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1 Introduction

In studying of Riemannian geometry, a metric tensor on a two dimensional surface could be expressed as
eh(z)dz where h is some real-valued smooth function. However, one might ask what would happen if h is
now a general complex valued smooth function. Some important concept becomes invalid, like distance
as we are no longer having positivity. Meanwhile some stories in real geometry are still happening here.
For instance, we can define ’straight lines of angle θ’ to be the solution of the ODE

η′(t) = ei(h(η(t))+θ), η(0) = z. (1.1)

And under this definition we have many nice properties for such flow lines, including its existence and
uniqueness.

Recall when we were defining the Liouville quantum gravity ([Ber16] is a good reference), in the real
metric eγh(z)dz we were trying to take h to be the Gaussian Free Field. In imaginary geometry we can
actually do similar things. We can construct straight lines of angle θ and these flow lines turned out to be
SLEκ(ρ) curves nicely coupled with the Gaussian Free Field h. In this short overview we will go through
the important paper [MS12] and briefly explain the main results and ideas.

The SLE/GFF couplings are originally discussed in [She10], including the coupling of Dirichlet GFF
on the upper half plane H and forward SLE flow which gives the stationarity of AC (imaginary) surfaces,
and the coupling of free boundary GFF and reverse SLE flow which implies the stationarity of LQG
surfaces. In the previous case, the boundary data of the field h is given by sgn(x) while in latter the
boundary condition is log |x|, and the flow is the ordinary SLEκ starting from the origin. Now in [MS12],
the previous coupling is generalized as the boundary data of the field h is now any piecewise constant
function (with finite number of changes) and force points are added with the flow becoming SLEκ(ρ).

Roughly speaking, An SLEκ(ρ) process (where ρ = (ρL, ρR) with |ρL| = k, |ρR| = l) with force points

(xL, xR) is given by compact hulls Kt with Lowener map gt : H\Kt → H satisfying

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z (1.2)

and centered Lowener map ft(z) = gt(z)−Wt. Wt satisfying the following SDE

Wt =
√
κBt +

∫ t

0

∑
q∈{L,R}

∑
i

ρi,q

Ws − V i,qs
ds (1.3)

V i,qt = xi,q +

∫ t

0

2

V i,qs −Ws

ds, q ∈ {L,R}. (1.4)

In [MS12, Section 2] the existence of SLEκ(ρ) process is justified up till the continuation threshold (the

first time t with Wt = V i,qt and
∑j
i=1 ρ

i,q ≤ −2) is hit. And the SLEκ(ρ)/GFF coupling is given as
follows [MS12, Theorem 1.1]:

Theorem 1.1. Fix κ > 0, λ = π√
κ
and weights (ρL, ρR), and let Kt be the hull at time t of the SLEκ(ρ)

process generated by (1.2)-(1.4). Also let h0t be the harmonic function in H with boundary values

−λ(1 +
j∑
i=1

ρi,L), if s ∈ [V j+1,L
t , V j,Lt ); λ(1 +

j∑
i=1

ρi,R), if s ∈ [V j,Rt , V j+1,R
t ).
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where ρ0,L = ρ0,R = 0, x0,L = 0−, xk+1,L = −∞, x0,R = 0+, xl+1,R = +∞. We set

ht(z) = h0t (ft(z))− χ arg f ′t(z), χ =
2√
κ
−

√
κ

2
.

Let Ft be the filtration generated by (W,V i,q). There exists a coupling (K,h) where h̃ is a zero boundary
GFF on H and h = h̃ + h0 such that the following is true. Suppose τ is any Ft-stopping time which
almost surely occurs before the continuation threshold is reached. Then Kτ is a local set for h and the
conditional law of h|H\Kτ given Fτ is equal to the law of hτ + h̃ ◦ fτ .

With this coupling we could make sense of flow lines of the free field:

Definition 1.1. Suppose κ ∈ (0, 4). An SLEκ(ρ) curve (if it exists) is said to be a flow line (with angle
0) of the GFF h if h has boundary value specified above and the curve is coupled with h as in theorem
1.1. An SLEκ(ρ) curve coupled with h+ θχ as above is called a flow line with angle θ.

Note that for general simply connected domain D, the coordinate change formula is inherited from
[She10], i.e., we take an conformal mapping ψ : D → H and consider the surface h ◦ ψ − χ argψ′. Note
the branch of argψ′ is chosen that argψ′ is continuous within the surface.

Another concept is the counterflow line, which plays important rule in SLE duality.

Definition 1.2. Suppose κ ∈ (0, 4) so κ′ = 16
κ ∈ (4,∞). An SLEκ′(ρ) curve (if it exists) is said to be a

counterflow line of the GFF h if the curve is coupled with -h as above in theorem 1.1.

After making sense of ’straight lines’ of the imaginary geometry, it is natural to compare them with
our ordinary geometry. Indeed, in Euclidean world we have the following:

1. Given smooth function h, the solution η of ODE (1.1) starting from any z0 is unique;

2. Moreover the solution η is continuous and extends to infinity;

3. Straight lines from the same points with different angles never cross each other;

4. Straight lines from different points with the same angles are parallel;

5. Straight lines from different points with different angles can cross each other at most once.

Surprisingly even in the world of imaginary geometry we can still establish analogs of the properties 1-5
above. These corresponds to Theorems 1.2, 1.3 and 1.5 in [MS12]:

Theorem 1.2. Suppose that h is a GFF on H and that η ∼ SLEκ(ρ). If (η, h) are coupled as in the
statement of Theorem 1.1, then η is almost surely determined by h.

Theorem 1.3. Suppose that κ > 0. If η ∼ SLEκ(ρ) on H from 0 to ∞ then η is almost surely a
continuous path, up to and including the continuation threshold. On the event that the continuation
threshold is not hit before η reaches ∞, we have a.s. that limt→∞ |η(t)| = ∞.

Theorem 1.4. Suppose that h is a GFF on H with piecewise constant boundary data. For each θ ∈ R
and x ∈ ∂H we let ηxθ be the flow line of h starting at x with angle θ. Fix x1, x2 ∈ ∂H with x1 ≥ x2.

1. If θ1 < θ2 then ηx1

θ1
almost surely stays to the right of ηx2

θ2
. If, in addition, θ2 − θ1 <

πκ
4−κ , then

ηx1

θ1
and ηx2

θ2
can bounce off of each other; otherwise the paths almost surely do not intersect (except

possibly at their starting point).

2. If θ1 = θ2, then ηx1

θ1
may intersect ηx2

θ2
and, upon intersecting, the two curves merge and never

separate.

3. Finally, if θ2 + π > θ1 > θ2, then ηx1

θ1
may intersect ηx2

θ2
and, upon intersecting, crosses and then

never crosses back. If, in addition, θ2 − θ1 <
πκ
4−κ , then ηx1

θ1
and ηx2

θ2
can bounce off of each other;

otherwise the paths almost surely do not subsequently intersect.
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Here a difference is that flow lines could possibly merge if they start at different points with same
angle, which generally do not happen for smooth h in (1.1). When the function is not smooth, say
f(x) = 2

√
|x|, the system x′(t) = f(x) can have more than 1 solutions at x(0) = 0. Hence the roughness

of the GFF h could be an explanation of the merging phenomenon.
One other major difference is that, in R2, any point in the right half plane {ℜz > 0} can be accessible

by straight lines starting at 0 with angles θ ∈ [−π
2 ,

π
2 ]. However in imaginary geometry, the points acces-

sible by flow lines with (possibly varying in time) θ ∈ [−π
2 ,

π
2 ] is a.s. precisely described by counterflow

lines. For instance, when κ ∈ (2, 4), κ′ ∈ (4, 8) and since SLE′
κ curves have a.s. dimension 1 + κ′

8 [RS05,
Theorem 8.1] and hence the points accessible actually have Lebesgue measure 0. This is discussed in
[MS12, Theorem 1.4]:

Theorem 1.5. Suppose that h is a GFF on H with piecewise constant boundary data. Let η′ be the
counterflow line of h starting at ∞ targeted at 0. Assume that the continuation threshold for η′ is
almost surely not hit. Then the range of η′ is almost surely equal to the set of points accessible by SLEκ
trajectories of h starting at 0 whose angles are restricted to be in [−π

2 ,
π
2 ] but may change in time. Let

ηL be the flow line of h with angle π
2 starting at 0 and ηR the flow line of h with angle −π

2 . It is almost
surely the case that if η′ is nowhere boundary filling (i.e., η′ ∩ R has empty interior), then ηL and ηR
do not hit the continuation threshold before reaching ∞ and are the left and right boundaries of η′. A
similar statement holds on the event that η′ is boundary filling on one or more segments of R. In this
case, ηL and ηR hit their continuation thresholds before reaching ∞, but they can be extended to describe
the entire left and right boundaries of η′.

The rest of this short overview is organized as follows. In Section 2, we review the basics for SLEκ(ρ)
and the GFF theory covered in [MS12, Section 2&3], which are foundational for the construction of flow
lines. In Section 3, following the idea of [MS12, Section 4&5], we start from Dubédat’s argument and
establish the monotonicity result and flow/conuterflow line duality in the case the all these lines do not
intersect the boundary. Finally in Section 4, we study the regularity results in [MS12, Section 6] and
briefly explain how to extend to general results in Theorem 1.2-1.5 by conditioning on auxiliary flow lines.

2 SLEκ(ρ) curves and the Gaussian Free Field

2.1 SLEκ(ρ) and martingale characterization

As a one-parameter family of conformally invariant random curves introduced by Oded Schramm in
[Sch00] SLEκ curves are the scaling limit of many important statistical physical models. The detailed
definition and as well as properties of SLE could be found in [BN16].

We start from SLEκ(ρ) curves with only one force point at x0 (if ρ = 0 this reduces to ordinary SLEκ).
Indeed, we can write out the equations (1.3) and (1.4)

Wt =
√
κBt +

∫ t

0

ρ

Ws − Vs
ds, Vt = x0 +

∫ t

0

2

Vs −Ws
ds (2.1)

In this setting, Xt =
Vt−Wt√

κ
(which corresopnds to ft(x0)/

√
κ) solves

Xt =
x0√
κ
+

∫ t

0

2 + ρ

κXs
ds+Bt. (2.2)

This is exactly a Bessel process with dimension δ = 2(ρ+2)
κ + 1 starting from x0√

κ
. From theory of

Bessel processes (for instance in [RY99, Chapter XI]), we know (2.2) is satisfied with Xt instantaneously
reflecting at 0 as long as δ > 1. Moreover when δ ≥ 2, Xt is transient in the sense of a.s. never hitting
0. This implies when ρ > −2, the continuation threshold is never hit and this curve could be extended
to infinite time. And if ρ ≥ κ

2 − 2, the curve should a.s. never hit the boundary (Assume κ ≤ 4). In this
case the law of this curve is absolute continuous w.r.t. ordinary SLEκ curve with ρ = 0, so its phase is
the same as described in [BN16]. If ρ ≤ −2 then Wt and Vt a.s. collide and the curve cannot be extended
after this collision.

