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Abstract

We show that for a large class of torsionfree classifying spaces, K-theory filtered ring is
an invariant of the genus. We apply this result in two ways. First, we use it to show
that the powerseries ring on n indeterminates over the integers admits uncountably many
mutually non-isomorphic A-ring structures. Second, we use it to study the genus of infinite
quaternionic projective space. In particular, we describe spaces in the genus of infinite
quaternionic projective space which occur as targets of essential maps from infinite complex
projective space, and we compute explicitly the homotopy classes of maps in these cases.
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Chapter 1

Introduction and Statement of

Results

In this thesis, we study the genus of the classifying space of a compact connected Lie
group, with applications to the studies of A-rings and classification of maps from infinite
complex projective space to spaces in the genus of infinite quaternionic projective space.
This introduction contains thev statements of all of the main results in this thesis, which are
taken from the author’s papers [25, 26].

All spaces considered here are nilpotent of finite type, unless the contrary is explicitly
stated. For a space X its integral K-theory is denoted, as usual, by K(X). Localization
and completion are always meant in the sense of Bousfield and Kan [5].

Let us first recall the relevant definitions. The genus of a nilpotent finite type space
X, denoted Genus(X), consists of the homotopy types of all nilpotent finite type spaces Y’
such that"%he p-completions of X and Y are homotopy equivalent for all primes p and also
their rationalizations are homotopy equivalent. One often speaks of a space rather than its
homotopy type when considering genus. McGibbon’s survey article [12] is a good reference

for results about genus.

1.1 Genus of classifying spaces

We are interested in the genus of the classifying space BG of a compact connected Lie group
G. The genus of BG is a very rich set. Indeed, Mgller [16] proved that whenever G is a

compact connected non-abelian Lie group, the genus of its classifying space BG contains




uncountably many distinct homotopy types. Then Notbohm [18] succeeded in finding an
algebraic invariant which can tell different spaces in the genus of BG apart. More precisely,
Notbohm showed that if X and Y are two spaces in the genus of BG, where G is a fixed
simply-connected compact Lie group, then X is homotopy equivalent' to Y if and only if
K(X) and K(Y) are isomorphic as A-rings. Here and throughout the rest of the paper,
K (—) denotes the complex K-theory with integral coefficients of a space.

With this result of Notbohm in mind, a natural question arises: How much of the differ-
ence between these uncountably many K-theory A-rings is detected by the Aring structure?

Our first main result below shows that for a large class of torsionfree classifying spaces,
the K-theory ring structure cannot detect the difference between different spaces in the
genus of the classifying space BG. Therefore, from the point of view of K-theory, the
differences between these spaces lie entirely in the A-operations, or equivalently, the Adams

operations.

Theorem 1.1. Let X be a simply-connected space of finite type whose integral homology is
torsionfree and is concentrated in even dimensions, and whose K-theory filtered ring is a
finitely generated powerseries ring over the integers. If Y belongs to the genus of X, then

there ezists a filtered ring isomorphism from K(X) to K(Y).
Here, a filtered ring is a pair (R, {I,}) consisting of:
1. A commutative ring R with unit;

2. A decreasing filtration R = Iy D I; D -+ of ideals of R such that LI; C Iy for all

i,j 2 0.

A map between two filtered rings is a ring homomorphism which preserves the filtrations.
With these maps as morphisms, the filtered rings form a categdry. Every space Z of the
homotopy type of a CW complex gives rise naturally to an object (K(Z), {Kn(Z)}), which
is usually abbreviated to K(Z), in this category. Here K,(Z) denotes the kernel of the
restriction map K(Z) — K(Z,—1), where Z,_, denotes the (n — 1)-skeleton of Z. Using a
different CW structure of Z will not change the filtered ring isomorphism type of K(Z), as
can be easily seen by using the Cellular Approximation Theorem.

In Theorem 1.1 the space X could be, for example, BSp(n) for n > 1, BSU(n) for

n > 2, or any finite product of copies of such spaces and CP*.
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It should be noted that Theorem 1.1 has a variant in which complex K-theory (resp. Z) is
replaced with orthogonal K-theory, KO* (resp. KO*(pt)), provided the integral homology of
the space X satisfies the more restrictive condition that it is torsionfree and is concentrated
in dimensions divisible by 4. For example, the space X =VB.5'p(n) satisfies these conditions.
This variant admits a proof which is essentially identical with that of Theorem 1.1 itself.

We will now discuss both algebraic and topological applications of Theorem 1.1.

1.2 Lots of A-ring structures over powerseries rings

The first application of Theorem 1.1 is about A-rings. The reader can consult Atiyah-Tall
[3] and Knutson [11] for more information about A-rings . .

Let us first recall the relevant definition. A A-ring is a commutative ring R with unit
which is equipped with functions A*: R — R (i > 0), called A-operations. These operations

are required to satisfy the following conditions: For any elements r and s in R one has

e N(r)=1

A(r)=r, A"(1)=0foralln >1

AMr +5) = Y5l M)A (s)

A (rs) = Po(AL(r),..., A7 (r); AL(s),- .., A"(s))
b )\n()\m(r)) = Pn,'M(Al(T)u ey Anm(,r.))

Here the P, and P, ,, are certain universal polynomials with integer coefficients; see [3]
for details. (Note that in some part of the literature, for example, in Atiyah-Tall, these
rings are referred to as special A-rings.) The K-theory K(X) of a space and the complex
representation ring R(G) of a group are examples of A-rings.

