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Continuous random variables

▶ Say X is a continuous random variable if there exists a
probability density function f = fX on R such that
P{X ∈ B} =

∫
B f (x)dx :=

∫
1B(x)f (x)dx .

▶ We may assume
∫
R f (x)dx =

∫∞
−∞ f (x)dx = 1 and f is

non-negative.

▶ Probability of interval [a, b] is given by
∫ b
a f (x)dx , the area

under f between a and b.

▶ Probability of any single point is zero.

▶ Define cumulative distribution function
F (a) = FX (a) := P{X < a} = P{X ≤ a} =

∫ a
−∞ f (x)dx .
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Expectations of continuous random variables

▶ Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [X ] =
∑

x :p(x)>0

p(x)x .

▶ How should we define E [X ] when X is a continuous random
variable?

▶ Answer: E [X ] =
∫∞
−∞ f (x)xdx .

▶ Recall that when X was a discrete random variable, with
p(x) = P{X = x}, we wrote

E [g(X )] =
∑

x :p(x)>0

p(x)g(x).

▶ What is the analog when X is a continuous random variable?

▶ Answer: we will write E [g(X )] =
∫∞
−∞ f (x)g(x)dx .
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Variance of continuous random variables

▶ Suppose X is a continuous random variable with mean µ.

▶ We can write Var[X ] = E [(X − µ)2], same as in the discrete
case.

▶ Next, if g = g1 + g2 then
E [g(X )] =

∫
g1(x)f (x)dx +

∫
g2(x)f (x)dx =∫ (

g1(x) + g2(x)
)
f (x)dx = E [g1(X )] + E [g2(X )].

▶ Furthermore, E [ag(X )] = aE [g(X )] when a is a constant.

▶ Just as in the discrete case, we can expand the variance
expression as Var[X ] = E [X 2 − 2µX + µ2] and use additivity
of expectation to say that
Var[X ] = E [X 2]− 2µE [X ] + E [µ2] = E [X 2]− 2µ2 + µ2 =
E [X 2]− E [X ]2.

▶ This formula is often useful for calculations.
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It’s the coins, stupid

▶ Much of what we have done in this course can be motivated
by the i.i.d. sequence Xi where each Xi is 1 with probability p
and 0 otherwise. Write Sn =

∑n
i=1 Xn.

▶ Binomial (Sn — number of heads in n tosses), geometric
(steps required to obtain one heads), negative binomial
(steps required to obtain n heads).

▶ Standard normal approximates law of Sn−E [Sn]
SD(Sn)

. Here

E [Sn] = np and SD(Sn) =
√

Var(Sn) =
√
npq where

q = 1− p.

▶ Poisson is limit of binomial as n → ∞ when p = λ/n.

▶ Poisson point process: toss one λ/n coin during each length
1/n time increment, take n → ∞ limit.

▶ Exponential: time till first event in λ Poisson point process.

▶ Gamma distribution: time till nth event in λ Poisson point
process.
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Discrete random variable properties derivable from coin
toss intuition

▶ Sum of two independent binomial random variables with
parameters (n1, p) and (n2, p) is itself binomial (n1 + n2, p).

▶ Sum of n independent geometric random variables with
parameter p is negative binomial with parameter (n, p).

▶ Expectation of geometric random variable with parameter
p is 1/p.

▶ Expectation of binomial random variable with parameters
(n, p) is np.

▶ Variance of binomial random variable with parameters
(n, p) is np(1− p) = npq.
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Continuous random variable properties derivable from coin
toss intuition

▶ Sum of n independent exponential random variables each
with parameter λ is gamma with parameters (n, λ).

▶ Memoryless properties: given that exponential random
variable X is greater than T > 0, the conditional law of
X − T is the same as the original law of X .

▶ Write p = λ/n. Poisson random variable expectation is
limn→∞ np = limn→∞ nλ

n = λ. Variance is
limn→∞ np(1− p) = limn→∞ n(1− λ/n)λ/n = λ.

▶ Sum of λ1 Poisson and independent λ2 Poisson is a
λ1 + λ2 Poisson.

▶ Times between successive events in λ Poisson process are
independent exponentials with parameter λ.

