
REAL REPRESENTATIONS

BJORN POONEN

The goal of these notes is to explain the classification of real representations of a finite
group. Throughout, G is a finite group, W is a R-vector space or RG-module, and V is a
C-vector space or CG-module (except in Section 2, where V is over any field). Vector spaces
and representations are assumed to be finite-dimensional.

1. Vector spaces over R and C

1.1. Constructions. To get from Rn to Cn, we can tensor with C. In a more coordinate-free
manner, if W is an R-vector space, then its complexification WC := W ⊗R C is a C-vector
space. We can view W as an R-subspace of WC by identifying each w ∈ W with w⊗ 1 ∈ WC.
Then an R-basis of W is also a C-basis of WC. In particular, WC has the same dimension as
W (but is a vector space over a different field).

Conversely, we can view Cn as R2n if we forget how to multiply by complex scalars that
are not real. In a more coordinate-free manner, if V is a C-vector space, then its restriction
of scalars is the R-vector space RV with the same underlying abelian group but with only
scalar multiplication by real numbers. If v1, . . . , vn is a C-basis of V , then v1, iv1, . . . , vn, ivn
is an R-basis of RV . In particular, dim (RV ) = 2 dimV .

Also, if V is a C-vector space, then the complex conjugate vector space V has the same
underlying group but a new scalar multiplication · defined by λ · v := λ̄v, where λ̄v is defined
using the original scalar multiplication.

Complexification and restriction of scalars are not inverse constructions. Instead:

Proposition 1.1 (Complexification and restriction of scalars).

(a) If V is a C-vector space, then the map

(RV )C −→ V ⊕ V

v ⊗ c 7−→ (cv, c̄v)

is an isomorphism of C-vector spaces.
(b) If W is an R-vector space, then

R(WC) ≃ W ⊕W.

Proof.
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(a) The map is C-linear, by definition of the scalar multiplication on V . It sends x⊗ 1+ y⊗ i

to (x+ iy, x− iy), and one can recover x, y ∈ V uniquely from (x+ iy, x− iy), so the
map is an isomorphism.

(b) We have R(W ⊗R C) = W ⊗R (R⊕ iR) = W ⊕ iW ≃ W ⊕W . □

1.2. Linear maps between complexifications. Tensoring Mm,n(R) with C yields Mm,n(C).
The coordinate-free version of this is

Proposition 1.2. If W and X are R-vector spaces, then

HomR(W,X)⊗R C ≃ HomC(WC, XC).

Corollary 1.3. If W is an R-vector space, then

EndR(W )⊗R C ≃ EndC(WC).

1.3. Descent theory. Let V and X be C-vector spaces. A homomorphism J : V → X of
abelian groups is called C-antilinear if J(λv) = λ̄ J(v) for all λ ∈ C and v ∈ V ; to give such a
J is equivalent to giving a C-linear map V → X.

To recover Rn from its complexifcation Cn one takes the vectors fixed by coordinate-wise
complex conjugation. More generally, given a C-vector space V , finding a R-vector space W

such that WC ≃ V is equivalent to finding a “complex conjugation” on V ; more precisely:

Proposition 1.4. There is an equivalence of categories

{R-vector spaces} ↔ {C-vector spaces equipped with C-antilinear J : V → V such that J2 = 1}

W 7→ (WC, 1W ⊗ (complex conjugation))

V J := {v ∈ V : Jv = v} ←[ (V, J).

Sketch of proof. The only tricky part is to show that given (V, J), the map V J ⊗R C → V

sending v ⊗ c to cv is an isomorphism. For this, one can write down the inverse: map v ∈ V

to 1
2
(v + Jv)⊗ 1 + 1

2i
(v − Jv)⊗ i ∈ V J ⊗R C. □

Remark 1.5. More generally, given any Galois extension of fields L/k, an action of Gal(L/k)

on an L-vector space V is called semilinear if scalar multiplication is compatible with the
actions of Gal(L/k) on L and V , that is, if g(ℓv) = (gℓ)(gv) for all g ∈ Gal(L/k), ℓ ∈ L and
v ∈ V . Then the category of k-vector spaces is equivalent to the category of L-vector spaces
equipped with a semilinear Gal(L/k)-action. This is called descent, since it specifies what
extra structure is needed on an L-vector space to make it “descend” to a k-vector space.