Now for multiple force point case, roughly speaking, we could first sample (Wt, V
i,q
t ) such that (1.3) is

satisfied for any interval of non-collision stopping times and also the Loewner equation (1.4) is satisfied.
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We also require the instantaneous reflection condition of collision of W and V i,q. The force points V i,qt
is monotone in i and we relabel once they collide and merge. We fix ε̃ > 0 and start at Sε̃ which is the
first time |Wt−V 1,q

t | ≥ ε̃ and stop at Tε̃, the minimum of a fixed time T and the first time after Sε̃ when
there exists two different force points or one force point of weight ρ < −2 within distance ε̃ of W . We set
ε ∈ (0, ε̃) and τ0 = Sε̃, and sample stopping times σk to be the first collision time after τk−1 of W and
some V i,qt , and τk to be the first time after σk such that the distance of W and the force point V ik,qk it
collided at σk is ε. So now for ’good intervals’ [τk−1, σk] (1.3) is satisfied, i.e.∑

j

(WTε̃∧σj −WTε̃∧τj−1) =
∑
j

√
κ(BTε̃∧σj −BTε̃∧τj−1) +

∑
i,j,q

∫ Tε̃∧σj

Tε̃∧τj−1

∑
i

ρi,q

Ws − V i,qs
ds. (2.3)

Note from the instantaneous reflection condition the total length of ’bad intervals’ [σk, τk] before Tε̃ tends
to 0 (as ε→ 0), therefore on the right hand side of (2.3) the quadratic variation of Brownian Motion and
the change of integral [σk, τk] both goes to 0 (since V i,q satisfies Lowener equation (1.4)). Also if we set
Nε̃ = min j ≥ 1 : τj ≥ Tε̃ then the change of W on these intervals could be controlled by∑

j

|WTε̃∧τj −WTε̃∧σj | ≤ Nε̃ε+
∑
i,j,q

|V i,qTε̃∧τj − V i,qTε̃∧σj | (2.4)

and the change of force points goes to 0 due to absolute continuity. Using Girsanov theorem we could
now compare the process with SLEκ(ρ

1,q) with one force point and it turned out Nε̃ε tends to 0 a.s.
along some sequence εk → 0. Therefore (1.1) is satisfied on [Sε̃, Tε̃] and sending ε̃ → 0 completes the
construction. More details are explained in [MS12, p.35-42].

Also similar to single force point case, as corresponding to Bessel processes with dimension at least
2, when

∑j
i=1 ρ

i,q ≥ κ
2 − 2 for any j, q , and x1,L < 0 < x1,R then the curve η is a.s. continuous and

absolutely continuous w.r.t SLEκ curves without force points.
Another important generalization of [MS12] here is the martingale characterization of SLEκ(ρ) curves.

Theorem 2.1. Suppose we are given a random continuous curve η on H̄ from 0 to ∞ whose Loewner
driving function Wt is almost surely continuous. Suppose that xi,q and ρi,q values are given and that
the V i,qt are defined to be the images of the xi,q under the corresponding Loewner evolution (1.4). Let
ht be the corresponding harmonic function in the statement of Theorem 1.1. Then Wt and the V i,qt can
be coupled with a standard Brownian motion Bt to describe an SLEκ(ρ) process (up to the continuation
threshold) if and only if ht(z) evolves as a continuous local martingale in t for each fixed z ∈ H until the
time z is absorbed by Kt.

Note ht(z) is
1√
κ
times the imaginary part of the complex continuous local martingale h∗t (z)

−
k∑
i=0

ρi,L log(ft(z)− ft(x
i,L)) +

l∑
i=0

ρi,R(iπ − log(ft(z)− ft(x
i,L))) + iπ − 2 log ft(z)−

πχ

λ
log f ′t(z).

Using d log f ′t(z) =
df ′
t(z)

f ′
t(z)

= − 2
ft(z)2

dt and Itô formula it is not hard to see h∗t (z) is local martingale. And

if we replace ft by forward (centered) Lowener flow and χ = 2√
κ
−

√
κ
2 by Q = 2√

κ
+

√
κ
2 the corresponding

h∗t (z) is still local martingale, and taking its real part gives couplings in LQG geometry. The proof of if
part could be found in Theorem 2.4 of [MS12].

2.2 The Gaussian Free Field and its local sets

The d-dimensional Gaussian Free Field, as the d−dimensional time analog of the Brownian Motion,
plays an important role in statistical physics and random surfaces, especially when d = 2 the GFF has
conformal invariance. The basic definition and properties could be found in the survey paper [She07]. In
particular, one significant result here is the Markov property:

Theorem 2.2. Suppose U,D are both open sets in H and U ⊂ D. For the Dirichlet Gaussian Free Field
h on D, we can write h = hU + hUc , where hU is a Dirichlet GFF on U and zero outside U , hUc is
harmonic in U . Moreover hU and hUc are independent.
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The key of this Markov property is we can write H1
0 (D) = H1

0 (U)⊕H⊥(U) where H⊥(U) is the space
of harmonic functions in U . From this property, we can write hU as the projection of h to H1

0 (U) and
the restriction h|U is simply a 0 boundary GFF hU plus the harmonic extension of h|∂U into U .

The following proposition states that in the Markov decomposition above we could ’pretend’ that h
is a zero boundary valued function.

Proposition 2.3 ([MS12], Proposition 3.3). Assume that D is a non-trivial simply connected domain
and let K be a deterministic closed subset of D. Let h1 be the harmonic function on D\K which agrees
with the projection of K onto H⊥(D\K) and restricted to D\K. Then almost surely

lim
D\K∋z→z0

h1(z) = 0, ∀z0 ∈ ∂D\K.

The next proposition about absolute continuity is extremely important, especially its second part,
as it allows us to compare GFFs on different domains with different boundary values. As we saw in
Theorem 1.2, flow lines are almost surely determined by free fields. Hence when proving properties (say
continuity) of flow lines, we could do induction on the number of force points. When we add a new force
point xk+1,L, this absolute continuity could be invoked, implying that the flow line is continuous at least
before hitting (−∞, xk+1,L].

Proposition 2.4 ([MS12], Proposition 3.4). Suppose that D1, D2 are simply connected domains with
D1 ∩D2 ̸= ∅. For i = 1, 2, let hi be a zero boundary GFF on Di and Fi harmonic on Di. Fix a bounded
simply connected open domain U ⊂ D1 ∩D2.

(i) (Interior) If dist(U, ∂Di) > 0 for i = 1, 2 then the laws of (h1+F1)|U and (h2+F2)|U are mutually
absolutely continuous.

(ii)(Boundary) Suppose that there is a neighborhood U ′ of the closure Ū such that D1∩U ′ = D2∩U ′ ,
and that F1−F2 tends to zero as one approaches points in the sets ∂Di∩U ′. Then the laws of (h1+F1)|U
and (h2 + F2)|U are mutually absolutely continuous.

The proof of this proposition is again a Girsanov-type argument, i.e., if we weight the law of GFF h
by exp(− 1

2∥g∥
2
∇) exp((h, g)∇) then the law of h under this new measure is the same as the law of h+ g

under original P. Finding suitable g such (h1 + F1 + g)|U = (h2 + F2)|U gives the proposition. Another
very important property here is for flow line segment η|U given by η stopped upon exiting U , if we weight
the law (h|U , η|U ) using the Radon-Nikodym derivative such that the marginal law of h|U becomes h̃|U
where h̃ is a GFF with same boundary data on ∂U ∩ ∂D, then the marginal law of η|U is absolutely
continuous w.r.t. its original law under P; moreover in this weighted measure it is still coupled with h̃
such that the strong Markov property is satisfied before exiting U .

Now we have established Markov property for deterministic closed sets. However in practice we may
want to extend to random sets. This gives rise to the definition of local sets from [SS13]. Indeed, local
sets are random variables taking values in the set Γ of closed sets in D w.r.t Borel σ-algebra of Hausdorff
distance.

Definition 2.1. Suppose (A, h) is a coupling of a GFF h on D and a random variable A taking values in
Γ. Then A is said to be a local set of h if if there exists a law on pairs (A, h1) where h1 is a distribution
on D with h1|D\A being harmonic and a sample with law (A, h) could be produced by:

1. Choosing the pair (A, h1);
2. Sampling an (independent) instance h2 of the zero boundary GFF on D\A and setting h = h1+h2.

The local sets defined above are random closed sets satisfying strong Markov property. Another
equivalent way to define local sets is that for any deterministic open U ⊂ D, we have that given the
projection of h onto H⊥(U), the event S = {A ∩ U = ∅} is independent of the projection of h onto
H1

0 (U) (i.e. hU ). Moreover if we set a random variable Ã to be A on Sc and ∅ on S then (S, Ã)
is independent of hU given the projection of h onto H⊥(U). All other ways of definition and their
equivalence are justified in [SS13, Lemma 3.9]. We may also treat h2 as a mean zero function and define
CA = h1 to be the conditional mean of h on D\A given A.

The following lemmas on local sets will be useful when treating multiple flow lines and specifying
boundary data.

Proposition 2.5 ([MS12], Proposition 3.7). Suppose h is a GFF on D, A1, A2 are random variables
taking values in Γ, and that (A1, h) and (A2, h) are couplings for which A1 and A2 are local. Let A =
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A1∪̃A2 denote the random variable taking values in Γ which is given by first sampling h, then sampling
A1, A2 independently from their conditional laws given h, and then taking the union of A1 and A2. Then
A is also a local set of h.

We say a local set A is almost surely determined by h if there exists a modification of A being σ(h)
measurable. As we know in Theorem 1.2 flow lines are local sets a.s. determined by h hence unions of
flow lines are local sets as they are trivially independent given h.

The next proposition is a generalization of Proposition 2.3 to local sets.

Proposition 2.6 ([MS12], Proposition 3.8). Assume that D is a bounded, simply connected domain. Let
A1, A2 be connected local sets. Then CA1∪̃A2

− CA2 is almost surely a harmonic function in D\A1∪̃A2

that tends to zero on all sequences of points in D\A1∪̃A2that tend to a limit in either:
(i) a connected component of A2\A1 (consisting of more than a single point) or
(ii) a connected component of A1 ∩ A2 (consisting of more than a single point) at a point that has

positive distance from either A2\A1 or A1\A2.

In the discussion of interacting flow lines, we will constantly use conformal mappings over regions
zipped by flow lines, so it is important to specify the boundary value of the field h, while the proposition
above greatly helps us to find it. Recall that if ψ : D1 → D2 and h is some random surface on D2 then
the equivalent surface on D1 is given by h ◦ ψ − χ argψ′. Figures 1 and 2 give an example of performing
this coordinate change when involving flow lines.

Figure 1: η is a flow line coupled with h as in Theorem 1.1 and fτ is the centered Lowener map. Applying
the coordinate change we find the boundary value of h|H\η([0,τ ]) is λ− χ·winding angle of η on the right
side of η and −λ+ χ·winding on the left. Note λ′ = π√

κ′ = λ− π
2χ.

The following result from the previous propositions is useful to prove independence between stories
happening in different connected components of local sets.

Proposition 2.7 ([MS12], Prop 3.9). Suppose that D is a bounded, simply connected domain and that
A1, A2 are connected local sets which are conditionally independent given h. Suppose that C is a σ(A1)-
measurable open subset of D\A1 which can be written as a union of components of D\A1 such that
C ∩ A2 = ∅ almost surely. Then CA1∪A2 |C = CA1 |C almost surely. In particular, h|C is independent of
the pair (h|D\C , A2) given σ(A1).

The next lemma indicate that if a local set A is ’thin’ then we only need to know h|D\A.