▶ Minimum of independent exponentials with parameters λ1

and λ2 is itself exponential with parameter λ1 + λ2.
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▶ Write p = λ/n. Poisson random variable expectation is
limn→∞ np = limn→∞ nλ

n = λ. Variance is
limn→∞ np(1− p) = limn→∞ n(1− λ/n)λ/n = λ.

▶ Sum of λ1 Poisson and independent λ2 Poisson is a
λ1 + λ2 Poisson.

▶ Times between successive events in λ Poisson process are
independent exponentials with parameter λ.

▶ Minimum of independent exponentials with parameters λ1

and λ2 is itself exponential with parameter λ1 + λ2.



DeMoivre-Laplace Limit Theorem

▶ DeMoivre-Laplace limit theorem (special case of central
limit theorem):

lim
n→∞

P{a ≤ Sn − np
√
npq

≤ b} → Φ(b)− Φ(a).

▶ This is Φ(b)− Φ(a) = P{a ≤ X ≤ b} when X is a standard
normal random variable.
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Problems

▶ Toss a million fair coins. Approximate the probability that I
get more than 501, 000 heads.

▶ Answer: well,
√
npq =

√
106 × .5× .5 = 500. So we’re asking

for probability to be over two SDs above mean. This is
approximately 1− Φ(2) = Φ(−2).

▶ Roll 60000 dice. Expect to see 10000 sixes. What’s the
probability to see more than 9800?

▶ Here
√
npq =

√
60000× 1

6 × 5
6 ≈ 91.28.

▶ And 200/91.28 ≈ 2.19. Answer is about 1− Φ(−2.19).
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Properties of normal random variables

▶ Say X is a (standard) normal random variable if
f (x) = 1√

2π
e−x2/2.

▶ Mean zero and variance one.

▶ The random variable Y = σX + µ has variance σ2 and
expectation µ.

▶ Y is said to be normal with parameters µ and σ2. Its density
function is fY (x) =

1√
2πσ

e−(x−µ)2/2σ2
.

▶ Function Φ(a) = 1√
2π

∫ a
−∞ e−x2/2dx can’t be computed

explicitly.

▶ Values: Φ(−3) ≈ .0013, Φ(−2) ≈ .023 and Φ(−1) ≈ .159.

▶ Rule of thumb: “two thirds of time within one SD of mean,
95 percent of time within 2 SDs of mean.”
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Properties of exponential random variables

▶ Say X is an exponential random variable of parameter λ
when its probability distribution function is f (x) = λe−λx for
x ≥ 0 (and f (x) = 0 if x < 0).

▶ For a > 0 have

FX (a) =

∫ a

0
f (x)dx =

∫ a

0
λe−λxdx = −e−λx

∣∣a
0
= 1− e−λa.

▶ Thus P{X < a} = 1− e−λa and P{X > a} = e−λa.

▶ Formula P{X > a} = e−λa is very important in practice.

▶ Repeated integration by parts gives E [X n] = n!/λn.

▶ If λ = 1, then E [X n] = n!. Value Γ(n) := E [X n−1] defined for
real n > 0 and Γ(n) = (n − 1)!.
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Defining Γ distribution

▶ Say that random variable X has gamma distribution with

parameters (α, λ) if fX (x) =

{
(λx)α−1e−λxλ

Γ(α) x ≥ 0

0 x < 0
.

▶ Same as exponential distribution when α = 1. Otherwise,
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is
what you need to divide by to make the total integral one just
follows from the definition of Γ.

▶ Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.



Defining Γ distribution

▶ Say that random variable X has gamma distribution with

parameters (α, λ) if fX (x) =

{
(λx)α−1e−λxλ

Γ(α) x ≥ 0

0 x < 0
.

▶ Same as exponential distribution when α = 1. Otherwise,
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is
what you need to divide by to make the total integral one just
follows from the definition of Γ.

▶ Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.



Defining Γ distribution

▶ Say that random variable X has gamma distribution with

parameters (α, λ) if fX (x) =

{
(λx)α−1e−λxλ

Γ(α) x ≥ 0

0 x < 0
.

▶ Same as exponential distribution when α = 1. Otherwise,
multiply by xα−1 and divide by Γ(α). The fact that Γ(α) is
what you need to divide by to make the total integral one just
follows from the definition of Γ.

▶ Waiting time interpretation makes sense only for integer α,
but distribution is defined for general positive α.



Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

CLE plus weak/strong laws

Markov chains



Outline

Continuous random variables

Problems motivated by coin tossing

Random variable properties

CLE plus weak/strong laws

Markov chains



Properties of uniform random variables

▶ Suppose X is a random variable with probability density

function f (x) =

{
1

β−α x ∈ [α, β]

0 x ̸∈ [α, β].

▶ Then E [X ] = α+β
2 .

▶ And Var[X ] = Var[(β − α)Y + α] = Var[(β − α)Y ] =
(β − α)2Var[Y ] = (β − α)2/12.
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Distribution of function of random variable

▶ Suppose P{X ≤ a} = FX (a) is known for all a. Write
Y = X 3. What is P{Y ≤ 27}?

▶ Answer: note that Y ≤ 27 if and only if X ≤ 3. Hence
P{Y ≤ 27} = P{X ≤ 3} = FX (3).

▶ Generally FY (a) = P{Y ≤ a} = P{X ≤ a1/3} = FX (a
1/3)

▶ This is a general principle. If X is a continuous random
variable and g is a strictly increasing function of x and
Y = g(X ), then FY (a) = FX (g

−1(a)).
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Joint probability mass functions: discrete random variables

▶ If X and Y assume values in {1, 2, . . . , n} then we can view
Ai ,j = P{X = i ,Y = j} as the entries of an n × n matrix.

▶ Let’s say I don’t care about Y . I just want to know
P{X = i}. How do I figure that out from the matrix?

▶ Answer: P{X = i} =
∑n

j=1 Ai ,j .

▶ Similarly, P{Y = j} =
∑n

i=1 Ai ,j .

▶ In other words, the probability mass functions for X and Y
are the row and columns sums of Ai ,j .

▶ Given the joint distribution of X and Y , we sometimes call
distribution of X (ignoring Y ) and distribution of Y (ignoring
X ) the marginal distributions.

▶ In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.
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▶ In general, when X and Y are jointly defined discrete random
variables, we write p(x , y) = pX ,Y (x , y) = P{X = x ,Y = y}.



Joint distribution functions: continuous random variables

▶ Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

▶ The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

▶ Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

▶ Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

▶ Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

▶ Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).



Joint distribution functions: continuous random variables

▶ Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

▶ The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

▶ Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

▶ Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

▶ Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

▶ Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).



Joint distribution functions: continuous random variables

▶ Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

▶ The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

▶ Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

▶ Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

▶ Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

▶ Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).



Joint distribution functions: continuous random variables

▶ Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

▶ The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

▶ Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

▶ Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

▶ Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

▶ Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).



Joint distribution functions: continuous random variables

▶ Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

▶ The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

▶ Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

▶ Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

▶ Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

▶ Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).



Joint distribution functions: continuous random variables

▶ Given random variables X and Y , define
F (a, b) = P{X ≤ a,Y ≤ b}.

▶ The region {(x , y) : x ≤ a, y ≤ b} is the lower left “quadrant”
centered at (a, b).

▶ Refer to FX (a) = P{X ≤ a} and FY (b) = P{Y ≤ b} as
marginal cumulative distribution functions.

▶ Question: if I tell you the two parameter function F , can you
use it to determine the marginals FX and FY ?

▶ Answer: Yes. FX (a) = limb→∞ F (a, b) and
FY (b) = lima→∞ F (a, b).

▶ Density: f (x , y) = ∂
∂x

∂
∂y F (x , y).



Independent random variables

▶ We say X and Y are independent if for any two (measurable)
sets A and B of real numbers we have

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}.

▶ When X and Y are discrete random variables, they are
independent if P{X = x ,Y = y} = P{X = x}P{Y = y} for
all x and y for which P{X = x} and P{Y = y} are non-zero.

▶ When X and Y are continuous, they are independent if
f (x , y) = fX (x)fY (y).
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Summing two random variables

▶ Say we have independent random variables X and Y and we
know their density functions fX and fY .

▶ Now let’s try to find FX+Y (a) = P{X + Y ≤ a}.
▶ This is the integral over {(x , y) : x + y ≤ a} of

f (x , y) = fX (x)fY (y). Thus,

▶

P{X + Y ≤ a} =

∫ ∞

−∞

∫ a−y

−∞
fX (x)fY (y)dxdy

=

∫ ∞

−∞
FX (a− y)fY (y)dy .

▶ Differentiating both sides gives
fX+Y (a) =

d
da

∫∞
−∞ FX (a−y)fY (y)dy =

∫∞
−∞ fX (a−y)fY (y)dy .

