(u
2
j) = 4xiuijuj.

As a result, the terms involving xiuijuj cancel. That is,

divX =
〈
∇|x|2,∇u

〉
∆u+ (2− n)|∇u|2.

The divergence theorem then impliesˆ
Br

〈
∇|x|2,∇u

〉
∆u+ (2− n)

ˆ
Br

|∇u|2 =

ˆ
Br

divX

=

ˆ
∂Br

〈
X,

∂

∂r

〉
=

ˆ
∂Br

(
2ru2

r −
1

2
|∇u|2(2r)

)
,

which proves the identity. �

Corollary 12.4 (Almgren’s version of Hadamard’s three circles theorem). If u is a harmonic
function on Rn, then U ′(r) ≥ 0.

(Proof.) We know

U ′ =

(
D

I

)′
=
D′I − I ′D

I2
.

Thus it suffices to show
D′I − I ′D ≥ 0.
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Observe that (12.1) implies D = rI′

2
, and that

I ′D =
rI ′

2
· I ′ = 2r3−2n

(ˆ
∂Br

uur

)2

.

On the other hand, (12.2) and the Pohozaev identity give (noting u is harmonic)

D′ =
2− n
r

D(r) + r1−n
(

2r

ˆ
∂Br

u2
r − (2− n)

ˆ
Br

|∇u|2
)

= 2r2−n
ˆ
∂Br

u2
r

by the definition of D. (In particulet, we know that D′ ≥ 0.) As a result,

D′I = 2r2−n
ˆ
∂Br

u2
r · r1−n

ˆ
∂Br

u2 = 2r3−2n

(ˆ
∂Br

u2
r

)(ˆ
∂Br

u2

)
.

Thus

D′I − I ′D = 2r3−2n

((ˆ
∂Br

u2
r

)(ˆ
∂Br

u2

)
−
(ˆ

∂Br

uur

)2
)
,

so it remains to show (ˆ
∂Br

u2
r

)(ˆ
∂Br

u2

)
≥
(ˆ

∂Br

uur

)2

,

which is true by the Cauchy-Schwarz inequality. �

From the proof, the Cauchy-Schwarz inequality tells us that U ′(r) = 0 if and only if

(12.5) u(r) = c(r)u

for some c(r). In fact, we could get more.

Corollary 12.6. If U ′ = 0, then u = rU · g(θ) where g only depends on the spherical direction.

(Proof.) Note that

I ′ =
2D

r
= 2r1−n

ˆ
∂Br

uur = 2cr1−n
ˆ
∂Br

u2 = 2cI

by (12.5). Thus

U =
D

I
=
rI ′

2I
=

2rcI

2I
= rc.

As a result

c =
U

r
.

Thus

ur = cu =
U

r
u

and we get
∂

∂r

(
r−Uu

)
= 0.

As a result, r−Uu = g(θ) for some g not depending on r. �
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Note that a function u of the form rU · g(θ) is harmonic if and only if g is an eigenfunction of
the laplacian on the sphere.

Another observation is

(12.7) (log I)′ =
I ′

I
=

2D

rI
=

2

r
U.

Thus if I(r) ≈ r2d, then (log I)′ ≈ 2d
r

so heuristically the exponent d indicates the frequency.

12.2. Unique Continuation Property. Another consequence of the monotonicity of the fre-
quency is the unique continuation property. Suppose u is a harmonic funtion on a connectd
domain Ω ⊆ Rn. The unique continuation of a PDE problem asserts that if a solution vanishes on
a non-empty open subset, then it vanishes anywhere. The strong unique continuation says that if
u and all its derivatives vanish at a point, then it vanishes everywhere.

Theorem 12.8. Suppose Ω ⊆ Rn is an open connected subset and u is harmonic on Ω with
∇ku(p) = 0 for all k at some p ∈ Ω, then u = 0 on Ω. That is to say, the strong unique continuation
property holds for the laplacian equation.

(Proof.) We may assume p = 0. It suffices to show that ∇ku = 0 for all k in a neighborhood of 0
(since Ω is connected).

By (12.7), we have

2

ˆ s

r

U(τ)

τ
dτ =

ˆ s

r

(log I)′(τ)dτ = log

(
I(s)

I(r)

)
if r ≤ s and Bs ⊆ Ω. Since U is increasing by the corollary 12.4, we know U(τ) ≤ U(s) =: c so

log

(
I(s)

I(r)

)
≤ 2c

ˆ s

r

1

τ
dτ =

(
log τ 2c

)
|sr

and hence

s−2cI(s) ≤ r−2cI(r),

which tends to 0 as r → 0 (by seeing the Taylor expansion). That is to say, I(s) = 0 (for all s).
In particular, the conclusion follows. �

Recall the Ornstein-Uhlenbeck operator

Lu = e
|x|2
4 div

(
e−
|x|2
4 ∇u

)
,

which is one of many possible drift operators. It could be rewrite as

Lu = ∆u− 1

2
〈x,∇u〉 .

If u : Rn → R is an eigenfunction of ∆. i.e.,

Lu+ λu = 0
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for some λ ≥ 0, we can still define the function I(r), and get

I ′(r) = r1−n
ˆ
∂Br

(u2)r = r1−ne
r2

4

ˆ
Br

div

(
e−
|x|2
4 ∇u2

)
by Stokes’ theorem. Thus we get

I ′(r) = r1−ne
r2

4

ˆ
Br

Lu2e−
|x|2
4 .

Since

Lu2 = −2λu2 + 2|∇u|2,
we get

I ′(r) = r1−ne
r2

4

ˆ
Br

(
−2λu2 + 2|∇u|2

)
e−
|x|2
4 .

Thus if we define

(12.9) D := r2−ne
r2

4

ˆ
Br

(
|∇u|2 − λu2

)
e−
|x|2
4 ,

we still get

(12.10) I ′ =
2D

r
,

and hence

(log I)′ =
2U

r
where U := D

I
again.

Based on (12.9), we have

(12.11) D′ =
2− n
r

D +
r

2
D + r2−n

ˆ
∂Br

(
|∇u|2 − λu2

)
.

It turns out that in this case, U is no longer monotone. However, we could still derive some useful
information as follows.

(12.12)
U ′

U
≥ 2− n

r
+
r

2
− λr

U
− U

r
.

To see (12.12), note that by (12.10),

D2 =

(
rI ′

2

)2

=

(
r2−n

ˆ
∂Br

uur

)2

≤
(
r1−n

ˆ
∂Br

u2

)(
r3−n

ˆ
∂Br

u2
r

)
= I ·

(
r3−n

ˆ
∂Br

u2
r

)
by the Cauchy-Schwarz inequality. Thus we get

D2 ≤ I ·
(
r3−n

ˆ
∂Br

|∇u|2
)
.

Therefore,
D

I
≤ 1

D

(
r3−n

ˆ
∂Br

|∇u|2
)
,
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so

(12.13)
U

r
≤ 1

D

(
r2−n

ˆ
∂Br

|∇u|2
)
.