Lemma 2.8 ([MS12], Lemma 3.10). Suppose that A is a local set for h such that for every compact set
K ⊂ D there exists a sequence (δk) of positive numbers with δk → 0 as k → ∞ such that we almost surely
have that the number of squares with corners in δkZ2 required to cover A∩K is o(δ−2

k (log δ−1
k )−1). Then

h is almost surely determined by the restriction h̃ of h to D\A.

In particular if a local set A has Hausdorff dimension strictly smaller than 2, then h is almost surely
determined by the its restriction to D\A so we may apply this lemma to flow lines of h.
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Figure 2: Consider flow lines ηθ1 and ηθ2 with θ2 > θ1. Assume for a while ηθ2 only intersects ηθ1 at 0
and always stays to the left of ηθ1 . Then the boundary data of h given both ηθ1 and ηθ2 can be computed
as previous figure and using Proposition 2.6. As a result we can apply some conformal ψ taking the
left component of H\ηθ1 to H and this actually gives that ψ(ηθ2) evolves as SLEκ((a− θ2χ)/λ− 1; (θ2 −
θ1)χ/λ − 2) with force points 0−, 0+, i.e., this is the law of ηθ2 given ηθ1 . In the next section we will
see that when a, b is large then ηθ2 always stays to the left of ηθ1 , while justification of this conformal
transform even when ηθ1 and ηθ2 bounce off is given in Section 4 and we still have the same conclusion.

2.3 SLF/GFF couplings

Similar to [Ber16, Theorem 6.1], which states that under the SLE quantum zipper the random surfaces
(h, η) are stationary (h is free boundary GFF coupled with reverse SLE flow η), taking the imaginary
part of the continuous local martingale h∗t (z) in Theorem 2.1 could give us similar results. Applying the
Itô formula it is not hard to see (ht =

1√
κ
ℑh∗t )

dh∗t (z) =
2
√
κ

ft(z)
dBt, d⟨ht(z), ht(w)⟩ = 4ℑ( 1

ft(z)
)ℑ( 1

ft(w)
). (2.5)

Note the centered Lowener map ft : H\η([0, t]) → H is conformal, and the Green function has conformal
invariance property, hence the Green function on H\η([0, t]) is given by

Gt(z, w) = GH(ft(z), ft(w)) = log |ft(z)− ft(w)| − log |ft(z)− ft(w)|

thus applying the Itô formula we see

dGt(z, w) = −4ℑ( 1

ft(z)
)ℑ( 1

ft(w)
) = −d⟨ht(z), ht(w)⟩. (2.6)

Now we fix U ⊂ H open and set τU = inf{t > 0 : Kt ∩ U ̸= ∅} and sample ϕ ∈ C∞
0 (U), from (2.6) we

can show that
d⟨(ht, ϕ), (ht, ϕ)⟩ = −dEt(ϕ), t < τU (2.7)

(where Et(ϕ) =
∫∫

H2 ϕ(x)ϕ(y)Gt(x, y)dxdy is the Dirichlet energy of ϕ at time t) ⟨(ht, ϕ), (ht, ϕ)⟩+Et(ϕ)
is a continuous local martingale. This gives the following stationarity of imaginary surfaces:

Lemma 2.9 ([MS12], Lemma 3.11). Fix U ⊂ H open and define τU as above. Let τ be a Ft-stopping time
with P(τ ≤ τU ) = 1. Consider the random field hU,τ on U generated by sampling Kτ and an independent

GFF h0 on H\Kτ and setting hU,τ = (h0 + hτ )|U . Then hU,τ
d
= h|U where h = h̃ + h0 and h̃ is a zero

boundary GFF on H.

Indeed, this lemma can be shown by considering (hU,τ , ϕ) and (h, ϕ) and arguing that they have the
same characteristic function using (2.7). To show that in general Kτ is a local set as in Theorem 1.1, the
idea is to extend this lemma to multiple open sets Ui and stopping times τi ≤ τUi (say countable and
dense) and then use the characterization that a set A is local if any deterministic open U ⊂ D , the event
A∩U = ∅ is independent of the projection of h onto H1

0 (U) given the projection of h onto H⊥(U). Full
detail of this part is given in [MS12, p.77-p.82].
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3 Non-boundary-intersecting flow lines and counterflow lines

In this section, we consider the properties of flow lines and counterflow lines when they do not intersect
the boundary. That is, we assume that weights ρi,q are large so they a.s. do not intersect ∂H. Since
we will grow flow lines and counterflow lines simultaneously sometimes it is convenient to take the strip
S = R × (0, iπ) with upper boundary ∂US = {ℑz = pi} and lower boundary ∂LS = R and apply a
conformal map ψ : S → H (for example ψ(z) = ez − 1.)

3.1 Critial heights for boundary intersection

We start from Dubédat’s original lemma specifying parts of the boundary could SLEκ(ρ) curves hit:

Lemma 3.1 ([Dub09], Lemma 15). Consider an SLEκ(ρ) with force points 0 < x1 < · · · < xn <∞ and

weights ρi. Set ρ̄k =
∑k
i=1 ρi and ρ̄n = κ − 6. Also consider the swallowing time τ1 when x1 belongs to

the compact hull generated by the curve η[0, t].
(i) Assume that for some k, ρ̄i ≥ κ

2 − 2 for i < k, ρ̄i ≤ κ
2 − 4 for k ≤ i < n. Then a.s. as t ↑ τ1, ηt

accumulates at xk and no other point in [x1, xn];
(ii) Assume that for some k, ρ̄i ≥ κ

2 − 2 for i < k, ρ̄k ∈ (κ2 − 4, κ2 − 2) ρ̄i ≤ κ
2 − 4 for k < i < n. Then

a.s. as t ↑ τ1, ηt accumulates at a point in [xk, xk+1] and no point in [x1, xn]\[xk, xk+1].

For general domains and force points we can use the coordinate change formula and apply Lemma
3.1. For instance, if we take a GFF on S with boundary data depicted in Figure 3 then we will find the
flow line from 0 almost surely exits S at z0. This result holds more generally when the boundary data of
h on ∂US is piecewise constant, changes a finite number of times, and is at most −λ to the left of z0, at
least λ to the right of z0, and on ∂LS is piecewise constant with finite change, at most −λ + πχ to the
left of 0 and at least λ− πχ to the right of 0. This also holds for counterflow lines with λ, χ replaced by
λ′,−χ.

Figure 3: Assume h is a GFF on S with boundary data above. We take ψ : S → H with ψ(z) = −e−z+1
so ψ(−∞) = ∞, ψ(+∞) = 1 and ψ(η) ∼ SLEκ(b/λ+ κ/2− 3; (a− b)/λ+ κ/2− 3) with force points at
1 and ψ(z0) is the flow line of the field on H. Now Lemma 3.1 implies ψ(η) will accumulate at ψ(z0).

3.2 Flow lines and counterflow lines coupling

With Dubédat’s SLEκ(ρ) first exiting criterion, we can find interesting results with Theorem 1.1. The
first application is that, under non-intersecting boundary condition, flow lines of angle π

2 is almost surely
left boundary of counterflow lines of h.

Lemma 3.2 ([MS12], Lemma 4.7). Suppose we are in the setting of Figure 4. Assume that η, η′, h are
coupled together so that η and η′ are conditionally independent given h. Let τ be any stopping time for
η. Then η′ almost surely first hits η([0, τ ])∪ ∂LS at η(τ). In particular, η′ contains η and hits the points
of η in reverse chronological order: if s < t then η′ hits η(t) before η(s).

To show the lemma, recall that by Theorem 1.1 η′ and η([0, τ ]) are both local sets for h, and given
that they are conditionally independent given h, we can apply Proposition 2.5 and 2.6 to specify the law
of h given η′ and η([0, τ ]) at least before η′ hits η([0, τ ]) as in right panel of Figure 4. Now since η, η′

are independent given h, we may take a conformal map S\η([0, τ ]) → S so the law of ψ(η) before η′ hits
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Figure 4: Assume h is a GFF on S with boundary data above. Consider η being the flow line of h
starting from 0 (left panel) and η′ being the counterflow line of h− π

2χ (right panel).

η([0, τ ]) given η([0, τ ]) is the same as η′ so we only need to show τ = 0 case. This follows directly by
applying Dubédat’s argument for counterflow lines.

With this lemma of hitting in reverse chronological order, it follows

Proposition 3.3 ([MS12], Prop 4.9). Assume we are in the setting of Lemma 3.2. Then η is almost
surely equal to the left boundary of η′.

Of course, we can extend this proposition as before to piecewise constant boundary data changing
only a finite number of times, being at most −λ to the left of z0, at least λ+ πχ to the right of z0, and
on ∂LS is piecewise constant with finite change, at most −λ + πχ to the left of 0 and at least λ to the
right of 0. And in this setting it is enough to show that the flow line η is a.s. determined by h:

Lemma 3.4. Suppose X is a random variable in (Ω,F ,P) and G ⊂ F is a (complete) σ-algebra. If ψ is
a measurable function on R such that X and ψ(X) are independent given G then ψ(X) is G-measurable.

Proof. Assume ψ is bounded and positive, otherwise it suffices to split ψ = ψ+−ψ− and consider ψ+∧n
with n→ ∞. The assumption implies E[(ψ(X)− E[ψ(X)|G])2|G] = 0 and ψ(X) = E[ψ(X)|G], a.s..

Using arguments in type of Lemma 3.4 with X replaced by counterflow line η′ and ψ(X) being the
left boundary of η′, and G being σ(h) we find

Proposition 3.5. Suppose we are in the setting of Theorem 1.2 with weights satisfying

j∑
i=1

ρi,L ≥ κ

2
− 2, ∀1 ≤ j ≤ k;

j∑
i=1

ρi,R ≥ 0, ∀1 ≤ j ≤ l. (3.1)

then η is a.s. determined by h.

Indeed, this implies that for any deterministic open set U with positive distance from 0, if we set
τ̃U = inf{t > 0 : η(t) ∈ U} then η([0, τ̃U ]) is a.s. determined by h. Moreover the properties of local set
imply that given the projection of h onto H⊥(U) η([0, τ̃U ]) is independent of hU . Combining these two
arguments we see η([0, τ̃U ]) is a.s. determined by the projection of h onto H⊥(U).

Continuing this SLE duality argument we can actually show monotonicity of flow lines. The first
lemma extends Dubédat’s original argument.

Lemma 3.6 ([MS12], Lemma 5.2). Suppose that h is a GFF on S whose boundary data is as described
in Figure 5 and let η be the flow line of h starting at 0. If η|[0,T0] is almost surely continuous for some
η-stopping time 0 < T0 <∞, then η|[0,T0] ∩ J = ∅ almost surely.

Note that in Lemma 3.6 if we map S to H, we actually find that if η|[0,T0] is continuous then it

only could possibly hit interval (xj+1,L, xj,L) with
∑j
i=1 ρ

i,L ∈ (κ2 − 4, κ2 − 2) or xj,R, (xj+1,R) with∑j
i=1 ρ

i,R ∈ (κ2 − 4, κ2 − 2) before T0. This can be viewed as an extension of Lemma 3.1.
Now we know that for θ1 < θ2, the flow line ηθ1 is almost surely the left boundary of the counterflow

line η′θ1 of h+(θ1− π
2 )χ so it suffices to show that ηθ2 almost surely stays to the left of η′θ1 . The technique

is similar to Lemma 3.2.
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Figure 5: Assume h is a GFF on S and J = ∪kJk being open subset of ∂US and on each interval Jk
the boundary data is ck /∈ (−λ, λ). Take (w0 − ε, w0 + ε) ⊂ Jk and 0 < ε̃ < ε along with the stopping
time τ = inf{t > 0 : η ∈ B(w0, ε̃)}. An application of Prop 2.4 implies the law of η|[τ,T0] before exiting
B(w0, ε) is absolutely continuous w.r.t. the flow line given boundary data ck on ∂US and Lemma 3.1
implies that in such case η|[τ,T0] almost surely exits B(w0, ε) before hitting (w0 − ε, w0 + ε). A density
argument along with continuity implies a.s. η never hits J before T0.