▶ Latter formula makes some intuitive sense. We’re integrating
over the set of x , y pairs that add up to a.
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Conditional distributions

▶ Let’s say X and Y have joint probability density function
f (x , y).

▶ We can define the conditional probability density of X given
that Y = y by fX |Y=y (x) =

f (x ,y)
fY (y) .

▶ This amounts to restricting f (x , y) to the line corresponding
to the given y value (and dividing by the constant that makes
the integral along that line equal to 1).
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Maxima: pick five job candidates at random, choose best

▶ Suppose I choose n random variables X1,X2, . . . ,Xn uniformly
at random on [0, 1], independently of each other.

▶ The n-tuple (X1,X2, . . . ,Xn) has a constant density function
on the n-dimensional cube [0, 1]n.

▶ What is the probability that the largest of the Xi is less than
a?

▶ ANSWER: an.

▶ So if X = max{X1, . . . ,Xn}, then what is the probability
density function of X?

▶ Answer: FX (a) =


0 a < 0

an a ∈ [0, 1]

1 a > 1

. And

fx(a) = F ′
X (a) = nan−1.
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General order statistics

▶ Consider i.i.d random variables X1,X2, . . . ,Xn with continuous
probability density f .

▶ Let Y1 < Y2 < Y3 . . . < Yn be list obtained by sorting the Xj .

▶ In particular, Y1 = min{X1, . . . ,Xn} and
Yn = max{X1, . . . ,Xn} is the maximum.

▶ What is the joint probability density of the Yi?

▶ Answer: f (x1, x2, . . . , xn) = n!
∏n

i=1 f (xi ) if x1 < x2 . . . < xn,
zero otherwise.

▶ Let σ : {1, 2, . . . , n} → {1, 2, . . . , n} be the permutation such
that Xj = Yσ(j)

▶ Are σ and the vector (Y1, . . . ,Yn) independent of each other?

▶ Yes.
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Properties of expectation

▶ Several properties we derived for discrete expectations
continue to hold in the continuum.

▶ If X is discrete with mass function p(x) then
E [X ] =

∑
x p(x)x .

▶ Similarly, if X is continuous with density function f (x) then
E [X ] =

∫
f (x)xdx .

▶ If X is discrete with mass function p(x) then
E [g(x)] =

∑
x p(x)g(x).

▶ Similarly, X if is continuous with density function f (x) then
E [g(X )] =

∫
f (x)g(x)dx .

▶ If X and Y have joint mass function p(x , y) then
E [g(X ,Y )] =

∑
y

∑
x g(x , y)p(x , y).

▶ If X and Y have joint probability density function f (x , y) then
E [g(X ,Y )] =

∫∞
−∞

∫∞
−∞ g(x , y)f (x , y)dxdy .
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Properties of expectation

▶ For both discrete and continuous random variables X and Y
we have E [X + Y ] = E [X ] + E [Y ].

▶ In both discrete and continuous settings, E [aX ] = aE [X ]
when a is a constant. And E [

∑
aiXi ] =

∑
aiE [Xi ].

▶ But what about that delightful “area under 1− FX” formula
for the expectation?

▶ When X is non-negative with probability one, do we always
have E [X ] =

∫∞
0 P{X > x}, in both discrete and continuous

settings?

▶ Define g(y) so that 1− FX (g(y)) = y . (Draw horizontal line
at height y and look where it hits graph of 1− FX .)

▶ Choose Y uniformly on [0, 1] and note that g(Y ) has the
same probability distribution as X .

▶ So E [X ] = E [g(Y )] =
∫ 1
0 g(y)dy , which is indeed the area

under the graph of 1− FX .
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A property of independence

▶ If X and Y are independent then
E [g(X )h(Y )] = E [g(X )]E [h(Y )].

▶ Just write E [g(X )h(Y )] =
∫∞
−∞

∫∞
−∞ g(x)h(y)f (x , y)dxdy .

▶ Since f (x , y) = fX (x)fY (y) this factors as∫∞
−∞ h(y)fY (y)dy

∫∞
−∞ g(x)fX (x)dx = E [h(Y )]E [g(X )].
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Defining covariance and correlation

▶ Now define covariance of X and Y by
Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ]).

▶ Note: by definition Var(X ) = Cov(X ,X ).