Now the classifying space BSp(n) has an n-variable powerseries K-theory filtered ring:
(1.2) K(BSp(n)) = Z[[zy,...,z,])

Therefore, by combining Theorem 1.1 with the results of Mgller [16] and Notbohm [18] in

this special case, we obtain the following purely algebraic consequence about A-rings.

Corollary 1.3. There ezist uncountably many mutually non-A-isomorphic \-ring structures

over the powerseries ring Z[[x1,...,z,]] on n indeterminates for any integer n > 1.
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As far as the author is aware, this result is new for any positive integer n.

Remark 1.4. It should be noted thét this result is obtained by combining several topo-
logical statements about classifying spaces. It would be nice to see a purely algebraic proof
of it. The analogous question of how many A-ring structures the polynomial ring Z[z)] sup-
ports has been studied by Clauwens [6], who showed that there are essentially only two
non-isomorphic A-ring structures on the polynomial ring Z[z]. The corresponding question

for the n-variable (n > 1) polynomial ring is still open.

1.3 Genus of infinite quaternionic projective space revisited

We will now use Theorem 1.1 to study various aspects of the genus of infinite quaternionic
projective space HP°, considered as a model for the classifying space BS®.

The original motivation to study spaces in the genus of a classifying space came from
Rector’s idea to study Lie groups through their classifying spaces. To do that one has to
understand how many different loop structures the homotopy type of a Lie group G can
carry. Around 1970 Rector [20] considered the case when G is the three-sphere S3, and
classified (with the help of McGibbon [13] at the prime 2) the genus of HP, all spaces
in which are loop structures on S3. Here we recall Rector’s classification of the genus of

HP®>.

Theorem 1.5 (Rector [20]). Let X be a space in the genus of HP®. Then for each
prime p there exists a homotopy invariant (X/p) € {£1} such that the following statements
hold.

1. The (X/p) for p primes provide a complete list of homotopy classification invariants

for the genus of HP.

2. Any combination of values of the (X/p) can occur. In particular, the genus of HP®

18 uncountable.
3. The invariant (HP* /p) is 1 for all primes p.
4. The space X has a magzimal torus if and only if X is homotopy equivalent to HP™.

The invariant (X/p) is now known as the Rector invariant at the prime p. Actually,

for the last statement about the maximal torus, Rector only proved it for the odd primes.
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That is, if X has a maximal torus, then (X/p) is equal to 1 for all odd primes p. Then
McGibbon [13] proved it for the prime 2 as well. Here X is said to have a maximal torus if
there exists a map from CP®, the infinite complex projective space, to X whose homotopy
theoretic fiber has the homotopy type of a finite complex.

The question then became whether or not every loop structure on 53 belongs to the

genus of HP®. A positive answer to this question was given by the work of Dwyer, Miller,

and Wilkerson [8] in the mid-1980’s. They showed that at each prime p, the p-local three-

sphere, in strong contrast with the integral three-sphere, has only one loop structure. This
homotopical uniqueness result prompted much development in the last fifteen years in the
subject of classifying spaces at a prime, the so-called p-compact groups.

Since the work of Rector about three decades ago, our understanding of classifying
spaces of compact connected Lie groups has expanded a great deal, thanks to the work of
many authors (Adams, Dwyer, Mahmud, Miller, Notbohm, Smith, Wilkerson, Zabrodsky,
etc‘.)'. Many interesting questions about classifying spaces, however, remain open, and in
this section we will try to answer a couple of them in the case when G is S3. We are
particularly interested in questions about maps out of classifying spaces of tori.

Our first application of Theorem 1.1 to the genus of BS3 = HP™ is to show that it is
classified by KO-theory filtered A-rings.

Theorem 1.6. Let X and Y be spaces in the genus of HP®. Then X and Y are homo-
topy equivalent if, and only if, there exists a filtered A-ring isomorphism from KO*(X) to
KO*(Y).

Here, by a filtered M-ring, we mean a filtered ring (R, {I,}) which is also a A-ring such
that the ideals I, are closed under the -operations X! for ¢ > 0.

Actually, a more general result was obtained by Notbohm [18] by using topological
realization properties of self homomorphisms of K-theory A-rings of classifying spaces. Our
proof of Theorem 1.6 is independent of Notbohm’s and uses directly Rector’s classification
(Theorem 1.5) and a special case of the KO-theory analogue of Theorem 1.1.

A glance at Rector’s classification (Theorem 1.5) reveals the importance of the notion of
a maximal torus. Now for a space X in the genus of HP® which is not homotopy equivalent
to HP®°, the nonexistence of a maximal torus does not rule out the possibility that there

could be some essential (that is, non-nullhomotopic) maps from CP® to X. So for which
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spaces X can this happen?
Our next result gives an answer to this question by characterizing spaces in the genus

of HP* which admit essential maps from CP°.

Theorem 1.7. Let X be a space in the genus of HP®™. Then the following statements are
equivalent.

1. There ezists an essential map from CP™ to X.

P

2. There ezists a nonzero integer k such that (X/p) = (k/p) for all but finitely many

primes p.

3. There ezists a cofinite set of primes L such that HP® and X becomé homotopy

equivalent after localization at L.

