18.600: Lecture 27 Weak law of large numbers

Scott Sheffield

MIT

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

► Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.

- ► Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- ▶ **Proof:** Consider a random variable *Y* defined by $Y = \begin{cases} a & X \ge a \\ 0 & X < a \end{cases}$ Since $X \ge Y$ with probability one, it follows that $E[X] \ge E[Y] = aP\{X \ge a\}$. Divide both sides by *a* to get Markov's inequality.

- ► Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- ▶ **Proof:** Consider a random variable Y defined by $Y = \begin{cases} a & X \ge a \\ 0 & X < a \end{cases}$ Since $X \ge Y$ with probability one, it follows that $E[X] \ge E[Y] = aP\{X \ge a\}$. Divide both sides by a to get Markov's inequality.
- Chebyshev's inequality: If X has finite mean μ, variance σ², and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- ► Markov's inequality: Let X be a random variable taking only non-negative values. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- ▶ **Proof:** Consider a random variable *Y* defined by $Y = \begin{cases} a & X \ge a \\ 0 & X < a \end{cases}$ Since *X* ≥ *Y* with probability one, it follows that $E[X] \ge E[Y] = aP\{X \ge a\}$. Divide both sides by *a* to get Markov's inequality.
- Chebyshev's inequality: If X has finite mean μ, variance σ², and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

Proof: Note that (X − µ)² is a non-negative random variable and P{|X − µ| ≥ k} = P{(X − µ)² ≥ k²}. Now apply Markov's inequality with a = k².

Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.

- Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- Chebyshev's inequality: If X has finite mean μ, variance σ², and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- Chebyshev's inequality: If X has finite mean μ, variance σ², and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).

- Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- Chebyshev's inequality: If X has finite mean μ, variance σ², and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- Markov: if E[X] is small, then it is not too likely that X is large.

- Markov's inequality: Let X be a random variable taking only non-negative values with finite mean. Fix a constant a > 0. Then P{X ≥ a} ≤ E[X]/a.
- Chebyshev's inequality: If X has finite mean μ, variance σ², and k > 0 then

$$P\{|X-\mu| \ge k\} \le \frac{\sigma^2}{k^2}.$$

- Inequalities allow us to deduce limited information about a distribution when we know only the mean (Markov) or the mean and variance (Chebyshev).
- Markov: if E[X] is small, then it is not too likely that X is large.
- Chebyshev: if $\sigma^2 = Var[X]$ is small, then it is not too likely that X is far from its mean.

Suppose X_i are i.i.d. random variables with mean μ .

Suppose X_i are i.i.d. random variables with mean μ .

▶ Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first *n* trials.

- Suppose X_i are i.i.d. random variables with mean μ .
- ▶ Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical* average of the first *n* trials.
- We'd guess that when *n* is large, A_n is typically close to μ .

- Suppose X_i are i.i.d. random variables with mean μ .
- Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first *n* trials.
- We'd guess that when *n* is large, A_n is typically close to μ .
- Indeed, weak law of large numbers states that for all ε > 0 we have lim_{n→∞} P{|A_n − μ| > ε} = 0.

- Suppose X_i are i.i.d. random variables with mean μ .
- Then the value $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$ is called the *empirical average* of the first *n* trials.
- We'd guess that when *n* is large, A_n is typically close to μ .
- Indeed, weak law of large numbers states that for all ε > 0 we have lim_{n→∞} P{|A_n − μ| > ε} = 0.
- Example: as n tends to infinity, the probability of seeing more than .50001n heads in n fair coin tosses tends to zero.

► As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.

As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.

• By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

• Similarly,
$$\operatorname{Var}[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$$
.

► As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.

• By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

• Similarly,
$$\operatorname{Var}[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$$
.

▶ By Chebyshev
$$P\{|A_n - \mu| \ge \epsilon\} \le \frac{\operatorname{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$
.

- As above, let X_i be i.i.d. random variables with mean μ and write $A_n := \frac{X_1 + X_2 + ... + X_n}{n}$.
- By additivity of expectation, $\mathbb{E}[A_n] = \mu$.

• Similarly,
$$\operatorname{Var}[A_n] = \frac{n\sigma^2}{n^2} = \sigma^2/n$$
.

- ▶ By Chebyshev $P\{|A_n \mu| \ge \epsilon\} \le \frac{\operatorname{Var}[A_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$.
- ► No matter how small
 e is, RHS will tend to zero as n gets large.