▶ Covariance formula E [XY ]− E [X ]E [Y ], or “expectation of
product minus product of expectations” is frequently useful.

▶ If X and Y are independent then Cov(X ,Y ) = 0.

▶ Converse is not true.
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Basic covariance facts

▶ Cov(X ,Y ) = Cov(Y ,X )

▶ Cov(X ,X ) = Var(X )

▶ Cov(aX ,Y ) = aCov(X ,Y ).

▶ Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

▶ General statement of bilinearity of covariance:

Cov(
m∑
i=1

aiXi ,
n∑

j=1

bjYj) =
m∑
i=1

n∑
j=1

aibjCov(Xi ,Yj).

▶ Special case:

Var(
n∑

i=1

Xi ) =
n∑

i=1

Var(Xi ) + 2
∑

(i ,j):i<j

Cov(Xi ,Xj).
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Defining correlation

▶ Again, by definition Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

▶ Correlation of X and Y defined by

ρ(X ,Y ) :=
Cov(X ,Y )√
Var(X )Var(Y )

.

▶ Correlation doesn’t care what units you use for X and Y . If
a > 0 and c > 0 then ρ(aX + b, cY + d) = ρ(X ,Y ).

▶ Satisfies −1 ≤ ρ(X ,Y ) ≤ 1.

▶ If a and b are positive constants and a > 0 then
ρ(aX + b,X ) = 1.

▶ If a and b are positive constants and a < 0 then
ρ(aX + b,X ) = −1.
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Conditional probability distributions

▶ It all starts with the definition of conditional probability:
P(A|B) = P(AB)/P(B).

▶ If X and Y are jointly discrete random variables, we can use
this to define a probability mass function for X given Y = y .

▶ That is, we write pX |Y (x |y) = P{X = x |Y = y} = p(x ,y)
pY (y) .

▶ In words: first restrict sample space to pairs (x , y) with given
y value. Then divide the original mass function by pY (y) to
obtain a probability mass function on the restricted space.

▶ We do something similar when X and Y are continuous
random variables. In that case we write fX |Y (x |y) =

f (x ,y)
fY (y) .

▶ Often useful to think of sampling (X ,Y ) as a two-stage
process. First sample Y from its marginal distribution, obtain
Y = y for some particular y . Then sample X from its
probability distribution given Y = y .
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Conditional expectation

▶ Now, what do we mean by E [X |Y = y ]? This should just be
the expectation of X in the conditional probability measure
for X given that Y = y .

▶ Can write this as
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x xpX |Y (x |y).

▶ Can make sense of this in the continuum setting as well.

▶ In continuum setting we had fX |Y (x |y) =
f (x ,y)
fY (y) . So

E [X |Y = y ] =
∫∞
−∞ x f (x ,y)

fY (y) dx
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Conditional expectation as a random variable

▶ Can think of E [X |Y ] as a function of the random variable Y .
When Y = y it takes the value E [X |Y = y ].

▶ So E [X |Y ] is itself a random variable. It happens to depend
only on the value of Y .

▶ Thinking of E [X |Y ] as a random variable, we can ask what its
expectation is. What is E [E [X |Y ]]?

▶ Very useful fact: E [E [X |Y ]] = E [X ].

▶ In words: what you expect to expect X to be after learning Y
is same as what you now expect X to be.

▶ Proof in discrete case:
E [X |Y = y ] =

∑
x xP{X = x |Y = y} =

∑
x x

p(x ,y)
pY (y) .

▶ Recall that, in general, E [g(Y )] =
∑

y pY (y)g(y).

▶ E [E [X |Y = y ]] =
∑

y pY (y)
∑

x x
p(x ,y)
pY (y) =

∑
x

∑
y p(x , y)x =

E [X ].
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Conditional variance

▶ Definition:
Var(X |Y ) = E

[
(X − E [X |Y ])2|Y

]
= E

[
X 2 − E [X |Y ]2|Y

]
.

▶ Var(X |Y ) is a random variable that depends on Y . It is the
variance of X in the conditional distribution for X given Y .

▶ Note E [Var(X |Y )] = E [E [X 2|Y ]]− E [E [X |Y ]2|Y ] =
E [X 2]− E [E [X |Y ]2].

