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ABSTRACT

The class of complex semisimple Lie algebras can be extended to include infi-
nite dimensional Lie algebras known as Kač-Moody algebras. The correspondence
between complex semisimple Lie algebras and complex, connected, simply-connected
Lie groups has been extended by Kač-Peterson to a correspondence between Kač-
Moody algebras and certain connected, simply-connected topological groups known
as Kač-Moody groups. Like Lie groups, they contain a maximal torus of finite rank
and have an associated Weyl group. One can also construct flag varieties that are
(possibly infinite) projective varieties admitting a Bruhat decomposition.

Kač-Moody groups fall into three general types: The finite type, the affine type
and the indefinite type. The groups of finite type are the usual simply-connected Lie
groups. The groups of affine type are closely related to loop-groups and have been
extensively studied in topology and physics. The groups of indefinite type constitute
the majority among Kač-Moody groups and very little is known about them.

In this thesis, we explore the topology of Kač-Moody groups. Chapter 1 gives
a general overview of the theory of Kač-Moody groups and is a condensed version
of [7]. Chapter 2 contains some results about the Hopf-algebra structure of the
cohomology of Kač-Moody groups. Chapter 3 uses the results of chapter 2 to compute
the cohomology of all the Kač-Moody groups of rank 2 which are not of finite type. In
this chapter we also compute the cohomology of the classifying spaces of these groups.
In chapter 4 we show that the classifying space of a Kač-Moody group which is not
of finite type can be realized as a certain homotopy-colimit of the classifying spaces
of its proper standard parabolics. Using this we show that the classifying space of
the Kač-Moody group is approximated by the classifying space of the normalizer of
its maximal torus at all primes not appearing in the torsion of the Weyl group. This
extends a well-known classical result to the class of all Kač-Moody groups. Finally,
in chapter 5 we construct a fibration using rank 2 Kač-Moody groups and end with
a conjecture relating this fibration to certain well-known fibrations known as Anick
fibrations [1].

Thesis Supervisor: Haynes R. Miller

Title: Professor of Mathematics
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CHAPTER 1

Kač-Moody Infinite Dimensional Groups

1. Introduction

This chapter is an attempt to systematically state the properties of the infinite
dimensional groups constructed by Kač and Peterson. To benefit from this summary
the reader need only know the basic structure theorems of Lie groups and Lie algebras.
As a good reference on Lie algebras we cite [20]. The author claims originality only
for example 1.14.4, all the other material in this chapter can be found in [7] and [8].
We have tried to be notationally compatible with [7]. The reader may assume that
the base field is C unless stated otherwise.

2. Integrable algebras and modules

We begin with some general notions dealing with infinite dimensional Lie algebras.
Let V be a (possibly infinite-dimensional) vector space over C and let A be an endo-
morphism of V . To motivate the definition of exponential we introduce the following
definitions. We say that A is locally finite if every v ∈ V lies in a finite-dimensional
A-invariant subspace of V (or equivalently, the vectors (An(v) | n = 0, 1, . . . ) are
linearly dependent for every v ∈ V ). The endomorphism is called locally nilpo-
tent if for every v ∈ V , there is an integer n > 0 such that An(v) = 0. We call A
semisimple if V admits a basis of eigenvectors for A. Clearly, locally nilpotent and
semisimple elements are locally finite.

If A is locally finite we can form the corresponding 1-parameter group of auto-
morphisms of V

exp tA =
∑

n≥0

tn

n!
An, t ∈ C.

Now let g be a (possibly infinite-dimensional) Lie algebra over C and let V be a g-
module with action π. An element x ∈ g is called π - locally finite if π(x) is a locally
finite endomorphism of the vector space V . We denote by Fg the set of all ad-locally
finite elements of g, and by gfin the subalgebra of g generated by Fg. The Lie algebra
g is called integrable if g = gfin. Denote by Fg,π the set of π-locally finite elements
of Fg.

Lemma 1.2.1. The subalgebra of g generated by Fg,π is the linear span of Fg,π. In
particular, gfin is spanned by Fg. If dim g < ∞ and if g is generated by Fg,π, then
V is a locally finite g-module (i.e. any v ∈ V is contained in a finite-dimensional
g-submodule).

We call the g-module (V, π) integrable if Fg,π = Fg. Of course the g-module
(g, ad) is integrable.

11



For a special class of Lie algebras known as Kač-Moody algebras (cf. Section 6),
the reader may recall that [8](§3.6) has a seemingly different definition of an integrable
representation. Kač-Peterson has established that these two definitions are indeed the
same (cf. [8] exercise 3.17).

3. Central extensions

Let R be a complex commutative associative algebra with unity and let g be a
complex finite-dimensional semisimple Lie algebra. Then the Lie algebra gR = R⊗C g

is an integrable Lie algebra over C. This is easily seen by observing that we can
choose ad-locally nilpotent generators for g (for example the Chevalley generators).
For an arbitrary Lie algebra g, one can also consider the Lie algebra gR. We warn
the reader that for gR to be integrable it is crucial that the generators of g can be
chosen to be ad-locally nilpotent; it is not enough for them to be ad-locally finite.
For a finite-dimensional semisimple Lie algebra g, the universal central extension g̃R

of gR is constructed as the following (non-split) exact sequence:

0 → Ω1
R/dR −→ g̃R = gR ⊕ (Ω1

R/dR)
dτ−→ gR → 0(1.3.1)

where Ω1
R is the space of all formal differentials (i.e. expressions of the form fdg, where

f,g ∈ R, with relation d(fg) = fdg + gdf), and the bracket on g̃R is defined by

[r1 ⊗ g1, r2 ⊗ g2] = r1r2 ⊗ [g1, g2] + (g1 | g2)r2dr1 mod dR

where (. | .) is the Killing form on g. Notice that being central, the bracket is zero
on the summand Ω1

R/dR. One can check that g̃R is an integrable Lie algebra as
well. It is also easy to check that VR = R ⊗C V is an integrable gR-module for any
finite-dimensional g-module V .

4. Groups associated to integrable algebras

Let g be an integrable Lie algebra. We associate to g a group G as follows. Let
G∗ be a free group on the set Fg. Given an integrable g-module (V, dπ), we define a
G∗-module (V, π̃) by

π̃(x) = exp dπ(x) =
∑

n≥0

dπ(x)n

n!
, x ∈ Fg.

We put G = G∗/∩Ker π̃, where the intersection is taken over all integrable g-modules
dπ. Thus, the G∗-module (V, π̃) is naturally a G-module (V, π), the integrable g-
module (V, dπ) being its “differential”. We call G the group associated to the
Lie algebra g and (V, π) the G-module associated to the integrable g-module. Given
an element x ∈ Fg, we denote its image in G under the canonical homomorphism
G∗ → G by exp x . Thus, we have by definition

π(exp x) = exp dπ(x), x ∈ Fg

for an integrable g-module (V, dπ). Note also that {exp tx | t ∈ C} is a 1-parameter
subgroup of G.

Put FG = {exp x | x ∈ Fg} ⊂ G. A G-module (V, π) is called differentiable if all
elements of FG act locally finitely on V and exp tx restricted to any invariant finite-
dimensional subspace is analytic in t. Clearly, the G-module (V, π) associated to an

12



integrable g-module (V, dπ) is differentiable. In seeking an invertible functor between
the categories of integrable g-modules and differentiable G-modules, we conjecture

Conjecture 1.4.1. Let (V, π) be a differentiable G-module. Then there exists a
unique action dπ of g on V such that π(exp x) = exp dπ(x) for all x ∈ Fg. (V, dπ) is
then automatically an integrable g-module.

Notice that uniqueness follows from lemma 1.2.1; it is existence that is hard to
show. This conjecture has been established for the class of Kač-Moody algebras
discussed in Section 6.

A homomorphism dφ : g1 → g of integrable Lie algebras is called integrable
if dφ(Fg1

) ⊂ Fg; then dφ(g1) is called an integrable subalgebra of g. Given an
integrable homomorphism dφ of Lie algebras, we have a canonically defined homo-
morphism of the associated groups φ : G1 → G, so that d(π ◦ φ) exists and is equal
to dπ ◦ dφ. The subgroup φ(G1) of G is called the subgroup corresponding to the
integrable subalgebra dφ(g1) of g. It is generated by the exp x with x ∈ dφ(g1) ∩ Fg.
Of course, any isomorphism of integrable Lie algebras is integrable and lifts to an
isomorphism of the associated groups.

Now given an ordered set x̄ = (x1, x2, . . . , xn) of elements of Fg, one defines
ϕx̄ : Cn → G by ϕx̄(t1, t2, . . . , tn) = (exp t1x1) . . . (exp tnxn). Fix a subset X ⊂ Fg

such that the set {exp tx | x ∈ X, t ∈ C} generates G. We define the topology on G
to be the coarsest topology that makes the functions ϕx̄ continuous whenever all the
elements of x̄ are from X. With this topology G is a connected Hausdorff topological
space. The inverse map is continuous but not the multiplication in general. One can
show that if X is countable, then G is a topological group.

If G is a (complex) Lie group with Lie algebra g, then it can be shown that one
recovers G by this construction. In fact, the group associated to the Lie algebra gR

corresponds to the group of points of G over R in the sense of algebraic geometry.
For Kač-Moody algebras (cf. Section 6), an alternate construction of the corre-

sponding groups is given in the Appendix at the end of the chapter.

5. Cartan matrices and Coxeter groups

Let A = (aij)
n
1 be a generalized Cartan matrix, i.e. aii = 2, aij are non-positive

integers for i 6= j, and aij = 0 implies aji = 0. For a pair of indices i, j such that
i 6= j put mij = 2, 3, 4 or 6 if aijaji = 0, 1, 2 or 3 resp. and put mij = 0 otherwise;
put mii = 1. A matrix A is called decomposable if it can be made into a non
trivial direct sum of matrices after performing the same permutation on its rows and
columns. It is called symmetrizable if there is an invertible diagonal matrix D and
a symmetric matrix B such that A = DB. We shall primarily be concerned with
indecomposable symmetrizable Cartan matrices.

We associate to A a discrete group W̄ (A) on n generators r̄1, . . . , r̄n and the
following defining relations:

(D1) r̄j r̄
2
i r̄

−1
j = r̄2

i r̄
−2aij

j

(D2) r̄ir̄j r̄i . . . = r̄j r̄ir̄j . . . (mij factors on each side).

We easily see from (D1) that the subgroup T(2) =< r̄2
i | i = 1, . . . , n >⊂ W̄ (A) is a

normal commutative subgroup. It follows also from (D1) that r̄4
i = 1.
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Let W (A) be the corresponding Coxeter group, i.e. the group on generators
r1, r2, . . . , rn and the following defining relations:

(rirj)
mij = 1.

We then have a homomorphism W̄ (A) → W (A) given by r̄i → ri, and we get an
exact sequence

1 −→ T(2) −→ W̄ (A) −→W (A) −→ 1.(1.5.1)

Let w = ri1 . . . rim be a reduced expression of w ∈W ; one defines the length l(w) = m.
By deleting some of the ri’s from the expression one gets a new element w′ and writes
w′ ≤ w. The partial ordering ≤ on W (A) is called the Bruhat order.

One constructs a section of the map W̄ (A) → W (A) by mapping the element
w = ri1 . . . rim to the element w̄ = r̄i1 . . . r̄im ; one can show that w̄ is independent
of the choice of reduced expression for w. We will construct groups with W̄ (A) as a
discrete subgroup and W (A) as the “Weyl group”.

6. Kač-Moody algebras

Let (h,Π, Π̌) be a realization of the Cartan matrix A of size n, i.e. h is a
complex vector space of dimension 2n − rankA, and Π = {α1, . . . , αn} ⊂ h∗,
Π̌ = {h1, . . . , hn} ⊂ h are linearly independent sets satisfying αj(hi) = aij . One
should view the α’s as the simple roots and the h’s as the corresponding inverse
roots. The realization of a Cartan matrix is unique up to isomorphism.

The Kač-Moody algebra g(A) associated to the generalized Cartan matrix A is
the Lie algebra generated by the vector space h and symbols (Chevalley generators)
ei and fi (i = 1, . . . , n), with the following defining relations:

(A1) [h, h] = 0; [h, ei] = αi(h)ei ; [h, fj ] = −αj(h)fj (h ∈ h)

(A2) [ei, fj ] = δijhi ; (ad ei)
1−aijej = 0; (ad fi)

1−aijfj = 0 (i 6= j).

The subalgebra g(A)′ ⊂ g(A), generated by the subspace h′ spanned by hi’s and the
Chevalley symbols, is sometimes also called the Kač-Moody algebra. If we denote by
η+ (resp. η−) the subalgebras generated by the ei’s (resp. fi’s) i = 1, . . . , n, then we
have the triangular decomposition g(A) = η− ⊕ h ⊕ η+ and g(A)′ = η− ⊕ h′ ⊕ η+.
The center of g(A) and g(A)′ is ν = {h ∈ h′ | αi(h) = 0 for all i = 1, . . . , n}. The
center is trivial if and only if h = h′ which happens if and only if detA 6= 0. It can be
checked that ei and fi are ad-locally nilpotent and elements of h are ad-semisimple.
Thus g(A) and g(A)′ are both integrable. We remind the reader once again that
g(A)R need not be integrable. However, g(A)′R is integrable since it is generated by
ad-nilpotent generators.

Notice furthermore that the subalgebras gi = Cfi⊕Chi⊕Cei and any subspace of
h are clearly integrable subalgebras of g(A). This is also true for the Borel subalgebras
h′′ ⊕ η+ and h′′ ⊕ η−, where h′′ is any subspace of h.

7. Highest weight modules

The details of this brief section can be found in Chapters 9 and 10 of [8].

14



Given Λ ∈ h′
∗, we extend it in some way to a linear functional Λ̃ ∈ h∗ and define

the highest weight module L(Λ) over g(A) with action dπΛ by the properties:

(L1) L(Λ) is irreducible

(L2) ∃vΛ 6= 0 ∈ L(Λ) with

dπΛ(ei)vΛ = 0, i = 1, . . . , n; dπΛ(h)vΛ = Λ̃(h)vΛ, h ∈ h.

