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non-negative values. Fix a constant a > 0. Then

P{X > a} < EXl

Proof: Consider a random variable Y defined by
_Ja X>a
1o X<a

follows that E[X] > E[Y] = aP{X > a}. Divide both sides by

a to get Markov's inequality.

. Since X > Y with probability one, it
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Proof: Note that (X — 11)? is a non-negative random variable
and P{|X — u| > k} = P{(X — p)®> > k?}. Now apply
Markov's inequality with a = k2.
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> Markov’s inequality: Let X be a random variable taking only
non-negative values with finite mean. Fix a constant a > 0.
Then P{X > a} < EIX].

» Chebyshev’s inequality: If X has finite mean y, variance o2,
and k > 0 then

2
g
PUX —pl > k} < 7.

» Inequalities allow us to deduce limited information about a
distribution when we know only the mean (Markov) or the
mean and variance (Chebyshev).

» Markov: if E[X] is small, then it is not too likely that X is
large.

» Chebyshev: if 02 = Var[X] is small, then it is not too likely
that X is far from its mean.
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Statement of weak law of large numbers

» Suppose X; are i.i.d. random variables with mean p.

» Then the value A, := w is called the empirical
average of the first n trials.

> We'd guess that when n is large, A, is typically close to p.

» Indeed, weak law of large numbers states that for all ¢ > 0
we have lim,_oo P{|As — u| > €} = 0.

» Example: as n tends to infinity, the probability of seeing more
than .50001n heads in n fair coin tosses tends to zero.
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» As above, let X; be i.i.d. random variables with mean n and
write A, := w

» By additivity of expectation, E[A,] = u.
» Similarly, Var[A,] = ”H%Q =a?/n.
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Proof of weak law of large numbers in finite variance case

v

As above, let X; be i.i.d. random variables with mean 1 and

write A, = 7X1+X2:"“+X".
By additivity of expectation, E[A,] = 1
Similarly, Var[A,] = % = o2/n.

2

By Chebyshev P{|A _ M| > e} < Var[A,,] _
No matter how small € is, RHS will tend to zero as n gets
large.

ne
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» Question: does the weak law of large numbers apply no
matter what the probability distribution for X is?

> Is it always the case that if we define A, 1= X1+EX2tatXn then

Ap is typically close to some fixed value when n is large?
» What if X is Cauchy?

P Recall that in this strange case A, actually has the same
probability distribution as X.

» In particular, the A, are not tightly concentrated around any
particular value even when n is very large.

» But in this case E[|X]] was infinite. Does the weak law hold
as long as E[|X|] is finite, so that u is well defined?

» Yes. Can prove this using characteristic functions.
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Let X be a random variable.

The characteristic function of X is defined by

B(t) = ¢x(t) := E[e™X]. Like M(t) except with i thrown in.
Recall that by definition et = cos(t) + isin(t).
Characteristic functions are similar to moment generating
functions in some ways.
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Characteristic functions

> Let X be a random variable.
» The characteristic function of X is defined by
B(t) = dx(t) := E[e™X]. Like M(t) except with i thrown in.
» Recall that by definition et = cos(t) + isin(t).
» Characteristic functions are similar to moment generating
functions in some ways.

» For example, ¢x1y = ¢xdy, just as Mxy = Mx My, if X
and Y are independent.

» And ¢.x(t) = ¢x(at) just as Myx(t) = Mx(at).
And if X has an mth moment then E[X"™] = i’"d)g(m)(O).

» But characteristic functions have an advantage: they are well
defined at all t for all random variables X.

v
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Let X be a random variable and X, a sequence of random
variables.

Say X, converge in distribution or converge in law to X if
limp— 00 Fx,(x) = Fx(x) at all x € R at which Fx is
continuous.

The weak law of large numbers can be rephrased as the
statement that A, converges in law to u (i.e., to the random
variable that is equal to p with probability one).

Lévy’s continuity theorem (see Wikipedia): if

lim_ Px,(t) = ¢x(t)

for all t, then X,, converge in law to X.

By this theorem, we can prove the weak law of large numbers
by showing limy_,o0 da,(t) = ¢,(t) = €™ for all t. In the
special case that p = 0, this amounts to showing

limp—o00 @a,(t) =1 for all t.
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> As above, let X; be i.i.d. instances of random variable X with
mean zero. Write A, := % Weak law of large
numbers holds for i.i.d. instances of X if and only if it holds
for i.i.d. instances of X — u. Thus it suffices to prove the
weak law in the mean zero case.

» Consider the characteristic function ¢x(t) = E[e™X].
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> Write g(t) = log ¢x(t) so ¢x(t) = e&(t). Then g(0) = 0 and
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> By Lévy's continuity theorem, the A, converge in law to 0
(i.e., to the random variable that is 0 with probability one).
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