As a consequence, since by (12.11) we have

D′ =
2− n
r

D +
r

2
D + r2−n

ˆ
∂Br

|∇u|2 − λIr,

we derive
D′

D
=

2− n
r

+
r

2
+

1

D
r2−n

ˆ
∂Br

|∇u|2 − λr

U
,

which along with (12.10) gives

U ′

U
=
D′

D
− I ′

I

=

(
2− n
r

+
r

2
+

1

D
r2−n

ˆ
∂Br

|∇u|2 − λr

U

)
− 2D

rI

=
2− n
r

+
r

2
− λr

U
− 2U

r
+

1

D
r2−n

ˆ
∂Br

|∇u|2

≥ 2− n
r

+
r

2
− λr

U
− 2U

r
+
U

r
by (12.13), which proves (12.12).

Using (12.12), we get a dichotomy.

Theorem 12.14. Given δ > 0 and λ > 0, there exists R0 > 0 suc htaht the following holds. If
Lu+ λu = 0 where L is the Ornstein-Uhlenbeck operator, then U(r) > (2 + δ)λ for r > R0, i.e.,

lim
r→∞

U(r)

r2
≥ 1

2
.

Roughly it says that for an eigenfunction u, either U ≤ 2λ or U grows like r2/2.

(Proof.) If U(r) ∈ [(2 + δ)λ, 2r], then by (12.12),

(logU)′ ≥ 2− n
r

+
r

2
− λr

U
− U

r

≥ 2− n
r

+
r

2
− 2− rλ

(2 + δ)λ

=
2− n
r

+ r

(
1

2
− 1

2 + δ

)
− 2.

On the other hand, if U(r) ≥ 2r,

(logU)′ ≥ 2− n
r

+
r

2
− λr

U
− U

r

≥ 2− n
r

+
r

2
− U

r
− λ

2
.
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Thus either U ≥ (1− ε)r2/2, or U < (1− ε)r2/2, in which case we have

(logU)′ ≥ 2− n
r

+
r

2
− r

2
− λ

2
=

1− ε
2

r,

which gives exponential growth, leading to a contradiction. Thus the conclusion follows. �

12.3. Heat Equation. Recall that our favorite solution to the heat equation is

u(x, t) = (4πt)−
n
2 e−

|x|2
4t .

We also denote Hb(x, t) := u(x,−t), which is a solution to the backward solution since

(∂t + ∆)Hb = −ut + ∆u = 0.

When discussing the heat equation, we could not focus on local spaces, since solutions to the
heat equation have infinite propogation speed. i.e., even if the initial data has compact support,
it will not after any positive time. However, we could localize the time.

Now we let u be any solution to the heat equation on the time interval (−∞, 0]. Consider a
natural analog as what we did for harmonic functions, that is,

I(t) :=

ˆ
u2Hbdx =

ˆ
u2(x, t)Hb(x, t)dx

with

Hb(x, t) = (−4πt)−
n
2 e
|x|2
4t .

defined above, which has integral 1 at any time. Thus

I ′(t) =

ˆ
2uutHb +

ˆ
u2(Hb)t

=

ˆ
2u∆uHb −

ˆ
u2∆Hb.

Since ∆u2 = 2|∇u|2 + 2u∆u (for any C2 functions), we have

(12.15) I ′ =

ˆ
∆(u2)Hb − 2

ˆ
|∇u|2Hb −

ˆ
∆(u2)Hb = −2

ˆ
|∇u|2Hb.

after integration by parts since Hb decays incredibly fast at infinity at any time and we assume u
does too. We would like to have a similar formula as (12.1). Thus we define

(12.16) D(t) := −t
ˆ
|∇u|2Hb,

which implies I ′ = 2D
t
. Lastly, we again define the frequency

U :=
D

I
.

Thus of course

(log I)′ =
I ′

I
=

2D

tI
=

2

t
U.
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We want to revise D. In fact, using ∆u2 = 2|∇u|2 + 2u∆u, we get

D = − t
2

ˆ
∆(u2)Hb + t

ˆ
u∆uHb(12.17)

= t

ˆ
u 〈∇u,∇Hb〉+ t

ˆ
u∆uHb

= t

ˆ
u (〈∇u,∇ logHb〉+ ∆u)Hb.

after integration by parts.

Next, we will see that D is also monotone.

Lemma 12.18. We have

D′ = 2t

ˆ
(∆u+ 〈∇u,∇ logHb〉)2Hb.

In particular, D′ ≤ 0.

Corollary 12.19. The frequency is decreasing. That is, U ′ ≤ 0.

(Proof of corollary 12.19.) We have

U ′ =
D′I − I ′D

I2
.

Thus it suffices to show D′I − I ′D ≤ 0. By lemma (12.18), (12.15) and (12.17),

D′I − I ′D = 2t

ˆ
(∆u+ 〈∇u,∇ logHb〉)2Hb ·

ˆ
u2Hb −

2

t
D2

= 2t

ˆ
(∆u+ 〈∇u,∇ logHb〉)2Hb ·

ˆ
u2Hb − 2t

(ˆ
u (〈∇u,∇ logHb〉+ ∆u)Hb

)2

.

Viewing A = u and B = 〈∇u,∇ logHb〉 + ∆u, the corollary follows from the Cauchy-Schwarz
inequality (using the weighted integral as the inner product). �

(Proof of lemma 12.18.) By the original definition (12.16), we have

D′ = −
ˆ
|∇u|2Hb − 2t

ˆ
〈∇ut,∇u〉Hb − t

ˆ
|∇u|2(Hb)t

= −
ˆ
|∇u|2Hb − 2t

ˆ
〈∇∆u,∇u〉Hb + t

ˆ
|∇u|2∆Hb

= −
ˆ
|∇u|2Hb + 2t

ˆ (
(∆u)2Hb + 〈∇u,∇ logHb〉Hb∆u

)
− t
ˆ 〈
∇|∇u|2,∇ logHb

〉
Hb
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using integration by parts. Note that we can write the last term in local coordinate. i.e.,ˆ 〈
∇|∇u|2,∇ logHb

〉
Hb

= 2

ˆ
uijui(logHb)jHb

= −2

ˆ
ujuii(logHb)jHb − 2

ˆ
ujui(logHb)ijHb − 2

ˆ
ujui(logHb)j(logHb)iHb

= −2

ˆ
∆u 〈∇u,∇ logHb〉Hb − 2

ˆ
HesslogHb(∇u,∇u)Hb − 2

ˆ
〈∇u,∇ logHb〉2Hb.

Since

Hb(x, t) = (−4πt)−
n
2 e
|x|2
4t ,

we have

∇ logHb = ∇
(
|x|2

4t

)
=

x

2t

and

HesslogHb =
1

2t
.

As a result, ˆ 〈
∇|∇u|2,∇ logHb

〉
Hb

= −2

ˆ
∆u 〈∇u,∇ logHb〉Hb −

1

t

ˆ
|∇u|2Hb − 2

ˆ
〈∇u,∇ logHb〉2Hb.

