18.600: Lecture 8 Discrete random variables

Scott Sheffield

MIT

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Outline

Defining random variables

Probability mass function and distribution function

Recursions

► A random variable *X* is a function from the state space to the real numbers.

- ► A random variable *X* is a function from the state space to the real numbers.
- ► Can interpret *X* as a quantity whose value depends on the outcome of an experiment.

- ► A random variable *X* is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2^n possible coin sequences) and let X be number of heads.

- ► A random variable *X* is a function from the state space to the real numbers.
- Can interpret X as a quantity whose value depends on the outcome of an experiment.
- Example: toss n coins (so state space consists of the set of all 2^n possible coin sequences) and let X be number of heads.
- ▶ Question: What is $P{X = k}$ in this case?

- ► A random variable *X* is a function from the state space to the real numbers.
- ► Can interpret X as a quantity whose value depends on the outcome of an experiment.
- ► Example: toss *n* coins (so state space consists of the set of all 2ⁿ possible coin sequences) and let *X* be number of heads.
- ▶ Question: What is $P{X = k}$ in this case?
- ▶ Answer: $\binom{n}{k}/2^n$, if $k \in \{0, 1, 2, ..., n\}$.

▶ In *n* coin toss example, knowing the values of some coin tosses tells us nothing about the others.

- ▶ In *n* coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.

- ▶ In *n* coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- ▶ In other words, the product rule works.

- ▶ In *n* coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- In other words, the product rule works.
- Independence implies $P(E_1E_2E_3|E_4E_5E_6)=\frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)}=P(E_1E_2E_3)$, and other similar statements.

- ▶ In *n* coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- In other words, the product rule works.
- Independence implies $P(E_1E_2E_3|E_4E_5E_6)=\frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)}=P(E_1E_2E_3)$, and other similar statements.
- Does pairwise independence imply independence?

- ▶ In *n* coin toss example, knowing the values of some coin tosses tells us nothing about the others.
- Say $E_1 \dots E_n$ are independent if for each $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, \dots n\}$ we have $P(E_{i_1}E_{i_2} \dots E_{i_k}) = P(E_{i_1})P(E_{i_2}) \dots P(E_{i_k})$.
- In other words, the product rule works.
- Independence implies $P(E_1E_2E_3|E_4E_5E_6)=\frac{P(E_1)P(E_2)P(E_3)P(E_4)P(E_5)P(E_6)}{P(E_4)P(E_5)P(E_6)}=P(E_1E_2E_3)$, and other similar statements.
- Does pairwise independence imply independence?
- No. Consider these three events: first coin heads, second coin heads, odd number heads. Pairwise independent, not independent.

Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in $\{1, 2, ..., n\}$ depending on the ordering.

- Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in $\{1, 2, \ldots, n\}$ depending on the ordering.
- ▶ Question: What is $P{X = k}$ in this case?

- Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in $\{1, 2, \ldots, n\}$ depending on the ordering.
- ▶ Question: What is $P{X = k}$ in this case?
- ▶ Answer: 1/n, if $k \in \{1, 2, ..., n\}$.

- Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in $\{1, 2, ..., n\}$ depending on the ordering.
- ▶ Question: What is $P{X = k}$ in this case?
- ▶ Answer: 1/n, if $k \in \{1, 2, ..., n\}$.
- Now say we roll three dice and let Y be sum of the values on the dice. What is P{Y = 5}?

- Shuffle n cards, and let X be the position of the jth card. State space consists of all n! possible orderings. X takes values in $\{1, 2, \ldots, n\}$ depending on the ordering.
- ▶ Question: What is $P{X = k}$ in this case?
- ▶ Answer: 1/n, if $k \in \{1, 2, ..., n\}$.
- Now say we roll three dice and let Y be sum of the values on the dice. What is P{Y = 5}?
- **▶** 6/216

Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) *indicates* whether the event has occurred.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ..., E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ... E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.
- ▶ Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ... E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.
- ▶ Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.
- ▶ Then $\sum_{i=1}^{n} 1_{E_i}$ is total number of people who get own hats.

- Given any event E, can define an indicator random variable, i.e., let X be random variable equal to 1 on the event E and 0 otherwise. Write this as X = 1_E.
- ► The value of 1_E (either 1 or 0) indicates whether the event has occurred.
- ▶ If $E_1, E_2, ..., E_k$ are events then $X = \sum_{i=1}^k 1_{E_i}$ is the number of these events that occur.
- ▶ Example: in n-hat shuffle problem, let E_i be the event ith person gets own hat.
- ▶ Then $\sum_{i=1}^{n} 1_{E_i}$ is total number of people who get own hats.
- Writing random variable as sum of indicators: frequently useful, sometimes confusing.

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Outline

Defining random variables

Probability mass function and distribution function

Recursions

► Say *X* is a **discrete** random variable if (with probability one) it takes one of a countable set of values.

- ► Say *X* is a **discrete** random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$.

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$.
- Example: Let $T_1, T_2, T_3, ...$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_j = H$.