Here (k/p) is the number-theoretic Legendre symbol of k, which is defined whenever p
does not divide k. If p is odd and if p does not divide k, then (k/p) = 1 (reép. -1)ifkisa
quadratic residue (resp. non-residue) mod p. If p= 2 and if £ is odd, then (k/2) = 1 (resp.
—1) if k is a quadratic residue (resp. non-residue) mod 8.

Before diScussing related issues, let us first record the following immediate consequence

of Theorem 1.7.

Corollary 1.8. There ezist only countably many homotopically distinct spaces in the genus

of HP® which admit essential maps from CP™.

Indeed, each nonzero integer k£ can determine only countably many homotopically dis-
tinct spaces X in the genus of HP* satisfying the second condition in Theorem 1.7.

The second condition of Theorem 1.7 gives an arithmetic description of spaces in the
genus of HP® which occur as the targets of essential maps from CP°. Since it involves
Rector invariants, it is specific to the genus of HP® and is not very convenient for gener-
alizations. The last condition of Theorem 1.7, on the other hand, is geometric and is more
* suitable for possible generalizations of the theorem.

Having characterized spaces in the genus of HP* which admit nontrivial maps from
CP®, we proceed to compute the ma.ps themselves. Now for any space X in the genus
of HP®, the K-theory K(X) of X, as a filtered ring, is a powerseries ring Z[[b>ux]] (see

Theorem 1.1), where uy is some element in K*(X) and b is the Bott element in K ~2(pt).
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So if f: CP* — X is any map, then its induced map in K-theory defines an integer deg(f),
called the degree of f, by the equation

(1.9) f*(B*ux) = deg(f)(b€)? + higher terms in b,

where b is the ring generator in the powerseries ring K (CP>) = Z[[b¢]]. Note that deg(f)
is, up to a sign, simply the degree of the induced map of f in integral homology ‘in dimension
4. According to a result of Dehon and Lannes [7], the homotopy class of such a map f is
determined by its degree. We will therefore identify such a map with its degree in the
sequel. The degrees of a self-map of X, a self-map of the p-localization HP‘(’;’) of HP*°, or
a map from CP* to HP‘(’;) can be defined similarly.
To describe the maps from CP* to X € Genus(HP*) up to homotopy, we need only
describe the possible degrees of such maps. Let’s first consider the classical case. There is a
- maximal torus inclusion i: CP* — HP™ of degree 1, and any other map f: CP* — HP*>
factors through ¢ up to homotopy. A spécial case of a theorem of Ishiguro, Mgller, and
Notbohm [9, Theorem 1] says that for any space X in the genus of HP®, the degrees of
essential self-maps of X consist of precisely the squares of odd numbers. For the classical
case, X = HP®, this result is due to Sullivan [22, p. 58-59]. Therefore, the degrees of
essential maps from CP* to HP® also consist of precisely the odd squares.
The situation in general is quite similar. Recall that any space X in the genus of HP*®

can be obtained as a homotopy inverse limit [5]
. T T,
(1.10) X = holim, {HP‘(’;’) T, HPY, 0 Hpgg)}.

Here q runs through all primes, r, is the natural map from the g-localization to the ratio-
nalization of HP®, and n, is an integer relatively prime to“q, satisfying (ng/q) = (X/q).
The integer ny also satisfies ny = 1 (mod 4). |

Now if X admits an essential map from CP®, and thus satisfies the second condition
in Theorem 1.7 for some nonzero integer k, then the integers n4 can be chosen so that the
set {ny: ¢ primes} contains only finitely many distinct integers. So it makes sense to talk

about the least common multiple of the integers ng, denoted LCM(n,). Now we define an

integer T'x as

(1.11) Tx = min{LCM(ny) : X = holim, (nyorq)}.
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That is, choose the integers ng as in (1.10) so as to minimize their least common multiple,
and Tx is defined to be LCM(ng).
We are now in a position to describe the maps from CP*® to X € Genus(HP™).

Theorem 1.12. Let X be a space in the genus of HP® which admits an essential map

- from CP®> (see Theorem 1.7). Then the following statements hold.

1. There ezists a map ix: CP® — X of degree Tx.
2. The map igpw: CP® — HP* is the mazimal torus inclusion.

3. Given any map f: CP*® — X, there ezists a self-map g of X such that f is homotopic

togoz'X.

4. The degrees of essential maps from CP® to X are precisely the odd squares multiples
of TX v

It should be noted that the integer T'x does not determine the homotopy type of X.

For example, consider the spaces X and Y in the genus of HP® with Rector invariants

(L13) o = {0 TR = TR

-1 ifp=3 -1 ifp=>5.
Then, of course, X is not homotopy equivalent to Y because their Rector invariants at the
prime 3 are diétinct. But it is easy to see that Ty =2 = Ty.

