18.600: Lecture 23 Conditional probability, order statistics, expectations of sums

Scott Sheffield

MIT

Conditional probability densities

Order statistics

Expectations of sums

Conditional probability densities

Order statistics

Expectations of sums

Let's say X and Y have joint probability density function f(x, y).

Conditional distributions

- Let's say X and Y have joint probability density function f(x, y).
- We can *define* the conditional probability density of X given that Y = y by $f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$.

Conditional distributions

- Let's say X and Y have joint probability density function f(x, y).
- We can *define* the conditional probability density of X given that Y = y by $f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$.
- This amounts to restricting f(x, y) to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).

Conditional distributions

- Let's say X and Y have joint probability density function f(x, y).
- ► We can *define* the conditional probability density of X given that Y = y by $f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$.
- This amounts to restricting f(x, y) to the line corresponding to the given y value (and dividing by the constant that makes the integral along that line equal to 1).
- This definition assumes that f_Y(y) = ∫[∞]_{-∞} f(x, y)dx < ∞ and f_Y(y) ≠ 0. This usually safe to assume. (It is true for a probability one set of y values, so places where definition doesn't make sense can be ignored).

Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).

- Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).
- Doesn't make sense if P(B) = 0. But previous slide defines "probability conditioned on Y = y" and P{Y = y} = 0.

- Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).
- Doesn't make sense if P(B) = 0. But previous slide defines "probability conditioned on Y = y" and P{Y = y} = 0.
- When can we (somehow) make sense of conditioning on probability zero event?

- Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).
- Doesn't make sense if P(B) = 0. But previous slide defines "probability conditioned on Y = y" and P{Y = y} = 0.
- When can we (somehow) make sense of conditioning on probability zero event?
- ► Tough question in general.

- Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).
- Doesn't make sense if P(B) = 0. But previous slide defines "probability conditioned on Y = y" and P{Y = y} = 0.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
- Consider conditional law of X given that Y ∈ (y − ϵ, y + ϵ). If this has a limit as ϵ → 0, we can call *that* the law conditioned on Y = y.

- Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).
- Doesn't make sense if P(B) = 0. But previous slide defines "probability conditioned on Y = y" and P{Y = y} = 0.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
- Consider conditional law of X given that Y ∈ (y − ϵ, y + ϵ). If this has a limit as ϵ → 0, we can call *that* the law conditioned on Y = y.
- ▶ Precisely, define $F_{X|Y=y}(a) := \lim_{\epsilon \to 0} P\{X \le a | Y \in (y - \epsilon, y + \epsilon)\}.$

- Our standard definition of conditional probability is P(A|B) = P(AB)/P(B).
- Doesn't make sense if P(B) = 0. But previous slide defines "probability conditioned on Y = y" and P{Y = y} = 0.
- When can we (somehow) make sense of conditioning on probability zero event?
- Tough question in general.
- Consider conditional law of X given that Y ∈ (y − ε, y + ε). If this has a limit as ε → 0, we can call *that* the law conditioned on Y = y.
- ▶ Precisely, define $F_{X|Y=y}(a) := \lim_{\epsilon \to 0} P\{X \le a | Y \in (y - \epsilon, y + \epsilon)\}.$
- ► Then set f_{X|Y=y}(a) = F'_{X|Y=y}(a). Consistent with definition from previous slide.

Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \le 1, x \ge 0\}$. What is $f_{X|Y=0}(x)$?

- Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \le 1, x \ge 0\}$. What is $f_{X|Y=0}(x)$?
- Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0, 1]$ (zero otherwise).

- Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \le 1, x \ge 0\}$. What is $f_{X|Y=0}(x)$?
- Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?

- Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \le 1, x \ge 0\}$. What is $f_{X|Y=0}(x)$?
- Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?
- Answer: $f_{X|\theta=0}(x) = 2x$ if $x \in [0,1]$ (zero otherwise).

- Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \le 1, x \ge 0\}$. What is $f_{X|Y=0}(x)$?
- Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?
- Answer: $f_{X|\theta=0}(x) = 2x$ if $x \in [0,1]$ (zero otherwise).
- Both {θ = 0} and {Y = 0} describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.

- Suppose X and Y are chosen uniformly on the semicircle $\{(x, y) : x^2 + y^2 \le 1, x \ge 0\}$. What is $f_{X|Y=0}(x)$?
- Answer: $f_{X|Y=0}(x) = 1$ if $x \in [0,1]$ (zero otherwise).
- Let (θ, R) be (X, Y) in polar coordinates. What is $f_{X|\theta=0}(x)$?
- Answer: $f_{X|\theta=0}(x) = 2x$ if $x \in [0,1]$ (zero otherwise).
- Both {θ = 0} and {Y = 0} describe the same probability zero event. But our interpretation of what it means to condition on this event is different in these two cases.
- Conditioning on (X, Y) belonging to a θ ∈ (−ε, ε) wedge is very different from conditioning on (X, Y) belonging to a Y ∈ (−ε, ε) strip.