Putting this back to D′, we get

D′ = −
ˆ
|∇u|2Hb + 2t

ˆ (
(∆u)2Hb + 〈∇u,∇ logHb〉Hb∆u

)
+ 2t

ˆ
∆u 〈∇u,∇ logHb〉Hb +

ˆ
|∇u|2Hb + 2t

ˆ
〈∇u,∇ logHb〉2Hb

= 2t

ˆ
Hb

(
(∆u)2 + 2∆u 〈∇u,∇ logHb〉+ 〈∇u,∇ logHb〉2

)
,

which is what we want. �

Note that by the argument in the proof of corollary 12.19, U ′ = 0 if and only if

〈∇u,∇ logHb〉+ ∆u = c(t)u.

In this case,

D = t

ˆ
u (〈∇u,∇ logHb〉+ ∆u)Hb = c(t)t

ˆ
u2Hb = c(t)tI,

so

U =
D

I
= c(t)t,
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which implies c(t) = U
t
, and hence

〈∇u,∇ logHb〉+ ∆u =
U

t
u,

which is equivalent to

(12.20) Uu = tut +
1

2
〈∇u, x〉 .

If we consider

v(t) := t−Uu(
√
tx,−t),

then by (12.20),

v′(t) = −Ut−U−1u+ t−U
〈
∇u, x

2
√
t

〉
− t−Uut

= t−U
(
−Uu
t

+

〈
∇u, x

2
√
t

〉
− ut

)
= t−U

(
−Uu
t

+
1

2t

〈
∇u,
√
tx
〉
− ut

)
= 0

since the spacial variable is
√
tx and the time variable is −t now (so (12.20) becomes

−Uu
t

= ut −
1

2t

〈
∇u,
√
tx
〉

in this case). As a result,

t−Uu(
√
tx,−t) = v(t) = v(1) = u(x,−1),

so

u(
√
tx,−t) = tUu(x,−1),

which is equivalent to

u(x, t) = (−t)Uu
(

x√
−t
,−1

)
,

in which the variables are separated, as what we have seen for the case of harmonic functions in
corollary 12.6.

12.4. Backward Uniqueness. We claim that solutions to the heat equation also enjoy some
uniqueness continuation properties.

Theorem 12.21. If u : Rn × [−a, 0]→ R is a solution to the heat equation and

lim
t→0

I(t)

(−t)d
= 0

for all d > 0, then u = 0.
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The condition means that u vanishes to infinite order at the origin. We remark that this is not
true for discrete heat equation.

(Proof.) Since (log I)′ = 2U
t
, for t2 < t1 < 0, we have

log

(
I(t1)

I(t2)

)
= 2

ˆ t1

t2

U

t
dt.

By corollary 12.19, U(t1) ≤ U(t2). Thus

log

(
I(t1)

I(t2)

)
≥ 2

ˆ t1

t2

U(t2)

t
dt = 2U(t2) log

(
t1
t2

)
.

Thus
I(t1)

I(t2)
≥
(
t1
t2

)2U(t2)

.

That is to say,

I(t2)(−t2)−2U(t2) ≤ I(t1)(−t1)−2U(t2).

Let t1 → 0, we get I(t2) = 0. �

12.5. More General Setting. The content we are going to see is based on [CM20]. For a fixed
smooth function ϕ, consider

Lϕu := e−ϕdiv
(
e−ϕ∇u

)
.

If u satisfies (∂t − Lϕ)u = 0, we can define again

I(t) =

ˆ
u2e−ϕ,

D(t) = −
ˆ
|∇u|2e−ϕ =

ˆ
uLϕue

−ϕ,

and

U(t) :=
D(t)

I(t)
.

Then

I ′(t) = 2

ˆ
uute

−ϕ = 2

ˆ
uLϕue

−ϕ = −2

ˆ
|∇u|2e−ϕ = 2D,

and

D′(t) = −2

ˆ
〈∇ut,∇u〉 e−ϕ = 2

ˆ
utLϕue

−ϕ = 2

ˆ
(Lϕu)2e−ϕ.

We assume we can do integration by parts again (with some assumptions on boundary data). Thus

(logU)′ =
D′

D
− I ′

I
=
D′I − I ′D

DI
,

where

D′I = 2

ˆ
(Lϕu)2e−ϕ ·

ˆ
u2e−ϕ
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and

I ′D = 2

(ˆ
uLϕue

−ϕ
)2

,

so D′I − I ′D ≥ 0 by the Cauchy-Schwarz inequality, i.e., (logU)′ ≥ 0. Also, we have

(log I)′ =
I ′

I
=

2D

I
= 2U.

Note that the Cauchy-Schwarz inequality tells us that U is constant if and only if

Lϕu = c(t)u.

If it is the case, since

D =

ˆ
uLϕue

−ϕ = c(t)

ˆ
u2e−ϕ = c(t)I,

we get U = c(t). Thus U ′ = 0 if and only if ut = Lϕu = Uu, which means

(e−Utu)′ = 0,

that is,

u(x, t) = eUtu(x, 0).

In fact, this more general monotonicity implies Poon’s monotonicity. To see this, if ut = ∆u for
t < 0, consider

w(x, s) = u(
√
−tx, t) = u

(
e−

s
2x,−e−s

)
where t = −e−s. Then as we have seen in previous sections,

ws = −1

2
e−

s
2 〈∇u, x〉+ e−sut,

∇w = e−
s
2∇u,

and

∆w = e−s∆u.

Thus

ws − L |x|2
4

= ws −∆w +
1

2
〈x,∇w〉 = 0

since ut = ∆u. Note that w is defined for all time (in the variable s). Thus for w, we have Iw(s),
Dw(s) and Uw(s) defined above, and for u, we have

Iu(t) = (−4πt)−
n
2

ˆ
u2e−

|x|2
4t .

Note that by a change of variables t = e−s, Iw(e−s) = (−t)−n2 Iu(t). Thus the monotonicity for w
implies that for u.
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12.6. Backward Uniqueness in the General Setting.

Theorem 12.22. Suppose ut = Lϕu on the time interval [a, b]. If u = 0 at time b, then u ≡ 0.

(Proof.) Since (log I)′ = 2U, for a ≤ t ≤ b,

log I(b)− log I(t) =

ˆ b

t

2U ≥ 2U(t)(b− t)

since U is increasing. Taking exponential gives

I(b)

I(t)
≥ e2U(t)(b−t),

so if I(b) = 0, then I(t) = 0 for all t. �

It is remarkable that all the arguments become simpler in this general setting.

13. Ancient Solutions to the Heat Equation

The content of this section is based on [CM21]. A function u is ancient if it is defined for all
prior time. That is, it is definded on time (−∞, c] for some c ∈ R. This is, in a sense, a natural
generalization of harmonic functions.

13.1. Reverse Poincaré Inequality. Let (M, g) be a Riemannian manifold, and u be an ancient
solution to the heat equation on M. We want to obtain a parabolic version of the reverse Poincaré
inequality for u. Let ϕ : M → R be a non-negative function with compact support. We would like
to look at

d

dt

ˆ
u2ϕ2dVg = 2

ˆ
uutϕ

2dVg

= 2

ˆ
u∆uϕ2dVg

= −2

ˆ (
|∇u|2ϕ2 + 2uϕ 〈∇u,∇ϕ〉

)
dVg,

which, by the AM-GM inequality (absorbing inequality), is less than

−2

ˆ
|∇u|2ϕ2dVg + 2

ˆ (
1

2
|∇u|2ϕ2 + 2u2|∇ϕ|2

)
dVg.