▶ If we subtract E [X ]2 from first term and add equivalent value
E [E [X |Y ]]2 to the second, RHS becomes
Var[X ]−Var[E [X |Y ]], which implies following:

▶ Useful fact: Var(X ) = Var(E [X |Y ]) + E [Var(X |Y )].

▶ One can discover X in two stages: first sample Y from
marginal and compute E [X |Y ], then sample X from
distribution given Y value.

▶ Above fact breaks variance into two parts, corresponding to
these two stages.
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Example

▶ Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

▶ What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

▶ How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

▶ What is E [Z |X ]? And how about Var(Z |X )?

▶ Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

▶ Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Example

▶ Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

▶ What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

▶ How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

▶ What is E [Z |X ]? And how about Var(Z |X )?

▶ Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

▶ Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Example

▶ Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

▶ What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

▶ How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

▶ What is E [Z |X ]? And how about Var(Z |X )?

▶ Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

▶ Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Example

▶ Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

▶ What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

▶ How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

▶ What is E [Z |X ]? And how about Var(Z |X )?

▶ Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

▶ Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Example

▶ Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

▶ What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

▶ How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

▶ What is E [Z |X ]? And how about Var(Z |X )?

▶ Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

▶ Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Example

▶ Let X be a random variable of variance σ2
X and Y an

independent random variable of variance σ2
Y and write

Z = X + Y . Assume E [X ] = E [Y ] = 0.

▶ What are the covariances Cov(X ,Y ) and Cov(X ,Z )?

▶ How about the correlation coefficients ρ(X ,Y ) and ρ(X ,Z )?

▶ What is E [Z |X ]? And how about Var(Z |X )?

▶ Both of these values are functions of X . Former is just X .
Latter happens to be a constant-valued function of X , i.e.,
happens not to actually depend on X . We have
Var(Z |X ) = σ2

Y .

▶ Can we check the formula
Var(Z ) = Var(E [Z |X ]) + E [Var(Z |X )] in this case?



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions

▶ Let X be a random variable and M(t) = E [etX ].

▶ Then M ′(0) = E [X ] and M ′′(0) = E [X 2]. Generally, nth
derivative of M at zero is E [X n].

▶ Let X and Y be independent random variables and
Z = X + Y .

▶ Write the moment generating functions as MX (t) = E [etX ]
and MY (t) = E [etY ] and MZ (t) = E [etZ ].

▶ If you knew MX and MY , could you compute MZ?

▶ By independence, MZ (t) = E [et(X+Y )] = E [etX etY ] =
E [etX ]E [etY ] = MX (t)MY (t) for all t.

▶ In other words, adding independent random variables
corresponds to multiplying moment generating functions.



Moment generating functions for sums of i.i.d. random
variables

▶ We showed that if Z = X + Y and X and Y are independent,
then MZ (t) = MX (t)MY (t)

▶ If X1 . . .Xn are i.i.d. copies of X and Z = X1 + . . .+ Xn then
what is MZ?

▶ Answer: Mn
X . Follows by repeatedly applying formula above.

▶ This a big reason for studying moment generating functions.
It helps us understand what happens when we sum up a lot of
independent copies of the same random variable.

▶ If Z = aX then MZ (t) = E [etZ ] = E [etaX ] = MX (at).

▶ If Z = X + b then MZ (t) = E [etZ ] = E [etX+bt ] = ebtMX (t).
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Examples

▶ If X is binomial with parameters (p, n) then
MX (t) = (pet + 1− p)n.

▶ If X is Poisson with parameter λ > 0 then
MX (t) = exp[λ(et − 1)].

▶ If X is normal with mean 0, variance 1, then MX (t) = et
2/2.

▶ If X is normal with mean µ, variance σ2, then
MX (t) = eσ

2t2/2+µt .

▶ If X is exponential with parameter λ > 0 then MX (t) =
λ

λ−t .
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Cauchy distribution

▶ A standard Cauchy random variable is a random real
number with probability density f (x) = 1

π
1

1+x2
.

▶ There is a “spinning flashlight” interpretation. Put a flashlight
at (0, 1), spin it to a uniformly random angle in [−π/2, π/2],
and consider point X where light beam hits the x-axis.

▶ FX (x) = P{X ≤ x} = P{tan θ ≤ x} = P{θ ≤ tan−1x} =
1
2 + 1

π tan−1 x .

▶ Find fX (x) =
d
dx F (x) =

1
π

1
1+x2
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Beta distribution

▶ Two part experiment: first let p be uniform random variable
[0, 1], then let X be binomial (n, p) (number of heads when
we toss n p-coins).