Conditional probability densities

Order statistics

Expectations of sums

Conditional probability densities

Order statistics

Expectations of sums

Suppose I choose *n* random variables X₁, X₂,..., X_n uniformly at random on [0, 1], independently of each other.

- Suppose I choose n random variables X₁, X₂,..., X_n uniformly at random on [0, 1], independently of each other.
- ▶ The *n*-tuple $(X_1, X_2, ..., X_n)$ has a constant density function on the *n*-dimensional cube $[0, 1]^n$.

- Suppose I choose n random variables X₁, X₂,..., X_n uniformly at random on [0, 1], independently of each other.
- ▶ The *n*-tuple $(X_1, X_2, ..., X_n)$ has a constant density function on the *n*-dimensional cube $[0, 1]^n$.
- What is the probability that the *largest* of the X_i is less than a?

- Suppose I choose n random variables X₁, X₂,..., X_n uniformly at random on [0, 1], independently of each other.
- ▶ The *n*-tuple $(X_1, X_2, ..., X_n)$ has a constant density function on the *n*-dimensional cube $[0, 1]^n$.
- What is the probability that the *largest* of the X_i is less than a?
- ▶ ANSWER: *aⁿ*.

- Suppose I choose n random variables X₁, X₂,..., X_n uniformly at random on [0, 1], independently of each other.
- ► The *n*-tuple (X₁, X₂,..., X_n) has a constant density function on the *n*-dimensional cube [0, 1]ⁿ.
- What is the probability that the *largest* of the X_i is less than a?
- ► ANSWER: *aⁿ*.
- So if X = max{X₁,...,X_n}, then what is the probability density function of X?

- Suppose I choose n random variables X₁, X₂,..., X_n uniformly at random on [0, 1], independently of each other.
- ► The *n*-tuple (X₁, X₂,..., X_n) has a constant density function on the *n*-dimensional cube [0, 1]ⁿ.
- What is the probability that the *largest* of the X_i is less than a?
- ANSWER: aⁿ.
- So if X = max{X₁,...,X_n}, then what is the probability density function of X?

• Answer:
$$F_X(a) = \begin{cases} 0 & a < 0 \\ a^n & a \in [0, 1]. \\ 1 & a > 1 \end{cases}$$

 $f_X(a) = F'_X(a) = na^{n-1}.$

Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .
- ▶ In particular, $Y_1 = \min\{X_1, ..., X_n\}$ and $Y_n = \max\{X_1, ..., X_n\}$ is the maximum.

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .
- ▶ In particular, $Y_1 = \min\{X_1, ..., X_n\}$ and $Y_n = \max\{X_1, ..., X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .
- ▶ In particular, $Y_1 = \min\{X_1, ..., X_n\}$ and $Y_n = \max\{X_1, ..., X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
- Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^n f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .
- ▶ In particular, $Y_1 = \min\{X_1, ..., X_n\}$ and $Y_n = \max\{X_1, ..., X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
- Answer: $f(x_1, x_2, ..., x_n) = n! \prod_{i=1}^n f(x_i)$ if $x_1 < x_2 ... < x_n$, zero otherwise.
- Let $\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .
- ▶ In particular, $Y_1 = \min\{X_1, ..., X_n\}$ and $Y_n = \max\{X_1, ..., X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
- Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^n f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.
- Let $\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$
- Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?

- Consider i.i.d random variables X₁, X₂,..., X_n with continuous probability density f.
- Let $Y_1 < Y_2 < Y_3 \ldots < Y_n$ be list obtained by *sorting* the X_j .
- ▶ In particular, $Y_1 = \min\{X_1, ..., X_n\}$ and $Y_n = \max\{X_1, ..., X_n\}$ is the maximum.
- What is the joint probability density of the Y_i?
- Answer: $f(x_1, x_2, \ldots, x_n) = n! \prod_{i=1}^n f(x_i)$ if $x_1 < x_2 \ldots < x_n$, zero otherwise.
- Let $\sigma : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ be the permutation such that $X_j = Y_{\sigma(j)}$
- Are σ and the vector (Y_1, \ldots, Y_n) independent of each other?

Yes.

• Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].

- Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].
- Example: say n = 10 and condition on X₁ being the third largest of the X_j.

- Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].
- Example: say n = 10 and condition on X₁ being the third largest of the X_j.
- Given this, what is the conditional probability density function for X₁?

- Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].
- Example: say n = 10 and condition on X₁ being the third largest of the X_j.
- Given this, what is the conditional probability density function for X₁?
- Write p = X₁. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.

- Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].
- Example: say n = 10 and condition on X₁ being the third largest of the X_j.
- Given this, what is the conditional probability density function for X₁?
- Write p = X₁. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters (a, b) = (8, 3).

- Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].
- Example: say n = 10 and condition on X₁ being the third largest of the X_j.
- Given this, what is the conditional probability density function for X₁?
- Write p = X₁. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters (a, b) = (8, 3).
- Up to a constant, $f(x) = x^7(1-x)^2$.