Thus
d

dt

ˆ
u2ϕ2dVg ≤ −

ˆ
|∇u|2ϕ2dVg + 4

ˆ
u2|∇ϕ|2dVg.

Hence after integration, we deriveˆ
u2ϕ2dVg|t=0 −

ˆ
u2ϕ2dVg|t=−T ≤ −

ˆ 0

−T

ˆ
|∇u|2ϕ2dVg + 4

ˆ 0

−T

ˆ
u2|∇ϕ|2dVg.
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Therefore, ˆ 0

−T

ˆ
|∇u|2ϕ2dVg ≤ 4

ˆ 0

−T

ˆ
u2|∇ϕ|2dVg +

ˆ
u2ϕ2dVg|t=−T .

We want to take the cut-off ϕ only depending on the distance to the origin (in the Euclidean case),
which is 1 on BR and 0 outside B2R. Then we getˆ 0

−T

ˆ
BR

|∇u|2 ≤ 4

ˆ 0

−T

ˆ
B2R

u2

R2
+

ˆ
B2R

u(·,−T )2.

Note that we have ˆ
B2R

u(·,−T )2 ≤ 1

R2

ˆ 0

−2R2

ˆ
B2R

u2

for some −T ∈ [−2R2,−R2] (just taking the mean). Thus

(13.1)

ˆ 0

−R2

ˆ
BR

|∇u|2 ≤ 4

R2

ˆ 0

−2R2

ˆ
B2R

u2 +
1

R2

ˆ 0

−2R2

ˆ
B2R

u2 =
5

R2

ˆ 0

−2R2

ˆ
B2R

u2.

Next, we look at

d

dt

ˆ
|∇u|2ϕ2 = 2

ˆ
〈∇ut,∇u〉ϕ2

= −2

ˆ
ut∆uϕ

2 − 4

ˆ
utϕ 〈∇u,∇ϕ〉

≤ −2

ˆ
u2
tϕ

2 +

(ˆ
u2
tϕ

2 + 4

ˆ
|∇ϕ|2|∇u|2

)
= −
ˆ
u2
tϕ

2 + 4

ˆ
|∇ϕ|2|∇u|2

using the AM-GM inequality again. After integration, we getˆ
|∇u|2ϕ2|t=0 −

ˆ
|∇u|2ϕ2|t=−T ≤ −

ˆ 0

−T

ˆ
u2
tϕ

2 + 4

ˆ 0

−T

ˆ
|∇ϕ|2|∇u|2,

so ˆ 0

−T

ˆ
u2
tϕ

2 ≤
ˆ
|∇u|2ϕ2|t=−T + 4

ˆ 0

−T

ˆ
|∇ϕ|2|∇u|2.

Again, for some T ∈ [R2, 2R2], we haveˆ
|∇u|2ϕ2|t=−T ≤

1

R2

ˆ 0

−2R2

|∇u|2ϕ2,

so ˆ 0

−T

ˆ
u2
tϕ

2 ≤ 4

ˆ 0

−T

ˆ
|∇ϕ|2|∇u|2 +

1

R2

ˆ 0

−2R2

|∇u|2ϕ2.

Taking the same cut-off ϕ, it becomes

(13.2)

ˆ 0

−R2

ˆ
BR

u2
t ≤

4

R2

ˆ
−2R2

ˆ
B2R

|∇u|2 +
1

R2

ˆ
−2R2

ˆ
B2R

|∇u|2 =
5

R2

ˆ
−2R2

ˆ
B2R

|∇u|2.
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We are going to combine (13.1) and (13.2). The reason why they are useful is that their right
hand sides are of the order R−2. Thus in some integral sense, we could say

|ut| .
C

R2
|∇u| and |∇u| . C

R2
|u|.

In fact, putting them together after doubling gives

(13.3) R2

ˆ 0

−R2

ˆ
BR

u2
t +

ˆ 0

−R2

ˆ
BR

|∇u|2 ≤ C

R2

ˆ 0

−4R2

ˆ
B4R

|u|2,

called the (parabolic-version) reverse Poincaré inequality.

13.2. The Space of Ancient Solutions. Now we assume our manifold (M, g) has polynomial
volume growth, in the sense that fo any p ∈M and r > 0,

Vol(Br(p)) ≤ CM(1 + r)kM ,

which is clearly a vector space. Other objects of interest form the following set. Let

Hd(M) :=
{
u : M → R : ∆u = 0 and |u(x)| ≤ Cu(1 + d(x, p))d

}
,

whose elements are called harmonic functions of polynomial growth at most d. A classical result
is that

Hd(R
n) = {harmonic ploynomials of degree at most d}.

In general, one can very efficiently bound the dimension of this kind of spaces, which is a conjecture
of Yau. (See [CM97].)

Here we want to look at the parabolic version, i.e.,

Pd(M) :=
{
u : M × (−∞, 0]→ R : (∂t −∆)u = 0 and |u(x, t)| ≤ Cu

(
1 + d(x, p) +

√
−t
)d}

.

Here d(x, p) +
√
−t is some kinds of “parabolic distance” to (p, 0) in spacetime.

Theorem 13.4. Let (M, g) be a Riemannian manifold with polynomial volume growth. Then

dimP2d ≤
d∑

k=0

dimH2k(M).

We remark that this inequality is sharp, in the sence that the equality holds when (M, g) is the
standard Euclidean space.

First we use the reverse Poincaré inequality to show the following lemma.

Lemma 13.5. If (M, g) has polynomial volume growth anad u ∈ Pd(M), then there exists k > 0
such that ∂kt u = 0.

(Proof.) By the reverse Poincaré inequality (13.3), we in particular have

r4

ˆ 0

−r2

ˆ
Br

u2
t ≤ C

ˆ 0

−4r2

ˆ
B2r

|u|2.
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Since ut is also an ancient solution, applying the inequality again gives

r4

ˆ 0

−r2

ˆ
Br

(∂2
t u)2 ≤ C

ˆ 0

−4r2

ˆ
B2r

|ut|2.

As a result,

r8

ˆ 0

−r2

ˆ
Br

(∂2
t u)2 ≤ C

ˆ 0

−4r2

ˆ
B2r

|ut|2

≤ C2

ˆ 0

−16r2

ˆ
B4r

u2.

Inductively, we have

r4k

ˆ
Br×[−r2,0]

(∂kt u)2 ≤ Ck

ˆ
B

2kr
×[−22kr2,0]

u2.

Since u ∈ Pd, we have

|u(x, t)| ≤ Cu
(
1 + d(x, p) +

√
−t
)d
.

Thus on B2kr × [−4kr2, 0],

|u(x, t)| ≤ Cu(1 + 2kr + 2kr)d ≤ C̃(1 + 2kr)d.

Therefore,

r4k

ˆ
Br×[−r2,0]

(∂kt u)2 ≤ C̃CkVol(B2kr) · 22kr2(1 + 2kr)d.