Lemma 3.7 ([MS12], Lemma 5.4). Assume the boundary data of GFF h is given as Figure 6 with
flow line ηθ starting from 0 where θ > π

2 and η′ counterflow line from z0. Let τ ′ be an η′ stopping
time such that η′ a.s. has not hit 0. Let K ′

t be the hull of η′([0, t]) and τ be any stopping time for
Ft = σ(s ≤ t : η(s); η′([0, t]). Then on {dist(η(τ),K ′

τ ′) > 0}, η|[τ,∞) intersects neither the right side of
η′([0, τ ′]) nor part of ∂US to the right of z0 before hitting the left side of η′([0, τ ′]) nor part of ∂US the
left of z0.

Figure 6: Assume the boundary data of GFF h is given above with a, b ≥ λ′ and a′, b′ ≥ λ + πχ. We
take the component D of S\(η([0, τ ]) ∪K ′

τ ′) such that for small ε > 0 η(τ + ε) stay within D. We take
ψ : D → S sending the left and right boundaries of η([0, τ ]) to (−∞, 0) and (0,+∞) and ψ(η(τ)) = 0.
Prop 2.5 implies η([0, τ ]) ∪ η′([0, τ ′]) is local and Prop 2.6 allows us to specify the conditional mean of h
given η([0, τ ]) ∪ η′([0, τ ′]) on parts of ∂D at least with positive distance from η([0, τ ]) ∩ η′([0, τ ′]). The
boundary value after applying ψ is depicted on right panel so the conclusion followes from Lemma 3.6.

Given Lemma 3.7, we can establish the following proposition regarding monotonicity of flow lines:

Proposition 3.8 ([MS12], Prop 5.1). Suppose h is a GFF on S with boundary data as Figure 6. Assume
ηθ is flow line of h+ θχ starting from 0 and η′ counterflow line of h from z0. Fix θ such that

λ− πχ− b

χ
≤ θ ≤ −λ+ πχ+ a

χ
(3.2)

Then if θ > π
2 (resp. θ < −π

2 )then ηθ almost surely passes to the left (resp. right) of η′.

Now in the setting of Figure 6, if θ1 < θ2 we fit in counterflow line η′θ1 of h + (θ1 − π
2 )χ. If we add

the assumption θ1 ≥ λ−b
λ then Prop 3.8 is applicable to η′θ1 and ηθ2 given θ2 ≤ −λ+πχ+a

χ and if τi is the

first time of ηθi accumulates in ∂US then ηθ2 |[0,τ2] a.s. lies to the left of ηθ1 |[0,τ1].

3.3 Light cone construction of counterflow lines

Now we have developed several properties of flow lines. Since flow lines are local sets, we can use this
Markov property to construct line segments, i.e., angle-varying flow lines, giving light cone duality.
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Definition 3.1. Given angles θ1, · · · , θl, let ηθ1 be the flow line of h starting at 0 with angle θ1, τ1 be ηθ1
stopping time, ητ1θ1 . For each 2 ≤ j ≤ l set η

τ1...τj−1

θ1...θj
be the flow line of h conditional on η

τ1...τj−1

θ1...θj−1
|[0,τj−1]

starting at η
τ1...τj−1

θ1...θj−1
(τj−1) with angle θj, and let τj be a stopping time for η

τ1...τj−1

θ1...θj−1
. We call η

τ1...τj
θ1...θl

an angle-varying flow line with angles θ1, ..., θl w.r.t. stopping times τ1...τl. The light cone L of
h starting at 0 is defined to be the closure of set of points accessible by angle-varying flow lines with
rational θ restricted in [−π

2 ,
π
2 ] and positive rational angle changing times. More generally, if ησ1...σk

ϕ1...ϕk
is

any angle-varying flow line with ησ1...σk
ϕ1...ϕk

-stopping time σ then L(ηϕ1...ϕk , σ) starting at ησ1...σk
ϕ1...ϕk

(σ) is the
closure of the set of points accessible by angle-varying flow lines starting at ησ1...σk

ϕ1...ϕk
(σ) with rational angles

in [−π
2 ,

π
2 ] and positive rational angle change time.

Note that this definition is different from the fan of h starting from h, which is the points accessible
by flow lines starting at 0 with fixed angles [−π

2 ,
π
2 ]. The main result is that the range of η′ stopped when

hitting the tip ησ1...σk
ϕ1...ϕk

(σ) of ησ1...σk
ϕ1...ϕk

|[0,σ] is almost surely equal to L(ηϕ1...ϕk , σ). (The fan of h, however,
is almost surely smaller than the light cone).

First, using an induction argument regarding Prop 2.4 and Prop 3.5 we can argue that under non-
boundary intersecting condition angle-varying flow lines are continuous and a.s. determined by h:

Lemma 3.9 ([MS12], Lemma 5.6). Let η
τ1...τj
θ1...θl

be an angle-varying flow line of h with angles |θi−θj | ≤ π.

Assume η
τ1...τj
θ1...θl

is non-boundary intersecting, ητ1...τlθ1...θl
is almost surely simple and continuous. If we assume

further that the boundary data for h+ θ1χ is at least λ on (0,∞) and at most −λ+ πχ on (−∞, 0) (or
at least λ− πχ on (0,∞) and at most −λ on (−∞, 0) ), then ητ1...τlθ1...θl

is almost surely determined by h.

Next, arguing the same as Lemma 3.2, for θi ∈ [−π
2 ,

π
2 ] we can perform a conform transform ψ :

S\ητ1...τlθ1...θl
|[0,σ] → S fixing ±∞ with ψ(\ητ1...τlθ1...θl

(σ)) = 0, and applying Prop 2.5 & 2.6 along with Dubédat’s
argument implies that the counterflow line η′ a.s. exits S\ητ1...τlθ1...θl

|[0,σ] at \ητ1...τlθ1...θl
(σ). Similarly a density

argument along with continuity implies that η′ a.s. contains \ητ1...τlθ1...θl
and hitting the points of \ητ1...τlθ1...θl

in
reverse chronological order [MS12, Lemma 5.7].

Figure 7: We grow angle-varying flow lines with θj = (−1)j+1 π
2 and consider ψ : S\η′([0, τ ′]) → H with

ψ(η′(τ ′)) = ∞. The boundary data implies ψ(η) is hitting R on ψ(η′([0, τ ′]) and all we need is that ψ(η)
is unbounded. This is done by stochastically bound from below each turn the amount of capacity time
it takes ψ(η) to traverse from left to right by i.i.d. nonnegative random variable with positive mean.

For the reverse inclusion, it suffices to show that for any η′ stopping time τ ′ and ε > 0 there exists
an angle-varying flow line with angle θj = (−1)j+1 π

2 intersecting B(η′(τ ′), ε). We take a conformal ψ
mapping S\η′([0, τ ′]) → H fixing 0 and sending η′(τ ′) to ∞. We may use a scaling to assume the image
of ∂US is contained in R\(−3, 3). For each j we let η̃j be the flow line of angle (−1)j+1 π

2 starting from
the tip of η̃j−1 and stop once it get close to (−1)j [3,+∞). More precisely, the curve is stopped at τj
if its Loewner driving function W̃j enters (−1)j [2,+∞). Then we can actually find nonnegative i.i.d.
random variables Zj with positive mean and τ2j − τ2j−1 ≥ Zj and hence τ2j → ∞, a.s.. Then using the

diameter-capacity bound diam(η̃([0, τ2j ])) ≥ 1
4

√
hcap(η̃([0, τ2j ]) =

√
2
4 τ2j we find η̃ a.s. goes to ∞ which

finishes the proof. The construction of Zj is based on the following lemma:

Lemma 3.10 ([MS12], Lemma 5.10). Suppose that (Wt, V
i,q
t ) is an SLEκ(ρ

L; ρR) process with W0 = 0

force points (xL;xR). Let τ be the first time W exits [−1, 1], and C > 0 with

|
k∑
i=1

ρi,L

Wt − V i,Lt
+

l∑
i=2

ρi,R

Wt − V i,Rt
| ≤ C, ∀t ∈ [0, τ ]. (3.3)

Then P(τ ≥ 1) ≥ ρ0 > 0 with ρ0 only depending on C, κ, ρ1,R.
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Indeed, we could compare the SLEκ(ρ
L; ρR) process with the single point SLEκ(ρ

1,R) using Girsonov
theorem, and condition (3.3) implies bounds on the Radon-Nykodim derivative. Thus we may reduce the
lemma to the single force point case and the claim follows.

Going back to the construction of η̃, although at each turning we are add two additional force points,
their weight ρi,q are of same absolute value with alternating sign. Therefore we can find some universal
C such that (3.3) is satisfied and Lemma 3.10 could be applied to find Zj .

Putting all our discussion above together, we arrive at the final conclusion:

Proposition 3.11 ([MS12], Prop 5.9). Let ησ1...σk
ϕ1...ϕk

be an angle-varying flow line of h with angles in
[−π

2 ,
π
2 ]. Let σ be any ησ1...σk

ϕ1...ϕk
stopping time. The random set L(ησ1...σk

ϕ1...ϕk
, σ) is almost surely equal to the

range of the counterflow line η′ of h starting at z0 stopped upon first hitting ησ1...σk
ϕ1...ϕk

([0, σ]) at ησ1...σk
ϕ1...ϕk

(σ).

From Prop 3.11, and in Prop 3.5 we showed that flow lines are a.s. determined by h now we have

Proposition 3.12. Almost surely, η′ is determined by h.

Another application is that we can extend this definition of light cones to L(θ, θ̄) with the requirement
of angles being in [−π

2 ,
π
2 ] by in [θ, θ̄]. Then for −π

2 ≤ θ < θ̄ ≤ π
2 L(θ, θ̄) is a.s. contained in η′. However

when κ ∈ (2, 4) κ′ ∈ (4, 8) and hence Lemma 2.8 could be applied (η′ has dimension less than 2) and the
law of h given η′ is the same as the law of h given both η′ and h|η′ . This in turn applies L(θ, θ̄) is a.s.
determined by η′. A similar argument applies for the fan F.

4 Result for general cases

So far we have established continuity, monotonicity, light cone duality of flow lines and also flow lines
and counterflow lines are a.s. determined by the free field, as long as the boundary data rules out any
possibility of boundary intersection. In this section we are going to extend all these results to general
cases. The key here is take boundary values as before and condition on auxiliary flow lines. All properties
in the previous section are inherited under conditioning and the range of flow lines satisfying the theorems
is greatly extended.

4.1 Regularity of Conformal Transformation

To get the conditional law of flow lines given flow/counterflow lines, a useful tool is to consider conformal
transforms ψ taking regions formed by flow/counterflow lines to H. This is guaranteed by locality of the
flow lines. After applying ψ we still need to specify the boundary data of the field and justify ψ(η) has
continuous Loewner driving functions and are corresponding flow lines for the field. This is the aim for
this subsection.