▶ Given that X = a− 1 and n − X = b − 1 the conditional law
of p is called the β distribution.

▶ The density function is a constant (that doesn’t depend on x)
times xa−1(1− x)b−1.

▶ That is f (x) = 1
B(a,b)x

a−1(1− x)b−1 on [0, 1], where B(a, b)
is constant chosen to make integral one. Can show
B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

▶ Turns out that E [X ] = a
a+b and the mode of X is (a−1)

(a−1)+(b−1) .
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Central limit theorem

▶ Let Xi be an i.i.d. sequence of random variables with finite
mean µ and variance σ2.

▶ Write Sn =
∑n

i=1 Xi . So E [Sn] = nµ and Var[Sn] = nσ2 and
SD[Sn] = σ

√
n.

▶ Write Bn = X1+X2+...+Xn−nµ
σ
√
n

. Then Bn is the difference

between Sn and its expectation, measured in standard
deviation units.

▶ Central limit theorem:

lim
n→∞

P{a ≤ Bn ≤ b} → Φ(b)− Φ(a).
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Weak law of large numbers

▶ Suppose Xi are i.i.d. random variables with mean µ.

▶ Then the value An := X1+X2+...+Xn
n is called the empirical

average of the first n trials.

▶ We’d guess that when n is large, An is typically close to µ.

▶ Indeed, weak law of large numbers states that for all ϵ > 0
we have limn→∞ P{|An − µ| > ϵ} = 0.

▶ Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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Strong law of large numbers

▶ Suppose Xi are i.i.d. random variables with mean µ.

▶ Then the value An := X1+X2+...+Xn
n is called the empirical

average of the first n trials.

▶ Intuition: when n is large, An is typically close to µ.

▶ Recall: weak law of large numbers states that for all ϵ > 0
we have limn→∞ P{|An − µ| > ϵ} = 0.

▶ The strong law of large numbers states that with
probability one limn→∞ An = µ.

▶ It is called “strong” because it implies the weak law of large
numbers. But it takes a bit of thought to see why this is the
case.
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▶ The strong law of large numbers states that with
probability one limn→∞ An = µ.

▶ It is called “strong” because it implies the weak law of large
numbers. But it takes a bit of thought to see why this is the
case.
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Markov chains

▶ Consider a sequence of random variables X0,X1,X2, . . . each
taking values in the same state space, which for now we take
to be a finite set that we label by {0, 1, . . . ,M}.

▶ Interpret Xn as state of the system at time n.

▶ Sequence is called a Markov chain if we have a fixed
collection of numbers Pij (one for each pair
i , j ∈ {0, 1, . . . ,M}) such that whenever the system is in state
i , there is probability Pij that system will next be in state j .

▶ Precisely,
P{Xn+1 = j |Xn = i ,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij .

▶ Kind of an “almost memoryless” property. Probability
distribution for next state depends only on the current state
(and not on the rest of the state history).
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Matrix representation

▶ To describe a Markov chain, we need to define Pij for any
i , j ∈ {0, 1, . . . ,M}.

▶ It is convenient to represent the collection of transition
probabilities Pij as a matrix:

A =



P00 P01 . . . P0M

P10 P11 . . . P1M

·
·
·

PM0 PM1 . . . PMM


▶ For this to make sense, we require Pij ≥ 0 for all i , j and∑M

j=0 Pij = 1 for each i . That is, the rows sum to one.
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Ergodic Markov chains

▶ Say Markov chain is ergodic if some power of the transition
matrix has all non-zero entries.

▶ Turns out that if chain has this property, then

πj := limn→∞ P
(n)
ij exists and the πj are the unique

non-negative solutions of πj =
∑M

k=0 πkPkj that sum to one.

▶ This means that the row vector

π =
(
π0 π1 . . . πM

)
is a left eigenvector of A with eigenvalue 1, i.e., πA = π.

▶ We call π the stationary distribution of the Markov chain.

▶ One can solve the system of linear equations
πj =

∑M
k=0 πkPkj to compute the values πj . Equivalent to

considering A fixed and solving πA = π. Or solving
(A− I )π = 0. This determines π up to a multiplicative
constant, and fact that

∑
πj = 1 determines the constant.
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