By the polynomial volume growth, it is bounded by

C̃CkCV (1 + r)ν · 22kr2(1 + 2kr)d.

In conclusion, we could write

r4k

ˆ
Br×[−r2,0]

(∂kt u)2 ≤ C0(4C)k(1 + r)ν+2(1 + 2kr)d.

Note that we are only interested in the case when r is large, so 1 + Cr ≈ Cr, which implies

r4k

ˆ
Br×[−r2,0]

(∂kt u)2 ≤ C0(4C)krν+d+2 · 2kd

and hence ˆ
Br×[−r2,0]

(∂kt u)2 ≤ C0r
−4k(2d+2C)krν+d+2

= C0

(
2d+2C

r4

)k
rν+d+2.

As a result, for k large (in fact, so large that 4k > ν + d+ 2), we haveˆ
M×(−∞,0]

(∂kt u)2 = 0,

and the conclusion of the lemma follows. �
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(Proof of theorem 13.4.) Based on the lemma, for each fixed x, we know that the function
u(x, t) is a polynomial in t with degree at most k − 1. Thus we can write

u(x, t) = p0(x) + p1(x)t+ · · ·+ pk−1(x)tk−1

for some smooth functions pi’s. Since u ∈ Pd, for fixed x we have

|u(x, t)| ≤ C(1 +
√
−t)d,

so k − 1 could at most be d. We may just write k = d (with probably some pi = 0).

Since (∂t −∆)u = 0, the polynomial expression tells us∑
i

ipi(x)ti−1 =
∑
i

(∆pi)t
i.

This holds for all t ≤ 0, so

(∆pi) = (i+ 1)pi+1

for all i. In particular, ∆pd = 0. Thus we could consider

Φd : Pd(M)→ {harmonic functions on M}, u 7→ pd.

We claim that

(13.6) |pi(x)| ≤ C(1 + rp)
2d−2i

where rp = d(p, ·). If so, pd is a bounded harmonic function. Thus the image of Φd is contained in
H0(M). Therefore,

(13.7) dimPd ≤ dim ker Φd + dimH0.

If u ∈ ker Φd, i.e., pd = 0, then

u = p0(x) + p1(x)t+ · · ·+ pd−1(x)td−1.

Then we consider

Φd−1(u) := pd−1

for u ∈ ker Φd. Then (13.6) implies Φd−1(u) ∈ H2. In particular,

dim ker Φd ≤ dimH2 + dim ker Φd−1.

Inductively, by considering Φd−2 on ker Φd−1, we have

dim ker Φd−1 ≤ dimH4 + dim ker Φd−2.

Summing over these inequalities and combining with (13.7), the conclusion follows. �

We remark that ancient solutions to the heat equation come up naturally in blow-up arguments.
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14. Mean Curvature Flow

We now go into the topic of mean curvature flow as an example of a nonlinear PDE of the type
of heat equations. Let Σn be a smooth submanifold in RN . For vector fields X and Y on Σ, the
second fundamental form of Σ is defined by

A(X, Y ) := (∇XY )⊥,

whose value at p ∈ Σ depends only on X(p) and Y (p) (so forms a tensor). It is a symmetric
2-tensor. Pointwisely, we can think of it as a map

A : TpΣ× TpΣ→ NpΣ.

The mean curvature vector of Σ is a normal vector field defined by1

H := −trA = −
∑
i

A(ei, ei)

for an ONB ei’s at p. When N = n+ 1, i.e., Σ is a hypersurface in Rn+1, we would define the mean
curvature by

H = 〈H,n〉 = −tr 〈A,n〉 = −
∑
i

〈
∇⊥eiei,n

〉
,

where n is the outer unit normal. SInce 〈ei,n〉 = 0, the Leibniz rule tells us

H = −
∑
i

〈
∇⊥eiei,n

〉
=
∑
i

〈ei,∇ein〉 = tr 〈·,∇·n〉 .

For tangent vectors X and Y, note that the same (Leibniz) reason implies

〈∇Xn, Y 〉 = −〈n,∇XY 〉 ,
which is symmetric, so 〈·,∇·n〉 is also symmetric, called the Weingarten map.

14.1. First Variation of Volume. For a closed submanifold Σn ⊆ RN and a vector field V with
compact support consider

Σs,V := {x+ sV (x)|x ∈ Σ},
which forms a variation of Σ. We want to calculate the variation of its volume, i.e.,

d

ds
Vol(Σs,V )|s=0.

Looking at the volume element dVolΣs,V of Σs,V , we can derive a standard formula

d

ds
dVolΣs,V = divΣV · dVol.

(Recall that divΣV =
∑

i 〈∇eiV, ei〉 for an ONB ei’s.) As a result, (after omitting dVol)

d

ds
Vol(Σs,V )|s=0 =

ˆ
Σ

divΣV.

We could write V = V T + V ⊥ with respect to Σ. By Stokes’ theorem, since Σ is closed, we haveˆ
Σ

divΣX = 0

1There are different conventions about the sign of the mean curvature vector.
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for any tangent vector X of Σ. Consequently, we have

d

ds
Vol(Σs,V )|s=0 =

ˆ
Σ

divΣV
⊥.

This matches our intuition, since tangential variation would only reparametrize the hypersurface.
Moreovre, we have

divΣV
⊥ =

∑
i

〈
∇eiV

⊥, ei
〉

= −
∑
i

〈
V ⊥,∇eiei

〉
=
〈
V ⊥,H

〉
= 〈V,H〉

since H is already normal. In conclusion, we get the first variation formula

(14.1)
d

ds
Vol(Σs,V )|s=0 =

ˆ
Σ

〈V,H〉 .

This formula goes back to Euler (1740) and Lagrange (1755). In fact, what Euler looked at was a
special submanifold: catenoids. When he calculated the first variation of catenoids, he found that
it is zero! He put this into his books, and later Lagrange read them. Lagrange put this into a more
systematic setting, which could be regarded as the beginning of calculus of variation. Lagrange
concluded that if the first variation vanishes for all V, in particular when V = H, then H = 0.

We could do the same thing for all submanifold with V having compact support. A submanifold
is said to be minimal if the first variation is zero for all V, which is equivalent to H = 0 by the
first variation formula (14.1). A conspocuous example of this kind of submanifolds are soap films,
which is related to the Plateau problem, later solved by Douglas.

14.2. Flowing Submanifolds. How are minimal submanifolds related to heat equations? The
idea is to flow the submanifold such that the volume decreases as soon as possible. By the first
variation formula (14.1), it is reasonable to consider the flow direction as V = −H. As a result, a
one-parameter family of submanifolds Σn

t in RN is said to evolve by the mean curvature flow
(MCF) if its position vector x satisfies

(14.2) xt = −H.

This is a nonlinear equation. In fact, this is a nonlinear version of the heat equation. In general,
for a function f : RN → R and Σ ⊆ RN , we recall

∆Σf = divΣ

(
∇Tf

)
.