Figure 8: Suppose θ1 < 0 < θ2 and ηθi are flow lines with angle θi. Assume a, b are chosen such that
ηθ1 a.s. stays to right of ηθ2 . The conditional mean of h given all ηθi are depicted as above, at least away
from intersection points. And moreover it turns out that all those intersection points are not introducing
pathological behavior.

Suppose we are in the setting of Figure 8 and we want to understand the law of zero flow line η in
the given pocket C formed by ηθ1 and ηθ2 . Prop 2.5 and 2.6 implies that ηθ1([0, τ1]) ∪ ηθ2([0, τ2]) is local
(τi is some stopping time for ηθi) and the conditional mean of h on points of ηθ1([0, τ1]) ∪ ηθ2([0, τ2])
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with positive distance from boundary is the same when only given ηθ1([0, τ1]). Therefore we need to
show the intersection points x0 and y0 are not introducing singularities. This is done by the following
proposition which allows us to perform conformal transform as before. We set A(t) = ηθ1([0, t])∪ ηθ2 and
Ft = σ(ηθ1 : s ≤ t; ηθ2).

Proposition 4.1 ([MS12], Prop 6.1). Fix an FT -stopping time τ , and let h̃ be distributed according to
the conditional law of h given A(τ) and let C be any connected component of H\A(τ) which is to the
right of ηθ2 . Let ∂Ci,L(resp. ∂Ci,R) be the part of ∂C which is contained in the left (resp. right) side of
ηθi . Let x0 (resp. y0) be the point on ∂C which is visited first (resp. last) by ηθ2 and let φ : C → H be
a conformal transformation which takes x0 (resp. y0) to 0 (resp. ∞). Let gC be the function which is
harmonic in H with boundary values

−λ− θiχ on φ(∂Ci,R); λ+ θiχ on φ(∂Ci,L); b on φ((0,∞))

and set hC = gC ◦ φ− χ argφ′. (where the branch of argφ′ is chosen so that the boundary values of hC
agree with those of the conditional law of h given either ηθ1 or ηθ2 on a segment of ∂C which agrees with
either ηθ1 or ηθ2). Then the law of h̃|C is equal to that of the sum of a zero boundary GFF in C plus hC .
In particular, there is no singular contribution to hC coming from the intersection points of the paths.

The first step is justify the locality of A(τ), which is done by the following lemma via induction and
characterization of local sets:

Lemma 4.2 ([MS12], Lemma 6.2). Suppose that η1, ..., ηk are continuous paths such that for each 1 ≤
i ≤ k, we have that ηi([0, τ ]) is a local set for h for every ηi-stopping time τ and ηi is almost surely
determined by h. Suppose that τ1 is a stopping time for η1 and, for each 2 ≤ j ≤ k, inductively let τj
be a stopping time for the filtration F j

t generated by η1|[0,τ1], ..., ηj−1|[0,τj−1] and ηj(s) for s ≤ t. Then

∪ki=1ηi([0, τi]) is a local set for h.

We know that circle average of Gaussian Free Field at a given point evolves like a Brownian Motion
when the radius is parameterized by minus log. The next lemma could be viewed as an analog for ’circle
average’ of local sets.

Lemma 4.3 ([MS12], Lemma 6.4). Suppose that D ⊂ C is a non-trivial, simply connected domain. Let
h be a GFF on D and fix z ∈ D. Suppose that A is a local set for h such that D\A is simply connected
and the conformal radius C(z;D\A) is almost surely constant and positive. Then CA(z) is distributed as
a Gaussian random variable with mean C(z) and variance logC(z;D)− logC(z;D\A).

The key to this lemma is to find nonrandom ε > 0 with B(z, 2ε) ⊂ D\A (by Koebe 1/4 lemma) and
write h = h1 + h2 as Markov decomposition for local sets. hε(z)− E[hε(z)|σ(h1)] is equal to the average
of h2 on ∂B(z, ε) hence it has distribution N(0,− log ε+ logC(z;D\A)). Using harmonicity CA(z) is the
same as E[hε(z)|σ(h1)] and independent of hε(z) − E[hε(z)|σ(h1)] and the claimed distribution follows.
As a final ingredient for Prop 4.1, with this result along with the Kolmogorov extension lemma (the one
we used to construct the Brownian Motion) we can modify CA(t)(z) to be continuous in both t and z:

Proposition 4.4 ([MS12], Prop 6.5). Suppose that D ⊂ C is a non-trivial, simply connected domain. Let
h be a GFF on D and suppose that (Z(t) : t ≥ 0) is an increasing family of closed sets such that D\Z(t) is
simply connected for each t ≥ 0 and Z(τ) is local for h for every Z-stopping time τ . Suppose that z ∈ D is
such that C(z;D\Z(t)) is almost surely continuous and strictly decreasing in t. Then CZ(t)(z)− CZ(0)(z)
has a modification which is a Brownian motion when parameterized by logC(z;D\Z(0))−logC(z;D\Z(t))
up until the first time τ(Z) that Z(t) accumulates at z. Moreover, with S = (t, z) : C(z;D\Z(t)) > 0 we
have that the map (t, z) → CZ(t)(z) has a modification which is almost surely continuous.

To show Prop 4.1, using Prop 2.6 we may reduce to τ = ∞ case and consider only the conditional
mean near x0 and y0. To use the continuity given by Prop 4.4 we grow Ct to be the connected component
of H\A(t) containing C and let gt to be the function which is harmonic in H with boundary values given
by λ − θ2χ on R−, −λ − θ1χ on the image of the left side of ηθ1([0, t]) under φt, λ − θ1χ on the image
of the right side of ηθ1([0, t]) under φt, and b on φt(R+), where φt is the conformal map from Ct to H
taking x0 to 0, y0 to ∞ and a given point w0 on ∂C ∩ ηθ2 to −1. Then gt ◦ φt − χ argφ′

t has the same
boundary behavior as CA(t) except possibly at x0 (again applying Prop 2.6). Now we let t ↑ t0, the time
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ηθ1 hits ηθ2 at y0, gt converges locally uniformly to the function harmonic in H with boundary values
given by λ − θ2χ on R− and −λ − θ1χ on R+, φt converges locally uniformly to the unique conformal
transformation C → H which takes x0 to 0, y0 to ∞, and w0 to −1 and hence gt ◦φt−χ argφ′

t converges
uniformly locally to hC as t ↑ t0 and this gives regularity of hC near y0 since CA(t) is continuous in t and
z. The behavior hC near x0 is done by taking a counterflow line η′θ1 with a.s. left boundary ηθ1 and using
the continuity of Cη′θ1∪ηθ2 .

Besides the interaction of two flow lines, there are still many other scenarios where analogous result of
Prop 4.1, including intersection between one flow line and one angle-varying flow line, flow lines contained
in counterflow lines, etc. These are included in [MS12, p.117-p.122].

The next part is to argue that after conformal transform of such φ : C → H, the image φ(η) still has
continuous Loewner driving function. To do so we need to apply the following criterion:

Proposition 4.5 ([MS12], Prop 6.12). Suppose that T ∈ (0,∞]. Let η : [0, T ) → H be a continuous,
non-crossing curve with η(0) = 0. Assume η satisfies the following: for every t ∈ (0, T ),

(a) η((t, T )) is contained in the closure of the unbounded connected component of H\η((0, t)) and
(b) η−1(η([0, t]) ∪ R) has empty interior in (t, T ).
For each t > 0, let gt be the Loewner map taking the unbounded connected component of H\η((0, t))

to H. After reparameterization, (gt) solves the Loewner equation

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z

with continuous driving function Ut.

Now suppose we are in the setting of Figure 9 and we want to specify the conditional law of ηθ1 given
ηθ2 . We take a conformal transform φ taking the right part of H\ηθ2 to H. In previous part we justified
such conformal transform is similar as non-boundary intersecting case and now we need to show φ(ηθ1)
has continuous Loewner driving function. Since (at least when a, b is large) ηθ1 is a.s. a simple path lying
to the right of ηθ2 , the first condition applies for φ(ηθ1). The second condition can be checked by arguing
that if ηθ1 traces ηθ2 during time t ∈ I then considering the conditional mean of h given ηθ1 ∪ ηθ2 will
lead to a contradiction as explained in Figure 9. Hence we have

Lemma 4.6 ([MS12], Lemma 6.13). Let φ be a conformal map which takes the right connected component
of H\ηθ2 to H with φ(0) = 0 and φ(∞) = ∞. Then φ(ηθ1) (viewed as a path in H̄ from 0 to ∞) has a
continuous Loewner driving function.

Figure 9: Suppose ηθ1(t) is contained in ηθ2 for t ∈ [τ1, τ2]. Applying Prop 2.6, the conditional mean of h
given ηθ1 ∪ηθ2 on ηθ1((τ1, τ2)) is the same when only given ηθ1 or ηθ2 . This implies λ−θ1χ−χ ·winding =
λ− θ2χ− χ · winding, a contradiction.

Again similar to the previous part of this section, we can extend this result to a number of configura-
tions involving angle-varying flow lines and counterflow lines. These are explained in [MS12, p.124-p.127].

So far we have justified that conformal maps ψ taking regions formed by interacting non-boundary-
intersecting flow lines to H is well-defined and under ψ flow lines still have continuous Loewner driving
function. Therefore to find the conditional law of η it remains to show that ψ(η) is still an SLEκ(ρ)
process and is flow line of the corresponding field. This is done by the following lemma:
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Lemma 4.7 ([MS12], Lemma 7.1). Suppose we are in the setting of Figure 10. Conditional on ηθ1 , ηθ2
and η up until the first time that it hits ∂C, we have that ηψ ∼ SLEκ(ρ

L; ρR) where the weights ρR, ρL

are given by

ρR = −θ1χ
λ

− 2; ρL =
θ2χ

λ
− 2

and correspond to force points at 0+ and 0−, respectively. Moreover, ηψ is almost surely continuous with
lim
t→∞

ηψ(t) = ∞ and (ηψ, hψ) are coupled as in Theorem 1.1.

Also note here that the law of (ηψ, hψ) only depends on θ1, θ2 and hence independent of (ηθ1 , ηθ2).
To prove Lemma 4.7, note from previous discussion ηψ is well defined as a path in H with continuous

Loewner driving function Wt. Since η, ηθ1 , ηθ2 are both a.s. determined by h, using Lemma 4.2 η([0, τ ])∪
ηθ1 ∪ηθ2 is a local set for h. Given any open U ⊂ H, the events U ⊂ C and U ⊂ C\η([0, τ ]) is determined
by the projection hUc of h onto H⊥(U) thus on U ⊂ C the event ηψ ∩ ψ(U) = ∞ is a.s. determined
by (hψ)ψ(U)c and we can see that ηψ([0, τ ]) is local for hψ for every η-stopping time τ . Furthermore

in light of Prop 4.1, Cψηψ([0,t])(z) is the harmonic function in H\ηψ([0, t]) with boundary value given in

right panel of Figure 10. Note Cψηψ([0,t])(z) can be viewed as the conditional expectation of hψ under

Fψ
t = {ηψ([0, s]) : s ≤ t} until z is absorbed by ηψ and hence the martingale characterization in Theorem

2.1 is satisfied and ηψ ∼ SLEκ(ρ
L; ρR) from 0 to ∞ (as the segment of η in C starts with x0 and ends

with y0) with (ρL; ρR) given in the lemma. The continuity of ηψ follows from that of η.

