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Topics References Date
Introduction, heuristics, uniqueness [C, §1] Jan 3
Gradient flow formulation, [C, §2-3] Jan 5
parabolic maximum principle

Heat kernel [C, §5.1-5.2] Jan 7
Green’s function, [C, §5.3-5.4| Jan 10
parabolic mean value inequality

Central limit theorem, [C, §6.1] Jan 12
Holder inequality

Shannon entropy, [C, §9.1] Jan 14
Fisher information,

Perelman’s W-functional

Logarithmic Sobolev inequality, [C, §9.2] Jan 17
Renyi entropy

Differential Harnack inequality [C, §10.1] Jan 19
Matrix maximum principle, [C, §10.3], [H, §4] | Jan 21
discuss presentation topics

Vector maximum principle I, [H, §4] Jan 24
choose presentation topic

Vector maximum principle IT, [H, §4] Jan 26
presentation outline due

Hamilton’s matrix Harnack inequality, [C, §10.2] Jan 28
practice presentation

DRP Symposium - Feb 1

“Supported in part by the National Science Foundation. E-mail: juliusbl@mit.edu



https://mit.zoom.us/j/98950054745

REFERENCES
[C] Colding, T., & Lee, T-K. (2021). Topics in the heat equation. 18.966 Lecture notes. (Link)

[H] Hamilton, R. S. (1986). Four-manifolds with positive curvature operator. Journal of Differential
Geometry, 24(2), 153-179. (Link)

[W| Weinberger, H. F. (1975). Invariant sets for weakly coupled parabolic and elliptic systems.
Rend. Mat, 8(6), 295-310. (Link)

EXERCISES
Exercises labeled with a % are highly recommended.

Exercise 1 (% Separable solutions). Find all solutions u : R x [0,00) — R of the 1-dimensional
heat equation dyu = 0,0, u of the form u(z,t) = f(t)g(x).

Exercise 2 (% Solutions with zero boundary condition). Find all solutions w : [0, 1] X [0,00) — R
of the 1-dimensional heat equation d;u = 9,0, u satisfying 0 = u(0,¢) = u(1,¢) for all t > 0.
(Hint: use Fourier series.)

Exercise 3 (% Green’s identity). Let @ C R" be a domain with smooth boundary 0. Let
u,v € C?(Q2), where Q denotes the closure of 2. Show that

/Q (uAv — (Au)v) do = / (uV,v — (Vyu)v) do,

o

where v is the outward unit normal to 02 and do is the integration form of 0f2.
(Hint: apply the divergence theorem to the vector field X = uVv — vVu, and use the fact that
A =divo V.)

Exercise 4 (% Holder’s inequality). Prove that if u,v : R" — R, then whenever the integrals make

sense,
3 3
/]uv[dxﬁ(/ \u|2dx) (/ ]v\2dx) :

R" R7 R”

Exercise 5 (% 1D Poincaré inequality). Let u : [a,b] — R be C! and let u = 1 f:udx be the
average of u on [a,b]. Prove that

b b
/|u—ﬂ|2dz§|b—a|2/ Vul? da.

(Hint: use Hoélder’s inequality and the fundamental theorem of calculus.)

Exercise 6 (% Convergence of solutions).


https://math.mit.edu/~tangkai/note/HE.pdf
https://projecteuclid.org/journals/journal-of-differential-geometry/volume-24/issue-2/Four-manifolds-with-positive-curvature-operator/10.4310/jdg/1214440433.full
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.8841&rep=rep1&type=pdf

(a) Let u: Q x [0,00) — R solve the heat equation with Dirichlet boundary condition, i.e. u =0
on 9 x [0,00). Prove the following exponential decay estimate: there exists a constant C' > 0
such that for all ¢ > 0, there holds

/|u(x,t)]2d:c§eCt/|u(:c,0)|2dx.
Q Q

(Hint: use the Poincaré inequality.)

(b) Let u: € x[0,00) = R solve the heat equation with Neumann boundary condition, i.e. % =0

on 09 x [0,00). Let @y denote the average of u(-,0) over Q. Prove the following exponential
decay estimate: there exists a constant C' > 0 such that for all ¢ > 0, there holds

/ lu(z,t) — dg|* dz < e~ / lu(x,0) — d|* da.
Q Q

(Hint: show that the average of u over {2 is constant in time and use the Poincaré inequality.)

€T —Y 2
In what follows, let H(x,y,t) = (47Tt)_%6_‘ " be the heat kernel on R”.