The module L(Λ) remains irreducible when restricted to g(A)′ and is independent of
the extension of Λ. The reader familiar with Verma modules will recognize L(Λ) as
the top simple quotient of the Verma module M(Λ). Let P+ ⊂ h′

∗ be the set of Λ
that are integrable. This condition ensures that Λ(hi) are non-negative integers. We
put P++ = {Λ ∈ P+ | Λ(hi) > 0; i = 1, . . . n}. The sets P+ (resp. P++) are known as
integral weights (resp. dominant weights).

8. Structure of G(A)

Let G(A) denote the group associated to the Lie algebra g(A)′. We have the
associated G(A) modules (L(Λ), πΛ), Λ ∈ P+, and the adjoint module (g(A)′,Ad).

Denote by Gi, Hi, H, U+, U−, B+ and B− the subgroups of G(A) corresponding to
the integrable subalgebras gi,Chi, h

′, η+, η−, h
′ ⊕ η+ and h′ ⊕ η− resp. of g(A). Let us

give a more explicit description of these groups.
We have an integrable homomorphism dϕi : sl2(C) → g(A) defined by

dϕi

(

a b
c −a

)

= ahi + bei + cfi.

Let ϕi : SL2(C) → G(A) be the corresponding homomorphism of groups. Put

Hi(t) = ϕi

(

t 0
0 t−1

)

.

The homomorphisms ϕi are injective and one has

Gi = ϕi(SL2(C)); Hi = {Hi(t) | t ∈ C×}

exp tei = ϕi

(

1 t
0 1

)

, exp tfi = ϕi

(

1 0
t 1

)

, t ∈ C.

Furthermore, H is an abelian group equal to the (finite) direct product of the sub-
groups Hi. We also have B± = U± ⋊H .

The map

r̄i 7→ ϕi

(

0 1
−1 0

)

= (exp ei)(exp −fi)(exp ei)

extends to an injective homomorphism φ : W̄ (A) → G(A). We will call the image
of this map W̄ and denote the image of r̄i again by r̄i ∈ G(A). The image of T(2)

is a subgroup of H given by T(2) = W̄ ∩ H = {h ∈ H | h2 = 1}. It follows that
T(2)

∼= (Z/2Z)n. The group W̄ clearly normalizes H . If we denote by N the subgroup
of G(A) generated by H and W̄ , then N acts on h′ via the adjoint action, H acting
trivially. The map ri 7→ r̄iH extends to an isomorphism W (A) −→ W = N/H . The
image of ri is again denoted by ri ∈ W . The group W is called the Weyl group of

15



G(A) and the ri its fundamental reflections. Put S = {r1, . . . , rn}. The adjoint
action of W on h′ is

rj.hi = hi − aijhj (i, j = 1, . . . , n).

The following are some general facts about the group G(A):
(A) The group G(A) is generated by the (complex) 1-parameter subgroups exp tei

and exp tfi, i = 1, . . . , n.
(B) (G(A), B+, N, S) is a Tits system (cf. [3]).
(C) The center C = {H1(t1) . . .Hn(tn) | ta1j

1 . . . t
anj
n = 1} for j = 1, . . . , n.

(D) U± is generated by the 1-parameter subgroups exp t(Adw.ei), where w ∈ W̄
is such that (Adw)ei ∈ η±, i = 1, . . . , n.

(E) N is the normalizer of H in G(A).
The proofs of these theorems can be found in [18]. Since C(Adw)ei = gwαi

, fact
(D) is saying that U± is generated by exp(gα), α ∈ ∆re

± (cf. Appendix for definitions).
It is not true in general that ∆re

± can be substituted by any proper subset. A formal
consequence of (B) is the Bruhat decomposition:

G(A) =
∐

w∈W

B+w̄B+(1.8.1)

and the Birkhoff decomposition:

G(A) =
∐

w∈W

B−w̄B+(1.8.2)

where w̄ denotes any preimage of w in W̄ .

9. The unitary form K(A)

If A is a generalized Cartan matrix of finite type, then K(A) is the unitary form
of the complex semisimple Lie group G(A). Thus the groups K(A) are infinite di-
mensional analogs of compact Lie groups.

The Kač-Moody algebra g(A)′ admits an antilinear involution ω0 determined by
demanding that ω0(ei) = −fi, i = 1, . . . , n. We can extend ω0 to all of g(A)′ by
putting ω0[x, y] = [ω0(x), ω0(y)]. Since ω0 preserves the set of locally finite elements,
it can be lifted uniquely to an involution of G(A), which we shall also denote by ω0.
Let K(A) be the fixed point set of this involution on G(A).

Provided that A is symmetrizable and indecomposable, the Kač-Moody algebra
g(A)′ carries a (unique up to a constant factor) symmetric , invariant, bilinear form
(. | .) (cf. [8] Ch. 2). The reader should consider this the analog of the Killing form.
We remind the reader that a form is called invariant if ([x, y] | z) = (x | [y, z]). This
form has the property that (ei | fi) > 0. Put (x | y)0 = −(x | ω0(y)). The form (. | .)0

is a Hermitian form and the triangular decomposition is orthogonal with respect to
it. It can be shown that (. | .)0 is positive definite on η+ and η−.

The involution ω0 preserves the subgroups Gi, Hi and H (cf. Section 8); we denote
by Ki, Ti and T respectively the corresponding fixed point subgroups. It follows that

Ki = ϕi(SU2), and

Ti = ϕi

(

t 0
0 t−1

)

: ‖ t ‖= 1.
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Ti is a maximal torus of Ki and T =
∏

i Ti is a maximal torus of K(A). The
maximal torus T is a maximal connected abelian subgroup of K(A) and all such
subgroups are indeed conjugate (cf. [13]). Put

H+
i = ϕ

(

t 0
0 t−1

)

: t ∈ R, t > 0.

If we denote by H+ =
∏

iH
+
i ; then H = T ×H+.

10. The structure of K(A)

Let D (resp.
◦

D) = {u ∈ C : ‖ u ‖≤ 1 (resp. ‖ u ‖< 1)} be the unit disc (resp. its

interior) and let S1 = D−
◦

D be the unit circle. Given u ∈ D, put

z(u) =

(

u (1− ‖ u ‖2)
1

2

−(1− ‖ u ‖2)
1

2 ū

)

∈ SU2

and put zi(u) = ϕi(z(u)). We have r̄i = zi(0) ∈ Ki, hence W̄ ⊂ K(A) ⊂ G(A). Put

Yi = {zi(u) | u ∈
◦

D} ⊂ Ki.

It can be shown (cf. [19] Lemma 43(b)) that

B+r̄iB+ = YiB+ (uniquely)(1.10.1)

where by uniquely we mean that every element on the right hand side can be expressed
uniquely as a product of elements from Yi and B+.

Let w = ri1 . . . rim be a reduced expression of w ∈ W and let w̄ be its preimage
in W̄ . Using 1.10.1, and a similar argument one shows

B+w̄B+ = Yi1 . . . YimB+ (uniquely).(1.10.2)

Put Kw = K(A) ∩B+w̄B+. Put Yw = Yi1 . . . Yim; this is independent of the choice of
the reduced expression for w. We have by 1.10.2

Kw = YwT (uniquely).(1.10.3)

Put K̄w = Ki1 . . .KimT ; this expression is also independent of the reduced expression
of w, as follows from

K̄w =
∐

w′≤w

Kw′.(1.10.4)

By the Bruhat decomposition, we have

K(A) =
∐

w∈W

Kw.(1.10.5)

In particular, K(A) is generated by Ki, i = 1, . . . , n. Finally, we also have the
Iwasawa decomposition:

G(A) = K(A)H+U+ (uniquely).(1.10.6)

17



11. A Presentation of the group K(A)

K(A) should be thought of as a “real analytic continuation” of the presentation
of the group W̄ (A). We have the following relations coming from SU2:

(R1) (i) zi(u1)zi(u2) = zi(u1u2) if u1, u2 ∈ S1,

(ii) zi(u)zi(−ū) = zi(−1) if u ∈
◦

D,

(iii) zi(u1)zi(u2) = zi(u
′
1)zi(u

′
2) if u1, u2 ∈

◦

D, u1 6= u2

and u1 6= u2, for some unique u′1 ∈
◦

D and u′2 ∈ S1.
Furthermore, Ti normalizes Kj and the conjugation is given by

(R2) zi(u1)zj(u2)zi(u1)
−1 = zj(u

aij

1 u2)zj(u
−aij

1 ) if u1 ∈ S1, u2 ∈ D.

Finally, if mij 6= 0, then rirjri . . . = rjrirj . . . (mij factors on both sides). Hence
YiYjYi . . . = YjYiYj . . . (uniquely). In other words, we have

(R3) zi(u1)zj(u2)zi(u3) . . . = zj(u
′
1)zi(u

′
2)zj(u

′
3) . . .

with mij factors on each side, if u1, u2, . . . ∈
◦

D, for some unique u′1, u
′
2, . . . ∈

◦

D .

Theorem 1.11.1. The group K(A) is a group on generators zi(u) defined above,
i = 1, . . . , n; u ∈ D, with defining relations (R1), (R2) and (R3).

12. The topology of K(A)

All the subgroups that we have seen so far are closed. The bijection provided by
by the Iwasawa decomposition 1.10.6 is a homeomorphism. Furthermore, H+ and
U+ are contractible. Thus as in the finite-dimensional case, G(A) is homotopically
equivalent to K(A).

The topology on K(A) can be described as follows. Given w ∈ W with reduced
expression w = ri1 . . . rim , one can define a map

(SU2)
m × T −→ K(A) (k1, . . . , km, t) 7→ ϕi1(k1) . . . ϕim(km)t.

The image of this map is K̄w, and we take the quotient topology on it. This topology
is independent of the choice of the reduced expression and makes K̄w a connected
Hausdorff compact topological space. Then a subset F of K(A) is closed if and only
if F ∩ K̄w is closed in K̄w for all w ∈W . It follows that K̄w is the closure of Kw and
that K̄w′ ≤ K̄w if and only if w′ ≤ w. Thus, as a topological space, K(A) is a colimit
with respect to the Bruhat order of the compact spaces K̄w. Of course, K(A) is also
a linear colimit of compact spaces with respect to the length function

K(A) = lim-------→
k

⋃

l(w)=k

K̄w.

13. The Flag Variety and CW-Decompositions

The most natural way to study the topology of K(A) is to consider the fibration

π : K(A) −→ K(A)/T.
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The topological space F(A) = K(A)/T is called the flag variety of the group K(A)
and of G(A). Put Cw = π(Yw). Then by 1.10.3 and 1.10.5 we get a cellular decom-
position

F(A) =
∐

w∈W

Cw.

To show that this is a CW-complex, one has to only construct attaching maps. For
that, given w ∈W , choose a reduced expression w = ri1 . . . rim and define a map from
the disc Ds = D ×D . . .×D

αw : Ds −→ F(A) αw(u1, . . . , us) = zi1(u1) . . . zis(us) mod T.

This gives a homeomorphism of
◦

Ds onto Yw by 1.10.2. Since K̄w is the closure of Kw,
by 1.10.4 we have

C̄w =
∐

z′≤w

Cw′(1.13.1)

where C̄w is the closure of Cw. It is clear from the defining relations of K(A) that

αw(Dk−1 × S1 ×Ds−k) ⊂ C̄w′

where w′ is obtained from w by dropping rik . Thus we get a CW-decomposition for
F(A).

Since the dimensions of the cell Cw = 2l(w), there are no cells of odd dimen-
sions. Thus H∗(F(A); Z) and H∗(F(A); Z) are free Z-modules on generators of degree
2l(w), w ∈ W . Putting W (q) =

∑

w∈W ql(w), we notice that the Poincaré series for
homology and cohomology of F(A) over any ring is W (q2).

As in the finite-dimensional case, F(A) can be given a natural structure of a
complex projective variety. For this note that, by the Iwasawa decomposition, we

have a homeomorphism F(A)
∼=−→ G(A)/B+. But G(A)/B+ can be identified with

the orbit space G.vΛ (cf. Section 7) in the projective space PL(Λ) for Λ ∈ P++. This
is a closed subvariety of PL(Λ). One can give a definition that is independent of the
choice of Λ.

As a result, the C̄w become finite-dimensional projective varieties, called Schu-
bert varieties, and F(A) is their inductive limit with respect to the Bruhat order
(or with respect to the length function).

Remark 1.13.2. If we take a standard cellular decomposition of T , then 1.10.3
and 1.10.5 together give us a cellular decomposition of K(A). This may not be a
CW-complex since the cells may be attached in the wrong order. This, however, tells
us that K(A) does have the homotopy type of a CW-complex since we can always
move the cells up to homotopy to get them in the right order.

14. Cohomology

We would like to calculate the ring structure in cohomology for these spaces. In
order to do that we need to introduce some terminology.

Let Q̌ =
∑

i Zhi and let P = {λ ∈ h′
∗ | λ(hi) ∈ Z, i = 1, . . . , n} be the dual

lattice. Let S(P ) = ⊕j≥0S
j(P ) be the symmetric algebra over the lattice P , and

let S(P )+ = ⊕j>0S
j(P ) denote the augmentation ideal. Given a field F, we denote
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S(P )F = F⊗ZS(P ). We now proceed to define the characteristic homomorphism
ψ : S(P ) −→ H∗(F(A); Z) as follows. Given λ ∈ P , we have the corresponding
character of T and the associated line bundle ζλ on F(A). Put ψ(λ) ∈ H2(F(A); Z)
equal to the first Chern class of ζλ and extend ψ by multiplicativity to the whole of
S(P ). Denote by ψF the extension of ψ by linearity to S(P )F. Let us denote the
image of ψF by RF. Similarly, let IF denote the kernel of ψF.

Proposition 1.14.1. Let F be a field. Then H∗(F(A); F) is a free module over
RF. Furthermore, any minimal system of homogeneous generators of the ideal IF is a
regular sequence.

Let CH(G(A),F) denote the quotient (graded) algebra ofH∗(F(A); F) by the ideal
generated by RF; this is called the Chow algebra of G(A) over F. It shall follow
from the next theorem that CH(G(A),F) = π∗(H∗(F(A); F)). Denote the degrees
of the elements of a minimal system of homogeneous generators of the ideal IF by
d1, . . . , ds(s ≤ n). These degrees are well-defined; we will call them the degrees of
basic generators of IF.