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Weak law of large numbers: Markov/Chebyshev approach

Weak law of large numbers: characteristic function approach

Question: does the weak law of large numbers apply no matter what the probability distribution for X is?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define A_n := X₁+X₂+...+X_n/n then A_n is typically close to some fixed value when n is large?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define A_n := X₁+X₂+...+X_n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define A_n := X₁+X₂+...+X_n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define A_n := X₁+X₂+...+X_n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.
- In particular, the A_n are not tightly concentrated around any particular value even when n is very large.

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define A_n := X₁+X₂+...+X_n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.
- In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- But in this case E[|X|] was infinite. Does the weak law hold as long as E[|X|] is finite, so that µ is well defined?

- Question: does the weak law of large numbers apply no matter what the probability distribution for X is?
- Is it always the case that if we define A_n := X₁+X₂+...+X_n then A_n is typically close to some fixed value when n is large?
- What if X is Cauchy?
- Recall that in this strange case A_n actually has the same probability distribution as X.
- In particular, the A_n are not tightly concentrated around any particular value even when n is very large.
- ▶ But in this case E[|X|] was infinite. Does the weak law hold as long as E[|X|] is finite, so that µ is well defined?
- Yes. Can prove this using characteristic functions.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.

- Let X be a random variable.
- ► The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ► For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.

- Let X be a random variable.
- ► The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ► For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.

- Let X be a random variable.
- ► The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- ► For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.

- Let X be a random variable.
- ► The characteristic function of X is defined by $\phi(t) = \phi_X(t) := E[e^{itX}]$. Like M(t) except with *i* thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$, if X and Y are independent.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- But characteristic functions have an advantage: they are well defined at all t for all random variables X.

- Let X be a random variable and X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.

- Let X be a random variable and X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- The weak law of large numbers can be rephrased as the statement that A_n converges in law to µ (i.e., to the random variable that is equal to µ with probability one).

- Let X be a random variable and X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{X_n}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- The weak law of large numbers can be rephrased as the statement that A_n converges in law to µ (i.e., to the random variable that is equal to µ with probability one).
- Lévy's continuity theorem (see Wikipedia): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

- Let X be a random variable and X_n a sequence of random variables.
- Say X_n converge in distribution or converge in law to X if lim_{n→∞} F_{Xn}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- The weak law of large numbers can be rephrased as the statement that A_n converges in law to μ (i.e., to the random variable that is equal to μ with probability one).
- Lévy's continuity theorem (see Wikipedia): if

$$\lim_{n\to\infty}\phi_{X_n}(t)=\phi_X(t)$$

for all t, then X_n converge in law to X.

By this theorem, we can prove the weak law of large numbers by showing lim_{n→∞} φ_{A_n}(t) = φ_µ(t) = e^{itµ} for all t. In the special case that µ = 0, this amounts to showing lim_{n→∞} φ_{A_n}(t) = 1 for all t.

► As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.

► As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X − μ. Thus it suffices to prove the weak law in the mean zero case.

• Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t \frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t \frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.

- As above, let X_i be i.i.d. instances of random variable X with mean zero. Write A_n := X₁+X₂+...+X_n/n. Weak law of large numbers holds for i.i.d. instances of X if and only if it holds for i.i.d. instances of X μ. Thus it suffices to prove the weak law in the mean zero case.
- Consider the characteristic function $\phi_X(t) = E[e^{itX}]$.
- Since E[X] = 0, we have $\phi'_X(0) = E[\frac{\partial}{\partial t}e^{itX}]_{t=0} = iE[X] = 0$.
- ▶ Write $g(t) = \log \phi_X(t)$ so $\phi_X(t) = e^{g(t)}$. Then g(0) = 0 and (by chain rule) $g'(0) = \lim_{\epsilon \to 0} \frac{g(\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0} \frac{g(\epsilon)}{\epsilon} = 0$.
- Now $\phi_{A_n}(t) = \phi_X(t/n)^n = e^{ng(t/n)}$. Since g(0) = g'(0) = 0we have $\lim_{n\to\infty} ng(t/n) = \lim_{n\to\infty} t \frac{g(\frac{t}{n})}{\frac{t}{n}} = 0$ if t is fixed. Thus $\lim_{n\to\infty} e^{ng(t/n)} = 1$ for all t.
- By Lévy's continuity theorem, the A_n converge in law to 0 (i.e., to the random variable that is 0 with probability one).