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write p(a) := P{X = a}.
 Call p the probability mass function.
- For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$.
- ▶ Example: Let $T_1, T_2, T_3,...$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_j = H$.
- ▶ What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- ► For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$.
- ▶ Example: Let $T_1, T_2, T_3,...$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_j = H$.
- ▶ What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k) = (1/2)^k$

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$.
- ▶ Example: Let $T_1, T_2, T_3,...$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_j = H$.
- ▶ What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k) = (1/2)^k$
- ▶ What about $F_X(k)$?

- Say X is a discrete random variable if (with probability one) it takes one of a countable set of values.
- For each a in this countable set, write $p(a) := P\{X = a\}$. Call p the **probability mass function**.
- For the cumulative distribution function, write $F(a) = P\{X \le a\} = \sum_{x \le a} p(x)$.
- ▶ Example: Let $T_1, T_2, T_3,...$ be sequence of independent fair coin tosses (each taking values in $\{H, T\}$) and let X be the smallest j for which $T_j = H$.
- ▶ What is $p(k) = P\{X = k\}$ (for $k \in \mathbb{Z}$) in this case?
- $p(k) = (1/2)^k$
- ▶ What about $F_X(k)$?
- ▶ $1-(1/2)^k$

Another example

Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.

- Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.
- ▶ Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.

- Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.
- ▶ Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- ▶ In this example, X is called a Poisson random variable with intensity \(\lambda\).

- Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.
- ▶ Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- ▶ In this example, X is called a **Poisson** random variable with intensity λ .
- Question: what is the state space in this example?

- Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.
- ▶ Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- ▶ In this example, X is called a Poisson random variable with intensity \(\lambda\).
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as $S = \{0, 1, 2, \ldots\}$ and define X (as a function on S) by X(j) = j. The probability function would be determined by $P(S) = \sum_{k \in S} e^{-\lambda} \lambda^k / k!$.

- Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.
- ▶ Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- ▶ In this example, X is called a Poisson random variable with intensity \(\lambda\).
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as $S = \{0, 1, 2, \ldots\}$ and define X (as a function on S) by X(j) = j. The probability function would be determined by $P(S) = \sum_{k \in S} e^{-\lambda} \lambda^k / k!$.
- Are there other choices of S and P and other functions X from S to P for which the values of P{X = k} are the same?

- Another example: let X be non-negative integer such that $p(k) = P\{X = k\} = e^{-\lambda} \lambda^k / k!$.
- ▶ Recall Taylor expansion $\sum_{k=0}^{\infty} \lambda^k / k! = e^{\lambda}$.
- ▶ In this example, X is called a Poisson random variable with intensity \(\lambda\).
- Question: what is the state space in this example?
- Answer: Didn't specify. One possibility would be to define state space as $S = \{0, 1, 2, \ldots\}$ and define X (as a function on S) by X(j) = j. The probability function would be determined by $P(S) = \sum_{k \in S} e^{-\lambda} \lambda^k / k!$.
- ► Are there other choices of S and P and other functions X from S to P for which the values of P{X = k} are the same?
- ▶ Yes. "X is a Poisson random variable with intensity λ " is statement only about the *probability mass function* of X.

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Outline

Defining random variables

Probability mass function and distribution function

Recursions

Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?

- Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- n/(m+n)

- ▶ Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- \triangleright n/(m+n)
- ► **Gambler's ruin:** what if gambler one has an unlimited amount of money?

- ▶ Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- \triangleright n/(m+n)
- ► **Gambler's ruin:** what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- \triangleright n/(m+n)
- ► **Gambler's ruin:** what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability $P_{n,m}$ to see n heads before seeing m tails?

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- \triangleright n/(m+n)
- ► **Gambler's ruin:** what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability $P_{n,m}$ to see n heads before seeing m tails?
- ▶ Observe: $P_{n,m}$ is equivalent to the probability of having n or more heads in first m + n 1 trials.

- ▶ Gambler one has positive integer *m* dollars, gambler two has positive integer *n* dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- \triangleright n/(m+n)
- ► **Gambler's ruin:** what if gambler one has an unlimited amount of money?
- Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability $P_{n,m}$ to see n heads before seeing m tails?
- ▶ Observe: $P_{n,m}$ is equivalent to the probability of having n or more heads in first m + n 1 trials.
- ▶ Probability of exactly n heads in m+n-1 trials is $\binom{m+n-1}{n}$.

- ▶ Gambler one has positive integer m dollars, gambler two has positive integer n dollars. Take turns making one dollar bets until one runs out of money. What is probability first gambler runs out of money first?
- \triangleright n/(m+n)
- ► **Gambler's ruin:** what if gambler one has an unlimited amount of money?
- ▶ Wins eventually with probability one.
- ▶ **Problem of points:** in sequence of independent fair coin tosses, what is probability $P_{n,m}$ to see n heads before seeing m tails?
- ▶ Observe: $P_{n,m}$ is equivalent to the probability of having n or more heads in first m + n 1 trials.
- ▶ Probability of exactly *n* heads in m + n 1 trials is $\binom{m+n-1}{n}$.
- ► Famous correspondence by Fermat and Pascal. Led Pascal to write *Le Triangle Arithmétique*.