Theorem 1.14.2. Let F be a field. Then:
(A) CH(G(A),Q) is a polynomial algebra on (in general an infinite number of)

homogeneous generators. The Poincaré series of the algebra CH(G(A),F) can be
written as W (q2)(1 − q2)n/

∏s

1(1 − q2di). The (graded) algebra H∗(K/T ; Q) is (non-
canonically) isomorphic to the tensor product of RQ and CH(G(A),Q).

(B) The Serre spectral sequence in cohomology Er(K(A); F) for the principal fi-
bration π : K(A) → F(A) collapses at r = 3.

(C) π∗ induces an injective homomorphism of CH(G(A),F) into H∗(K(A); F)
and into E∞(K(A); F), the image being a Hopf subalgebra of H∗(K(A); F).

(D) The algebra E∞(K(A); F) is isomorphic to a tensor product of CH(G(A),F)
and the cohomology algebra of the Kozul complex (Λ(P ) ⊗ RF, d) where the differen-
tials are given by d(λ ⊗ u) = ψ(λ) ⌣ u. The latter algebra is an exterior algebra
on homogeneous generators of degree 2d1 − 1, . . . , 2ds − 1. The Poincaré series of
H∗(K(A); F) is equal to the product of the Poincaré series of CH(G(A),F) and the
polynomial

∏s
1(1 + q2di−1).

Notice that (B) does not say that the spectral sequence Er(K(A); Z) collapses
at r = 3. However, we shall see an example in a moment where this does indeed
happen. The classical theorems on the cohomology of compact Lie groups and their
flag manifolds can be seen as corollaries of this theorem (cf. [7]). We also state another
corollary for arbitrary K(A):

Corollary 1.14.3. K(A) is a connected simply connected topological group and
H2(K(A); Z) = 0.

Example 1.14.4. Consider the rank 2 case where the Cartan matrix is given by

A =

(

2 −a
−b 2

)

with ab ≥ 4. Since n = 2, the spectral sequence Er(K(A); Z)

collapses at r = 3 for trivial reasons and one can compute the cohomology explicitly
to get the additive structure of H∗(K(A); Z). This computation is done in detail in
chapter 3 and the main results are as follows:
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Define sequences of integers cj, dj for j ∈ Z by the following recurrence formula:

c0 = d0 = 0, c1 = d1 = 1, cj+2 = adj+1 − cj , dj+2 = bcj+1 − dj.

Let gk be the greatest common divisor of ck and dk. Then

H2j(K(A); Z) ∼= H2j+3(K(A); Z) ∼= Z/gjZ.

Notice that gj = j if a = b = 2. It can be shown using fact (C) in section 8 that
the center of K(A) is isomorphic to Z/2Z × 2Z/(ab − 4)Z if a = b = 0 mod 2 and
Z/(ab − 4)Z otherwise. Note that if ab = 4, then we define Z/(ab − 4)Z to be the
circle S1.

15. The Affine Case

A Kač-Moody algebra g(A) is finite dimensional if and only if A is of finite type
(i.e. all principal minors of A are positive). The class of these algebras coincides with
the class of finite-dimensional semisimple Lie algebras. The associated group G(A) is
the Lie group of C-points of the connected simply-connected algebraic group whose
Lie algebra is g(A). The group K(A) is the compact form of G(A). H is the Cartan
subgroup of G(A), B+ and B− are “opposite” Borel subgroups, etc. In this case most
results are well known.

Let us discuss in more detail the case when the matrix A is of affine type, i.e.
all proper principal minors of A are positive, but detA = 0 (A is then automatically
indecomposable and symmetrizable). An example of such a matrix is the extended
Cartan matrix of a simple finite-dimensional Lie algebra (which we describe in a
moment). All affine Cartan matrices can essentially be obtained in this fashion and
have rank one less than their size. Let us now describe the construction of the
extended Cartan matrix.

Let g(Å) be a simple finite-dimensional Lie algebra corresponding to the Cartan
matrix Å of finite type. Then by the dual algebra g(tÅ) we shall mean the simple
finite-dimensional Lie algebra corresponding to the Cartan matrix tÅ of finite type
given by the transpose of Å. Let (h,Π, Π̌) be a realization for Å, then it is easy to
see that (h∗, Π̌,Π) is a realization for tÅ. Let θ = a1α1 + . . .+ anαn be a highest root
of the simple finite-dimensional Lie algebra g(Å), and θ̌ = ǎ1α̌1 + . . . + ǎnα̌n be the
highest short root of the Lie algebra g(tÅ). Put a00 = 2, ai0 = −(anai1 + . . .+ anain),
a0j = −(ǎ1a1j + . . . + ǎnanj). Then A = (aij)

n
0 is called the extended Cartan

matrix.
The Kač-Moody algebra corresponding to the extended Cartan matrix is nothing

other than the central extension g̃(Å)L (cf. Section 3), where we abbreviate the ring
of Laurent series C[z, z−1] by L. The isomorphism g(A)′ → g̃(Å)L is given by

ei 7→ 1 ⊗ e◦i , fi 7→ 1 ⊗ f ◦
i , i = 1, . . . , n

e0 7→ z ⊗ e−θ, f0 7→ z−1 ⊗ eθ

where θ is the highest root of g(Å), eθ and e−θ are the corresponding normalized root
vectors (normalized so that (eθ | e−θ) = 2

(θ|θ)
) and finally e◦i and f ◦

i , i = 1, . . . , n are

the Chevalley generators of g(Å).
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Now recalling the definitions from Section 3, we observe that Ω1
L = Cdz

z
+ dL,

hence dz
z

is a basis of Ω1
L/dL. We have

[e0, f0] =
2

(θ | θ)
dz

z
+ 1 ⊗ [e−θ, eθ]

where the bracket on the left is in g̃(Å)L while that on the right is in g(Å). It is a
general fact from Lie theory that for any root α and a normalized root vector eα,
[eα, e−α] = α̌. Consequently, we find that

h0 = [e0, f0] =
2

(θ | θ)
dz

z
− 1 ⊗ θ̌.

16. Central extension of the free loop group

If G◦ is the (complex) simple Lie group associated to the Lie algebra g(Å), then
it is not difficult to check that the group associated to the integrable Lie algebra
g(Å)L is the group of polynomial maps C× → G◦, denoted by G◦

L, which is known
to be homotopy equivalent to the free loop group ΛG◦. Corresponding to the exact
sequence 1.3.1, we have an exact sequence

1 −→ C× µ−→ G(A)
τ−→ G◦

L −→ 1.(1.16.1)

This sequence is a sequence of topological groups where C× has the metric topology
and G◦

L is topologized as the colimit of the finite-dimensional subspaces given by
G◦,m

L = {f : f(z) =
∑m

−mAiz
i} where we have fixed an embedding G◦ →֒ GLn(C).

This topology is called the box topology. Notice that there is a canonical embedding
of G◦ →֒ G◦

L via constant loops. So we can pull back the above exact sequence to
G◦. Since there is a canonical map of Lie algebras between g(Å) and g(A)′, we have a
section of this pullback sequence and it splits. Let ψ : G◦ →֒ G(A) be this section. It
is easy to see that the maps ϕi : SL2(C) → G(A) and ψ ◦ϕ◦

i : SL2(C) → G◦ →֒ G(A)
are equal for i = 1, . . . , n (cf. Section 8). Consequently, via the embedding ψ we have

Gi = G◦
i , Hi = H◦

i , r̄i = r̄◦i , i = 1, . . . , n

where the subgroupsHi(resp.H◦
i ), Gi(resp.G◦

i ) and elements r̄i (resp. r̄◦i ) were defined
in Section 8. Furthermore, we also have the map ϕ0 : SL2(C) → G(A). Since
θ̌ = ǎ1h1 + . . .+ ǎnhn, it follows that ǎ0h0 + . . .+ ǎnhn spans the center of g(A)′ where
ǎ0 = 1. Consequently, the map µ is given by

µ(t) =
n

∏

0

Hi(t
ǎi)

and the center of G(A) is C = µ(C×) × C◦, where C◦ is the center of G◦.

Let G̃◦
L = {f ∈ G◦

L : f(1) = e} (where e ∈ G◦ is the identity) be the based loops.

Then G◦ acts on G̃◦
L via conjugation and we have an isomorphism

G̃◦
L ⋊G◦ ∼=−→ G◦

L (f, g) 7→ fg.

Using the obvious notation, this equation restricts to an isomorphism

H̃◦
L ⋊N◦ ∼=−→ N◦

L.
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Now if we define M =
∑

Zh◦i to be the inverse root lattice of g(Å), we have an
isomorphism M → H̃◦

L given by h◦i 7→ H◦
i (z), i = 1, . . . , n. Thus we get a subgroup

M ⋊ W̄ ◦ of G◦
L. Over this subgroup, equation 1.16.1 restricts to

1 −→ {±1} −→ W̄ −→M ⋊ W̄ ◦ −→ 1(1.16.2)

which splits over W̄ ◦ but over M gives the non-split exact sequence

1 −→ {±1} −→ L −→M −→ 1.

Of course, W (A) = M ⋊W (Å). Consider the triangular decomposition of g(A)′ given
by g(A)′ = η− ⊕ h ⊕ η+, where

η− = (z−1C[z−1] ⊗ (η◦+ + h
◦)) + C[z−1] ⊗ η◦−

η+ = (zC[z] ⊗ (η◦− + h
◦)) + C[z] ⊗ η◦+.

Clearly, the triangular decomposition of g(Å)L = η− ⊕ h◦ ⊕ η+ differs from that of

g(A)′ only in its Cartan subalgebra. Let Ũ± be the subgroups of G◦
L associated to the

integrable subalgebras η± respectively. Then

Ũ+ = {a(z) ∈ G◦
C[z] | a(0) ∈ U◦

+}

Ũ− = {a(z−1) ∈ G◦
C[z−1] | a(∞) ∈ U◦

−}.
The exact sequence 1.16.1 splits over Ũ± canonically but not uniquely. Let us define
in a similar fashion

B̃+ = {a(z) ∈ G◦
C[z] | a(0) ∈ B◦

+}

B̃− = {a(z−1) ∈ G◦
C[z−1] | a(∞) ∈ B◦

−}.
Notice that the image of the Borel subgroups B+ and B− of G(A), under the map

τ , are the subgroups B̃+ and B̃− respectively. Once we make the observation that
M ∩ G◦

C[z±] = e and W̄ ◦ ⊂ G◦, the Bruhat and Birkhoff decompositions 1.8.1 and
1.8.2 along with equation 1.16.2 descend to give us the classical results:

G◦
L = G◦

C[z]MG◦
C[z]

G◦
L = G◦

C[z−1]MG◦
C[z].

17. Connected covers of loop groups

Let us take a look at the unitary form K(A) of G(A). Let ω◦
0 be the antilinear

involution of g(Å) introduced earlier. This involution induces an involution of G◦

whose fixed point set is the the compact form of G◦ denoted by K◦. Now ω◦
0 extends

to an obvious involution ω0,L of g(Å)L which maps z to z−1. The involution ω0 of g(A)′

is compatible with ω0,L via the map dτ . The fixed point set of the (unique) lift of ω0,L

to G◦
L is the group of polynomial maps C× → G◦ for which the image of the unit circle

is contained in K◦, these are called polynomial loops on K◦ and denoted by K◦
L. It is

a well-known result that K◦
L →֒ ΛK◦ is a homotopy equivalence, where ΛK◦ denotes

the space of free loops on K◦. If we denote K̃◦
L = {f ∈ K◦

L : f(1) = e}, then it follows

that K̃◦
L →֒ ΩK◦ is a homotopy equivalence, where ΩK◦ is the space of based loops
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on K◦. The exact sequence 1.16.1 restricts to the following exact sequence:

1 −→ S1 µ−→ K(A)
τ−→ K◦

L −→ 1.(1.17.1)

As before, we have K̃◦
L ⋊K◦

∼=−→ K◦
L and the above sequence splits canonically over

K◦. Let ψ : K◦ → K(A) be the section over K◦. Denote by Ω(K◦)〈2〉 the group

τ−1(K̃◦
L) (the reason for this notation will soon be apparent). Now K◦ acts via ψ by

conjugation on Ω(K◦)〈2〉 and we have

Ω(K◦)〈2〉 ⋊K◦ ∼=−→ K(A).

Since K(A) is simply-connected, it follows easily from the fibration sequence

S1 −→ Ω(K◦)〈2〉 −→ K̃◦
L

that Ω(K◦)〈2〉 is homotopy equivalent to the two-connected cover of Ω(K◦) (and
hence the notation).

We have the following pullback diagram of principal S1-bundles:

S1 =
S1 =

S1

Ω(K◦)〈2〉 K(A) ES1

K̃◦
L

K◦
L

ζ
CP∞

where ζ is the classifying map. ζ generates H2(K◦
L; Z) ∼= Z and hence K(A) is called

the universal central extension of ΛK◦.
Notice that the map τ in equation 1.17.1 maps the maximal torus of K(A) to the

maximal torus T ⊂ K◦ ⊂ K◦
L. Hence

F(A)
∼=−→ K̃◦

L ⋊K◦

1 ⋊ T

κ−→ Ω(K◦) × (K◦/T )

where the map κ is a homotopy equivalence. Thus Ω(K◦) can be viewed as a partial
flag variety. Results of Section 14 provide important information on the cohomology
of the spaces Ω(K◦) and Ω(K◦)〈2〉.

Now consider the multiplication map

K̃◦
L ×G◦

C[z] −→ G◦
L.

It is a classical result that this map is a homeomorphism. This can easily be seen
from the Iwasawa decomposition of G(A), 1.10.6, using the exact sequences 1.16.1
and 1.17.1.

18. The Indefinite Case

There is a third and final type of Cartan matrix. It is characterized by the property
that there is a vector α with positive integer entries such that Aα has negative entries.
While the Cartan matrices of finite and affine types have been classified and are
symmetrizable, the matrices of indefinite type remain unclassified. However, one of
its subclasses, the class of hyperbolic type was classified just recently. The groups
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associated to Cartan matrices of Indefinite type remain a mystery and no example of
such a group is known to have a natural description.

19. Appendix

In this section we describe an alternate construction of the groups associated to
the Kač-Moody algebras. Let us build up some background before we begin.