Theorems 1.7 and 1.12 are closely related to the (non)existence of Adams-Wilkerson
type embeddings of finite H-spaces in integral K-theory. As mentioned before, a map
f: CP® — X € Genus(HP®) is essential if and only if deg(f) is nonzero. Thus, if there
exists an essential map from CP*® to X € Genus(HP®), then K(X) can be embedded into

K(CP®) as a sub-A-ring. The converse is also true. Indeed, a theorem of Notbohm and

Smith [19, Theorem 5.2] says that the function
a: [CP®,X] — Hom)(K(X), K(CP%®))

which sends (the homotopy class of) a map to its induced map in K-theory, is a bijection.
(Here [—, —] and Hom, (—, —) denote, respectively, sets of homotopy classes of maps between
spaces aﬁd of A-ring homomorphisms.) So a A-ring embedding K(X) — K(CP>) must be
induced by an essential map from CP® to X. Therefore, Theorem 1.7 and Corollary 1.8

can be restated in this context as follows.
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Theorem 1.14. Let X be a space in the genus of HP®. Then K(X) can be embedded
into K(CP®) as a sub-A-ring if, and only if, there ezists a nonzero integer k such that
(X/p) = (k/p) for all but finitely many primes p. This is true if, and only if, there exists a
cofinite set of primes L such that HP® and X become homotopy equivalent after localization
at L.

In particular, there ezist only countably many homotopically distinct spaces X in the

genus of HP™ whose K -theory A-rings can be embedded into that of CP™ as a sub-A-ring.

Before Theorem 1.14, there is at least one space in the genus of HP* whose K-theory
A-ring was known to be non-embedable into the K-theory A-ring of CP°°. This example

was due to Adams [1, p. 79].

Remark 1.15. Theorems 1.7 and 1.12 can also be regarded as an attempt to understand the
set of homotopy classes of maps from X to Y, where X € Genus(BG) and Y € Genus(BK)
with G and K some connected compact Lie groups. This problem, especially the case

G=K=28%x---x 83, was studied extensively by Ishiguro, Mgller, and Notbohm [9].

This finishes the presentation of the main results in this thesis.

Organization

The rest of the thesis is organized as follows. Chapter 2 contains the proof of Theorem 1.1.
All the preliminary results that are used in the proof of that theorem are stated in §2.1,
and the proofs of these preliminary results are given in §2.2.

Chapter 3 contains the proofs of Theorems 1.6, 1.7, and 1.12, one in each section. In §3.1 -
all the preliminary results that are used in the proof of Theorem 1.6 are stated, and they are
proved in §3.1.1 and §3.1.2. The proof of Theorem 1.7, which consists of the implications
(1) = (2) = (3) = (1), is presented in §3.2. Finally, the proof of Theorem 1.12 is given in
§3.3.
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Chapter 2
K-theory Filtered Rings

In this chapter we prove Theorem 1.1, which consists of a few lemmas. In §2.1 the lemmas
which are used in the proof of Theorem 1.1 are stated. One can see the structure of the
proof of the theorem by reading that section. These lemmas are proved in §2.2.

"Throughout this chapter we work in the category of filtered rings.

2.1 Proof of Theorem 1.1

We will make use of the following observation, whose proof is a straightforward adaptation
of Wilkerson’s proof of the classification theorem [23, Theorem I] of spaces of the same

n-type for all n. Now let X be as in Theorem 1.1.
Lemma 2.1. There is a bijection between the following two pointed sets:
1. The pointed set of isomorphism classes of filtered rings (R,{I,}) with the properties:
(a) The natural map R — Jm R/I, is an isomorphism, and
(b) R/I, and K(X)/K(X) are isomorphic as filtered rings for all n > 0.

2. The pointed set lim! Aut(K(X)/Kn(X)).

Here Aut(—) denotes the group of filiered ring automorphisms, and the 11'211 of a tower
of not-necessarily abelian groups is as defined in Bousfield-Kan [5].
The two lemmas below will show that, for every space Y in the genus of X, the object

K(Y') lies in the first pointed set in Lemma 2.1.
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Lemma 2.2. For every space Y in the genus of X (as in Theorem 1.1), the natural map

K({Y)— LjLnj K(Y)/K;(Y) is an isomorphism.

Lemma 2.3. For every space Y in the genus of X (as in Theorem 1.1), the filtered rings
K(Y)/Kn(Y) and K(X)/Kn(X) are isomorphic for all n > 0.

In view of Lemma 2.1, to prove Theorem 1.1 we are only left to show that the classifying
object En:b Aut(K(X)/Kn(X)) is the one point set. To do this, it suffices to show that
almost all the structure maps in the tower are surjective. This is shown in the following

lemma.

Lemma 2.4. The maps Aut(K(X)/K;4+1(X)) = Aut(K(X)/K;(X)) are surjective for all
j sufficiently large.

Therefore, to complete the proof of Theorem 1.1, we only have to prove the three lemmas
above, which we will do in the next section. The reader is now offered the opportunity to

skip to Chapter 3 on page 25.

2.2 Proof of some lemmas

In this section the proofs of Lemmas 2.2, 2.3, and 2.4, which are used in the proof of

Theorem 1.1 (see §2.1), are given.

2.2.1 Proof of Lemma 2.2

Proof. According to [4, 2.5 and 7.1] the natural map from K (Y) to Jim, K (Y)/K;(Y) is an

isomorphism if the following condition holds:
(2.5) @% EP¢ = 0 for all pairs (p,q).

Here E;'* is the E,-term in the K*-Atiyah-Hirzebruch spectral sequence (AHSS) for Y.
This condition is satisfied, in particular, when the AHSS degenerates at the Ep-term. Thus,
to prove (2.5) it suffices to show that H*(Y;Z) is concentrated in even dimensions, since
| in that case there is no room for differentials in the AHSS. So pick an odd integer N. We

must show that
(2.6) | HY(YV;Z) = 0.

