18.600: Lecture 22

Sums of independent random variables

Scott Sheffield

MIT

Say we have independent random variables X and Y and we know their density functions f_X and f_Y .

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y .
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y .
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over $\{(x,y): x+y \leq a\}$ of $f(x,y) = f_X(x)f_Y(y)$. Thus,

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y.
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over $\{(x,y): x+y \le a\}$ of $f(x,y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y .
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over $\{(x,y): x+y \le a\}$ of $f(x,y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

Differentiating both sides gives

$$f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy.$$

- Say we have independent random variables X and Y and we know their density functions f_X and f_Y .
- Now let's try to find $F_{X+Y}(a) = P\{X + Y \le a\}$.
- ► This is the integral over $\{(x,y): x+y \le a\}$ of $f(x,y) = f_X(x)f_Y(y)$. Thus,

$$P\{X + Y \le a\} = \int_{-\infty}^{\infty} \int_{-\infty}^{a-y} f_X(x) f_Y(y) dx dy$$
$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy.$$

- ▶ Differentiating both sides gives $f_{X+Y}(a) = \frac{d}{da} \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- Latter formula makes some intuitive sense. We're integrating over the set of x, y pairs that add up to a.

Independent identically distributed (i.i.d.)

► The abbreviation i.i.d. means independent identically distributed.

Independent identically distributed (i.i.d.)

- ➤ The abbreviation i.i.d. means independent identically distributed.
- It is actually one of the most important abbreviations in probability theory.

Independent identically distributed (i.i.d.)

- ➤ The abbreviation i.i.d. means independent identically distributed.
- It is actually one of the most important abbreviations in probability theory.
- Worth memorizing.

Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].

- Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].
- \blacktriangleright What is the probability density function of X+Y?

- Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].
- ▶ What is the probability density function of X + Y?
- ► $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_0^1 f_X(a-y)$ which is the length of $[0,1] \cap [a-1,a]$.

- Suppose that X and Y are i.i.d. and uniform on [0,1]. So $f_X = f_Y = 1$ on [0,1].
- \blacktriangleright What is the probability density function of X+Y?
- ▶ $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy = \int_0^1 f_X(a-y)$ which is the length of $[0,1] \cap [a-1,a]$.
- That's a when $a \in [0,1]$ and 2-a when $a \in [1,2]$ and 0 otherwise.

A geometric random variable X with parameter p has $P\{X=k\}=(1-p)^{k-1}p$ for $k\geq 1$.

- A geometric random variable X with parameter p has $P\{X = k\} = (1-p)^{k-1}p$ for $k \ge 1$.
- ► Sum *Z* of *n* independent copies of *X*?

- A geometric random variable X with parameter p has $P\{X = k\} = (1-p)^{k-1}p$ for $k \ge 1$.
- ► Sum *Z* of *n* independent copies of *X*?
- We can interpret Z as time slot where nth head occurs in i.i.d. sequence of p-coin tosses.

- A geometric random variable X with parameter p has $P\{X = k\} = (1-p)^{k-1}p$ for $k \ge 1$.
- ▶ Sum *Z* of *n* independent copies of *X*?
- ▶ We can interpret Z as time slot where nth head occurs in i.i.d. sequence of p-coin tosses.
- ▶ So *Z* is negative binomial (n, p). So $P\{Z = k\} = \binom{k-1}{n-1} p^{n-1} (1-p)^{k-n} p$.

▶ Suppose $X_1, ... X_n$ are i.i.d. exponential random variables with parameter λ . So $f_{X_i}(x) = \lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \le i \le n$.

- ▶ Suppose $X_1, ... X_n$ are i.i.d. exponential random variables with parameter λ . So $f_{X_i}(x) = \lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \le i \le n$.
- ▶ What is the law of $Z = \sum_{i=1}^{n} X_i$?

- Suppose $X_1, ... X_n$ are i.i.d. exponential random variables with parameter λ . So $f_{X_i}(x) = \lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \le i \le n$.
- ▶ What is the law of $Z = \sum_{i=1}^{n} X_i$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n) .