Let g(A) be a Kač-Moody algebra associated to the generalized Cartan matrix
A. We have the root space decomposition g(A) = ⊕α∈h∗gα, where the individual
root spaces are defined as gα = {x ∈ g(A) | [h, x] = α(h)x for all h ∈ h}. Put
Q =

∑

Zαi, Q+ =
∑

Z+αi (where Z+ = {0, 1, . . .}), and define a partial order
on h∗ by : λ ≥ µ if λ − µ ∈ Q+. A root (resp. positive root) is an element of
∆ = {α ∈ h∗ | α 6= 0, gα 6= 0} (resp. ∆+ = ∆ ∩Q+). We have

h = g0 , η± =
⊕

α∈∆+

g±α.

For α =
∑

kiαi ∈ ∆, we write the height htα =
∑

ki. The Weyl group W preserves
the root system ∆. A real root is an element of ∆re = {w(α) | w ∈ W,α ∈ Π}. If
α ∈ ∆re, then dimgα = 1. A root which is not a real root is called an imaginary root.
The set of imaginary roots is denoted by ∆im. If the Cartan matrix is symmetrizable
then a root α is imaginary if and only if (α | α) ≤ 0. For α ∈ ∆re, write α = w(αi)
for some w ∈W ; then we define rα = wriw

−1 which depends only on α.
Let G∗ be the free product of the additive groups gα, α ∈ ∆re, with canonical

inclusions ια : gα → G∗. For any integrable g(A)′-module (V, π), define a homomor-
phism π∗ : G∗ → Aut(V ) by π∗(ια(y)) = exp π(y). Let N∗ be the intersections of all
Ker(π∗), put G = G∗/N∗, and let q : G∗ → G be the canonical homomorphism. For
y ∈ gα(α ∈ ∆re), put exp(y) = q(ια(y)), so that the group Uα = exp(gα) is an additive
1-parameter subgroup of G. The topology on G is defined exactly as in Section 4 by
taking X to be the set ∆re. This construction has been taken from [11].
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CHAPTER 2

Cohomology of Kač-Moody Groups

1. Introduction

Let K be the unitary form of a Kač-Moody group G. One has the principal
fibration

T −→ K
π−→ K/T(2.1.1)

where T ⊂ K is a maximal torus. In [9] a proof was outlined to show that for
coefficients in any field F, the Serre spectral sequence for this fibration collapses at
E3. The details of this proof were to appear in [10] but that paper never made it in
print. From the collapse of the spectral sequence one obtains an extension of graded
algebras

1 −→ π∗H(K/T ; F) −→ H(K; F) −→ E −→ 1

where E is an exterior algebra on finitely many generators of odd homogeneous degree.
It was also stated in [9] that the above extension is in fact an extension of Hopf-
algebras.

In this chapter we provide proofs of the above claims as suggested in [9]. The
proofs given here are by no means original and have been directly influenced by the
lectures given by D. Peterson at M.I.T in the Spring of ‘97. The author would like
to take this opportunity to thank D. Peterson and V. Kač for their help during the
numerous conversations he had with them.

Our proofs make essential use of operators Ai that act on the cohomology of
the flag variety K/T . These operators were introduced by Kač-Peterson in [7] and
Kostant-Kumar in [14]. Following D. Peterson, we interpret them as integration along
the fiber for suitable fibrations. Using this definition we derive an inductive formula
for the action of the Steenrod algebra on H∗(K/T ; Fp). We show as a consequence
that H∗(K/T ; Fp) is locally finite as a module over the mod p Steenrod algebra. The
same holds for H∗(K; Fp).

2. Background

Let g be the Kač-Moody algebra associated to a generalized Cartan matrix A of
size n. Let h be the Cartan subalgebra of g. Let Π = {α1, . . . , αn} be the set of
simple roots. For each root αi one has a simple reflection ri of h∗ and the elements
ri generate the Weyl group W . The Weyl group admits a partial order known as the
Bruhat order. Let G be the Kač-Moody group associated to the Lie algebra g′ = [g, g].
Let B denote its Borel subgroup, and H ⊂ B its maximal torus. Define Pi to be the
minimal parabolic subgroup associated to the root αi. Denote by K the unitary form
of G. Then T = K ∩H = K ∩ B is the maximal torus of K and has rank n.
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Let us now recall some properties of the homogeneous space K/T = G/B. The
space G/B admits a decomposition

G/B =
∐

w∈W

BwB/B

known as the Bruhat decomposition of 1.8.1. The quotients BwB/B have the natural
structure of finite-dimensional affine spaces Cl(w). This decomposition is indeed a
CW-decomposition. For any w ∈W , the subcomplex

Xw =
∐

w′≤w

Bw′B/B

is called the Schubert variety corresponding to w, and it has the natural structure of
a projective variety. G/B is a direct limit of such Schubert varieties.

The above discussion also applies to the spaces G/Pi in which case the cells,
BwPi/Pi, are indexed by the cosets W/Wi where Wi = {1, ri}. Let w = ri1 . . . rik be
some (not necessarily reduced) expression of w ∈W . Consider the variety

Pi1,... ,ik = Pi1 ×B Pi2 ×B . . .×B Pik/B.

We have a morphism of varieties

j : Pi1,... ,ik →֒ G×B G . . .×B G/B
µ−→ G/B

where µ is the map induced by group multiplication. The image of j under this
morphism is the Schubert variety Xw. Notice that Pi1,... ,ik is a smooth projective
variety over C and hence has a canonical orientation class. In the case when the
expression w = ri1 . . . rik is reduced, the map j provides a desingularization of Xw and
the pair (Pi1,... ,ik , j) is known as the Bott-Samelson resolution. These resolutions are
the key ingredient in showing that the Bruhat decomposition is a CW-decomposition.
In particular, for a reduced expression w = ri1 . . . rik , the map

j : Pi1,... ,ik −→ Xw

is an isomorphism on the top-dimensional integral cohomology group H2k( ; Z).
From the CW-decomposition it is clear that H∗(G/B; Z) is a free Z-module on

canonical generators δw indexed by the Weyl group. These will henceforth be referred
to as the Schubert basis. Under the identification

H∗(G/B;R) = H∗(G/B; Z) ⊗ R,

the elements δwR = δw ⊗ 1 form a basis of H∗(G/B;R) for any coefficient ring R.
For a Kač-Moody group of rank n we have

Theorem 2.2.1. For any sequence i1, . . . , ik with ij ≤ n, consider the map

j : Pi1,... ,ik −→ G/B.

If w ∈W is any element of length k, then

j∗(δw) = 0 if w 6= ri1 . . . rik

j∗(δw) = σ if w = ri1 . . . rik

where σ refers to the canonical element of H2k(Pi1,... ,ik ; Z) dual to the orientation
class. We shall refer to σ as the top class of Pi1,... ,ik .
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Proof. If ri1 . . . rik is not in reduced form then the map j factors through a lower
skeleton and so in this case the theorem is obvious. If w = ri1 . . . rik is in reduced
form then j factors as the Bott-Samelson resolution of Xw followed by the inclusion
of Xw into G/B and so the result follows from the comments made earlier.

3. The operators ARi and DR
i

Before constructing these operators, we define what we mean by the term inte-
gration along the fiber. Let

F −→ E
π−→ B

be a fibration with the property that H i(F ;R) = 0 for i > n. Assume that the action
of π1(B) on Hn(F ;R) is trivial. Let

τ : Hn(F ;R) −→ R

be a fixed homomorphism of R-modules. We shall refer to such data as an oriented
fibration. We define a homomorphism of R-modules

∫

π,τ

: H∗(E;R) −→ H∗−n(B;R)

as follows. Consider the Serre spectral sequence for the above fibration. By assump-
tion Ep,q

∞ = 0 if q > n. Thus we have a map

H∗(E;R) ։ E∗−n,n
∞ ⊂ E∗−n,n

2 = H∗−n(B;Hn(F ;R)).

Now
∫

π,τ
is defined as the composite

H∗(E;R) −→ H∗−n(B;Hn(F ;R))
τ∗−→ H∗−n(B;R).

We leave it to the reader to verify the following properties of this map:

(A) Consider a map of fibrations

F1

f
F2

E1
g

π1

E2

π2

B1
h

B2.

Assume that H i(F1;R) = H i(F2;R) = 0 for i > n. Let

τ2 : Hn(F2;R) −→ R

be a fixed homomorphism of R-modules and define

τ1 : Hn(F1;R) −→ R

to be the homomorphism f ∗(τ2). Then we have the following equality:

h∗
∫

π2,τ2

(z) =

∫

π1,τ1

g∗(z).(2.3.1)
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Using 2.3.1 we also have

g∗π∗
2

∫

π2,τ2

(z) = π∗
1

∫

π1,τ1

g∗(z).(2.3.2)

We shall refer to property (A) as naturality with respect to maps of fibrations.

(B)
∫

π,τ
is a H∗(B;R)-module homomorphism, where H∗(E;R) is seen as a

H∗(B;R)-module via π.

(C) For an oriented spherical fibration with fiber Sn and

τ ∈ Hom(Hn(Sn;R), R) = Hn(S
n;R)

being the fundamental class, the homomorphism
∫

π,τ
is given by the composite

H∗(E;R)
δ−→ H∗+1(D,E;R)

t−→ H∗−n(B;R)

where D −→ B is the disc-fibration corresponding to the spherical fibration E (the
space D is defined as the cofiber of the map π), δ is the boundary homomorphism
and t stands for the Thom isomorphism.

We now proceed to construct operators ARi and DR
i . Consider the oriented CP 1-

bundle

Pi/B −→ G/B
π−→ G/Pi(2.3.3)

where τ ∈ Hom(H2(Pi/B;R), R) = H2(Pi/B; Z)⊗R is the standard orientation class
of CP 1. Define

ARi : H∗(G/B;R) −→ H∗−2(G/B;R)

by

ARi (z) = π∗

∫

π,τ

(z).(2.3.4)

We shall denote AZ
i by Ai. By naturality it is clear that ARi corresponds to Ai ⊗ id

under the identification H∗(G/B;R) = H∗(G/B; Z) ⊗ R.
Now let Hi ⊂ Pi be the Levi subgroup Hi = Pi ∩K. Note that Hi/T = Pi/B and

that the fibration

Hi/T −→ K/T
π−→ K/Hi

is equivalent to the fibration 2.3.3. One also has the oriented fibration

Hi/T −→ BT
p−→ BHi.

Hence we can define operators

DR
i : H∗(BT ;R) −→ H∗−2(BT ;R)

30



by

DR
i (z) = p∗

∫

p,τ

(z).(2.3.5)

Denote DZ
i by Di. As before, DR

i corresponds to Di ⊗ id under the obvious identifi-
cation. The operators DR

i are known as Bernstein-Gelfand-Gelfand (BGG) operators
since they were first introduced in the compact Lie group setting in [5]. These oper-
ators have a rather nice expression:

DR
i (z) = (z − ri(z)) /αi.

This equality can be verified using [4](example VI.5) and [2](thm 4.3) but we shall
not be needing it for the purposes of the present document. In the above equality
ri(z) denotes the action of W on H∗(BT ;R) induced by the action of W on T . The
element αi ∈ H2(BT ;R) refers to the Euler class of the complex line bundle

ET ×ρi
C −→ BT

where

ρi : T −→ U(1)(2.3.6)

is the representation obtained by exponentiating the root αi.
Now consider the following pullback diagram of oriented CP 1-bundles:

Hi/T
=

Hi/T

K/T
ψ

π

BT

p

K/Hi BHi

where ψ is the map classifying the principal T -fibration

K −→ K/T.

Using the definitions 2.3.4 and 2.3.5 along with property 2.3.2, we have

ψ∗DR
i (z) = ARi (ψ∗z).(2.3.7)

Henceforth we shall refer to ψ∗ as the characteristic homomorphism.

4. Properties of the operators ARi and DR
i

Perhaps the most useful property of the operators ARi is their diagonal form with
respect to the Schubert basis.

Theorem 2.4.1. Let δwR be an element in the Schubert basis. Then

ARi (δwR) = δwriR if l(wri) < l(w)

ARi (δwR) = 0 if l(wri) > l(w).
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Proof. Since δwR = δw ⊗ 1 and ARi = Ai ⊗ id under the identification

H∗(G/B;R) = H∗(G/B; Z) ⊗ R,

it is sufficient to prove the theorem for the case R = Z. Assume that l(w) = n + 1.
For v ∈W and l(v) = n, let v = ri1 . . . rin be a reduced expression. Recall the map

j : Pi1,... ,in −→ G/B.

By theorem 2.2.1, we need to show that

j∗Ai(δ
w) = 0 if v 6= wri

j∗Ai(δ
w) = σ if v = wri

where σ denotes the top class of Pi1,... ,in . Now we have the pullback diagram of
oriented CP 1-bundles

Pi/B
=

Pi/B

Pi1,... ,in
s Pi1,... ,in,i

j′

ρ

G/B

π

Pi1,... ,in,i/Pi G/Pi

where s is the morphism

Pi1,... ,in = Pi1 ×B . . .×B Pin ×B B/B −→ Pi1,... ,in,i

induced by the inclusion B →֒ Pi in the last factor. It is clear that j′s = j, thus

j∗Ai(δ
w) = s∗j′

∗
Ai(δ

w) = s∗ρ∗
∫

ρ,τ

j′
∗
(δw)(2.4.2)

the second equality following from property 2.3.2 applied to the above pullback dia-
gram. Let σ1 be the top class of Pi1,... ,in,i. By theorem 2.2.1, we know that

j′
∗
(δw) = 0 if vri 6= w

j′
∗
(δw) = σ1 if vri = w.

This fact along with 2.4.2 will complete the proof once we have verified that

s∗ρ∗
∫

ρ,τ

σ1 = σ.(2.4.3)

Now notice that the morphism ρ◦s is an equivalence. Thus we can identify Pi1,... ,in,i/Pi
with Pi1,... ,in via ρ ◦ s. Under this identification 2.4.3 reduces to showing

∫

ρ,τ

σ1 = σ

which follows from an easy spectral sequence argument and is left to the reader.

Our next objective is to describe how the operators A
Fp

i relate to the mod p Steenrod
algebra. First we introduce some terminology. Recall the homomorphism of 2.3.6
obtained by exponentiating the root αi. By αi ∈ H2(K/T ;R) = H2(G/B;R) we
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shall mean the Euler class of the complex line bundle

K ×ρi
C −→ K/T.(2.4.4)

Now fix a prime p and let Fp denote the field of p elements. Let P i denote the
Steenrod power operation (P i = Sqi if p = 2). Let

P =
∑

i

P i

denote the total Steenrod operation. We have

Theorem 2.4.5.