20



By the Universal Coefficient Theorem it suffices to show that the integral homology of Y is

torsionfree and is concentrated in even dimensions, which hold beca.ﬁse Y lies in the genus
of X. |

" This finishes the proof of Lemma 2.2. ‘ o 0O

2.2.2 Proof of Lemma 2.3

Proof. We have to show that for each j > 0 there is an isomorphism of filtered rings
(2.7) K(Y)/K;(Y) = K(X)/K;(X).

Tt follows from the hypothesis that for each j > 0, the filtered ring K(Y)/K; (Y) belongs
to Genus(K (X )‘/ K;(X)), where Genus(R) for a filtered ring R is defined in fern:l's of R®Q
and R ® Z in exactly the same way the genus of a space is defined. To finish the proof we
will adapt two results of Wilkerson [24, 3.7 and 3.8}, which we now recall.

" e For a nilpotent finite type space X, Wilkerson showed that there is a surjection
o Caut(Xp) — Genus(X),

where X is the rationalization of the formal completion of X. Notice that each
~ homotopy group m(Xp) s 2a Q® Z-module, and Caut(Xo) is by definition the group
of homotopy classes of self-homotopy equivalences of X, whose induced maps on

homotopy groups are Q ® Z-module maps.

o Note that the definitions Genus(—) and Caut(—) also make sense in both the categories
of nilpotent groups and of filtered rings. For instance, if R = (R, {I"}) is a filtered
ring, then Caut(R® Q® 2) is the group of filtered ring aﬁtomorphisms of R®Q® Z
which are also Q ® Z-module méups. Now if A is a finitely generated abelian group,
then Wilkerson showed that for any class [¢] € Caut(A®Q® Z), the image o([¢]) is

isomorphic to A as groups; that is, the image of ¢ is constant at A.

Tt is straightforward to adapt Wilkerson's proofs of these results to show that for each
7 the map
o: Caut((K(X)/K;(X)) ® Q® Z) - Genus(K (X)/Kj(X))

21
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is surjective and that the image of ¢ is constant at K (X)/K;(X). In other words, the
genus of K(X)/K;(X) is the one-point set. Therefore, K(Y)/K;(Y) is isomorphic to
K(X)/K;(X). ' | |

This finishes the proof of Lemma 2.3. o

2.2.3 Proof of Lemma 2.4

Proof. First note that by hypothesis the K-theory filtered ring of X has the form
(28) K(X) = Z[[Cla"- 1Cﬂ-]]

in which the generators c; are algebraically independent over Z and K; (X ) is the ideal
_generated by the monomials of filtrations at least j. Suppose that d; is the largest integer
k for which c; lies in filtration k. Let N be the integer max{d;: 1 < i < n} + 1 (or any
integer that is strictly greater than d; for 7 = 1,...,n). We will show that the structure
fnaps Aut(K(X)/Kj+1(X)) = Aut(K(X)/K;(X)) are surjective for all j > N.

So fix an integer j > N and pick a filtered ring automorphism o of K (X)/K;(X). We
must show that ¢ can be lifted to a filtered ring automorphism of K (X )/Kj+1 (X). For
1 < i < n pick any lift of the element o(c;) to K(X)/K,;+1(X) and call it §(c;). Since there
are no relations among the ¢; in K (X), it is easy to see that & extends to a well-defined
filtered ring endomorphism of K(X)/K;41(X), and it will be a desired lift of o once it is
shown to be bijecfive.

To show that &: K(X)/K;+1(X) — K(X)/qu_i(X) is surjective, it suffices to show
that the image of each ¢; in K(X)/K;4+1(X) lies in the image of &, since K (X )/ Kj+1(X)
is generated as a filtered ring by the images of the ¢;. So fix an integer i with 1 <1 < n.
We know that there exists an element g; € K(X)/K;(X) such that

(2.9) olgi) = ¢.
Pick any lift of g; to K (X)/K;+1(X), call it g; again, and observe that (2.9) implies that
(2100 5lgi) = cit+a

in K(X)/K;+1(X) for some element o; € K;(X)/K;31(X). We will alter g; to obtain a

g-pre-image of ¢; as follows.
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Observe that the ideal K;(X)/K,+1(X) is generated by certain monomials in c1,. .., cn.

Namely, the monomials

(2.11) ¢ = cdr, i= (i, ,0n) € J
where 'Jj is the set of ordered n-tuples i = (i1,...,in) of nonnegative integers satisfying

d-i= Z?:f dyi; = §. Thus, for every element i in the set J;, there exists a corresponding
integer a; such that we can write the element a; as the sum
(2.12) o; = Z aj Ci
ieJ;
Now define the element g; in K (X )/K;+1(X) by the formula
(2.13) | g =g — »_ aig', whereg' = 91 L gin.
ieJ;

We claim that g; is a &-pre-image of ¢;. That is, we claim that
(2.14) 6(@) = a in K(X)/Kjn(X),

In view of (2.10), (2.12), and (2.13), it clearly suffices to prove the following equality for

each element i in Jj:

(2.15) &(gi) = ¢ in K(X)/Kju(X).

Now in the quotient K (X)/K;41(X), one computes
o | .
o(¢) = Il et"
N
= J](j+e5)% by (2.10)
i

i
= ¢ + (terms of filtrations > j)

Il
a.