- Suppose $X_1, ... X_n$ are i.i.d. exponential random variables with parameter λ . So $f_{X_i}(x) = \lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \le i \le n$.
- ▶ What is the law of $Z = \sum_{i=1}^{n} X_i$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n) .
- So $f_Z(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{n-1}}{\Gamma(n)}$.

- Suppose $X_1, ... X_n$ are i.i.d. exponential random variables with parameter λ . So $f_{X_i}(x) = \lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \le i \le n$.
- ▶ What is the law of $Z = \sum_{i=1}^{n} X_i$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n) .
- So $f_Z(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{n-1}}{\Gamma(n)}$.
- We argued this point by taking limits of negative binomial distributions. Can we check it directly?

- Suppose $X_1, ... X_n$ are i.i.d. exponential random variables with parameter λ . So $f_{X_i}(x) = \lambda e^{-\lambda x}$ on $[0, \infty)$ for all $1 \le i \le n$.
- ▶ What is the law of $Z = \sum_{i=1}^{n} X_i$?
- We claimed in an earlier lecture that this was a gamma distribution with parameters (λ, n) .
- ► So $f_Z(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{n-1}}{\Gamma(n)}$.
- We argued this point by taking limits of negative binomial distributions. Can we check it directly?
- By induction, would suffice to show that a gamma $(\lambda, 1)$ plus an independent gamma (λ, n) is a gamma $(\lambda, n + 1)$.

▶ Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, *X* is amount of time till we see *s* events, and *Y* is amount of subsequent time till we see *t* more events.

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- ► So $f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}$ and $f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{t-1}}{\Gamma(t)}$.

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, *X* is amount of time till we see *s* events, and *Y* is amount of subsequent time till we see *t* more events.
- ► So $f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}$ and $f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, *X* is amount of time till we see *s* events, and *Y* is amount of subsequent time till we see *t* more events.
- ▶ So $f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}$ and $f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- ▶ Up to constant factor (not depending on *a*) this is

$$\int_0^a e^{-\lambda(a-y)} (a-y)^{s-1} e^{-\lambda y} y^{t-1} dy = e^{-\lambda a} \int_0^a (a-y)^{s-1} y^{t-1} dy.$$

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, *X* is amount of time till we see *s* events, and *Y* is amount of subsequent time till we see *t* more events.
- ► So $f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}$ and $f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- ▶ Up to constant factor (not depending on *a*) this is

$$\int_0^a e^{-\lambda(a-y)} (a-y)^{s-1} e^{-\lambda y} y^{t-1} dy = e^{-\lambda a} \int_0^a (a-y)^{s-1} y^{t-1} dy.$$

ls $\int_0^a (a-y)^{s-1} y^{t-1} dy$ (up to constant factor) a power of a?

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- ▶ So $f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}$ and $f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- ▶ Up to constant factor (not depending on *a*) this is

$$\int_0^a e^{-\lambda(a-y)} (a-y)^{s-1} e^{-\lambda y} y^{t-1} dy = e^{-\lambda a} \int_0^a (a-y)^{s-1} y^{t-1} dy.$$

- ► Is $\int_0^a (a-y)^{s-1} y^{t-1} dy$ (up to constant factor) a power of a?
- Yes: letting x = y/a, becomes $\int_0^1 (a x/a)^{s-1} (ax)^{t-1} (adx) = a^{s+t-1} \int_0^1 (1-x)^{s-1} x^{t-1} dx.$

- Say X is gamma (λ, s) , Y is gamma (λ, t) , and X and Y are independent.
- ▶ Intuitively, X is amount of time till we see s events, and Y is amount of subsequent time till we see t more events.
- ► So $f_X(x) = \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}$ and $f_Y(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{t-1}}{\Gamma(t)}$.
- Now $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- ▶ Up to constant factor (not depending on a) this is

$$\int_0^a e^{-\lambda(a-y)} (a-y)^{s-1} e^{-\lambda y} y^{t-1} dy = e^{-\lambda a} \int_0^a (a-y)^{s-1} y^{t-1} dy.$$