A
Fp

i P(z) = (1 + αi
p−1)PAFp

i (z).

Proof. Let E
π−→ B denote the fibration

K/T
π−→ K/Hi

where Hi was defined to be the Levi subgroup of the parabolic Pi. Let D −→ B be
the disc-bundle associated to the spherical fibration π. For z ∈ H∗(E; Fp), we are
interested in showing

A
Fp

i P(z) = (1 + αi
p−1)PAFp

i (z).

Using 2.3.4 this is equivalent to

π∗

∫

π,τ

P(z) = (1 + αi
p−1)Pπ∗

∫

π,τ

(z).

Using property (C) for integration along the fiber, we need to show

π∗tPδ(z) = (1 + αi
p−1)Pπ∗tδ(z)

where δ was the boundary homomorphism and t the Thom isomorphism between the
appropriate cohomology groups. Hence it is sufficient to show that

π∗tP(x) = (1 + αi
p−1)Pπ∗t(x)(2.4.6)

where x ∈ H∗(D,E; Fp) is any element. Using the Cartan formula, 2.4.6 reduces to
showing

π∗tP(u) = (1 + αi
p−1)(2.4.7)

where u ∈ H3(D,E; Fp) is the Thom class. Now consider the pullback diagram of
oriented CP 1-bundles

K ×T (Hi/T )
µ

π̄

K/T

π

K/T
π

K/Hi

where µ[k, hT ] = khT . Let Ē
π̄−→ B̄ denote the fibration

K ×T (Hi/T )
π̄−→ K/T

and let D̄ −→ B̄ denote the associated disc-bundle. The above pullback diagram
along with the naturality of the Thom isomorphism with respect to pullbacks reduces
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2.4.7 to

P(ū) = (1 + αi
p−1)ū

where ū ∈ H3(D̄, Ē; Fp) is the Thom class. We now proceed to establish the above
equality.

It is easy to verify that the left action of T on Hi/T is the compactification of the
action of T on C via the homomorphism ρi. It follows that the Thom space D̄/Ē is
equivalent to the Thom space of the vector bundle Li⊕1, where Li is the complex line
bundle 2.4.4 and 1 denotes the trivial 1-dimensional real line bundle. Hence ū = Σv,
where v is a Thom class for Li. Thus

P(ū) = ΣP(v) = Σ(v + vp) = Σ(v + αi
p−1v) = (1 + αi

p−1)ū

which is what we wanted to establish.

Before we proceed with the properties of the operators ARi and DR
i , we make a few

comments relating the operators Ai to those introduced by Kostant-Kumar. In [14]
Kostant-Kumar introduce operators acting on H∗(K/T ; C) and satisfying the formu-
las described in theorem 2.4.1 for the case R = C. In particular, their operators
preserve the subgroup H∗(K/T ; Z) ⊂ H∗(K/T ; C) and the restriction of these opera-
tors to H∗(K/T ; Z) agrees with the operators Ai. We are therefore justified in using
results from [14] to prove the next property:

Proposition 2.4.8.

ARi (u ⌣ v) = ARi (u) ⌣ ri(v) + u ⌣ ARi (v)

where ri(v) refers to the action of W on H∗(K/T ;R) induced from its action on K/T .

Proof. As usual it is sufficient to prove the proposition for the case R = Z. But
this case is exactly lemma (4.26) in [14].

Proposition 2.4.9. Let u ∈ H∗(K/T ;R) be any element such that ARi (u) = 0
for all i, then u ∈ H0(K/T ;R).

Proof. The proof is an easy consequence of theorem 2.4.1 and is left to the
reader.

5. The cohomology of K

We are now ready to examineH∗(K; F), where F stands for any field. The program
has been outlined in [9] and we merely have to fill in the details. We begin with a
definition

Definition 2.5.1. Let R be a ring. Let

IR = {u ∈ H∗(BT ;R)+ | DR
i1
. . .DR

ik
(u) ∈ H∗(BT ;R)+ ∀ i1, . . . , ik}

where H∗(BT ;R)+ refers to the homogeneous elements of positive degree.

Let ψ denote the map

ψ : K/T −→ BT
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classifying the principal T -bundle given by 2.1.1. The induced homomorphism ψ∗ is
called the characteristic homomorphism. The next few theorems are generalization
to the infinite case of the corresponding theorems in [9].

Theorem 2.5.2.

IR = Ker{ψ∗ : H∗(BT ;R) −→ H∗(K/T ;R)}.

Proof. By proposition 2.4.9 it follows that z ∈ H∗(K/T ;R)+ is nonzero if and
only if there exists a sequence i1, . . . , ik with the property

0 6= ARi1 . . . A
R
ik

(z) ∈ H0(K/T ;R).

Now observe that ψ∗ is an isomorphism in degree 0, hence the statement

DR
i1
. . .DR

ik
(u) ∈ H∗(BT ;R)+ ∀ i1, . . . , ik

is equivalent to

ψ∗DR
i1
. . .DR

ik
(u) ∈ H∗(K/T ;R)+ ∀ i1, . . . , ik.

By 2.3.7, the latter statement is equivalent to

ARi1 . . . A
R
ik
ψ∗(u) ∈ H∗(K/T ;R)+ ∀ i1, . . . , ik

which, as we observed, happens if and only if ψ∗(u) = 0.

The ideal IR is better know as the ‘ideal of generalized invariants’ (cf. [12] and [17]).

Theorem 2.5.3. Let F be a field. Then the ideal IF is generated by a regular
sequence of length ≤ n.

The proof of this theorem can be taken word-for-word from [12] (see also [17] and
[9]) and we omit it for the sake of brevity.

Note 2.5.4. If char(F) > 0, then the subgroup of GLn(F) generated by the re-
flections ri is finite and hence the proof of the above theorem given in [17] shows that
the length of the regular sequence generating IF is exactly n.

Now let RF denote the image of the characteristic homomorphism

RF = Im{ψ∗ : H∗(BT ; F) −→ H∗(K/T ; F)}.
It follows from 2.5.4 that if char(F) > 0 then RF is a finite-dimensional vector space.

Theorem 2.5.5. Let F be any field, then H∗(K/T ; F) is a free RF-module.

Proof. The proof proceeds exactly as in [9]. Choose a homogeneous basis {ȳα}
for the F-vector space F ⊗RF

H∗(K/T ; F). Lift the elements ȳα to homogeneous
elements yα ∈ H∗(K/T ; F). It is clear that the elements yα generate H∗(K/T ; F) as
a RF-module. Now assume we have a homogeneous relation of minimal degree

∑

i

aiyi = 0 with 0 6= ai ∈ RF.

If the above relation has homogeneous degree m, then we can order the elements yi
appearing above so that

m ≥ deg(y1) ≥ deg(y2) ≥ . . . .
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By the choice of the basis yα we have

0 < deg(a1) ≤ deg(a2) ≤ . . . .

From proposition 2.4.9 we can find a j such that AF
j (a1) 6= 0. Applying AF

j to the
above relation and using proposition 2.4.8 we have

∑

i

AF
j (ai)yi +

∑

i

rj(ai)A
F
j (yi) = 0.(2.5.6)

Now we can write

AF
j (yi) =

∑

k

cikyk

where cik are homogeneous elements of RF with ci1 = 0 for dimensional reasons.
Substituting this back into 2.5.6 we obtain another nontrivial homogeneous relation
of lesser degree, which is a contradiction by the assumption of minimality of m.

With theorems 2.5.2,2.5.3 and 2.5.5 we have all the details in place to prove the
following theorem claimed by V. Kač in [9]:

Theorem 2.5.7. Let K be the unitary form of a Kač-Moody group of rank n with
maximal torus T . Then the Serre spectral sequence for the fibration

T −→ K
π−→ K/T

converging to H∗(K; F) collapses at E3 with

E3 = E∞ = F ⊗RF
H∗(K/T ; F) ⊗F E(x1, . . . , xl)

where E(x1, . . . , xl) stands for an exterior algebra on generators xi of degree 2di− 1.
Here d1, . . . , dl are the degrees of the regular sequence generating IF and so l ≤ n with
l = n if char(F) > 0.

Proof. The proof of theorem 2.5.7 is identical to the one given for compact Lie
groups in [9]. Consider the Kozul resolution for the field F over the algebra H∗(BT ; F)
given by

H∗(T ; F) ⊗H∗(BT ; F) −→ F

with the differentials behaving as in the universal fibration over BT . From this it is
easy to see that the E3 term of the Serre spectral sequence for the fibration in the
statement of the theorem is computing

TorH∗(BT ;F)(F;H∗(K/T ; F)).

Now notice that

Tor0
H∗(BT ;F)(F;H∗(K/T ; F)) = F ⊗RF

H∗(K/T ; F).

Using 2.5.3, it is easy to establish the equality

TorH∗(BT ;F)(F;RF) = E(x1, . . . , xl)

where E(x1, . . . , xl) stands for an exterior algebra on generators xi of total homoge-
neous degree 2di−1. Here d1, . . . , dl are the degrees of the regular sequence generating
IF. It follows from above that we have a map of algebras

F ⊗RF
H∗(K/T ; F)⊗F E(x1, . . . , xl) −→ TorH∗(BT ;F)(F;H∗(K/T ; F).
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By 2.5.5, it is clear that this map is an isomorphism of algebras. For dimensional
reasons, the generators of this algebra are permanent cycles in the Serre spectral
sequence and hence the spectral sequence collapses at E3.

See [16] for an alternate proof using the Eilenberg-Moore spectral sequence.

Remark 2.5.8. The horizontal edge homomorphism of the spectral sequence
gives us an exact sequence of graded algebras

H∗(BT ; F)
ψ∗

−→ H∗(K/T ; F)
π∗

−→ H∗(K; F) −→ E(x1, . . . , xl) −→ 1.

Remark 2.5.9. For a field F of characteristic 0 and a Kač-Moody group with
an indecomposable nonsingular Cartan matrix which is not of finite type, it can be
shown that the exterior algebra in 2.5.8 is an exterior algebra on a single generator
in dimension 3.

6. The Hopf-algebra structure of H∗(K; F)

By remark 2.5.8, we have an extension of graded algebras

1 −→ π∗H(K/T ; F) −→ H∗(K; F) −→ E(x1, . . . , xl) −→ 1.

The purpose of this section is to show that this is an extension of Hopf-algebras.
Clearly, it is sufficient to show that π∗H(K/T ; F) is a sub Hopf-algebra of H∗(K; F).
Since the quotient algebra, E(x1, . . . , xl), is an exterior algebra on generators of odd
homogeneous degree, the general theory of Hopf-algebras allows us to assume that
these generators are primitive.

The basic idea in this section is to introduce a co-algebra structure on H∗(K/T ; F)
and show that the map

π∗ : H∗(K/T ; F) −→ H∗(K; F)

is a map of co-algebras. Here and for the rest of this section F denotes a field. We
shall use R to denote a ring.

Define a co-algebra structure on H∗(K/T ;R) by

∆(δwR) =
∑

uv=w,l(u)+l(v)=l(w)

δuR ⊗ δvR.(2.6.1)

With this co-algebra structure on H∗(K/T ; F), we have the following crucial theorem
of D. Peterson:

Theorem 2.6.2.

π∗ : H∗(K/T ; F) −→ H∗(K; F)

is a map of co-algebras.

The proof of 2.6.2 proceeds in various steps. The first step is to understand the
cohomology of the space K ×T (K/T ) considered as a module over the cohomology
of K/T via the map

ρ : K ×T (K/T ) −→ K/T, [k, k′T ] 7→ kT.

Denote the space K ×T (K/T ) by E and consider the fibration

K/T −→ E
ρ−→ K/T.
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Given w ∈W , we have the Schubert variety Xw. Since Xw is a left T -space, we have
a commutative triangle

K ×T (Xw)
jw

ρw

K ×T (K/T )

ρ

K/T

where jw is induced by the inclusion of Xw into K/T . Denote the space K ×T (Xw)
by Ew and let

τw : H2l(w)(Xw;R) −→ R

be the unique homomorphism with the property τw(δwR) = 1. We define operators

ψw : H∗(E;R) −→ H∗−2l(w)(K/T ;R)

as the composite

H∗(E;R)
j∗w−→ H∗(Ew;R)

R

ρw,τw−→ H∗−2l(w)(K/T ;R).

It is immediate from property (B) for the integration along the fiber that ψw are
H∗(K/T ;R)-module homomorphisms. We have

Proposition 2.6.3. There is a unique basis {σwR}w∈W of H∗(E;R) as an
H∗(K/T ;R)-module that satisfies

ψw(σvR) = 1 if v = w

ψw(σvR) = 0 if v 6= w.

Proof. Consider the Serre spectral sequence for the fibration

K/T −→ E −→ K/T.

The E2 term for this spectral sequence is a free module over H∗(K/T ;R) = E∗,0
2 .

Since E2 = E∞, one readily verifies that H∗(E;R) is isomorphic to the E2 term as
H∗(K/T ;R)-modules. Hence it suffices to prove the analogous statement for the E2

term. It is straight forward to see that in this case the elements

1 ⊗ δwR ∈ E
0,2l(w)
2

provide this unique basis.

One can similarly consider the cohomology of the space Y = ET ×T (K/T ) as a
module over the cohomology of BT . As before we have operators

φw : H∗(Y ;R) −→ H∗−2l(w)(BT ;R).

The following proposition is proved in exactly the same style as proposition 2.6.3.

Proposition 2.6.4. There is a unique basis {ζwR}w∈W of H∗(Y ;R) as an
H∗(BT ;R)-module that satisfies

φw(ζvR) = 1 if v = w

φw(ζvR) = 0 if v 6= w.
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Now one has a pullback diagram

K ×T (K/T )
ψ̄

ρ

ET ×T (K/T )

ρ′

K/T
ψ

BT

where we take EK as a model for ET and the map ψ̄ is induced by the inclusion
K →֒ EK as the fiber of the universal fibration

K →֒ EK −→ BK.