This proves (2.15), and hence (2.14), and therefore & is surjective.
It remains to show that & is injective. Since any surjective endomorphism of a finitely

generated abelian group is also injective and since K (X)/K;11(X) is a finitely generated

abelian group, it follows that & is injective as well. Thus, & is a filtered-ring automorphism

of K(X)/K;+1(X) and is a lift of o.
This finishes the proof of Lemma, 2.4. O
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Chaptef 3

Genus of infinite quaternionic

projective space

In this chapter, we prove Theorems 1.6, 1.7, and 1.12, in this order. The proof of each
theorem occupies one section. In §3.1 all the preliminary results that are used in the proof
of Theorem 1.6 are stated, and they are proved in §3.1.1 and §3.1.2. The proof of Theorem
1.7, which consists of the implications (1) = (2) = (3) = (1), is presented in §3.2. Finally,
the proof of Theorem 1.12 is given in §3.3.

3.1 Proof of Theorem 1.6

In this section we prove Theorem 1.6. The arguments in this section, especially Lemma 3.4
below, are inspired by Rector’s [21, §4].

Let KO* denote orthogonal K-theory. We begin by noting that an argument entirely
similar to the proof of Theorem 1.1 implies that whenever X belongs to the genus of HP,

one has that
(3.1) KO*(X) =2 KO*[[z]]

as filtered rings, where z is an element in KO#(X) and is a representative of an integral
generator x4 in H4(X;Z) = Eg '% in the K O*-Atiyah-Hirzebruch spectral sequence for X.
Here KOp(X) denotes the subgroup of KO%(X) consisting of elements u which restrict to
0 under the natural map KO%(X) -+ KO%(Xp_1).
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definitions regarding Rector’s classification (Theorem 1.5) of the genus of HP.

Let X be a space in the genus of HP™, Let ¢ ¢ KO~4(pt) and br € KO~8(pt) be the
generators so that £2 = 4bg. As usual, denote by Pk (k=1,2,.. .) the Adams operations.
Since QX is homotopy equivalent to S8, it follows as in [21, §4] that there exists an integer

a, depending on the choice of the representative z, such that the following statements hold.
L ¢2(¢z) = ez + 2abrz? (mod KOJ(X)).

2. The integer g is well-defined (mod 24). This means that if 7' is another representative
of z4 with corresponding integer o/, then ¢ = ¢/ (mod 24), and if T4 is replaced with

—~Z4, then a will be replaced with —g. We can, and we will, therefore write a(X) for

3 a(X) = £1,45,%7, or £11 (mod 24).

The last condition above follows from the examples constructed by Rector in [21, §5] and
James’ result [10] which says that there are precisely eight homotopy classes of homotopy-
associative multiplications on 53, These eight classes can be divided into four pairs with
each pair consisting of a, homotopy class of multiplication and jts inverse.

The Rector invariants (X/p) for odd primes p are defined as follows [20]. The Adem
relation P1pP! — 9p2 implies that

(3.2) Pz = 497t/

in H*(X;Z/p), where T4 is the mod p reduction of the integral generator Z4. Then (X/p) €
{%£1} is defined as fhe sign on the right-hand side of (3.2).

The Rector invariant (X/2) and a canonical choice of orientation of the integral generator
Z4 are given as follows. Using the (mod 24) integer a(X ), define
f(1, 1) if a(X) = +1 mod 24;
(1,-1) if a(X) = +5 mod 24;

(3-3) ((X/2),(X/3)) = J
(-1,1) if a(X) = £7 mod 24;

(-1,-1) if a(X) = +11 mod 24.

The orientation of T4 is then chosen so that (X/3) is as given in (3.6). This definition of

the Rector invariants coincides with the original one (cf. [12, §9]).
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From now on in this section, let X and Y be two fixed spaces in the genus of HP*.
As explained above, KO*(X) = KO*[[z]] and KO*(Y) = KO*[[y]] with z € KO§(X)
and y € KO}(Y) representing, respectively, the integral generators z4 € H4(X;Z) and
ys € HA(Y; Z). |

Proof of Theorem 1.6. In view of Rector’s Theorem 1.5, it suffices to show that if there
exists a filtered A-ring isomorphism ¢ from KO*(X) to KO*(Y), then a(X) = +a(Y’) (mod
24) and (X/p) = (Y/p) for all odd primes p, which hold by Lemmas 3.4 and 3.5 below. [

Lemma 3.4. If there ezists a filtered \-ring isomorphism o from KO*(X) to KO*(Y),
then a(X) = £a(Y) (mod 24).

Lemma 3.5. If there ezists a filtered A-ring isomorphism ¢ from KO*(X) to KO*(Y),
then (X/p) = (Y/p) for each odd prime p.

The proofs of these two lemmas are given below. The reader is now offered the oppor-

tunity to skip to §3.2 on page 30.

3.1.1 Proof of Lemma 3.4

Proof. Since o is a filtered ring isomorphism, we have

(3.6) o(éz) = ety + ozbry® (mod KOJ(Y))

for some integer oy and € € {£1}. Computing modulo KOJ(Y") we have
7) O e

- and therefore

(3.8) o(brr?) = bry® (mod KOJ(Y)).

First we claim that there is an equality

(3.9) a.(X) = 602 +ea(Y).

To prove (3.9) we will compute both sides of

(3.10) ‘ op*(€z) = Y’o(éz) (mod KOJ(Y)).
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Computing modulo KO3(Y) we have, on the one hand,

o?(tz) = o4z + 2a(X)bgrz?)
= 4(ely + a9bry®) + 2a(X)bry® (by (3.6) and (3.8))
= dely+ (do2 + 2a(X))bRy2.

