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Geometric random variables

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the first heads is on the X th toss.

I For example, if the coin sequence is T ,T ,H,T ,H,T , . . . then
X = 3.

I Then X is a random variable. What is P{X = k}?
I Answer: P{X = k} = (1− p)k−1p = qk−1p, where q = 1− p

is tails probability.

I Can you prove directly that these probabilities sum to one?

I Say X is a geometric random variable with parameter p.
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Geometric random variable expectation

I Let X be a geometric with parameter p, i.e.,
P{X = k} = (1− p)k−1p = qk−1p for k ≥ 1.

I What is E [X ]?

I By definition E [X ] =
∑∞

k=1 q
k−1pk.

I There’s a trick to computing sums like this.

I Note E [X − 1] =
∑∞

k=1 q
k−1p(k − 1). Setting j = k − 1, we

have E [X − 1] = q
∑∞

j=0 q
j−1pj = qE [X ].

I Kind of makes sense. X − 1 is “number of extra tosses after
first.” Given first coin heads (probability p), X − 1 is 0. Given
first coin tails (probability q), conditional law of X − 1 is
geometric with parameter p. In latter case, conditional
expectation of X − 1 is same as a priori expectation of X .

I Thus E [X ]− 1 = E [X − 1] = p · 0 + qE [X ] = qE [X ] and
solving for E [X ] gives E [X ] = 1/(1− q) = 1/p.
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Geometric random variable variance

I Let X be a geometric random variable with parameter p.
Then P{X = k} = qk−1p.

I What is E [X 2]?

I By definition E [X 2] =
∑∞

k=1 q
k−1pk2.

I Let’s try to come up with a similar trick.

I Note E [(X − 1)2] =
∑∞

k=1 q
k−1p(k − 1)2. Setting j = k − 1,

we have E [(X − 1)2] = q
∑∞

j=0 q
j−1pj2 = qE [X 2].

I Thus E [(X − 1)2] = E [X 2 − 2X + 1] = E [X 2]− 2E [X ] + 1 =
E [X 2]− 2/p + 1 = qE [X 2].

I Solving for E [X 2] gives (1− q)E [X 2] = pE [X 2] = 2/p − 1, so
E [X 2] = (2− p)/p2.

I Var[X ] = (2−p)/p2−1/p2 = (1−p)/p2 = 1/p2−1/p = q/p2.
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Example

I Toss die repeatedly. Say we get 6 for first time on X th toss.

I What is P{X = k}?
I Answer: (5/6)k−1(1/6).

I What is E [X ]?

I Answer: 6.

I What is Var[X ]?

I Answer: 1/p2 − 1/p = 36− 6 = 30.

I Takes 1/p coin tosses on average to see a heads.
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Negative binomial random variables

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the rth heads is on the X th toss.

I For example, if r = 3 and the coin sequence is
T ,T ,H,H,T ,T ,H,T ,T , . . . then X = 7.

I Then X is a random variable. What is P{X = k}?
I Answer: need exactly r − 1 heads among first k − 1 tosses

and a heads on the kth toss.

I So P{X = k} =
(k−1
r−1
)
pr−1(1− p)k−rp. Can you prove these

sum to 1?

I Call X negative binomial random variable with
parameters (r , p).
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Expectation of binomial random variable

I Consider an infinite sequence of independent tosses of a coin
that comes up heads with probability p.

I Let X be such that the rth heads is on the X th toss.

I Then X is a negative binomial random variable with
parameters (r , p).

I What is E [X ]?

I Write X = X1 + X2 + . . .+ Xr where Xk is number of tosses
(following (k − 1)th head) required to get kth head. Each Xk

is geometric with parameter p.

I So E [X ] = E [X1 + X2 + . . .+ Xr ] =
E [X1] + E [X2] + . . .+ E [Xr ] = r/p.

I How about Var[X ]?

I Turns out that Var[X ] = Var[X1] + Var[X2] + . . .+ Var[Xr ].
So Var[X ] = rq/p2.
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Problems

I Nate and Natasha have beautiful new baby. Each minute with
.01 probability (independent of all else) baby cries.

I Additivity of expectation: How many times do they expect
the baby to cry between 9 p.m. and 6 a.m.?

I Geometric random variables: What’s the probability baby is
quiet from midnight to three, then cries at exactly three?

I Geometric random variables: What’s the probability baby is
quiet from midnight to three?

I Negative binomial: Probability fifth cry is at midnight?

I Negative binomial expectation: How many minutes do I
expect to wait until the fifth cry?

I Poisson approximation: Approximate the probability there
are exactly five cries during the night.

I Exponential random variable approximation: Approximate
probability baby quiet all night.
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More fun problems

I Suppose two soccer teams play each other. One team’s
number of points is Poisson with parameter λ1 and other’s is
independently Poisson with parameter λ2. (You can google
“soccer” and “Poisson” to see the academic literature on the
use of Poisson random variables to model soccer scores.)
Using Mathematica (or similar software) compute the
probability that the first team wins if λ1 = 2 and λ2 = 1.
What if λ1 = 2 and λ2 = .5?

I Imagine you start with the number 60. Then you toss a fair
coin to decide whether to add 5 to your number or subtract 5
from it. Repeat this process with independent coin tosses
until the number reaches 100 or 0. What is the expected
number of tosses needed until this occurs?
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