- Let X_1, \ldots, X_n be i.i.d. uniform random variables on [0, 1].
- Example: say n = 10 and condition on X₁ being the third largest of the X_j.
- Given this, what is the conditional probability density function for X₁?
- Write p = X₁. This kind of like choosing a random p and then conditioning on 7 heads and 2 tails.
- Answer is beta distribution with parameters (a, b) = (8, 3).
- Up to a constant, $f(x) = x^7 (1-x)^2$.
- ▶ General beta (a, b) expectation is a/(a + b) = 8/11. Mode is ^(a-1)/_{(a-1)+(b-1)} = 2/9.

Conditional probability densities

Order statistics

Expectations of sums

Conditional probability densities

Order statistics

Expectations of sums

Several properties we derived for discrete expectations continue to hold in the continuum.

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function p(x) then $E[X] = \sum_{x} p(x)x$.

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function p(x) then $E[X] = \sum_{x} p(x)x$.
- Similarly, if X is continuous with density function f(x) then $E[X] = \int f(x)xdx$.

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function p(x) then $E[X] = \sum_{x} p(x)x$.
- Similarly, if X is continuous with density function f(x) then $E[X] = \int f(x)xdx$.
- If X is discrete with mass function p(x) then $E[g(x)] = \sum_{x} p(x)g(x)$.

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function p(x) then $E[X] = \sum_{x} p(x)x$.
- Similarly, if X is continuous with density function f(x) then $E[X] = \int f(x)xdx$.
- If X is discrete with mass function p(x) then $E[g(x)] = \sum_{x} p(x)g(x)$.
- Similarly, X if is continuous with density function f(x) then $E[g(X)] = \int f(x)g(x)dx$.

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function p(x) then $E[X] = \sum_{x} p(x)x$.
- Similarly, if X is continuous with density function f(x) then $E[X] = \int f(x)xdx$.
- If X is discrete with mass function p(x) then $E[g(x)] = \sum_{x} p(x)g(x)$.
- Similarly, X if is continuous with density function f(x) then $E[g(X)] = \int f(x)g(x)dx$.
- If X and Y have joint mass function p(x, y) then $E[g(X, Y)] = \sum_{y} \sum_{x} g(x, y) p(x, y).$

- Several properties we derived for discrete expectations continue to hold in the continuum.
- If X is discrete with mass function p(x) then $E[X] = \sum_{x} p(x)x$.
- Similarly, if X is continuous with density function f(x) then $E[X] = \int f(x)xdx$.
- If X is discrete with mass function p(x) then $E[g(x)] = \sum_{x} p(x)g(x)$.
- Similarly, X if is continuous with density function f(x) then $E[g(X)] = \int f(x)g(x)dx$.
- If X and Y have joint mass function p(x, y) then $E[g(X, Y)] = \sum_{y} \sum_{x} g(x, y) p(x, y).$
- ▶ If X and Y have joint probability density function f(x, y) then $E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) dx dy.$

► For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful "area under $1 F_X$ " formula for the expectation?

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful "area under $1 F_X$ " formula for the expectation?
- When X is non-negative with probability one, do we have $E[X] = \int_0^\infty P\{X > x\}$, in discrete and continuous settings?

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful "area under $1 F_X$ " formula for the expectation?
- When X is non-negative with probability one, do we have $E[X] = \int_0^\infty P\{X > x\}$, in discrete and continuous settings?
- Yes, can prove with integration by parts or...

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful "area under $1 F_X$ " formula for the expectation?
- When X is non-negative with probability one, do we have $E[X] = \int_0^\infty P\{X > x\}$, in discrete and continuous settings?
- Yes, can prove with integration by parts or...
- ▶ Define g(y) so that 1 − F_X(g(y)) = y. (Draw horizontal line at height y and look where it hits graph of 1 − F_X.)

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful "area under $1 F_X$ " formula for the expectation?
- When X is non-negative with probability one, do we have $E[X] = \int_0^\infty P\{X > x\}$, in discrete and continuous settings?
- Yes, can prove with integration by parts or...
- ▶ Define g(y) so that 1 − F_X(g(y)) = y. (Draw horizontal line at height y and look where it hits graph of 1 − F_X.)
- Choose Y uniformly on [0,1] and note that g(Y) has the same probability distribution as X.

- For both discrete and continuous random variables X and Y we have E[X + Y] = E[X] + E[Y].
- ▶ In both discrete and continuous settings, E[aX] = aE[X]when *a* is a constant. And $E[\sum a_i X_i] = \sum a_i E[X_i]$.
- But what about that delightful "area under $1 F_X$ " formula for the expectation?
- ▶ When X is non-negative with probability one, do we have $E[X] = \int_0^\infty P\{X > x\}$, in discrete and continuous settings?
- Yes, can prove with integration by parts or...
- ▶ Define g(y) so that 1 − F_X(g(y)) = y. (Draw horizontal line at height y and look where it hits graph of 1 − F_X.)
- Choose Y uniformly on [0, 1] and note that g(Y) has the same probability distribution as X.
- So $E[X] = E[g(Y)] = \int_0^1 g(y) dy$, which is indeed the area under the graph of $1 F_X$.