1.4. Representations. All the constructions and propositions above are natural. In particu-
lar, if G acts on W , then it acts on any of the spaces constructed from W , and likewise for
V . In particular,
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• If W is an RG-module, then WC is a CG-module, and the matrix of g ∈ G acting on
W with respect to a basis is the same as the matrix of g acting on WC, so χWC = χW .
• If V is a CG-module, then V is another CG-module, and χV = χV .
• If V is a CG-module, then RV is an RG-module. Taking the characters of both sides

in Proposition 1.1 shows that χRV = χV + χV .

A C-representation V of G is said to be realizable over R if V ≃ WC for some R-representation
W of G. This implies that χV is real-valued, but we will see that the converse can fail.

2. Pairings

2.1. Bilinear forms. Let V be a (finite-dimensional) vector space over any field k. A
function B : V × V → k is bi-additive if it is an additive homomorphism in each argument
when the other is fixed; that is, B(v1 + v2, w) = B(v1, w) + B(v2, w) for all v1, v2, w ∈ V ,
and B(v, w1 + w2) = B(v, w1) + B(v, w2) for all v, w1, w2 ∈ V . The left kernel of B is
{v ∈ V : B(v, w) = 0 for all w ∈ V }, and the right kernel is defined similarly.

A function B : V × V → k is a bilinear form (or bilinear pairing) if it is k-linear in each
argument; that is, B is bi-additive and B(λv, w) = λB(v, w) and B(v, λw) = λB(v, w) for
all λ ∈ k and v, w ∈ V . We have

{bilinear forms on V } ≃ Hom(V ⊗ V, k) ≃ (V ⊗ V )∗ ≃ V ∗ ⊗ V ∗ ≃ Hom(V, V ∗).

(here Hom is Homk, and ⊗ is ⊗k).
Let B be a bilinear form.

• Call B symmetric if B(v, w) = B(w, v) for all v, w ∈ V .
• Call B skew-symmetric if B(v, w) = −B(w, v) for all v, w ∈ V .
• Call B alternating if B(v, v) = 0 for all v ∈ V .

If char k ̸= 2, then alternating and skew-symmetric are equivalent. (If char k = 2, then
alternating is the stronger and better-behaved condition.) The map sending (x, y) 7→ B(x, y)

to (x, y) 7→ B(y, x) is a linear automorphism of order 2 of the space of bilinear forms, so if
char k ̸= 2, it decomposes the space into +1 and −1 eigenspaces:

{bilinear forms} = {symmetric bilinear forms} ⊕ {skew-symmetric bilinear forms},

which is the same as the decomposition

(V ⊗ V )∗ ≃ (Sym2 V )∗ ⊕ (
∧2 V )∗.

2.2. Sesquilinear and hermitian forms. Now let V be a C-vector space.

• A sesquilinear form (or sesquilinear pairing) is a bi-additive pairing ( , ) that is C-linear
in the first variable and C-antilinear in the second variable; that is (λv, w) = λ(v, w)
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and (v, λw) = λ̄(v, w) for all λ ∈ C and v, w ∈ V . (The prefix “sesqui” means 11
2
: the

form is only R-linear in the second argument.)
• A hermitian form (or hermitian pairing) is a bi-additive pairing ( , ) such that (λv, w) =
λ(v, w) and (w, v) = (v, w) for all λ ∈ C and v, w ∈ V .

A hermitian pairing is sesquilinear. We have

{sesquilinear forms on V } ≃ Hom(V ⊗ V ,C) ≃ (V ⊗ V )∗ ≃ V ∗ ⊗ V
∗ ≃ Hom(V , V ∗).

2.3. Nondegenerate and positive definite forms. A bilinear form (or sesquilinear form)
is called nondegenerate if its left kernel is 0, or equivalently its right kernel is 0, or equivalently
the associated homomorphism V → V ∗ (respectively, V → V ∗) is an isomorphism.

Suppose that ( , ) is either a bilinear form on an R-vector space or a hermitian form on
a C-vector space. Then (v, v) ∈ R for all v. Call ( , ) positive definite if (v, v) > 0 for all
nonzero v ∈ V . Positive definite forms are automatically nondegenerate.