On the other hand, still working modulo KO}(Y'), we have

Wo(¢s) = ep?(Ey) + o2 (bry?) (by (3.6))
= e(4éy +2a(Y)bry®) + 02(2*brY?)

= dety + (1602 + 2¢a(Y))bry>.

Equation (3.9) now follows by equating the coefficients of bry?.
In view of (3.9), to finish the proof of Lemma 3.4 it is enough to establish the equality

(3.11) oy = 0 (mod 4).

To prove (3.11), note that since ¢ is a K O*-module map, we have {o(z) = &(Em). Since o

is a filtered ring isomorphism, we also have
(3.12) o(z) = €'y +ohéy? (mod KOéA(Y))
for some integer o} and &' € {#1}. Therefore, computing modulo KO3(Y') we have

fo(z) = cy+opt%? (by (3.12))

g'ty + 4ohbry®

= ely+ O’szy2.

In particular, by equating the coefficients of bpy?, we obtain o = 40}, thereby proving
(3.11).
This completes the proof of Lemma 3.4. O

3.1.2 Proof of Lemma 3.5

Proof. Tt follows from Theorem 1.1 that K*(X) & K*[[u,]] with u; € K#(X) a representa-
tive of the integral generator z4 € H 4(X;Z) = E;° in the K *_Atiyah-Hirzebruch spectral
sequence. Moreover, we may choose ug; so that c(z) = ug, where ¢: KO*(X) — K*(X) is

the complexification map. Similar remarks apply to Y so that K*(Y) = K*[[u,]].
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Now denote by b € K—2(pt) the Bott element and let p be a fixed odd prime. We first

claim that
(3.13) "pp(b2”m) = (bzuz)p + 2(X/p)p (bzum)(p+1)/2 +pwz + p2$0

for some w; € K9, 3(X) and some zo € K{(X). To see this, note that since b*u, € K2 (X),
it follows from Atiyah’s theorem [2, 5.6] that

(3.14) PP (tPua) = (FPua)® +pa1+pag

for some z; € KJ, o0, 1y(X) (i = 0,1). Moreover, T; = Pl b2y, where Z is the mod p
reduction of z. Thus, to prove (3.13) it is enough to show that

(3.15) o1 = 2(X/p)(ug) P2 4wy +pzg

for some w, € K3, 3(X) and some z; € KJ,,,(X). Now in H*(X;Z) ® Z/p we have
(3.16) 7, = P\Pu, = P'zy = 2X/0)zP™? = 2(X/p) 0",

from which (3.15) follows immediately. As remarked above, this also establishes (3.13).

- Now the A-ring isomorphism ¢ induces, via the complexification map ¢, a A-ring iso-
morphism o.: K*(X) = K*(Y). By composing o, with a suitable A-ring automorphism of
K*(Y) if necessary, we obtain a A-ring isomorphism «: K*(X) = K*(Y) with the property
that

(3.17) a(b*uz) = b%uy -+ higher terms in b%u,.

Using (3.13) and (3.17) it is then easy to check that

(3.18) ay? (bPug) = 2(X/p)p (B*uy)P/2  (mod (K3, ,5(Y), 1))
and
(3.19) Wa(b?uz) = 2(¥/p)p (B*uy) P2 (mod (K3, 5(Y), p?)).

Since ayP = 9Pa it follows from (3.18) and (3.19) that

(3.20) 2(X/p)p = 2(Y/p)p (mod p?),
or, equivalently,

(3.21) 2(X/p) = 2(Y/p) (mod p).

But p is assumed odd, and so (X/p) = (Y/p) (mod p). Hence (X/p) = (Y/p), as desired.
This finishes the proof of Lemma. 3.5. v O
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3.2 Proof of Theorem 1.7

In this section the proof of Theorem 1.7 is given.
Recall that the complex K-theory of CP* as a filtered A-ring is given by K(CP>®) =
Z[[6€]] for some ¢ € K3(CP>), where b € K~?(pt) is the Bott element. The Adams

operations on the generator are given by

(3.22) YrbE) = (L+bE) —1 (r=1,2,...).

Fix a space X in the genus of HP*® and write Z[[b?ux]] for its K-theory filtered ring
(see Theorem 1.1). )
We will prove Theorem 1.7 by proving the implications (1) = (2) = (3) = (1). Each

implication is contained in one subsection below.

3.2.1 Proof of (1) implies (2)
This part of Theorem 1.7 is contained in the next Lemma.

Lemma 3.23. Let p be an odd prime and k be a nonzero integer relatively prime to p. If

there exists an essential map f: CP® — X of degree k, then (X/p) = (k/p).
Proof. We will compare the coefficients of (b¢)P*! in the equation

(3:249) FryP (PPux) = ¢Pf* (Pux) (mod (K3, 5(CP™),p%).
Working modulo K9, +3(CP°°)vand p?, it follows from (1.9) and (3.13) that

PP (Bux) = 2(X/p)p (k6?¢%) P2
= 2(X/p) p kP2 (be)P .

Similarly, still working modulo K3, .3(CP®) and p?, it follows from (1.9) and (3.22) that

PPf* (VPux) = kyP(b%e?)

= ky?(bg)?