¿From the naturality of the integration along the fiber with respect to maps of fibra-
tions, we derive

ψ̄∗(ζwR) = σwR.(2.6.5)

Now assume that we have two reduced expressions ri1 . . . rik and rik+1
. . . rin. Let

Ki1,... ,ik denote the right T -space Hi1 ×T . . .×T Hik . Consider the map

f : Ki1,... ,ik ×T (Pik+1,... ,in) −→ K ×T (K/T )

induced by group multiplication. For the element δuR ⌣ σvR ∈ H∗(K ×T (K/T );R)
with l(u) + l(v) = n, we have

Theorem 2.6.6.

f ∗(δuR ⌣ σvR) = σ if u = ri1 . . . rik and v = rik+1
. . . rin

f ∗(δuR ⌣ σvR) = 0 if u 6= ri1 . . . rik or v 6= rik+1
. . . rin

where σ refers to the top class of Pi1,... ,in = Ki1,... ,ik ×T (Pik+1,... ,in).

Proof. Consider the commutative diagram

Ki1,... ,ik ×T (Pik+1,... ,in)
f

p

K ×T (K/T )

ρ

Pi1,... ,ik
j

K/T

where p is the projection onto the first factor. Now let τp be the top class of Pik+1,... ,in

and let w be the element rik+1
. . . rin . Then it follows from the naturality of integration

along the fiber with respect to maps of fibrations that

j∗ψw(x) =

∫

p,τp

f ∗(x)(2.6.7)

for all x ∈ H∗(E;R). It is easy to verify that
∫

p,τp

σ = σ1
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where σ is the top class of Pi1,... ,in and σ1 is the top class of Pi1,... ,ik . Applying 2.6.7
to the element x = δuR ⌣ σvR we have

∫

p,τp

f ∗(δuR ⌣ σvR) = σ1 if u = ri1 . . . rik and v = rik+1
. . . rin

∫

p,τp

f ∗(δuR ⌣ σvR) = 0 if u 6= ri1 . . . rik or v 6= rik+1
. . . rin .

The result follows.

Theorem 2.6.8. Let

µ : K ×T (K/T ) −→ K/T, µ[k, k′T ] = kk′T

be the action map. Then

µ∗δwR =
∑

uv=w,l(u)+l(v)=l(w)

δuR ⌣ σvR

Proof. Using the terminology of theorem 2.6.6, we need to show that

(µ ◦ f)∗δwR = σ.

But notice that the map µ ◦ f is none other than the map

j : Pi1,... ,in −→ K/T

and so the result follows by theorem 2.2.1.

Let

π′ : K ×K −→ K ×T (K/T )

be the map induced by the projection π and let

π1 : K ×K −→ K,

π2 : K ×K −→ K

denote the two projection maps onto the left and right factor respectively.

Theorem 2.6.9. Let δwR be any element of the Schubert basis. Then

π′∗(δwR) = π∗
1π

∗(δwR),

π′∗(σwR) = π∗
2π

∗(δwR).

Proof. The first statement follows clearly from the definition of the elements
δwR ∈ H∗(K ×T (K/T );R) and the commutativity of the diagram

K ×K
π′

π1

K ×T (K/T )

ρ

K
π

K/T.
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So it remains to show the second statement. Consider the composite

λ : K ×K
π′

−→ K ×T (K/T )
ψ̄−→ ET ×T (K/T )

where ψ̄ was the map from equation 2.6.5. Recall that we take EK as our model for
ET and the map ψ̄ is induced by the inclusion

ι : K →֒ EK

of the fiber in the universal principal K-fibration. The composite map λ can also be
written as the composite

λ : K ×K
ι×π−→ ET × (K/T ) −→ ET ×T (K/T ).

By 2.6.5 we have

π′∗(σwR) = π′∗ψ̄∗(ζwR) = λ∗(ζwR).

Now since ET is contractible, the following diagram commutes up to homotopy:

K ×K
ι×π

π2

ET × (K/T )

π2

ET ×T (K/T )

K
π

K/T

η

where η includes K/T into ET ×T (K/T ) by choosing an arbitrary basepoint in ET .
It is clear from the definition of the elements ζwR that η∗(ζwR) = δwR. The result now
follows by chasing the diagram.

We now come to the proof of theorem 2.6.2. Consider the commutative diagram

K ×K
π′

µ

K ×T (K/T )

µ

K
π

K/T

where we are using the symbol µ to also denote the group multiplication on K since
it shall be clear from the context which map we are referring to. This diagram along
with theorems 2.6.8 and 2.6.9 says

µ∗π∗(δwR) = π′∗µ∗(δwR) =
∑

π′∗(δuR) ⌣ π′∗(σvR) =
∑

π∗
1π

∗δuR ⌣ π∗
2π

∗δvR

where the sum is being taken over all distinct pairs u, v with the property uv = w
and l(u) + l(v) = l(w). This is exactly the statement of theorem 2.6.2.

Remark 2.6.10. Notice that nowhere in the proof of theorem 2.6.2 have we used
the fact that R is a field. Indeed, we notice that π∗H(K/T ;R) is a Hopf-algebra for
any coefficient ring R. Now define P to be the ideal of H∗(K/T ; Z) generated by
elements of homogeneous degree 2. It is easy to see that

π∗H(K/T ; Z) = H∗(K/T ; Z)/P

and that

π∗H(K/T ; F) = F ⊗Z π
∗H(K/T ; Z).
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Hence the Hopf-algebra π∗H(K/T ; Z) is an integral lift of the Hopf-algebras
π∗H(K/T ; F).

7. H∗(K/T ; Fp) as a module over the Steenrod algebra

In this section we show that H∗(K/T ; Fp) is locally finite as a module over the
mod p Steenrod algebra, Ap.

Recall that the image, RFp
, of the characteristic homomorphism is a finite-

dimensional Fp-vectorspace. By equation 2.3.7, RFp
is closed under the action of

the operators A
Fp

i . It is also clear that RFp
is an Ap-submodule of H∗(K/T ; Fp). Note

that RFp
contains all the elements of degree 2.

Let 2m be the highest degree among the homogeneous elements of RFp
. For

any homogeneous subset X ⊆ H∗(K/T ; Fp), define d(X) to be the biggest degree
among the homogeneous elements in X. Hence d(X) ≤ ∞. Given a homogeneous
element z ∈ H∗(K/T ; Fp), let M(z) be the smallest RFp

-submodule of H∗(K/T ; Fp)
containing z such that M(z) is also a Ap-submodule of H∗(K/T ; Fp). We define d(z)
to be d(M(z)). We have

Theorem 2.7.1. If z is a homogeneous element of degree 2k for k > 0, then

d(z) ≤ 2k(m+ 1) − 2.

Proof. We proceed by induction on the degree of z. Since RFp
contains all degree

2 elements, the theorem is true for k = 1. Let z be a homogeneous element of degree
2n+ 2. Consider an element x ∈M(z). Using the Cartan formula we can write x as
a finite sum

x =
∑

I

rIPI(z)(2.7.2)

where rI are elements of RFp
, I ranges over finite sequences of positive integers

i1, . . . , ik and PI denotes the composite P i1 . . .P ik . Now consider some element
of the form PI(z). By repeated application of the formula given in theorem 2.4.5, we
observe that

A
Fp

i PI(z) ∈M(A
Fp

i z) ∀i.
Hence by the inductive hypothesis any element of the form PI(z) can have degree at
most 2n(m+ 1) − 2 + 2 = 2n(m+ 1). Using equation 2.7.2 we observe that

d(z) = d(M(z)) ≤ 2m+ 2n(m+ 1) = 2(n+ 1)(m+ 1) − 2

and so we are done by induction.

As an immediate corollary we have

Corollary 2.7.3. H∗(K/T ; Fp) and H∗(K; Fp) are locally finite as a modules
over Ap.
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CHAPTER 3

Cohomology of rank 2 Kač-Moody groups

1. Introduction

Let G(a, b) be the Kač-Moody group corresponding to the generalized Cartan
matrix of the form

A =

(

2 −a
−b 2

)

.

Let K(a, b) be the unitary form of G(a, b). If ab < 4, then K(a, b) is a simply-
connected compact Lie group of rank 2 with the corresponding Cartan matrix. If
ab ≥ 4, then these groups are infinite dimensional and the purpose of this chapter is
to compute their cohomology. We shall use the program described in chapter 2 to
carry out this computation. The main results of this chapter are as follows:

Define a sequence of integers ci and di by the recurrence

c0 = d0 = 0, c1 = d1 = 1, cj+1 = adj − cj−1, dj+1 = bcj − dj−1.

Let gi = (ci, di) be the g.c.d. of the pair ci, di. Then the additive structure of
H∗(K(a, b); Z) is given by

H2n(K(a, b); Z) = H2n+3(K(a, b); Z) = Z/gnZ.

Now let p be an odd prime and let k be the smallest positive integer such that p
divides gk. Then there is an isomorphism of graded Hopf-algebras

H∗(K(a, b); Fp) = Fp[x2k] ⊗E(x3, x2k−1).

Moreover if n is the exponent of p in gk, then there is a Bockstein homomorphism of
height n connecting the class x2k with the class x2k−1.

Let BK(a, b) denote the classifying space ofK(a, b). Then there is an isomorphism
of graded rings

H∗(BK(a, b); Fp) = Fp[x4, x2k] ⊗ E(x2k+1)

and a Bockstein homomorphism of height n connects the class x2k with the class
x2k+1. The integer k can be made more explicit as follows.

If ab = 4 mod p, then k = p; if p divides a or b but not both, then k = 2p; in all
other cases k is the multiplicative order of the element r, where r is the root of the
polynomial

x2 − (ab− 2)x+ 1

defined over the field of p2 elements. Note that the above polynomial always splits
over the field of p2 elements. If Fp is the splitting field of this polynomial, then it is
easy to see that k will be a divisor of p − 1, otherwise k will be a divisor of p + 1.
Moreover, for a fixed prime p, any divisor of p+1 or p−1 occurs as a k for a suitable
pair of integers a and b.
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From now on we fix the integers a, b with ab ≥ 4 and denote the unitary form
K(a, b) by K.

To prove the results described above, we shall need the multiplicative structure
constants for the cohomology of the flag variety K/T in terms of the Schubert basis
δw. To compute these constants, we will use the formulas derived in [14]. The reader

should bear in mind that the Schubert basis, δw, used in [14] is what we call δ(w−1)

and so the formulas in [14] have to be suitably altered before being used.

2. The computation of H∗(K/T ; Z)

Let A = (aij) be a generalized, Cartan matrix. The corresponding Weyl group W
acts on the Cartan subalgebra via

wj(hi) = hi − aijhj .

If we consider Cartan matrices given by

A =

(

2 −a
−b 2

)

, ab ≥ 4

then the Weyl group generators w1 and w2 have the following matrix representations
on the Cartan subalgebra with basis h1 and h2:

w1 =

(

−1 b
0 1

)

, w2 =

(

1 0
a −1

)

.

The representation of W on the root-space spanned by the simple roots α1 and α2 is
generated by the matrices

w1 =

(

−1 a
0 1

)

, w2 =

(

1 0
b −1

)

.

The Weyl group is isomorphic to the infinite Dihedral group and consequently every
element of W can be uniquely written as (w1w2)

rws1 where r is any integer and s is
defined modulo 2. It is an easy induction argument to show that the representation
of W on the root space is given by the matrices

(w1w2)
n =

(

c2n+1 −c2n
d2n −d2n−1

)

, (w1wn)
nw1 =

(

−c2n+1 c2n+2

−d2n d2n+1

)

(3.2.1)

where the integers ci and di are defined as follows:

c0 = d0 = 0, c1 = d1 = 1, cj+1 = adj − cj−1, dj+1 = bcj − dj−1.

The reader should bear in mind that ci and di are defined for all integers i by the
recurrence. It is easy to check that c−i = −ci and d−i = −di.

Similarly, the representation of W on the Cartan subalgebra with basis h1 and h2

is given by the matrices

(w1w2)
n =

(

d2n+1 −d2n

c2n −c2n−1

)

, (w1wn)
nw1 =

(

−d2n+1 d2n+2

−c2n c2n+1

)

.(3.2.2)

Now notice that the Weyl group has exactly two elements of length n for n > 0. Let
δn denote the element in the Schubert basis for H∗(K/T ; Z) corresponding to the
unique element w ∈ W with the property l(w) = n and l(ww1) < l(w). Similarly
let σn denote the other element of degree 2n in the Schubert basis corresponding to
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w ∈ W with the property l(w) = n and l(ww2) < l(w). Define σ0 = δ0 = 1. We can
use the formulas given by equation 3.2.1 along with lemma (5.9) in [14] to compute
the action of the Weyl group on the Schubert basis:

w1δn = −δn + (dn+1 − dn−1)σn, w1σn = σn(3.2.3)

w2σn = −σn + (cn+1 − cn−1)δn, w2δn = δn.

These formulas can now be used in conjunction with proposition (4.30) in [14] to
compute the following identities:

δ ⌣ δn = dn+1δn+1, δ ⌣ σn = δn+1 + dnσn+1(3.2.4)

σ ⌣ σn = cn+1σn+1, σ ⌣ δn = σn+1 + cnδn+1

where we have denoted the elements δ1 and σ1 by δ and σ respectively. The compu-
tation of these identities from the formulas in [14] is easy but tedious and has been
left to the enthusiastic reader.

The study of the multiplicative structure constants is interesting in its own right.
Define the generalized binomial coefficients1 C(n,m) and D(n,m) by

C(n,m) =
cm+ncm+n−1 . . . c1

cncn−1 . . . c1cmcm−1 . . . c1
, D(n,m) =

dm+ndm+n−1 . . . d1

dndn−1 . . . d1dmdm−1 . . . d1
.

Notice that when a = b = 2, these generalized binomial coefficients reduce to the
usual binomial coefficients. It is a priori non-obvious that these generalized binomial
coefficients are integers. Using 3.2.4 we can write

δn ⌣ δm = D(n,m)δm+n, σn ⌣ σm = C(n,m)σm+n,(3.2.5)

from which it becomes clear that C(n,m) and D(n,m) are indeed integers!
Now since H∗(K/T ; Z) has no torsion, the formulas 3.2.4 uniquely determine the

ring structure in cohomology. Notice that the subalgebra generated by the elements
δn or by the elements σn is reminiscent of a divided polynomial algebra and hence
we shall call it a generalized divided polynomial algebra. If we work with rational
coefficients, a simple verification of Poincaré series yields

H∗(K/T ; Q) = Q[δ, σ]/I(3.2.6)

where I is the ideal generated by the quadratic relation

aδ2 + bσ2 − abδσ.