By definition, we have

∆Σf = divΣ

(
∇Tf

)
= divΣ(∇f)− divΣ(∇⊥f)

=
∑
i

〈∇ei∇f, ei〉 − divΣ(∇⊥f)

=
∑
i

Hessf (ei, ei)− divΣ(∇⊥f)

60



for an ONB for TpΣ. Note that

divΣ(∇Tf) =
∑
i

〈
∇ei∇⊥f, ei

〉
= −

∑
i

〈
∇⊥f,∇eiei

〉
=
〈
∇⊥f,H

〉
= 〈∇f,H〉 .

In conclusion, we derive

(14.3) ∆Σf =
∑
i

Hessf (ei, ei)− 〈∇f,H〉 .

There are some special examples.

1. f = xi, coordinate functions. In this case, Hessxi = 0, so

∇Σxi = −〈ei,H〉 .
Thus

(14.4) ∆Σx = −
∑
i

〈ei,H〉 ei = −H.

2. f = |x|2. In this case, we have Hess|x|2 = 2 〈·, ·〉 and ∇|x|2 = 2x, so

(14.5) ∆Σ|x|2 = 2n− 2 〈x,H〉 .

When Σt is evolving by the MCF, based on (14.4), the MCF equation (14.2) becomes

(14.6) xt = ∆Σx,

which is just the heat euqation. The point is that here the Laplacian operator depends on t is
a fairly complicated way. More generally, for a C2 function f : RN × R → R, we could consider
f : Σt → R for any t. Then

∂tf = ∂tf(x(t), t) = 〈∇f, xt〉+
∂f

∂t
= −〈∇f,H〉+

∂f

∂t
.

When f = |x|2, we have

(14.7) ∂t|x|2 = −2 〈x,H〉 = ∆Σ|x|2 − 2n

based on (14.5). As a consequence, by the parabolic maximum principle (applied to (14.6) (14.7)),
if Σ0 lies in a half-space or a ball, it will remain so for any t.

14.3. Examples. We see some classic examples of the MCF.

1. Planes. For planes, H = 0. Thus they form a static solution.

2. Spheres. Let Σ be the sphere of radius r0. Then H = n
r0

with outward direction.Thus −H is
pointing inward, i.e., toward the center of the sphere. By symmetry, it will remain spherical, and
its radius r satisfies

rt = −n
r
,

which admits the solution

r =
√
r2

0 − 2nt.

61



Observe that when 2nt = r2
0, we have r = 0. i.e., it shrinks to a point, so the flow could make sense

anymore.

3. Cylinders. In general, we could take Sk×Rn−k. Since the mean curvature is pointing toward
the axis, it will shrink to the axis. The speed is given by the spherical factor (as computed in the
previous example).

There are many other examples, but it turns out that these are the most important models.
Note that these examples have the same feature: they are shrinking homothetically under the
MCF. We will see some of other meanings of a shrinker later.

14.4. Momotonicity and Shrinkers. Watson first observed the mean value equality. Suppose
u, v : Rn × R→ R satisfies (∂t −∆)u = (∂t + ∆)v = 0 and decay in a suitable sense. Then

d

dt

ˆ
uv =

ˆ
utv +

ˆ
uvt =

ˆ
v∆u+

ˆ
uvt =

ˆ
u∆v +

ˆ
uvt = 0

after integration by parts. Based on this, we have the mean value equality.

Theorem 14.8. Let v(x, t) = (−4πt)−
n
2 e
|x|2
4t , which satisfies the backward heat equation. If u is

a solution to the heat equation, then

u(0, 0) = (−4πt)−
n
2

ˆ
u(x, t)e

|x|2
4t .

We want to get a more general monotonicity formula. Suppose Σt is flowing by the MCF. Then
the variation of the volume form gives

d

dt

ˆ
Σt

uv =

ˆ
Σt

utv +

ˆ
Σt

uvt −
ˆ

Σt

uv · |H|2

=

ˆ
u
(
(∂t + ∆Σt)v − |H|2v

)
for any v and a solution u to the heat equation. Thus

´
Σt
uv is constant if

(∂t + ∆Σt)v − |H|2v = 0,

called the conjugate equation to the heat equation. Based on this, Huisken looked at

Φ(x, t) = (−4πt)−
n
2 e
|x|2
4t

for (x, t) ∈ RN× (−∞, 0), where n is the dimension of the evolving submanifold, and want to know(
∂t + ∆Σt − |H|2

)
Φ.

Before doing the calculation, first we observe that

(∂t + ∆Σt)e
u = euut + eu∆Σtu+ eu|∇Σtu|2

so

(14.9) e−u(∂t + ∆Σt)e
u = (∂t + ∆Σt)u+ |∇Σtu|2.
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Thus we could take

u = log Φ = −n
2

log(−4πt) +
|x|2

4t
,

based on which we have

∇u =
x

2t
,

|∇Tu|2 =
|xT |2

4t2
,

∆Σtu =
n

2t
−
〈 x

2t
,H
〉

by (14.3) since Hess |x|2
4t

=
δij
2t
, and finally

∂tu = − n
2t
− |x|

2

4t
− 2 〈x,H〉

4t

since xt = −H. In conclusion, we have

∂tu+ ∆σtu+ |∇Tu|2 = −|x|
2

4t2
−
〈x
t
,H
〉

+
|xT |2

4t2
= −|x

⊥|2

4t2
−
〈x
t
,H
〉
.

Therefore,

∂tu+ ∆σtu+ |∇Tu|2 − |H|2 = −|x|
2

4t2
−
〈x
t
,H
〉

+
|xT |2

4t2

= −|x
⊥|2

4t2
−
〈
x⊥

t
,H

〉
− |H|2

= −
∣∣∣∣H +

x⊥

2t

∣∣∣∣2 .
Then based on (14.9), we have

(14.10)
(
∂t + ∆Σt − |H|2

)
Φ = −

∣∣∣∣H +
x⊥

2t

∣∣∣∣2 Φ.

This was first done by Huisken [Hui90]. Based on this, we can have

d

dt

ˆ
uΦ =

ˆ
utΦ +

ˆ
uΦt −

ˆ
uΦ|H|2

=

ˆ
Φ∆Σtu+

ˆ
uΦt −

ˆ
uΦ|H|2

=

ˆ
u∆ΣtΦ +

ˆ
uΦt −

ˆ
uΦ|H|2

=

ˆ
u
(
∂t + ∆Σt − |H|2

)
Φ

= −
ˆ
u

∣∣∣∣H +
x⊥

2t

∣∣∣∣2 Φ.
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if u satisfies the heat equation. This is called Huisken’s monotonicity. In particular, if u ≥ 0
(or just u(·, 0) ≥ 0 by the parabolic maximum principle), then

´
Σt
uΦ is increasing. The most

important case is when u = 0. By a change of variables, if we consider

Φx0,t0 = (4π(t0 − t))−
n
2 e
|x−x0|

2

4(t−t0) ,

we in general have

(14.11)
d

dt

ˆ
Σt

Φx0,t0 = −
ˆ ∣∣∣∣H +

(x− x0)⊥

2(t− t0)

∣∣∣∣2 Φx0,t0 .