Figure 10: Suppose h is GFF on H with boundary data above on the left panel, θ1 < 0 < θ2 and ηθi is
the flow line of h starting from 0 with angle θi, and a, b is large so they are non-boundary intersecting
and η is a.s. to the left of ηθ1 and to the right of ηθ2 . Then conditionally on ηθ1 , ηθ2 , the law of η in
every connected component C of H\(ηθ1 ∪ ηθ2) which lies between ηθ1 and ηθ2 is independently that of
an SLEκ(ρ

L; ρR) process with ρR = − θ1χ
λ − 2; ρL = θ2χ

λ − 2 and is almost surely determined by h|C .

Now ηψ is the flow line of hψ and it turned out that ηψ is a.s. determined by hψ [MS12, Lemma
7.2]. To argue this, set h′ to be the restriction of h to H\C̄ and Q = (ηθ1 , ηθ2 , h

′). C, ψ is determined
by Q and from Lemma 2.8 (Q,hψ) determines the whole GFF h (and hence ηψ). As the law of ηψ given
ηθ1 , ηθ2 does not depend on ηθ1 , ηθ2 , it remains to show the independence of ηψ and h′. This follows by
applying Prop 2.7 for a multiple times on the components of H\C̄.

Combining all the arguments above, letting θ1, θ2 range over θ1 < 0 < θ2, we obtain Theorems 1.2
and 1.3 for the case when all the force points are 0−, 0+:

Proposition 4.8 ([MS12], Prop 7.3). Suppose that η is an SLEκ(ρ
L; ρR) process in H with ρL >

−2, ρR > −2 with force points 0− and 0+. Then η is almost surely continuous and limt→∞ η(t) = ∞.
Moreover, in the coupling of η with a GFF h as in Theorem 1.1, η is almost surely determined by h.

So far in this subsection we have established the conditional law of flow lines given flow lines. Indeed
as we argued before, Lemma 4.7 could be extended to other scenarios with angle-varying flow lines and
counterflow lines and compute the corresponding conditional laws. We can also use this technique to
extend the monotonicity of flow lines in non-boundary-intersecting regime to flow lines with two force
points at 0−, 0+, i.e., in the setting of Figure 10 if θ1 < θ2 satisfy

θ1 > −λ+ b

χ
; θ2 <

λ+ a

χ

then ηθ1 a.s. lies to the right of ηθ2 and the conditional law of ηθ1 given ηθ2 is that of an SLEκ((a −
θ2χ)/λ− 1; (θ2 − θ1)χ/λ− 2) with force points 0−, 0+.
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We end this subsection with Theorem 1.2 for flow lines (i.e. κ ∈ [0, 4]) using Prop 4.8.

Lemma 4.9 ([MS12], Lemma 7.5). In the setting of Theorem 1.1 for κ ∈ [0, 4], the SLEκ(ρ
L; ρR) flow

line η of h is almost surely determined by h.

To establish this result, we may add force points at 0+ and 0− (with possibly zero weight) and assume
the force points are xk,L < ... < x1,L = 0− and 0+ = x1,R < ... < xl,R. The case k = l = 1 is done
and we want to show the k + 1, l case given the result for k, l. If the hull Kt of η([0, t]) never intersect
(−∞, xk+1,L] then we are finished since Prop 2.4 could be applied (recall the law of (h, η) after Girsanov
transform is mutually absolutely continuous to law of (h, η)). Let τ be the first time Kt accumulates
in (−∞, xk+1,L]. Then η([0, τ ]) is a.s. determined by h. Assume τ happens before the continuation
threshold and the rightmost point of Kτ is contained in [xj0,R, xj0+1,R). Apply the centered Loewner
map fτ , the conditional law of fτ (Kt) for t ≥ τ given K|[0,τ ] is an SLEκ(ρ̄

L; ρ̃R) process in H with

ρ̄L =

k+1∑
i=1

ρi,L; ρ̃1,R =

j0∑
i=1

ρi,R; ρ̃2,R = ρj0+1,R, ..., ρ̃l−j0+1,R = ρl,R.

and (fτ (Kt) : t ≥ τ) has force points x̄L = 0− and ˜x1,R = 0+ hence by induction is determined by
h ◦ fτ − χ arg f ′τ and the result follows.

4.2 Monotonicity, Merging and Crossing

In the previous part we have justified that conditioning on flow lines should give flow lines and proved
Theorem 1.2 for flow lines. This technique could definitely extend to flow lines growing from different
seeds, which is the aim of this subsection.

Now suppose x2 < x1 are on ∂H, h is a GFF on H with piecewise constant boundary data which
changes a finite number of times, fix angles θ1 < θ2 + π. We grow flow lines ηxiθi with angle θi from
xi. Let Ti be a stopping time for ηxiθi , i = 1, 2, such that ηxiθi |[0,Ti] is almost surely continuous. Suppose
τ̃2 ≤ T2 is a stopping time for Ft = σ(ηx2

θ2
(s) : s ≤ t; ηx1

θ1
([0, T1])) such that if ξ2 is the largest time before

τ̃2 such that ηx2

θ2
(τ̃2) is contained in the unbounded connected component of H\(ηx1

θ1
([0, T1])∪ τ̃2([0, ξ2])).

Also let ξ be first time t with ηx1

θ1
(t) ∈ τ̃2([0, τ̃2]). Then ηx2

θ2
|[τ̃2,T2] cannot first exit H\ηx1

θ1
([0, T1)) at

ηx1

θ1
([0, ξ1))[MS12, Lemma 7.6]. This argument is shown in Figure 11. Note the assumption on τ̃2 allows

us to apply Prop 2.6 to specify the boundary data.

Figure 11: Suppose h is GFF on H with piecewise constant boundary data changing finite times. Assume
x2 < x1 and θ1 < θ2 + π. We grow flow lines ηxiθi with angle θi from xi and take stopping times Ti such
that ηxiθi ([0, Ti]) is continuous. Take conformal mapping taking D, the unbounded connected component
of H\(ηx1

θ1
([0, T1]) ∪ τ̃2([0, τ̃2])) to the strip S with ψ(ηx2

θ2
(τ̃2)) = 0. The boundary data after taking ψ

can be computed via Prop 2.4 and is depicted on the right panel and it follows from Lemma 3.6 ψ(ηx2

θ2
)

cannot exit the strip on ψ(ηx1

θ1
([0, ξ1)).

Applying this argument for a collection of countable dense stopping times, we find that if ηx1

θ1
and

ηx2

θ2
intersect, then they must intersect in the chronological order (recall counterflow lines include (angle-

varying) flow lines in reverse chronological order).
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Lemma 4.10 ([MS12], Lemma 7.7). In the setting of Figure 11, let τ1 be the first time that ηx1

θ1
([0, T1])

intersects ηx2

θ2
([0, T2]) and τ2 be the first time that ηx2

θ2
[0, T2] intersects η

x1

θ1
[0, T1]. Let K = ηx1

θ1
[0, τ1∧T1]∪

ηx2

θ2
[0, τ2 ∧ T2]. Then K is local for h, and if for i = 1, 2, τi ≤ Ti, τi < ∞ then ηx1

θ1
(τ1) = ηx2

θ2
(τ2) with

ηxiθi |[τi,Ti] a.s. contained in the unbounded connected component of H\K.

Indeed, analogs of Prop 4.1 and Lemma 4.7 could be established in this setting.

Lemma 4.11 ([MS12], Lemma 7.8). In the setting of previous lemma, let D be the unbounded connected
component of H\K and φ : D → H be conformal transform fixing ∞ and g be the harmonic function on
H with boundary conditions given by −λ−θiχ (resp. λ−θiχ) on the φ image of the left (resp. right) side
of ηi|[0,τi∧Ti] for i = 1, 2 and otherwise the same as h ◦ φ−1. Then the conditional mean CK of h given
σ(K) restricted to D is g ◦ φ− χ argφ′. Moreover, τi < ∞ for i = 1, 2 then ηxiθi |[τi,Ti] is the flow line of
the conditional field h given σ(K) restricted to D with angle θi starting at w0 = ηx1

θ1
(τ1) = ηx2

θ2
(τ2).

Figure 12: As a continuation of Figure 11, as in the setting of Lemma 4.10, if the flow lines ηxiθi hit then
the first hittings at τi must happen at the same place w0 = ηx1

θ1
(τ1) = ηx2

θ2
(τ2), and the boundary data

of h|D given σ(K) is as depicted above. Moreover, ηxiθi |[τi,Ti] is the flow line of h|D starting at w0 with
angle θi.

We note that in Lemmas 4.10 and 4.11, if we take a stopping time σ2 for ηx2

θ2
such that ηx1

θ1
|[0,T1] lies

to the right of ηx2

θ2
|[0,σ2] and replace ηx2

θ2
|[0,T2] by η

x2

θ2
|[σ2,T2] when defining τ1 and τ2, the results still hold.

Hence we can extend the monotonicity for flow lines with two force points at 0−, 0+ to general cases:

Proposition 4.12 ([MS12], Prop 7.10). Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times, x1, x2 ∈ ∂H, and fix angles θ1, θ2. For i = 1, 2, let Ti be
a stopping time for ηxiθi such that ηxiθi ([0, Ti]) is almost surely continuous. If θ1 < θ2 and x1 ≥ x2, then
ηx1

θ1
([0, T1]) almost surely lies to the right of ηx2

θ2
([0, T2]).

Similar results could be established for angle-varying flow lines via induction on angle-change times.

Proposition 4.13 ([MS12], Prop 7.11). Suppose that h is a GFF on H with piecewise constant boundary
data which changes a finite number of times. Fix angles θ1, ..., θk and θ̃ > maxi θi. Assume

|θi − θj | <
2λ

χ
, ∀1 ≤ i, j ≤ k. (4.1)

Let η := ητ1...τkθ1...θk
be an angle varying flow line of h starting at 0 and η̃ be the flow line of h starting at

0 with angle θ̃. Assume that T , T̃ are stopping times for η, θ̃, respectively, such that η|[0,T ] , η̃|[0,T̃ ] are

both almost surely continuous. Then η|[0,T ] almost surely lies to the right of η̃|[0,T̃ ].

Note in previous section we assumed |θi − θj | ≤ π, which implies that η is a simple curve not hitting
itself; (4.1) is the relaxed condition requiring η to be non-selfcrossing.

Now we are ready to complete the proof Theorem 1.4 under the assumption that flow lines are
continuous.