3. The Hopf algebra π∗H(K/T ; Fp)

By remark 2.6.10 from chapter 2 we know that π∗H(K/T ; Z) is a Hopf algebra,
where π is the projection map

π : K −→ K/T.

This Hopf algebra is an integral lift of Hopf algebras π∗H(K/T ; F) in the sense that

π∗H(K/T ; F) = F ⊗Z π
∗H(K/T ; Z)

where F is any field.

1This terminology is due to H. Miller
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Now let P ⊂ H∗(K/T ; Z) be the ideal generated by elements of homogeneous
degree 2. Again by 2.6.10 we see that

π∗H(K/T ; Z) = H∗(K/T ; Z)/P.(3.3.1)

Henceforth we shall use AZ and AF to denote the Hopf algebras π∗H(K/T ; Z) and
π∗H(K/T ; F) respectively.

Let gn = (cn, dn) be the g.c.d. of the pair cn, dn. Using equations 3.3.1 and 3.2.4
we see that, in degree 2n, the evenly-graded algebra AZ is isomorphic to a cyclic
group of order gn.

π∗H2n(K/T ; Z) = Z/gnZ.(3.3.2)

Both δn and σn serve as generators of this cyclic group. The co-algebra structure on
AZ was explicitly given in 2.6.1. Using our terminology, this co-algebra structure is
given by the following equations:

∆(δn) =

n
∑

0

δ′n−i ⊗ δi(3.3.3)

where δ′n−i = δn−i if i is even and δ′n−i = σn−i if i is odd. Similarly,

∆(σn) =

n
∑

0

σ′
n−i ⊗ σi(3.3.4)

where σ′
n−i = σn−i if i is even and σ′

n−i = δn−i if i is odd.
Now fix an odd prime p. Let Fp denote the field of p elements. Recall that

π∗H(K/T ; Fp) = AFp
= Fp ⊗Z AZ

and so to understand AFp
we need to know when the prime p divides an integer of

the form gn.
Let k be the smallest positive integer such that p divides gk. It will be shown in

the Appendix that k always exists and that p divides gj if and only if k divides j.
Hence AFp

is isomorphic to a cyclic group of order p in dimensions which are multiples
of 2k and is trivial in all other dimensions. If n is a multiple of k then the elements
δn and σn both serve as generators of AFp

in dimension 2n. Now using equations
3.3.3 and 3.3.4 it is easy to see that the dual Hopf-algebra A∗

Fp
is isomorphic to a

polynomial algebra on a class in dimension 2k

A∗
Fp

= Fp[x2k].

It follows that we have an isomorphism of Hopf-algebras

π∗H(K/T ; Fp) = AFp
= Γ[x2k].(3.3.5)

where Γ stands for a divided polynomial algebra.

4. The additive structure of H∗(K; Z)

In this section we wish to establish the additive structure of H∗(K; Z). We shall
use this in the next section to understand the Hopf-algebra H∗(K; Fp).

Consider the Serre spectral sequence for the fibration

T −→ K
π−→ K/T
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with the E2 term given by H∗(K/T ; Z)⊗H∗(T ; Z) and converging to H∗(K; Z). Note
that

E∗,0
3 = E∗,0

∞ = H∗(K/T ; Z)/P = π∗H(K/T ; Z)(3.4.1)

where P was defined as the ideal generated by H2(K/T ; Z). Since T has rank 2, this
spectral sequence does not support any nontrivial differentials of length bigger than
two. It follows that E3 = E∞. We now proceed to compute the E3 term of this
spectral sequence.

The E2 term of this spectral sequence is the cochain complex

H∗(K/T ; Z) ⊗H∗(T ; Z); d2(x⊗ α) = x ⌣ δ, d2(x⊗ β) = x ⌣ σ

where α, β ∈ H1(T ; Z) are generators and d2 is a derivation. Using formulas 3.2.4, it
is easy to see that the kernel of the differential

d2 : H2n(K/T ; Z) ⊗H1(T ; Z) −→ H2n+2(K/T ; Z)

is the subgroup of all elements of the form

(Rδn + Pσn) ⊗ α+ (Sδn +Qσn) ⊗ β(3.4.2)

where P,Q,R and S are integers related via
(

P
Q

)

=

(

−dn+1 −cn
b
a
cn dn−1

) (

R
S

)

.(3.4.3)

Similarly one can show that the map

d2 : H2n−2(K/T ; Z) ⊗H2(T ; Z) −→ H2n(K/T ; Z) ⊗H1(T ; Z)

is injective and its image is the set of all elements given by 3.4.2 satisfying 3.4.3 with
the additional requirement that cn−1 divides R.

Now consider the group

G =
( a
bcn

Z) ∩ Z

( a
bcn

Z) ∩ cn−1Z
.

Corollary 3.7.4 in the Appendix shows that G is a cyclic group of order gn−1. Using
this fact and the description of the E2 term given above it is easy to see that

E2n,1
3 = Z/gn−1Z.(3.4.4)

Putting equations 3.3.2, 3.4.1 and 3.4.4 together we obtain

H2n(K; Z) = H2n+3(K; Z) = Z/gnZ.(3.4.5)

5. The Hopf algebras H∗(K; Fp) and H∗(K; Fp)

¿From chapter 2 we know that there is an extension of Hopf algebras

1 −→ AFp
−→ H∗(K; Fp) −→ E(x1, x2) −→ 1(3.5.1)

where the Hopf algebra E(x1, x2) is an exterior algebra on primitive generators x1 and
x2 of odd homogeneous degree. To find the degrees of these generators it is sufficient
to know the Poincaré series of the graded algebra H∗(K; Fp).

Recall that there exists a positive integer k with the property that p divides gj
if and only if k divides j. Now using 3.4.5, we observe that the Poincaré series of

47



H∗(K; Fp) is given by

P (H(K; Fp), t) =
(1 + t3)(1 + t2k−1)

1 − t2k
.(3.5.2)

¿From 3.3.5, the Poincaré series for AFp
is

P (AFp
, t) =

1

1 − t2k
.(3.5.3)

Putting 3.5.1, 3.5.2 and 3.5.3 together, we notice that the degrees of the elements x1

and x2 are 3 and 2k − 1 respectively. It is easy to see that the extension 3.5.1 must
be trivial and hence we obtain an isomorphism of Hopf algebras

H∗(K; Fp) = Γ[x2k] ⊗ E(x3, x2k−1)(3.5.4)

H∗(K; Fp) = Fp[x2k] ⊗E(x3, x2k−1).

If n is the exponent of the prime p in gk, then 3.4.5 tells us that a Bockstein homo-
morphism of height n connects the classes x2k and x2k−1.

6. Cohomology of the classifying spaces

Let BG denote the classifying space of a topological group G and let F be any
field. Then one has a multiplicative spectral sequence converging to H∗(BG; F) with
the E2 term given by

Ep,q
2 = Extp,q

H∗(G;F)(F; F).

For the case in hand let G be the unitary form K and let F be the field of p elements.
The E2 term for the corresponding spectral sequence is

E2 = Fp[x4, x2k] ⊗ E(x2k+1)

where the elements x4, x2k and x2k+1 have bi-degrees (1, 3),(1, 2k − 1) and (1, 2k) re-
spectively. The elements x4 and x2k are permanent cycles for dimensional reasons. To
see that x2k+1 is a permanent cycle, observe using 3.4.5 that K is a rational 3-sphere.
Thus BK is a rational BS3 and so it follows that the element represented by x2k

must be the source of a higher Bockstein homomorphism with x2k+1 representing its
target. It is clear from what we have so far that this higher Bockstein homomorphism
has height n where n is the exponent of the prime p in gk.

So we finally obtain an isomorphism of graded algebras

H∗(BK; Fp) = Fp[x4, x2k] ⊗ E(x2k+1), β(n)x2k = x2k+1.(3.6.1)

Remark 3.6.2. So far we have only concentrated on odd primes. The results for
p = 2 are similar and are as follows:

The homology algebra of the groups K = K(a, b) can be written as

H∗(K; F2) = F2[x2k] ⊗ E(x3, x2k−1)

with a Bockstein homomorphism of height n connecting the class x2k with the class
x2k−1. The number k is defined as the first positive integer for which 2 divides gk with
n being the exponent of 2 in gk. The classes x3 and x2k−1 are primitive; the class x2k

is primitive in all cases except the case k = 3, n = 1. The values that k is allowed to
take are 2, 3 and 4. For a fixed value of k, one can vary the pair of integers a, b so as
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to give n the value of any positive integer. Furthermore, the cohomology of BK is
given by

H∗(BK; F2) = F2[x4, x2k] ⊗ E(x2k+1), β(n)x2k = x2k+1.

7. Appendix

We now derive some properties of the integers ci, di defined by the recurrence

c0 = d0 = 0, c1 = d1 = 1, cj+1 = adj − cj−1, dj+1 = bcj − dj−1.(3.7.1)

We begin with a simple observation

Claim 3.7.2. For all non-negative integers n we have the equalities

ad2n = bc2n ∈ abZ,

c2n+1 = d2n+1.

Proof. We shall prove both statements simultaneously by induction on n. The
case n = 1 is clear. Assume that the claim is true for some integer n. From 3.7.1 we
have the following equations:

bc2n+2 = abd2n+1 − bc2n,

ad2n+2 = abc2n+1 − ad2n.

By assumption we know that c2n+1 = d2n+1 and bc2n = ad2n ∈ abZ. Hence we verify
from the above equations that ad2n+2 = bc2n+2 ∈ abZ. Next consider the equations

c2n+3 = ad2n+2 − c2n+1,

d2n+3 = bc2n+2 − d2n+1.

We have verified that ad2n+2 = bc2n+2 and by assumption we know c2n+1 = d2n+1.
Thus we obtain c2n+3 = d2n+3. The proof is complete by induction.

Now define gn to be the integer (cn, dn) where (x, y) denotes the greatest common
divisor of the pair x, y. We have

Claim 3.7.3.

gn =
cn(a, bcn+1)

a
.

Proof. Using recurrence 3.7.1 one can verify that (a, bcn+1) = a if n is odd and
(a, bcn+1) = (a, b) if n is even. The result now follows from claim 3.7.2.

Corollary 3.7.4. Let G be the group

G =
( a
bcn

Z) ∩ Z

( a
bcn

Z) ∩ cn−1Z
.

Then G is a cyclic group of order gn−1.
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Proof. It is a matter of simple arithmetic to verify that

( a
bcn

Z) ∩ Z

( a
bcn

Z) ∩ cn−1Z
=

(a, bcncn−1)Z

cn−1(a, bcn)Z
.

Using claim 3.7.2 one sees that (a, bcncn−1) = a and then the result follows from claim
3.7.3.

We now turn our attention to the question of when an odd prime p divides the integer
gn. To answer this question we have to introduce the generating function

F (x) =
∞

∑

i=0

(

ci
di

)

xi.

This generating function is to be thought of as a formal power series with coefficients
in the 2-dimensional vectorspace over the field, Fp2, of p2 elements. Thus our question
inquires when the coefficient of xn is zero.

Using equations 3.7.1 we obtain a functional equation
(

x2 −
(

0 a
b 0

)

x+ I

)

F (x) = x

(

1
1

)

.

We can rewrite this equation as

(x−M) (x−M−1) F (x) = x

(

1
1

)

(3.7.5)

where M is the matrix given by

M = 1/2

(

τ a
b τ

)

, τ =
√
ab− 4 ∈ Fp2.

Notice that M = M−1 if and only if ab = 4 mod p. Our main theorem in this section
is

Theorem 3.7.6. Let p be an odd prime. Let k be the smallest positive integer
with the property that p divides gk. Then p divides gn if and only if k divides n.
Moreover the integer k can be made explicit as follows:

If ab = 4 mod p, then k = p; if p divides a or b but not both, then k = 2p; in all
other cases k is the multiplicative order of the element r, where r is the root of the
polynomial

x2 − (ab− 2)x+ 1

defined over the field of p2 elements.

Proof. First consider the case ab = 4 mod p. In this case M = M−1 and so
using 3.7.5 we can write

F (x) =

∞
∑

i=0

ixiM i+1

(

1
1

)

.

Since M is an invertible matrix, the coefficient of xn is zero if and only if n is a
multiple of p. So we are done for this case.

50



Now for all other cases M − M−1 is an invertible matrix and using 3.7.5 the
generating function is given by

F (x) =

∞
∑

i=0

xi(
M i −M−i

M −M−1
)

(

1
1

)

.

We are interested in finding those n for which

(
Mn −M−n

M −M−1
)

(

1
1

)

=

(

0
0

)

.

Since M −M−1 is an invertible matrix, we are interested in finding n for which

M2n

(

1
1

)

−
(

1
1

)

=

(

0
0

)

.(3.7.7)

Consider the case when p divides a or b but not both. Assume without loss of
generality that p divides b. Then M is the matrix

M =

(

τ a/2
0 τ

)

, τ =
√
−1 ∈ Fp2 .(3.7.8)

Using 3.7.8 we notice that

M2n =

(

(−1)n (−1)n+1naτ
0 (−1)n

)

, τ =
√
−1 ∈ Fp2.

It follows that 3.7.7 holds if and only if n is a multiple of 2p.
For all other cases not considered above, it is easy to verify that the matrix M is

diagonalizable over Fp2. Now since M2 has determinant equal to one, the only way
3.7.7 can hold is if M2n is the identity matrix. Which is equivalent to saying that the
eigenvalues of M2 have multiplicative order dividing n. These eigenvalues are exactly
the roots of the characteristic polynomial

x2 − (ab− 2)x+ 1

defined over the field Fp2. This completes our proof.

Remark 3.7.9. For a fixed odd prime p, let k be one the integers: p, 2p, a divisor
of p± 1. Then it follows easily from theorem 3.7.6 that we can find positive integers
a, b which satisfy

H∗(K; Fp) = Fp[x2k] ⊗ E(x3, x2k−1)

where K = K(a, b).

The next result identifies the image of W under mod p reduction.