3. Characters of symmetric and alternating squares

Let V be an n-dimensional C-representation of G. If g ∈ G acts on V with eigenvalues
λ1, . . . , λn (listed with multiplicity), then the eigenvalues of g acting on associated vector
spaces are as follows:

Representation Dimension Eigenvalues
V n λ1, . . . , λn

V n λ̄1, . . . , λ̄n

V ∗ n λ̄1, . . . , λ̄n

V ⊗ V n2 λiλj for all (i, j)
Sym2 V n(n+ 1)/2 λiλj for i ≤ j∧2 V n(n− 1)/2 λiλj for i < j

These are obvious if V has a basis of eigenvectors (i.e., ρ(g) is diagonalizable). In general, we
have the Jordan decomposition ρ(g) = d+ n, where d is diagonalizable and n is nilpotent,
and dn = nd; then d and n induce commuting diagonalizable endomorphisms and nilpotent
endomorphisms of each of the other representations, so the eigenvalues of g are the same as
the eigenvalues of d on each of them.

4. Classification of division algebras over R

Lemma 4.1. The only finite-dimensional field extensions of R are R and C.

Proof. The fundamental theorem of algebra states that C is algebraically closed, so every
finite extension of R embeds in C. Since [C : R] = 2, there is no room for other fields in
between. □
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Theorem 4.2 (Frobenius 1877). The only finite-dimensional (associative) division algebras
over R are R, C, and H.

Proof. Let D be a finite-dimensional (associative) division algebras over R not equal to R
or C. For any d ∈ D − R, the R-subalgebra R[d] ⊆ D generated by d is a commutative
domain of finite dimension over a field, so it is a field extension of finite degree over R, hence
a copy of C. Fix one such copy, and let i be a

√
−1 in it. View D as a left C-vector space.

Conjugation by i on D (the map x 7→ ixi−1) is a C-linear automorphism of D, and it is of
order 2 since conjugation by i2 = −1 is the identity, so it decomposes D into +1 and −1
eigenspaces D+ and D−. Explicitly,

D+ = {x : ixi−1 = x} = {x that commute with i} ⊇ C

D− = {x : ixi−1 = −x}.

If x ∈ D+, then C[x] is commutative, hence a finite field extension of C, but C is algebraically
closed, so C[x] = C, so x ∈ C. Thus D+ = C.

Since D ̸= C, we have D− ≠ 0. Choose j ∈ D− such that j ̸= 0. Right multiplication by j

defines a C-linear map D+ → D− (if d ∈ D+, then i(dj)i−1 = (idi−1)(iji−1) = d(−j) = −dj,
so dj ∈ D−), and it is injective since D is a division algebra. Thus dimC D

− ≤ dimC D
+ = 1.

Hence D− = Cj. Since R[j] is another copy of C, we have j2 ∈ R + Rj. On the other
hand j2 ∈ D+ = C. Thus j2 ∈ (R+ Rj) ∩ C, which is R, since R+ Rj and C are different
2-dimensional subspaces in D. Also, j2 ̸= 0.

If j2 > 0, then j2 = r2 for some r ∈ R, so (j+r)(j−r) = 0, so j = ±r ∈ R, a contradiction
since D− ∩ R = 0.

Thus j2 < 0. Scale j to assume that j2 = −1. Then D = C + Cj = R + Ri + Rj + Rij
with i2 = −1, j2 = −1, and ij = −ji, so D ≃ H. □

If D is an R-algebra, then D ⊗R C is a C-algebra.

Proposition 4.3. We have

R⊗R C ≃ C

C⊗R C ≃ C× C

H⊗R C ≃ M2(C).

Proof. The first isomorphism is a special case of the general isomorphism A⊗A B ≃ B.
The map C⊗R C→ C× C sending a⊗ b to (ab, ab̄) is an isomorphism by Proposition 1.1,

and it respects multiplication.
There is a C-algebra homomorphism H⊗R C→ M2(C). sending h⊗ 1 for each h ∈ H to

the linear endomorphism x 7→ hx of the 2-dimensional right C-vector space H with basis 1, j.
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Explicitly, we have

1⊗ 1 7−→

(
1 0

0 1

)

i⊗ 1 7−→

(
i 0

0 −i

)

j ⊗ 1 7−→

(
0 −1
1 0

)

ij ⊗ 1 7−→

(
0 −i
−i 0

)
.

For example, to get the image of i⊗ 1, observe that

i1 = 1 · i+ j · 0

ij = 1 · 0 + j · (−i).

The four matrices on the right are linearly independent over C, so H⊗R C→ M2(C) is an
isomorphism of 4-dimensional C-algebras. □

5. Real and complex representations

Let G be a finite group. Let W be an irreducible R-representation of G. Let V be one
irreducible C-subrepresentation of WC. The following table gives facts about this situation.