Exercise 7 (% Heat kernel). Show that H satisfies the heat equation in both the  and y variables:
8tH(xa Y, t) = ALBH(xu Y, t) = AyH<x7 Y, t)

Exercise 8 (% Fundamental solution). Let uy € Cy(R™) be a continuous and bounded function,
and define for x € R™ and ¢t > 0,

Rn
Show that:
(a) u(-,t) € C*°(R") for all t > 0, i.e. that all partial derivatives of u exist as long as t > 0.
(Hint: differentiate under the integral sign and use properties of H.)
(Hint: differentiate under the integral sign and use Exercise 7.)
(c) For each x € R", limp\ g u(x,t) = ug(x).

(Hint: Let € > 0 and choose § > 0 such that |x — y|< ¢ implies |ug(z) —uo(y)|< €. Show that
lup(x) — u(z,t)|— 0 as € and ¢ go to zero, by splitting up the integral |ug(x) — u(z,t)| into
two pieces, one over Bs(z) and the other over R™ \ Bs(z).)

In what follows, define the Green’s function for the Laplacian for = # y € R™ by
o0
G(x,y) = / H(z,y,t)dt.
0

3



Exercise 9 (% Green’s function).
(a) Show that for n > 3, there exists a constant ¢, > 0 such that for all z # y € R™, there holds

G(IL‘,y) =

Cn
|z —y[n=2

In particular, the integral defining G(z,y) is well-defined when n > 3.

(Hint: rewrite the integral defining the Green’s function in terms of the Gamma function.)

(c) Show by directly differentiating the equation from part (a) that for z # y € R™, G solves the
Laplace equations in the x and y variables:

A,G(z,y) = AyG(z,y) =0.

n lz—yl?

For t < 0 and z,y € R™, define the backwards heat kernel by Hy(z,y,t) = (—4nt)"ze

Exercise 10 (% Parabolic mean value inequality). Let u : R™ x [-T,0] — R be a subsolution of
the heat equation, i.e. Oyu < Au.

(a) Show that for each fixed y € R"™, the function

I(t) = / e 1) i, . 1) d

is monotone decreasing in time.

(Hint: show that I?’J < 0 by integrating by parts. Apply the Green’s identity from Exercise 3
on balls of larger and larger radii, and show that the boundary term vanishes in the limit.)

(b) Show that for each fixed y € R™,
lim I,,(t) = u(y,0).
(Hint: use Exercise 8, part (c).)

(c) Deduce, for each fixed y € R™, the parabolic mean value inequality
U(y,O) < / U(LL“, _T)Hb(x’yv _T) da.

(Hint: combine parts (a) and (b).)

Exercise 11 (% Holder inequality). Let f, g : R™ x [0,00) — R~( be positive supersolutions of the
heat equation: 0:f > Af and 0;g > Ag. Let 1 < p,q < oo be Holder conjugates, i.e. satisfying
1 1

% + % = 1. Show that frge is a supersolution of the heat equation:
11
(O —A)frgs > 0.

1 1
Further, show that frge solves the heat equation only if f = cg for some constant ¢ € R.
1 1
(Hint: Let u =log(frg9) and compute e *(9; — A)e".)



Given a function f : R" — R, the weighted Laplacian Ay is defined by
Apu = Au— (Vf,Vu) for all u € C*(R™).
This operator also goes under the names of drift Laplacian, f-Laplacian, and Witten Laplacian.
Exercise 12 (% Weighted Laplacian).

(a) Prove that Ay is self-adjoint with respect to the weighted L? (e=7dx) inner product. That is,
prove that for all functions u,v on R" decaying suitably rapidly at infinity,

/(Afu)vefdx:/ u(Afv)e*fd:z:.

(b) Formulate and prove a “weighted divergence theorem” involving the weighted measure e~/ dz.
What is your definition of the “weighted divergence” div;?

(c) Prove the following weighted Bochner formula holds for all v € C3(M):

1
iAf]VuP: [Hessy|?+(VA pu, Vu) + Hess ¢ (Vu, V).

A subset C' C R¥ is a cone with vertex v € R¥ if for every w € C and every t > 0, the vector
v+ t(w — v) lies in C. The tangent cone C, X of a closed, convex set X C R¥ at a boundary point
v € 0X is defined to be the intersection of all closed half-spaces containing X and whose boundary
contains v.

Exercise 13 (% Tangent cone).

(a) Prove that the tangent cone C,X is the smallest closed, convex cone with vertex v containing
X.

(b) Prove that if 0X is C! at v, then C, X is a half-space.

(c) Prove that every closed, convex set is the intersection of its tangent cones: X = (1), .9y CoX.

vED

(d) Prove that the sum of two vectors in the tangent cone of a closed convex set lies in the tangent
cone.