Proposition 4.14 ([MS12], Prop 7.12). We continue the setting of Prop 4.12 except the assumption
θ1 < θ2. If θ2 < θ1 < θ2 + π, then ηx1

θ1
([0, T1]) a.s. crosses ηx2

θ2
([0, T2]) upon intersecting. After crossing

ηx1

θ1
([0, T1]) and η

x2

θ2
([0, T2]) may continue to bounce off of each other, but will never cross again. If θ1 = θ2

then ηx1

θ1
([0, T1]) and η

x2

θ2
([0, T2]) merges upon intersecting.
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Figure 13: The proof for Prop 4.12 is again an induction argument. Suppose that h is a GFF on H with
piecewise constant boundary data which changes a finite number of times, x1, x2 ∈ ∂H with x1 > x2, and
fix angles θ1 < θ2. Let y

k2
2 < .. < y12 ≤ y02 = x2 and x1 = y01 ≤ y11 < ... < yk11 such that outside (x2, x1) h

only changes at points listed above and the boundary data of h in [y12 , x2] is −λ − θ2χ and in [x1, y
1
1 ] is

λ− θ1χ. If k1, k2 ≤ 1 then the result is clear from Lemmas 4.10 and 4.11 and the monotonicity result for
flow lines with points at 0−, 0+. Now assume the result for k2 − 1 and k1, and let σ2 be the first time t
such that ηx2

θ2
([0, T2]) hits (−∞, yk22 ] then using absolute continuity result Prop 2.4 ηx2

θ2
([0, σ2 ∧ T2]) a.s.

lies to the left of ηx1

θ1
([0, T1]). Now let τ1 be the first time ηx1

θ1
([0, T1]) hits ηx2

θ2
([σ2, T2]) and τ2 be the

first time (after σ2) η
x2

θ2
([σ2, T2]) hits ηx1

θ1
([0, T1]). The τ1 = τ2 = ∞ case is clear and when τ1, τ2 < ∞

applying Lemmas 4.10 and 4.11 ηx1

θ1
([τ1, T1]) almost surely lies to the right of ηx2

θ2
([τ2, T2]) by induction

hypothesis.

Again let τ1 and τ2 defined as in Lemma 4.10, and applying Lemma 4.10 and Lemma 4.11, if τ1, τ2 <∞
then ηxiθi |[τi,Ti] is the flow line of h|D given σ(K) starting at w0 = ηx1

θ1
(τ1) = ηx2

θ2
(τ2) with angle θi. If

θ2 < θ1 < θ2 + π then the result follows from Prop 4.12 (flow lines from w0), and if θ1 = θ2 then the
merging is from Theorem 1.2 as flow lines are a.s. determined by the free field.

With Prop 4.14 we are able to compute the conditional law of ηx1

θ1
given ηx2

θ2
before ηx1

θ1
crosses ηx2

θ2
as we

did in Lemma 4.7. For instance, assume for simplicity the boundary value of h is simply a fixed constant
c, then ηxiθi is continuous and that conditional law is nothing but an SLEκ(ρ

1,L, ρ2,L; ρ1,R) process with

ρ1,L = −θ1χ+ c

λ
− 1; ρ1,L + ρ2,L =

(θ2 − θ1)χ

λ
− 2; ρ1,R =

θ1χ+ c

λ
− 1.

In particular, assume θ1χ+ c ∈ (−λ, λ). If θ1 ≥ θ2 then ρ1,L+ρ2,L ≤ −2 and ηx1

θ1
almost surely intersects

and crosses ηx2

θ2
.

4.3 Continuity for flow lines with many force points

In this part we establish the continuity of flow lines for general cases. Again by using Prop 2.4, we start
from the two-force-point case and use induction to extend to general settings. To complete the induction
step, we need to show that η is continuous when interacting with a force point or hitting the boundary
at the continuation threshold. For the two force point case, we work on the SLEκ(ρ

1,R, ρ2,R) case.
The first result is that for any SLEκ(ρ

L; ρR) curve η with ρL > −2 and ρR ∈ (−2, κ2 − 2) and force
point at 0+, 0−, η ∩ ∂H a.s. has zero Lebesgue measure [MS12, Lemma 7.16]. The proof is again based
on conditioning, i.e., we construct auxiliary flow lines SLEκ(ρ

L
n ; ρ

R
n ) such that the conditional law of ηθk

given ηθk−1
is SLEκ(ρ

L
n ; ρ

R) and n is large with ρRn ≥ κ
2 − 2. In this case we apply Lemma 3.6 trace back

so that the probability of η to hit a given x ∈ R is 0.
The next result given in [MS12, Lemma 7.17] is an extension of continuity result in Prop 4.8 to angle-

varying flow lines with force points at 0+ and 0−, i.e., if h is a GFF on H with boundary data −a on
(−∞, 0) and b on (0,∞), ητ1τ2θ1θ2

is an angle-varying flow line with |θ1 − θ2| < 2λ
χ (as in Prop 4.13) and

b+θiχ > −λ, −a+θiχ < λ (as in Prop 4.8 this corresponds to ρ > −2) then ητ1τ2θ1θ2
is a.s. continuous. The

proof is once again take auxiliary flow lines ηθ and ηθ̃ such that −λ−θ1χ = λ−θχ and −λ− θ̃χ = λ−θ1χ
(this implies that when we perform a conformal transform at τ1 no new force point other than 0− and 0+
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is created) and conditioning. An analog of the proof for Lemma 4.7 could be applied and the continuity
follows as the conditional law of ητ1τ2θ1θ2

after τ1 given ητ1τ2θ1θ2
([0, τ1]), ηθ and ηθ̃ is specified by SLEκ(ρ̃

L; ρ̃R)

with ρ̃L = θ1−θ2
λ , ρ̃R = − θ1−θ2

λ and force points 0−, 0+. (Thus Prop 4.8 is applicable.)
With the two results above we can establish continuity for the first case of two-force-point flow lines.

Lemma 4.15 ([MS12], Lemma 7.18). Suppose η is an SLEκ(ρ
1,R, ρ2,R) process in H with ρ1,R > −2,

ρ1,R + ρ2,R > −2 and force points at 0+, 1. Assume |ρ2,R| < 2 or ρ1,R < κ
2 − 2. Then η almost surely

does not hit 1 and is generated by a continuous curve.

When |ρ2,R| < 2 then we grow an angle-varying flow line ητ1τ2θ1θ2
with τ1 = 1,

θ1 = −λ
χ
(2 + ρ1,R); θ2 = −λ

χ
(2 + ρ1,R + ρ2,R)

with respect to GFF h on H given boundary data −a = −λ on (−∞, 0) and b > 0 on (0,∞) sufficiently
large. Also let η be the zero angle flow line of h starting from 0. Then ητ1τ2θ1θ2

and η are both continuous
and η a.s. lies to the left of ητ1τ2θ1θ2

by previous argument and θ1, θ2 < 0. Now take the left component of

H\ητ1τ2θ1θ2
and ψ : C → H conformal fixing 0 and ∞. Then from Section 4.1 ψ(η) is an SLEκ(ρ

1,R, ρ2,R)
process and continuity follows. The second part follows by taking 0 > θ > θ1, θ2 and conditioning on θθ
and ητ1τ2θ1θ2

. In this case the conditional law of η is reduced to single force point case and [MS12, Lemma
7.16] is applicable.

When it comes to ρ1,R < κ
2 − 2 case, we may assume ρ1,R + ρ2,R ≥ κ

2 − 2 (otherwise back to the
previous case). Using absolute continuity from Prop 2.4 we can compare with SLEκ(ρ

1,R, κ2 − 2− ρ1,R),
the first case we argued before as long as η a.s. does not hit [1,∞). To show this we take the flow line
η1 of the same h as η but starting from 1. If η hits [1,∞) then it has to merge with η1. However after
merging η evolves as SLEρ1,R+ρ2,R (in the corresponding unbounded component) and a.s. does not hit
the boundary, which leads to a contradiction.

Note that for ρ1,L > −2, if in the |ρ2,R| < 2 case we condition furthermore on both ητ1τ2θ1θ2
and ηθ̃ where

ηθ̃ is the flow line of h with angle (2+ρ1,L)λχ > 0 then we obtain the continuity for SLEκ(ρ
1,L; ρ1,R, ρ2,R)

(with left force point xL = 0−).
The following lemma completes the continuity of SLEκ(ρ

1,R, ρ2,R) process when ρ1,R > −2 and
ρ1,R + ρ2,R > −2.

Lemma 4.16 ([MS12], Lemma 7.20). Assume we are in the setting of Lemma 4.15 with ρ1,R ≥ κ
2 − 2

and ρ1,R + ρ2,R > −2. Then η almost surely does not hit 1 and is generated by a continuous curve.

Indeed we may assume ρ1,R + ρ2,R ∈ (−2, κ2 ) and using Prop 2.4 again η is a.s. continuous at
least before hitting [1,∞) at time τ . From Dubédat’s argument η a.s. accumulate at (1,∞), and after
the hitting time τ η evolves as SLE(ρ

1,R + ρ2,R) process in the unbounded connected component C of
H\η([0, τ ]) and is continuous.

The the following lemma deals with the case when the continuity threshold is possibly hit.

Lemma 4.17 ([MS12], Lemma 7.21). Suppose η is an SLEκ(ρ
1,R, ρ2,R) process in H with force points

0 < x1,R < x2,R <∞. If ρ1,R ≤ −2 or ρ1,R + ρ2,R ≤ −2, then η is a.s. a continuous curve.

The proof is again conditioning on auxiliary flow lines and is done in [MS12, p.149-p.151]. Note that
if ρ1,R+ρ2,R ≤ κ

2 −4 then we may take conformal map ψ with ψ(x2,R) = ∞ (say ψ(z) = 1
x2,R−z ) then the

boundary data on (−∞, 0) becomes lesser or equal to −(κ2 − 2)λ which corresponds to the well-behaved
case.

Now to prove Theorem 1.3 for κ ∈ (0, 4), assume the continuation threshold is not hit at the starting
point 0 and we may run η for a small amount of time (such that force point at 0− will not bother; This is
allowed by Prop 2.4 and the two force point case) and then apply a conformal mapping to make sure that
all the force points are located to the right of 0. Denote the location of force points by xR with |xR| = n.
n = 2 case is done and suppose that we want to prove the n+ 1 case from the result for |xR| = n case.

Suppose that there exists j0 ≥ 2 with
∑j0−1
i=1 ρi,R > κ

2 − 4 and
∑j0
i=1 ρ

i,R > κ
2 − 2 as the flow line

coupled with the GFF as in Figure 14. We apply a conformal transform ψ with η̃ = ψ(η), force points x̃
and Loewner driving function W̃t. Let g̃t be Lowener map with Ṽ i,qt = g̃t(x̃

i,q). We sample the stopping
times ξ̃j and ζ̃j as follows: let ξ̃1 be the first time W̃t = 0 and ζ̃1 be the first time t after ξ̃1 that η̃
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Figure 14: Let h be GFF on H with boundary data as the left side and η be the corresponding flow line
from 0. Let ψ : H → H the conformal map taking ∞ to −1, x1,R to 1 and xj0,R to ∞ while xR is taken

to x̃. Then it is possible for η̃ = ψ(η) to hit (−∞, x̃k̃,L) ∪ (x̃j0−1,R,+∞) or reach ∞ before hitting other
points of ∂H.

comes within distance 1
2 of either [Ṽ k̃,L0 , Ṽ 1,L

0 ] or [Ṽ 1,R
0 , Ṽ j0−1,R

0 ]. For k ≥ 2 let ξ̃k be the first time after

η̃k−1 such that W̃t = 0, and η̃k be the first time after ξ̃k such that gξ̃k(η̃(t)) comes within distance 1
2 of

either [Ṽ k̃,L
ξ̃k

, Ṽ 1,L

ξ̃k
] or [Ṽ 1,R

ξ̃k
, Ṽ j0−1,R

ξ̃k
]. Let τ̃ be the first time η̃ either hits (−∞, Ṽ 2,L

0 ], [Ṽ 2,R
0 ,∞), or the

continuation threshold, or escapes to ∞. We apply the following uniform estimate:

Lemma 4.18 ([MS12], Lemma 7.22). Suppose that η is an SLEκ(ρ
L; ρR) process in H starting from 0,

with k = |ρL|, l = |ρR|,
∑k
i=1 ρ

i,L,
∑l
i=1 ρ

i,R > κ
2 − 4 and |x1,L|, |x1,R| > 1. Fix M > 0 such that the

force points satisfy xi,R/x1,R ≤ M and xi,L/x1,L ≤ M for all i and the weights satisfy |ρi,q| ≤ M . Now
let E1 be the event that either limt→∞ η(t) = ∞ or η disconnects xk,L or xl,R, and let E2 be the event that

dist(η([0,∞)), [x1,R, xl,R]∪ [xk,L, x1,L]) ≥ 1
2 . Then there exists a ρ0 > 0 depending only on M ,

∑k
i=1 ρ

i,L

and
∑l
i=1 ρ

i,R such that P(E1 ∩ E2) ≥ ρ0 > 0.