When is this monotone quantity constant? Consider Φ = Φ0,0. Since

d

dt

ˆ
Φ = −

ˆ ∣∣∣∣H +
x⊥

2t

∣∣∣∣2 Φ,

it is constant if and only if

(14.12) HΣt +
x⊥

2t
= 0.

This is equivalent to the condition

(14.13) HΣ−1 =
x⊥

2
.

In fact, once (14.13) holds, the flow Mt :=
√
−tΣ−1 evolves by the MCF because x(t) =

√
−ty

(y ∈ Σ−1) satisfies

xt = − 1

2
√
−t
y⊥

and hence

HMt =
HΣ−1√
−t

=
y⊥

2
√
−t

= −xt.

Thus (14.12) holds. As a result, if Σ satisfies

(14.14) HΣ =
x⊥

2
,

we call Σ a shrinker. We have seen some examples of shrinkers in the section 14.3.

15. Shrinkers

This section is based on [CM12].
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15.1. F -functional and Entropy. First, we define an important quantity for shrinkers. We
could define it in a more general setting. For a submanifold Σn of RN , we define

F (Σ) := (4π)−
n
2

ˆ
Σ

e−
|x|2
4 ,

called the F -functional (a kind of Lyapunov functional in this dynamic system), and

λ(Σ) := sup
t0>0,x0∈RN

F (t0Σ + x0),

called the entropy of Σ. The crucial property of λ is its monotonicity under the MCF. In general,
thes quantities could be infinity. Thus we consider Σ ⊆ RN with Euclidean volume growth, in the
sense that

Vol(Br(x) ∩ Σ) ≤ CΣr
n

for all r > 0 and x ∈ RN .

Lemma 15.1. If Σn ⊆ RN has Euclidean volume growth, then F (Σ) <∞. In fact, we have

F (Σ) ≤ CΣ · c̃n
with CΣ the constant in the definition of the volume growth.

(Proof.) By definition,

F (Σ) = (4π)−
n
2

∞∑
i=0

ˆ
B2i+1\B2i∩Σ

e−
|x|2
4 + (4π)−

n
2

ˆ
B1∩Σ

e−
|x|2
4 .

Note that ˆ
B2i+1\B2i∩Σ

e−
|x|2
4 ≤ Vol(B2i+1 ∩ Σ) · e−

22i

4

≤ CΣ · 2n(i+1) · e−
22i

4 ,

so

F (Σ) ≤ (4π)−
n
2

∞∑
i=0

CΣ · 2n(i+1) · e−
22i

4 + (4π)−
n
2 · Vol(B1) = CΣ · c̃n. �

Now suppose Σ has Euclidean volume growth. Then note that t0Σ and Σ + x0 also have
Euclidean volume growth with the same constant for any t0 > 0 and x0 ∈ RN . As a result, lemma
15.1, in particular, implies that λ(Σ) <∞.

We mention one particular example. If Σ is a closed submanifold, clearly

Vol(Br(x) ∩ Σ) ≤ Vol(Σ)

for all r > 0 and x ∈ RN . Also, when r is small, Br(x) ∩ Σ is close to an n-dimensional Euclidean
ball, so we get the volume growth bound.

Surprisingly, we have the following converse statement.
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Proposition 15.2. If λ(Σ) <∞, then Σ has Euclidean volume growth.

(Proof.) By assumption, for any x0 and r, F (Σ− x0) <∞. However,

F (Σ− x0) = (4π)−
n
2

ˆ
Σ−x0

e−
|x|2
4 ,

so

Vol(B1(x0) ∩ Σ) ≤ (4π)−
n
2 · e−

1
4 · F (Σ− x0) ≤ Cλ(Σ).

Thus the conclusion follows from scaling. �

Note that after a change of variables, we can rewrite

F (t0Σ) = (4πt0)−
n
2

ˆ
Σ

e
− |x|

2

4t0

and

F (Σ + x0) = (4π)−
n
2

ˆ
Σ

e−
|x−x0|

2

4 .

These provide another way to think of entropy as the supremum after taking integrals of different
Gaussians, i.e.,

(15.3) λ(Σ) = sup
t0>0,x0∈RN

(4πt0)−
n
2

ˆ
Σ

e
− |x−x0|

2

4t0 .

This interpretation is nice when combining with Huisken’s monotonicity (14.11), which says that
the quantity

(4π(t0 − t))−
n
2

ˆ
Σt

e
− |x−x0|

2

4(t0−t)

is decreasing along the MCF. This, along with (15.3), proves that λ(Σt) is also decreasing along
the MCF, and in particular, is constant if and only if Σ is a shrinker (i.e., satisfying (14.14)).

15.2. Operators. Next, we could ask the following euqation. What are the natural operators on
shrinkers? One is an analog of Ornstein-Uhlenbeck opeartors. For a function u on a shrinker Σ,
define

Lu := ∆Σu−
1

2

〈
x,∇Σu

〉
:= ∆Σu−

1

2

〈
xT ,∇u

〉
.

For example,

Lxi = ∆Σxi −
1

2

〈
x, eTi

〉
= −

〈
ei,

x⊥

2

〉
− 1

2

〈
x, eTi

〉
= −1

2
x, ei = −1

2
xi
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by the shrinker equation and (14.3) since Hessxi = 0. In other words, xi’s are eigenfunctions for L
with eigenvalue 1

2
. Another nice function is |x|2. Similar argument gives

L|x|2 = ∆Σ|x|2 −
1

2

〈
x,∇T |x|2

〉
=
∑
i

Hess|x|2(ei, ei)−
〈
∇|x|2,H

〉
− 1

2

〈
x,∇T |x|2

〉
= 2n− 2

〈
x,
x⊥

2

〉
− 1

2

〈
x, 2xT

〉
= 2n− |x|2.

As a result, we can rewrite it as

L(2n− |x|2) = −(2n− |x|2).

That is to say, 2n− |x|2 is an eigenfunction with eigenvalue 1.

15.3. Rescaled MCF and the First Variational Formula for F . Suppose Σt is evolving by
the MCF (for t < 0). We consider a scaling

1√
−t

Σt

and a reparametrization t = −e−s. i.e., the new flow is

Γs = e
s
2 Σ−e−s .

Then
y(s) = e

s
2x(−e−s),

and hence

y⊥s =
1

2
e
s
2x⊥ + e

s
2 · e−sx⊥t

=
1

2
y⊥ − e−

s
2 ·HΣt

=
1

2
y⊥ −HΓs

since HΓs = e−
s
2 HΣt by definition. This is called the rescaled MCF equation. This provides

another viewpoint of shrinkers, that is, fixed points for the rescaled MCF.

In fact, there is another point of view to the rescaled MCF. Consider a variation of Σ as

Σs,V := {x+ sV (x)|x ∈ Σ}.
Then by the first variational formula for volume,

d

ds
F (ΣV,s)|s=0 = (4π)−

n
2

ˆ
Σ

(
〈H, V 〉 −

〈
x⊥

2
, V

〉)
e−
|x|2
4 dx

= (4π)−
n
2

ˆ
Σ

〈
V,H− x⊥

2

〉
e−
|x|2
4 dx.
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Thus Σ is a shrinker if and only if it is a critical point for the F -functional. Moreover, the negative
gradient vector field for F is

V = −
(

H− x⊥

2

)
,

which is just given by the rescaled MCF. In particular, the F -functional is decreasing along the
rescaled MCF.