D EndG(WC) WC RV dimR W dimC V
V realiz.
over R?

V ≃ V ?
χV real-valued?

V ≃ V ∗?
∃ G-inv. B?

FS(V )

R C V W ⊕W n n YES YES
YES
(symmetric)

1

C C× C V ⊕ V W 2n n NO NO NO 0

H M2(C) V ⊕ V W 4n 2n NO YES
YES
(skew-sym.)

−1

The columns are as follows:

• First, D := EndG W . By Schur’s lemma, D is a division algebra over R, so D is R, C,
or H. Accordingly, V is said to be of real type, complex type, or quaternionic type. Let
n be the dimension of W as a right D-vector space.
• We have EndG(WC) ≃ (EndGW ) ⊗R C = D ⊗R C by taking G-invariants in Corol-

lary 1.3.
• The WC column gives the decomposition of WC into irreducible C-representations.
• The RV column gives the decomposition of RV into irreducible R-representations.
• The dimRW column gives dimR W = [D : R] dimD W = [D : R]n.
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• The dimC V column entries follow from the WC column and the column giving
dimR W = dimC(WC).
• Is V realizable over R? That is, is V ≃ XC for some R-representation X of G?
• Is V ≃ V as a C-representation of G? Equivalently, is χV = χV ? That is, is it true

that χV (g) ∈ R for all g ∈ G?
• Is V ≃ V ∗ as a C-representation of G? Since

Hom(V, V ∗) ≃ {bilinear forms on V }

as a C-representation of G, and since isomorphisms correspond to nondegenerate
bilinear forms, taking G-invariants shows that this question is the same as asking
whether there exists a nondegenerate G-invariant bilinear form B : V × V → C. We
will show that in the cases where B exists, B is either symmetric or skew-symmetric.
• The Frobenius–Schur indicator of a C-representation V of G is defined by

FS(V ) :=
1

#G

∑
g∈G

χV (g
2).

Proof that the table is correct. Some columns have already been checked above. Let us now
verify the rest.

WC column: In general, if V1, . . . , Vr are the irreducible C-representations of G, and
X =

⊕r
i=1 niVi, then EndGX =

∏r
i=1Mni

(C). Thus the EndG(WC) column implies the WC

column, except that in the C case, we deduce only that WC ≃ V ⊕ V ′ for some distinct
C-representations V and V ′. In that case, W has an action of D = C, and hence W = RW for
some C-vector space W; then WC = (RW)C ≃W+W, but then the Jordan–Hölder theorem
implies that V, V ′ must be W,W in some order, so V ′ ≃ V .
χV real-valued column: In the R case, χV = χWC = χW , which is real-valued. In the C

case, V ̸≃ V , so χV is not real-valued. In the H case, 2χV = χV⊕V = χWC = χW , so χV is
real-valued.

RV column: Since V is a subrepresentation of WC, the restriction of scalars RV is a
subrepresentation of R(WC), which is isomorphic to W ⊕W by Proposition 1.1(b). Thus RV

is a direct sum of copies of W . If D = R, then V = WC, so RV ≃ W ⊕W . If D is C or H,
then V is half the dimension of WC, so V ≃ W .

Realizability over R: In the R case, V ≃ WC, so V is realizable by definition. In the C
and H cases, if V ≃ XC for some R-representation X, then W ≃ RV ≃ R(XC) ≃ X ⊕X by
Proposition 1.1(b), contradicting the irreducibility of W .

Nondegenerate G-invariant bilinear form: The averaging argument shows that there exists
a positive definite G-invariant hermitian form ( , ) on V . Fix one; it defines an isomorphism
V → V ∗. Thus V ≃ V if and only if V ≃ V ∗, so these two columns have the same YES/NO
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answers. By Section 2.1, we have isomorphisms

Hom(V, V ∗) ≃ {symmetric bilinear forms} ⊕ {skew-symmetric bilinear forms}.

Taking G-invariants yields

HomG(V, V
∗) ≃ {G-invariant symm. bilinear forms}⊕{G-invariant skew-symm. bilinear forms}.