= 2pk(b€)PTL.
Thus, we obtain the congruence relation
(3.25) 2(X/p) pk®tV/2 = 2pk (mod p?).
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Since (k/p) is congruent to k(P~1/2 (mod p) (see, for example, [17, Theorem 3.12]) and

since p is odd and relatively prime to k, (3.25) is equivalent to the congruence relation

(3.26) (X/p) (k/p) = 1 (mod p).

Hence (X/p) = (k/p), as desired.
This finishes the proof of Lemma 3.23. O

This shows (1) implies (2) in Theorem 1.7.

3.2.2 Proof of (2) implies (3)

Suppose that there exists a nonzero integer k¥ such that (X/p) = (k/p) for all primes p,
except possibly pi,...,ps. The prime factors of £ are among the p;. Let L be the cofinite
set consisting of all primes except the p;, 1 <1 < s. We will show that HP® and X become
homotopy equivalent after localization at L.

First note that for any space Y in the genus of HP* and for any subset I of primes,

the I-localization of Y can be obtained as
. NgoT :
(3.27) Yy) = holimge; {HP;J;) LLEACN HP(°3)} .

In particular, we have

. ko oo
(3.28) Xy = holimger, {Hpgg) —”>HP(0)}
and |
(3.29) HP%, = holimger, {HPE’:;) " mPR) .

Now for each prime q € L, let f, be a self-map of I-IP‘(’;’) of degree k™1. Since k is a g-local
unit (because ¢ does not divide k), it is easy to see that each f, is a homotopy equivalence.

Moreover, the two maps

(3.30) : rg, korgo fo: HP(H — HP(°8)

coincide. Therefore, the maps f; (g € L) glue together to yield a map
(3.31)° | C fTHPE - X

which is a homotopy equivalence, since each f; is. This shows (2) implies (3) in Theorem

1.7.
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3.2.3 Proof of (3) iml;lies (1)

Suppose that there exists a cofinite set of primes L such that HPE’E) and X1 are homotopy
equivalent. Write pi,...,ps for the primes not in L, and write rp, for the natural map from
Xz to HPE). |

To construct an essential map from CP* to X, first note that X can be constructed as

the homotopy inverse limit of the diagram

Tp; Np;
(3.32) HPy, =5 HPf) —5 HPY) <& X1

in which 4 runs from 1 to s.

For each i, 1 < i < s, let fp, be a map from CP* to HPE’:‘,) of degree M/ny,, where
M= H;=1 np;. Also, let fr denote a map from CP* to X(;) of degree M, which exists
because X(r) has the same homotopy type as HPE’E). It is then easy to see that the two

maps
(3.33) 71,0 fL, Np; 9 p; © fp;: CP® — HP(G

coincide for any 1 < i < s. Therefore, the maps fp, (1 < i < s) and fr glue together to

yield an essential map
(3.34) fiCP® 5 X

through which all the maps f,, and fi, factor.
This shows (3) implies (1) in Theorem 1.7.

3.3 Proof of Theorem 1.12

In this section we prove Theorem 1.12. ’

Fix a space X in the genus of HP* which admits an essential map from CP*°.

First we note that part (2) follows from the discussion preceding Theorem 1.12, since it
is obvious that the integer Tgpe is 1. |

Since any essential self-map of X is a rational equivalence, part (4) is an immediate’
consequence of parts (1) and (3) and a result of Ishiguro, Mgller, and Notbohm [9, Theorem
1] which says that the degrees of essential self-maps of X are precisely the odd squares.

Now we consider part (1). Suppose that the integers n, as in (1.10) are chosen so

that there are only finitely many distinct integers in the set {n,: ¢ primes} and that Tx
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is their least common multiple (see (1.11) on page 15 for the definition of Tx). Denote
by lg: HP*® — HPE’;’) the g-localization map and by i: CP* — HP* the maximal torus
inclusion. A self-map of CP® of degree m on H2(CP®;Z) is simply denoted by m. Now

for each prime ¢ define a map f;: CP*® — HP?;) to be the composition
' oo M/nq oo b oo la )

(3.35) CP* —— CP* — HP* — HP().

It is then easy to see that the two maps

(3.36) Tig ©7q 0 fg, Ny o1y © fgr: CP* — HP()

coincide for any two primes ¢ and ¢'. Therefore, the maps fq glue together to yield an

essential map
(3.37) [:CP® =+ X

through which every map f; factors. The map f has degree T'x because its induced map in
rational cohomology in dimension 4 does.
Finally, for part (3), suppose that f: CP® — X is a map. Write fp: CP* — HP(°:)

for the component map of f corresponding to the prime p. That is, f, is the composition
(3.38) cp* % x » HPY)

where the second map is the natural map arising from the construction of X. Then for any

prime p we have the equality

(3.39)  deg(f) = nyp deg(fy).

Since each n, divides deg(f), so does their least common multiple Tx. Moreover, by writing
(ix)p for the component map of ix corresponding to the prime p, (3.39) implies that for

any prime p we have the equalities

(3.40) deg(fp) _ deg(f)/mp _ deg(f)

‘ deg(z’x)p o Tx/'n.p Tx

Since there are self-maps of HPE’;’) (¢ any prime) and HP{, of degree deg(f)/Tx, one can
construct a self-map g of X such that deg(g) is equal to deg(f)/T’x and that f is homotopic
to g oix. This proves part (3).

The proof of Theorem 1.12 is complete.
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