In general, for a submanifold Σn ⊆ RN , recall that we have (14.3)

∆Σf =
∑
i

Hessf (ei, ei)− 〈∇f,H〉 ,

which helps us to derive

∆Σxi = −
〈
e⊥i ,H

〉
.

If Σt flows by the rescaled MCF, i.e.,

xt = −H +
x⊥

2
,

then we have

∂txi = −
〈
e⊥i ,H

〉
+

1

2

〈
x, e⊥i

〉
and

Lxi = −
〈
x⊥i ,H

〉
− 1

2

〈
x, e⊥i

〉
.

As a result, we have

(∂t − L)xi =
1

2
〈x, ei〉 =

1

2
xi.

Similarly, we can derive

(∂t − L)|x|2 = |x|2 − 2n.

16. Pseudolocality

Consider a submanifold Σn ⊆ RN . Recall that

F (Σ) = (4π)−
n
2

ˆ
Σ

e−
|x|2
4

and

λ(Σ) = sup
t0>0,x0∈RN

F (t0Σ + x0) = sup
t0>0,x0∈RN

(4πt0)−
n
2

ˆ
Σ

e
− |x−x0|

2

4t0

as we mentioned in the preceding section. Based on Huisken’s monotonicity, we know that λ(Σt) is
decreasing if Σt evolves under the MCF. Also, we have seen that Σ has Euclidean volume growth
if and only if λ(Σ) <∞ (lemma 15.1 and proposition 15.2).
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16.1. First Observation. More generally, we can consider

Fx0,t0(Σ) := (4πt0)−
n
2

ˆ
Σ

e
− |x−x0|

2

4t0

for the sake of convenience. We would like to compare Fx0,t0(Σ) with F0,1(Σ) (which is just F (Σ)).
We may expet that Fx0,t0(Σ) is close to F (Σ) if (x0, t0) is close to (0, 1) (and hopefully this closeness
is independent of Σ).

Now suppose λ(Σ) ≤ λ0 <∞. Then

Vol(Br(x) ∩ Σ) ≤ c(n)λ0r
n,

for any x and r based on proposition 15.2. Then we can write

F (Σ) = (4π)−
n
2

ˆ
Σ∩BR

e−
|x|2
4 + (4π)−

n
2

ˆ
Σ\BR

e−
|x|2
4

≤ (4π)−
n
2

ˆ
Σ∩BR

e−
|x|2
4 + (4π)−

n
2

∑ ˆ
(B2i+1R\B2iR)∩Σ

e−
|x|2
4

≤ (4π)−
n
2

ˆ
Σ∩BR

e−
|x|2
4 + (4π)−

n
2

∞∑
i=0

e−
(2iR)2

4 Vol(B2i+1 ∩ Σ)

≤ (4π)−
n
2

ˆ
Σ∩BR

e−
|x|2
4 + Cλ0 · e−cR

2

by the polynomial growth. Thus by chopping out, we only need to care about the part inside a
large ball, i.e., the difference ˆ

Σ∩BR
e−
|x|2
4 − t−

n
2

0

ˆ
Σ∩BR

e
− |x−x0|

2

4t0 .

However, the two integrands are close when (x0, t0) is close to (0, 1). Since R is fixed, we can see
that F (Σ) and Fx0,t0(Σ) are close to each other.

16.2. Natural Distances on Space-time. We define the parabolic distance

dP ((x1, t1), (x2, t2)) = max{|x1 − x2|,
√
|t1 − t2|},

which is a proper metric on RN × R. Based on this, we can define backward parabolic ball

BP
r (x, s) := {(y, t) ∈ RN × R : t ≤ s and dP ((x, s), (y, t)) < r}.

Note that when N = 0 and we equip R with this funny distance, then we can calculate that the
Hausdorff dimension of intervals in this real line is 2. As a result, the dimension of Rn×R is n+ 2
if we equip it with the parabolic distance.

In general, on a metric space (X, d), for y ∈ Br(x) ⊆ X and r0 = d(y, x) < r, we have

Br−r0(y) ⊆ Br(x)

based on the triangle inequality. In our case, in particular, for (y, t) ∈ BP
r (x, s) and r0 =

dP ((y, t), (x, s)) < r, we can conclude

BP
r−r0(y, t) ⊆ BP

r (x, s)
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with the trivial fact that the point (z, u) ∈ BP
r−r0(y, t) satisfies u ≤ t ≤ s.

16.3. Main Theorem. Let Σt be a one-parameter family of submanifolds (which will evolve under
the MCF finally but here we could consider a general setting), and f be a non-negative function
defined on

{(x, s) ∈ BP
1 (0, 0) : x ∈ Σs},

by
f(x, s) := (1− dP ((x, s), (0, 0)))|AΣs|2(x),

where |A|2 is the Hilbert-Schmidt norm of the second fundamental form (that is,

|A|2 =
∑
i,j

|A(ei, ej)|2

for any ONB ei’s for TxΣs). Note that 1 − dP ((x, s), (0, 0)) is the distance to the boundary of
BP

1 (0, 0).

The idea of blow-up (that we are going to introduce) first came from the study of minimal
submanifolds. Note that by definition, f is a function on BP

1 (0, 0) that vanished on ∂BP
1 (0, 0).

Thus we may assume f achieves its maximum at (x, s) ∈ BP
1 (0, 0), which must be an interior point

(unless f ≡ 0, which is not interesting). Now we are in a position to state the pseudolocality
theorem, which is essentially due to Brakke [Bra78] and White [Whi05].

Theorem 16.1 (Pseudolocality). Assume Σt is flowing by the MCF for t ≤ 0 with (0, 0) ∈ Σ0

and λ(Σ−1) ≤ λ0 <∞. If
F (Σ−1) ≤ 1 + ε

for sufficiently small ε > 0, then
|AΣ0|(0) ≤ 1.

(Ideas of the proof.) We will prove this theorem by contradiction. That is, assume |AΣ0 |(0) > 1.
Then the function

f(x, s) = (1− dP ((x, s), (0, 0)))|AΣs|2(x)

now satisfies
max f > 1,

since f(0, 0) > 1. Suppose f achieves its maximum at (x, s). Then after rescaling, we may assume
|AΣ0|(0) = 1 and |A| ≤ 2 on BP

1 . Restricting to a smaller ball BP
δ (0, 0), we adjust f by considering

f(x, s) = (δ − dP ((x, s), (0, 0)))|AΣs|2(x).

Then we have Fx,t(Σ−1) < 1 + ε for (x, t) ∈ BP
δ (0, 0) if δ is small enough by the discussion in the

section 16.1. Thus it is virtually constant. Therefore, Huisken’s monotonicity implies it should be
a shrinker (here to make it rigorous we need to extract a sequence and see its limit). However, on
an infinitesimal scale, the shrinker is close to a plane (since the contradiction assumption holds for
any small ε thus the limiting submanifold has unit Gaussian integral), which contradicts to the
non-vanishing of the second fundamental form. �
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