Now let E = ∪k{τ̃ ≤ η̃k} and we can show that η̃|[0,τ̃ ] is continuous. Indeed η̃|[0,τ̃∧ξ̃k] is continuous as
a consequence of induction hypothesis and absolute continuity from Girsanov Theorem when k = 1. For
t ∈ (ξ̃k, ζ̃k] we may use Prop 2.4 to compare with the two-force point case, while for t ∈ (ζ̃k, ξ̃k+1] again we
can apply the Girsanov Theorem along with the induction hypothesis. Using monotonicity of force points
in SLEκ(ρ

L; ρR) process the assumption of Lemma 4.18 is satisfied and thus P(τ̃ < η̃k+1|τ̃ > η̃k) ≥ ρ0
and R(Ec) = 0 as desired.

There are two remaining cases. One easy case is,
∑j
i=1 ρ

i,R ≤ κ
2 −4 for all j = 1, ..., n+1. Applying a

conformal transform sending x1,R to ∞ and other xi,R to the left side of 0, we get the desired continuity
since now

∑j
i=1 ρ̃

i,L ≥ κ
2 − 2 for all j. The other case is that there exists a J with

∑j
i=1 ρ

i,R ≤ κ
2 − 4 for

all j = 1, ..., J − 1,
∑j
i=1 ρ

i,R ≥ κ
2 − 2 for all j = J +1, ..., n and

∑J
i=1 ρ

i,R ≥ κ
2 − 4 . In this case we grow

an auxiliary flow line at xj+1,R with angle π and the argument is the same as two force point case.
Now we have established the continuity of flow lines and indeed an induction argument can let us

extend to angle-varying flow lines (with angles satisfying non-selfcrossing condition (4.1)).

4.4 The counterflow lines

We have proved Theorem 1.2 and Theorem 1.3 for flow lines. We can modify these proofs and use
the duality argument developed in Section 3.2 and 3.3 (plus conditioning argument) to extend to the
counterflow line case. We only sketch some examples with two force points and the detailed statements
could be found in [MS12, p.154-p.162]. Again as we are using duality, sometimes it is more convenient
to consider the strip S other than H.

The first lemma is the analog of Prop 4.8 for counterflow lines.

Lemma 4.19 ([MS12], Lemma 7.24). Suppose that ρL > −2 and ρR > κ′

2 − 4. In the coupling of an
SLEκ′(ρL; ρR) process η′0 with a GFF h0 as in Theorem 1.1, η′0 is a.s. determined by h0. Moreover, η′0
is a.s. a continuous path.

Suppose we are in the setting of Figure 15. Then η′ a.s. lies between ηθ1 and ηθ2 (Assume a, b, a′, b′

are large and this follows from monotonicity in Section 3.2). The first thing to observe is that for
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Figure 15: Let h be GFF on the strip S with boundary data as the left side and ηθi be the corresponding
flow line from 0 with angle θi. Assume θ1 < −π

2 and θ2 >
π
2 , which implies η′ a.s. intersects C and

conditioning makes sense. Take C to be any connected component of S\(ηθ1 ∪ ηθ2). Fix a stopping time
τ ′ for Ft : σ(η′(s) : s ≤ t, ηθ1 , ηθ2) such that η′(τ ′) ∈ C almost surely. Let ψ be the conformal map from
the connected component of C\η′([0, τ ′]) containing x0 to S taking η′(τ) to z0 and x0 to 0. Then the
boundary data of h ◦ψ−1 −χ arg(ψ−1)′ is depicted on the right side and the conditional law of η′ viewed
as a path in C is an SLE′

κ((1/2 + θ2/π)(κ
′/2− 2)− 2; (1/2− θ1/π)(κ

′/2− 2)− 2) process.

A(t) = ηθ1 ∪ η′([0, t]) ∪ ηθ2 , A(τ) is a local set for h. The arguments in Section 4.1 is applicable, i.e.,
the conformal transform ψ taking the connected component of C\η′([0, τ ′]) containing x0 to S is well
defined with boundary data specified on the right panel. Using the martingale characterization Theorem
2.1 (the corresponding ht is the conditional expectation of h given Ft) and the continuity from 4.4 gives
the conditional law of η′ given ηθ1 and ηθ2 in each bounded component of S\ is an SLE′

κ(ρ
L; ρR) process

with

ρL = (
1

2
+
θ2
π
)(
κ′

2
− 2)− 2; ρR = (

1

2
− θ1
π
)(
κ′

2
− 2)− 2.

The continuity follows since we may take a, b large where absolute continuity implies η′ is a.s. continuous,
and we let θ1 < −π

2 , θ2 >
π
2 vary. This law is independent of ηθ1 , ηθ2 and we may furthermore argue as

in Prop 4.8 to find η′ψ is a.s. determined by hψ.
If we replace ηθ1 and ηθ2 by suitable angle-varying flow lines then we may extend Lemma 4.19 to

ρL, ρR ∈ (−2, κ
′

2 − 4). This is done by [MS12, Lemma 7.25]. Theorem 1.2 for counterflow lines now
follows with essentially the same proof for flow lines in Lemma 4.9.

The next result is an analog of Lemma 4.15. Here for counterflow lines we are rotated 180 degrees
with ’L’, ’R’ swapped.

Lemma 4.20 ([MS12], Lemma 7.26). Suppose η′0 is an SLEκ′(ρ1,R, ρ2,R) process in H with ρ1,R > −2,

ρ1,R + ρ2,R > −2 and force points at −1,−2. Assume |ρ2,R| < κ′

2 . Then η′0 is almost surely a continuous
curve.

To prove this lemma, we consider a GFF h on the strip S with boundary data as in Figure 15 and
grow an angle-varying flow line ητ1τ2θ1θ2

with τ1 = 1 and |θ1 − θ2| < 2λ
χ (non-selfcrossing). When θ1, θ2 <

π
2

ητ1τ2θ1θ2
a.s. stays to the right of the left boundary of η′ and the conditional law of η′ given ητ1τ2θ1θ2

viewed as

a path in the left connected component of S\ητ1τ2θ1θ2
is that of an SLEκ′(ρ1,R, ρ2,R) process with

ρ1,R = (
1

2
− θ2
π
)(
κ′

2
− 2)− 2; ρ1,R + ρ2,R = (

1

2
− θ1
π
)(
κ′

2
− 2)− 2.

Therefore the result follows from the continuity of η′ and varying θ1, θ2.
Indeed the continuity for general two-force-point counterflow lines could be established in a similar

manner and we may as well deduce Theorem 1.3 for κ′ > 4 from two-force-point case.
Now if we go back to the light cone construction in Prop 3.11, all the essential inputs are:
1. The angle-varying flow line ησ1...σk

ϕ1...ϕk
and the counterflow line η′ are a.s. continuous. This implies

that we could sample a countably dense subset of stopping times and invoke continuity such that we need
not worry uncountablility issues;

2. η′ a.s. exits S at 0 and hence by applying a conformal map the angle-varying flow line given
ϕi ∈ [−π

2 ,
π
2 ] is included in η′ in reverse chronological order;

21



3. ησ1...σk
ϕ1...ϕk

almost surely hits the left (resp. right) side of η′([0, τ ′]) or the side of ∂US to the left (resp.
right) of z0 when θl =

π
2 (resp. θl = −π

2 ). From this if we take a conformal map taking S\η′([0, τ ′]) → H
with η′(τ) taken to ∞ then we are able to grow flow lines with angles alternating in −π

2 and π
2 and a.s.

unbounded, indicating that we can construct ησ1...σk
ϕ1...ϕk

with ϕi ∈ {−π
2 ,

π
2 } including η′(τ ′).

For the general setting all the ingredients 1-3 are able to fill in and thus Theorem 1.5 follows.
If η′ hits some boundary point z almost surely (for instance in Dubédat’s lemma) we may as well

condition on the segment of η′ before hitting z and apply a conformal transform to find the conditional
law of η′ after hitting z. This is done in [MS12, Prop 7.31] using similar techniques as in Lemma 4.19.

As a final epilogue, recall that in contrast to angle-varying flow lines, the fan F is the points accessible
by flow lines starting from 0 with some fixed angle in [−π

2 ,
π
2 ]. For some given point in the counterflow

line η′(τ ′), η′(τ ′) a.s. belongs to the light cone and a.s. does not belong to the fan.

Proposition 4.21 ([MS12], Prop 7.33). Suppose that we have a GFF h on the strip S with boundary
value as in the left panel of Figure 15 with a, b ≥ λ′ and a′, b′ ≥ λ′ + πχ. Let τ ′ be any η′ stopping
time such that η′(τ ′) ̸= 0 almost surely. Then we have that P(η′ ∈ F) = 0. In particular (as the fan is
contained in η′) F a.s. has Lebesgue measure 0.

Figure 16: Take a conformal map from S\η′([0, τ ′]) back to S fixing 0 and taking η′(τ ′) to w0 ∈ ∂US.
The boundary condition after taking ψ is specified on the left panel. We grow flow lines η̃w0

θi
with angle

θi for i = 1, ..., n. We are able to choose θi such that the flow lines η̃w0

θi
almost surely hit its neighbors

(when i = 1, n it hits ∂US) for infinite number of times in some neighborhood B(w0, r). In this setting,
for a flow line η̃θ from 0 with angle θ to hit w0, it must cross an infinite number of pockets formed by
η̃w0

θi
. However from Theorem 1.4 each flow line η̃w0

θi
could only be crossed at most once by η̃θ, indicates

η̃θ hits at most n+ 1 pockets and hence cannot hit w0.

As explained in Figure 16, we take a conformal map from S\η′([0, τ ′]) back to S fixing 0 and taking
η′(τ ′) to w0 ∈ ∂US. This brings us to a similar setting in [MS12, Lemma 7.16] as it remains to show that
for any flow line η̃θ from 0 with angle θ, it will almost surely not hit w0. The main idea of the proof is
explained as in Figure 16. The infinite times hitting comes from infinite hitting of 0 in Bessel processes
with dimension in (1, 2). We take r > 0 such that ∂B(w0, r) is contained in ψ(η′([0, τ ′])) then the law of
hψ|∂B(w0,r) is absolutely continuous w.r.t. that of the field with boundary data −λ′ on ∂US to the left
of w0 and λ on ∂US to the right of w0, and the infinite number of hitting follows from the result that for
any SLEκ(ρ

L, ρR) process η with ρL, ρR ∈ (−2, κ2 − 2) and force points at 0+ and 0−, η([0, t]) is hitting
both (−∞, 0) and (0,∞) for a infinite number of times.
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