Suppose that V ≃ V ∗. Then HomG(V, V
∗) ≃ EndG V ≃ C by Schur’s lemma, so there exists

a unique nondegenerate G-invariant bilinear form B up to a scalar in C×, and it is either
symmetric or skew-symmetric. Since B is nondegenerate, the C-linear functional (−, w) equals
B(−, Jw) for a unique Jw ∈ V . Then J := V → V is C-antilinear, and it is an isomorphism
since ( , ) too is nondegenerate. Now J2 is a C-linear automorphism of the representation
V , so by Schur’s lemma, J2 is multiplication-by-r for some r ∈ C×. Also by Schur’s lemma,
every other C-antilinear G-equivariant isomorphism is cJ for some c ∈ C, and replacing J by
cJ changes r to cc̄r (Proof: For v ∈ V , if JJv = rv, then cJ(cJ(v)) = cc̄J(J(v)) = cc̄rv).

• If B is symmetric, then for any choice of nonzero v ∈ V ,

(Jv, Jv) = B(Jv, J2v) = B(Jv, rv) = rB(Jv, v) = rB(v, Jv) = r(v, v)

but ( , ) is positive definite, so r is a positive real number.
• If B is skew-symmetric, the same calculation shows that r is a negative real number.

Finally, the following are equivalent:

• V is realizable over R
• We can choose c ∈ C× so that (cJ)2 = 1.
• We can choose c ∈ C× so that cc̄r = 1.
• r is positive.
• B is symmetric.

Frobenius–Schur indicator : We have

FS(V ) =
1

#G

∑
g

χV ∗(g2)

=
1

#G

∑
g

(
χ(Sym2 V )∗(g)− χ

(∧2V )∗(g)
)

(by the formulas in Section 3)

= (C, (Sym2 V )∗)− (C, (
∧2 V )∗)

= dim{G-invariant symm. bilinear forms} − dim{G-invariant skew-symm. bilinear forms}

=


1− 0

0− 0

0− 1

=


1, if D = R;

0, if D = C;

−1, if D = H.

□
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Proposition 5.1. Every irreducible C-representation V of G occurs in WC for a unique
irreducible R-representation W of G.

Proof. By Proposition 1.1(a), V occurs in (RV )C, so V occurs in WC for some irreducible
R-subrepresentation W of RV . If W is any irreducible R-representation such that V occurs
in WC, then the RV column of the table shows that W equals the unique irreducible R-
subrepresentation of RV , so W is uniquely determined by V . □

Theorem 5.2 (Frobenius–Schur). We have

#{g ∈ G : g2 = 1} =
∑
V

(dimV ) FS(V ),

where V ranges over the irreducible C-representations of G up to isomorphism.

Proof. The character of the regular representation CG is given by

χ(g) =

#G, if g = 1;

0, if g ̸= 1.

Thus

#{g ∈ G : g2 = 1} = 1

#G

∑
g

χ(g2)

= FS(CG)

=
∑
V

(dimV ) FS(V ),

since CG ≃
⊕

V (dimV )V . □

Remark 5.3. Everything above for finite groups G holds also for compact groups G. The only
changes required are:

• All representations should be given by continuous homomorphisms.
• Averages over G (such as in the definition of the Frobenius–Schur indicator) should

be defined as integrals with respect to normalized Haar measure.
• Theorem 5.2 might fail or even fail to make sense.

Remark 5.4. Let k be a field such that char k ∤ #G. Let X1, . . . , Xr be the irreducible
k-representations of G. Let Di = EndGXi. Let ni be the dimension of Xi as a right Di-vector
space. Then

kG ≃
r∏

i=1

EndDi
Xi

≃
r∏

i=1

Mni
(Di).
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In particular,
RG ≃

∏
Mdi(R)×

∏
Mej(C)×

∏
Mfk(H)

for some positive integers di, ej, fk, and tensoring with C yields

CG ≃
∏

Mdi(C)×
∏(

Mej(C)×Mej(C)
)
×
∏

M2fk(C).

6. Some conclusions to remember

• Every irreducible C-representation V of G occurs in WC for a unique irreducible
R-representation of G.
• The representation V is said to be of real, complex, or quaternionic type according to

whether EndGW is R, C, or H.
• The type can be determined from the character χV by computing the Frobenius–Schur

indicator.
• The representation V is realizable over R if and only if V is of real type, which

happens if and only if there exists a nondegenerate G-invariant symmetric bilinear
form B : V × V → C.
• The representation V is of complex type if and only if V ̸≃ V ∗; in this case, there

does not exist any nondegenerate G-invariant bilinear form B : V × V → C.
• The representation V is of quaternionic type if and only if there exists a nondegenerate
G-invariant skew-symmetric bilinear form B : V × V → C.
• If V is realizable over R, then χV is real-valued. The converse is not true in general

(it fails exactly in the quaternionic case).
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