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Three short stories

» There are many continuous probability density functions that
come up in mathematics and its applications.

» It is fun to learn their properties, symmetries, and
interpretations.
» Today we'll discuss three of them that are particularly elegant

and come with nice stories: Gamma distribution, Cauchy
distribution, Beta bistribution.
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Defining gamma function I

P> Last time we found that if X is exponential with rate 1 and
n >0 then E[X"] = [7° x"e *dx = nl.

» This expectation E[X”] is actually well defined whenever
n> —1. Set &« = n+ 1. The following quantity is well defined
for any a > 0:

Ma) = E[X* ] = [(7x* e ™dx = (a — 1)I.

» So '(«) extends the function (o — 1)! (as defined for strictly
positive integers «) to the positive reals.

» Vexing notational issue: why define ' so that ['(«) = (a — 1)!
instead of (o) = a!?

> At least it's kind of convenient that I is defined on (0, 00)
instead of (—1,00).
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Recall: geometric and negative binomials

» The sum X of n independent geometric random variables of
parameter p is negative binomial with parameter (n, p).

» Waiting for the nth heads. What is P{X = k}?

Answer: (ﬁ:})p”’l(l —p)p.

» What's the continuous (Poisson point process) version of
“waiting for the nth event”?

v
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Poisson point process limit

» Recall that we can approximate a Poisson process of rate A by
tossing N coins per time unit and taking p = A/N.

P> Let's fix a rational number x and try to figure out the
probability that that the nth coin toss happens at time x (i.e.,
on exactly xNth trials, assuming xN is an integer).

» Write p = A/N and k = xN. (Note p = Ax/k.)
» For large N, (ﬁ:})p”*l(l —p)pis

(k—1)(k-2)...(k—n+1) , ,
(n—1)! P

Kl o, 1 ((AX)("‘”e‘AXA>
(n—=1)!

(1-p)<"p

~
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()\X) n l)e—)\x)\

» The probability from previous side, (W) suggests
the form for a continuum random variable.

» Replace n (generally integer valued) with « (which we will
eventually allow be to be any real number).

» Say that random variable X has gamma distribution with

Q) tem M\ >0
parameters (a, A) if fx(x) = M(e) Xz
0 x <0

» Waiting time interpretation makes sense only for integer «,
but distribution is defined for general positive a.

xa—1

» Easiest to remember A = 1 case, where f(x) = ( (o= € -

» Think of the factor
set of a-tuples of positive reals that add up to x (or
equivalently and more precisely, as the volume of the set of
(ov — 1)-tuples of positive reals that add up to at most x).

( ), as some kind of “volume” of the

» The general \ case is obtained by rescaling the A =1 case.
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| 2

A standard Cauchy random variable is a random real

number with probability density 7(x) = %1fx2-

There is a “spinning flashlight” interpretation. Put a flashlight
at (0,1) pointed downward, then rotate it by a uniformly
random angle § € [-7/2,7/2], and consider point X = tan(6)
where light beam hits the x-axis.

19

X = tan(0)

Fx(x) = P{X < x} = P{tanf < x} = P{ < tan"'x} =
1 L1y
5+~ tan

Find fx(x) = dX F(x) = %ﬁlﬁ
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The light beam travels in (randomly directed) straight line.
There's a windier random path called Brownian motion.

If you do a simple random walk on a grid and take the grid
size to zero, then you get Brownian motion as a limit.

We will not give a complete mathematical description of
Brownian motion here, just one nice fact.

FACT: start Brownian motion (x,y) in upper half plane.
Probability it hits positive x-axis before negative x-axis is
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0 - tan_1<§) y

6




Cauchy distribution: Brownian motion interpretation

» The light beam travels in (randomly directed) straight line.
There's a windier random path called Brownian motion.

» If you do a simple random walk on a grid and take the grid
size to zero, then you get Brownian motion as a limit.

> We will not give a complete mathematical description of
Brownian motion here, just one nice fact.

» FACT: start Brownian motion (x, y) in upper half plane.
Probability it hits positive x-axis before negative x-axis is
1+ %tan_l(f) =1+ 10. Affine func;cvion of 6.

9 - tan_1<§) y
0

» Start Brownian motion at (0,1) and let X be the location of
the first point on the x-axis it hits. What's P{X < x}?



Cauchy distribution: Brownian motion interpretation

» The light beam travels in (randomly directed) straight line.
There's a windier random path called Brownian motion.

» If you do a simple random walk on a grid and take the grid
size to zero, then you get Brownian motion as a limit.

> We will not give a complete mathematical description of
Brownian motion here, just one nice fact.

» FACT: start Brownian motion (x, y) in upper half plane.
Probability it hits positive x-axis before negative x-axis is
1+ %tan_l(f) =1+ 10. Affine func;cvion of 6.

9 - tan_1<§) y
0

» Start Brownian motion at (0,1) and let X be the location of
the first point on the x-axis it hits. What's P{X < x}?

» Applying FACT, translation invariance, reflection symmetry:
P{X <x}=P{X>-x}=21+2Ltan"!(x). So X is Cauchy.
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Question: what if we start at (0, 2)?

» Start at (0,2). Let Y be first point on x-axis hit by Brownian
motion. Again, same probability distribution as point hit by
flashlight trajectory.

» Flashlight point of view: Y has the same law as 2X where X
is standard Cauchy.

» Brownian point of view: Y has same law as X; + X5 where X3
and X; are standard Cauchy.

» But wait a minute. Var(Y) = 4Var(X) and by independence
Var(X1 + Xz) = Var(Xy) + Var(Xz) = 2Var(Xz). Can this be
right?

» Cauchy distribution doesn't have finite variance or mean.

» Some standard facts we'll learn later in the course (central
limit theorem, law of large numbers) don't apply to it.
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Beta distribution: Alice and Bob revisited

» Suppose | have a coin with a heads probability p that | don't
know much about.

» What do | mean by not knowing anything? Let's say that |
think p is equally likely to be any of the numbers
{0,.1,.2,.3,.4,...,.9,1}.

» Now imagine a multi-stage experiment where | first choose p
and then | toss n coins.

» Given that number h of heads is a — 1, and b — 1 tails, what's
conditional probability p was a certain value x?

A2 e

> P(p=xlh=(a—1)) = TegpC Bt which is
x?71(1 — x)b~! times a constant that doesn't depend on x.
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Beta distribution

» Suppose | have a coin with a heads probability p that | really
don't know anything about. Let's say p is uniform on [0, 1].

> Now imagine a multi-stage experiment where | first choose p
uniformly from [0, 1] and then | toss n coins.

> If | get, say, a — 1 heads and b — 1 tails, then what is the
conditional probability density for p?

» Turns out to be a constant (that doesn't depend on x) times
Xa—l(l _ X)b—l_

> @xa_l(l - x')b_:l on [0, 1], where B(a, b) is constant
chosen to make integral one. Can be shown that

B(a.b) = {55

» What is E[X]?

a
a+b-

» Answer:
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