- ls $\int_0^a (a-y)^{s-1} y^{t-1} dy$ (up to constant factor) a power of a?
- Yes: letting x = y/a, becomes $\int_0^1 (a x/a)^{s-1} (ax)^{t-1} (adx) = a^{s+t-1} \int_0^1 (1-x)^{s-1} x^{t-1} dx.$
- ▶ So $f_{X+Y}(a)$ is (constant times) $e^{-\lambda a}a^{s+t-1}$. Conclude that X+Y is gamma $(\lambda, s+t)$.

▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}}$ and $f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}$.

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}} \text{ and } f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}.$
- ▶ We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)dy$.

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}} \text{ and } f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}.$
- ▶ We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y)f_Y(y)dy$.
- ▶ We could compute this directly, or...

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}} \text{ and } f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}.$
- ▶ We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- We could compute this directly, or...
- If X, Y standard normal, then $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-(x^2-y^2)/2}$. Argue by rotational invariance that $\cos(\theta)X + \sin(\theta)Y$ is standard normal. Hence $r\cos(\theta)X + r\sin(\theta)Y$ is Gaussian with mean 0, variance $r^2 = (r\cos(\theta))^2 + (r\sin(\theta))^2$.

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}} \text{ and } f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}.$
- ▶ We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- We could compute this directly, or...
- If X, Y standard normal, then $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-(x^2-y^2)/2}$. Argue by rotational invariance that $\cos(\theta)X + \sin(\theta)Y$ is standard normal. Hence $r\cos(\theta)X + r\sin(\theta)Y$ is Gaussian with mean 0, variance $r^2 = (r\cos(\theta))^2 + (r\sin(\theta))^2$.
- ▶ Or use fact that if $A_i \in \{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^2 N} A_i$ is roughly normal with variance σ^2 when N large.

- ▶ X is normal with mean zero, variance σ_1^2 , Y is normal with mean zero, variance σ_2^2 .
- $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-x^2}{2\sigma_1^2}} \text{ and } f_Y(y) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-y^2}{2\sigma_2^2}}.$
- ▶ We just need to compute $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$.
- We could compute this directly, or...
- If X, Y standard normal, then $f_{X,Y}(x,y) = \frac{1}{2\pi}e^{-(x^2-y^2)/2}$. Argue by rotational invariance that $\cos(\theta)X + \sin(\theta)Y$ is standard normal. Hence $r\cos(\theta)X + r\sin(\theta)Y$ is Gaussian with mean 0, variance $r^2 = (r\cos(\theta))^2 + (r\sin(\theta))^2$.
- ▶ Or use fact that if $A_i \in \{-1,1\}$ are i.i.d. coin tosses then $\frac{1}{\sqrt{N}} \sum_{i=1}^{\sigma^2 N} A_i$ is roughly normal with variance σ^2 when N large.
- ▶ Generally: if independent random variables X_j are normal (μ_j, σ_j^2) then $\sum_{j=1}^n X_j$ is normal $(\sum_{j=1}^n \mu_j, \sum_{j=1}^n \sigma_j^2)$.

▶ Sum of an independent binomial (m, p) and binomial (n, p)?

- ▶ Sum of an independent binomial (m, p) and binomial (n, p)?
- Yes, binomial (m + n, p). Can be seen from coin toss interpretation.

- ▶ Sum of an independent binomial (m, p) and binomial (n, p)?
- Yes, binomial (m + n, p). Can be seen from coin toss interpretation.
- ▶ Sum of independent Poisson λ_1 and Poisson λ_2 ?

- ▶ Sum of an independent binomial (m, p) and binomial (n, p)?
- Yes, binomial (m + n, p). Can be seen from coin toss interpretation.
- ▶ Sum of independent Poisson λ_1 and Poisson λ_2 ?
- Yes, Poisson $\lambda_1 + \lambda_2$. Can be seen from Poisson point process interpretation.