Theorem 3.7.10. Let W be considered as a subgroup of Gl2(Z) via its action on
the integral lattice spanned by h1 and h2. Let Wp be the image of W under the mod
p reduction map

ψ : Gl2(Z) −→ Gl2(Fp).

Then Wp is a dihedral group of order 2k generated by the elements ψ(w1) and ψ(w2).

Proof. It is clear that the elements ψ(w1) and ψ(w2) have order 2 and generate
the group Wp = ψ(W ). Thus Wp must be a finite dihedral group of order 2n where
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n is the order of the element ψ(w1w2). It remains to show that n = k. The element
w1w2 acts on the integral lattice spanned by h1 and h2 via the representation

w1w2 =

(

ab− 1 −b
a −1

)

.

Hence we are interested in finding the order of this matrix considered as an element
of Gl2(Fp). As in theorem 3.7.6, we proceed by cases. If ab = 4 mod p, then it is easy
to verify using 3.7.1 that mod p we have the equalities

c2m−1 = d2m−1 = 2m− 1, c2m = am, d2m = bm.

Using the representation for (w1w2)
n given by 3.2.2, it follows that the order of the

element w1w2 is n = p. The next case we consider is the case when p divides a or
b but not both. Assume without loss of generality that p divides b. It is trivial to
verify that the order of the resulting matrix is n = 2p.

For the remaining cases, the matrix given above is diagonalizable and its eigenval-
ues are inverses of each other. The order of this matrix is exactly the multiplicative
order of the eigenvalues considered as elements of Fp2 . These eigenvalues are roots of
the characteristic polynomial

x2 − (ab− 2)x+ 1.

A quick comparison of the values for n we have just computed with the integers k in
theorem 3.7.6 completes the proof.
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CHAPTER 4

Homotopy decompositions of Classifying Spaces

1. Introduction

In this chapter we will show that for a Kač-Moody group G which is not of finite
type, the canonical map from the homotopy-colimit of the classifying spaces of its
proper standard parabolics to BG is an equivalence. We will show a similar result
for the Weyl group W . Let K denote the unitary form of G and let N(T ) ⊂ K be
the normalizer of the maximal torus, then using the above results we will be able to
show that the obvious map induced by the inclusion of a subgroup

BN(T ) −→ BK

is an equivalence at all primes not appearing in the torsion of the Weyl group. The
key ingredient in this chapter is a result of S. Mitchell [15] on the contractibility of
certain Tits buildings.

2. Topological Tits buildings

We shall begin this chapter by introducing some useful notation. Let G be a Kač-
Moody group of rank n, with unitary form K. Let B be the positive Borel subgroup
and let N ⊂ G denote the normalizer of the (complex) maximal torus in B. Let
N(T ) = N ∩K be the normalizer of the maximal torus in K. Let W denote the Weyl
group and let S = {r̄1, . . . , r̄n} be the set of elements of G that generate the group W̄
described in section 5 of chapter 1. For a subset I ⊂ S, let W̄I denote the subgroup
generated by I and let WI denote the subgroup of the Weyl group generated by the
elements {ri : r̄i ∈ I}. The parabolic subgroup PI ⊂ G is defined to be the subgroup
generated by B and I. We can similarly define the group NI = PI ∩ K to be the
group generated by T and I.

The data (G,B,N, S) forms a topological Tits system in the sense of [15] (§2).
Let C be the category defined by the poset of proper subsets of S (including the empty
set). We have a functor from C to topological spaces given by I 7→ G/PI . Similarly
we have a functor from C to topological spaces given by I 7→W/WI . It was shown in
[15] that the homotopy colimit of these functors is contractible whenever the Weyl
group W is infinite

hocolimC G/PI
∼→ ∗ , hocolimC W/WI

∼→ ∗.(4.2.1)

Note 4.2.2. Strictly speaking, the result as stated in [15] requires an assumption
on the topological Tits system which our system may not satisfy. The only reason
for this assumption is to ensure that the parabolic subgroups are closed in G. This
condition is known to be true for Kač-Moody groups.
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Theorem 4.2.3. If the Weyl group W of G is infinite, then the following canon-
ical maps are homotopy equivalences:

(i) hocolimC BPI
∼→ BG, (ii) hocolimC BNI

∼→ BN(T ) , (iii) hocolimC BWI
∼→ BW.

Proof. We shall only prove the first of these equivalences, the rest follow using
a similar argument. Consider the Borel construction

EG×G (hocolimC G/PI) = hocolimC EG×G (G/PI) = hocolimC BPI .

But from 4.2.1 it follows that we have a homotopy equivalence

EG×G (hocolimC G/PI)
∼→ EG×G (∗) = BG.

The above equations give us a homotopy equivalence. We leave it to the reader to
verify that the equivalence just obtained is induced by the canonical map.

Let HI ⊂ PI be the Levi subgroup defined as HI = PI ∩ K. The Levi subgroups
satisfy

K/HI = G/PI

and hence we get a version of theorem 4.2.3 (i) on the level of unitary forms:

Theorem 4.2.4. If the Weyl group W of K is infinite, then the following canon-
ical map is a homotopy equivalence:

hocolimC BHI
∼→ BK.

Now the Levi subgroups HI can be written as

HI = KI ⋊ TI(4.2.5)

where KI is a unitary form of a Kač-Moody group with Weyl group WI . TI denotes
the subtorus of T with codimension equal to the cardinality of I generated by the
elements exp hj for every r̄j that lies in the complement of I in S. The group NI is
a subgroup of HI and the decomposition 4.2.5 induces a similar decomposition

NI = N(I) ⋊ TI(4.2.6)

where N(I) is the normalizer of the maximal torus in KI .

Theorem 4.2.7. The obvious map induced by inclusion of a subgroup

BN(T ) −→ BK

is an equivalence at all primes not appearing in the torsion of W .

Proof. This result is a well known result for the class of compact connected
Lie groups. Hence we can assume that the Weyl group is infinite in our case. We
proceed by induction on the rank n of K. The result clearly holds if the rank is 1
since the only Kač-Moody group of rank 1 is SL2(C). Since KI is the unitary form
of a Kač-Moody group and the cardinality of I is strictly less than n, the induction
assumption implies that the map induced by the inclusion of subgroups

BN(I) −→ BKI
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is an equivalence at all primes not appearing in the torsion of WI ⊂ W . Using the
decompositons given in equations 4.2.5 and 4.2.6 it follows that the map induced by
the inclusion of subgroups

BNI −→ BHI

is an equivalence at all primes not appearing in the torsion of W . The result now
follows from naturality using theorems 4.2.3 (ii) and 4.2.4.

A similar induction argument using theorem 4.2.3 (iii) gives a proof of the following
theorem:

Theorem 4.2.8. The space BW is acyclic at all primes not appearing in the
torsion of W .

Let T(2) be the subgroup of T consisting of the square-roots of unity. It is easy to
see using 1.5.1 that one has a short exact sequence

1 −→ T(2) −→ N −→ T ⋊W −→ 1.

Since T(2) is a 2-group and W is generated by reflections, it follows that

Corollary 4.2.9. For a Kač-Moody group with Weyl group W and unitary form
K, there is an equivalence

B(T ⋊W ) ∼= BK

at all primes not appearing in the torsion of W .

Remark 4.2.10. Let W be the Weyl group of a Kač-Moody group of rank n.
Since W ⊂ GLn(Z), it follows that any prime that appears in the torsion of W is at
most n+ 1.
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CHAPTER 5

An interesting fibration

1. Introduction

In this chapter we use certain rank 2 Kač-Moody groups to construct an interesting
fibration. Recall the cohomology of the classifying space of the unitary form of a rank
2 Kač-Moody group which is not of finite type:

H∗(BK,Fp) = Fp[x4, x2k] ⊗ E(x2k+1), β(n)x2k = x2k+1

where the numbers k and n were described in chapter 3. If we assume that (2k, p) = 1,
then there is a p-compact group P with the following cohomology:

H∗(BP,Fp) = Fp[x4, x2k].

After p-completing all the spaces involved, we will construct a map

Bλ : BP −→ B̂K

which is surjective in mod p cohomology. Let ˆK/P be the fiber of this map. One

can also construct a map from ˆBS3 into BP which is surjective in mod p cohomology

and we can similarly define spaces ˆP/S3 and ˆK/S3. It is easy to see that there is an

equivalence ˆP/S3 ∼= Ŝ2k−1. These spaces fit into a fibration sequence

Ŝ2k−1 −→ ˆK/S3 −→ ˆK/P.(5.1.1)

We will give evidence to suggest that the space ˆK/P is equivalent to ˆΩS2k+1. If our
conjecture is indeed true, then the fibration 5.1.1 resembles an interesting fibration
constructed by D. Anick [1] of the form

Ŝ2k−1 −→ T∞(pn) −→ ˆΩS2k+1.(5.1.2)

2. A p-compact subgroup

Let K be the compact form of a rank 2 Kač-Moody with an infinite Weyl group.
Since this Weyl group is isomorphic to an infinite Dihedral group, 4.2.7 says that at
all odd primes there is an equivalence

BN(T )
∼→ BK

where N(T ) stands for the normalizer of the maximal torus in K. Now fix an odd
prime p with the property that (p, 2k) = 1. Since W ⊂ GL2(Z), one can define Wp

to be the image of W under the mod p reduction map

ψ : GL2(Z) −→ GL2(Fp).
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Recall from 3.7.10 that the group Wp is isomorphic to D2k. Let H ⊂ N(T ) be the
subgroup of N(T ) defined by the short exact sequence

1 −→ H −→ N(T )
α−→ Wp −→ 1(5.2.1)

where the map α is defined as the composite

α : N(T ) −→W −→Wp.

It is not hard to see that H is isomorphic to a semidirect product

H ∼= T ⋊ Z

where Z ⊂ W is the kernel of the map onto Wp with the action on T induced by the
action of W . Notice that in the extension

1 −→ Z −→ W −→Wp −→ 1

the action of Wp on Z corresponds to the sign representation of Wp. The inclusion

Z ⊂ GL2(Z) extends to a unique continuous inclusion Zp ⊂ GL2(Zp) = Aut(T̂ ) where

X̂ denotes the p-completion of a space X. From this remark it is not hard to see that

B̂H = B(T̂ ⋊ Zp).(5.2.2)

Thinking of BH as the space EN(T )/H , it is clear that Wp acts on BH , inducing and

action of Wp on B̂H. Let [Y, Y ] denote the monoid of homotopy classes of unpointed
self-maps of Y , and let [Y, Y ]∗ denote the monoid of homotopy classes of pointed
self-maps of Y . From the above remarks, we have a map of monoids

γ : Wp −→ [B̂H, B̂H].(5.2.3)

Claim 5.2.4. There exists a map of monoids

γ̄ : Wp −→ [B̂H, B̂H ]∗

such that γ factors as

γ : Wp
γ̄−→ [B̂H, B̂H]∗ −→ [B̂H, B̂H ]

where the latter map is the canonical map that disregards the fact that elements in
[B̂H, B̂H]∗ preserve basepoints.

Proof. Consider the space given by the Borel construction X = EWp ×Wp
B̂H .

X fits into a fibration sequence

B̂H −→ X −→ BWp(5.2.5)

giving an extension

1 −→ Zp −→ π1(X) −→Wp −→ 1.

Since (p, 2k) = 1, this extension splits and we get an inclusion Wp ⊂ π1(X). Now for
any fibration

F −→ E −→ B

it is well known that there is a pointed homotopy action of π1(E) on F , i.e. a map
of monoids

π1(E) −→ [F, F ]∗.
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Using this fact for the fibration 5.2.5 one constructs γ̄ as the following composite:

Wp ⊂ π1(X) −→ [B̂H, B̂H]∗.

Once we have γ̄, to prove the rest of the theorem is straightforward and is left to the
reader.

Notice that π1(B̂H) = Zp and π2(B̂H) = Z2
p. Claim 5.2.4 gives us a map of monoids

on the level of homotopy groups Wp −→ End(π2B̂H) where the monoid structure

on End(π2B̂H) is composition. Hence we get an honest action of Wp on the space

B̂T = K(π2(B̂H), 2). Now let

ι : B̂T −→ B̂H

be induced by the inclusion T →֒ H . We have

Claim 5.2.6. For every group element g ∈ Wp, the following diagram commutes
up to homotopy:

B̂T
ι

g

B̂H

g

B̂T
ι
B̂H.

Proof. For a given element g ∈Wp consider the following commutative diagram
where the rows are fibrations:

B̂T
ι

f

B̂H

g

BZp

(−1)g

B̂T
ι

B̂H BZp.

The commutativity of the right hand square implies the existence of the dotted map
f making the left hand square commute. To see that f and g are homotopic maps on
B̂T we need only check their effect in π2. Notice that the map ι is an isomorphism
on π2. On identifying π2(B̂T ) with π2(B̂H) and recalling the action of Wp on B̂T , it

follows immediately that both f and g are homotopic self-maps of B̂T .

Notice that the map

B̂H −→ ˆBN(T )

is Wp equivariant with respect to the trivial Wp action on ˆBN(T ). On composing
with the map ι and using claim 5.2.6 we have

Theorem 5.2.7. The map induced via the inclusion

j : B̂T −→ ˆBN(T )

is Wp homotopy equivariant with respect to the trivial Wp action on ˆBN(T ).

Since (p, 2k) = 1 one can use [21] to assume that the map j is honestly Wp

equivariant. The map j extends to the Borel construction on B̂T

Bλ : EWp ×Wp
B̂T −→ ˆBN(T ).
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The p-completion of EWp×Wp
B̂T is the space BP for a p-compact group P , and its

cohomology is given by

H∗(BP ; Fp) = Fp[x4, x2k].

The map thus constructed

Bλ : BP −→ ˆBN(T )(5.2.8)

is seen to be surjective in mod p cohomology. Define ˆK/P to be the fiber of this

map. It is not hard to construct a map ˆBS3 −→ BP which is surjective in mod p
cohomology. The fiber of the latter map is seen to be Ŝ2k−1 by a simple cohomology

calculation. Let ˆK/S3 denote the fiber of the composite map ˆBS3 −→ ˆBN(T ). It is
an easy exercise to show that we have a fibration

Ŝ2k−1 −→ ˆK/S3 −→ ˆK/P.(5.2.9)

Theorem 5.2.10. The p-adic cohomology of ˆK/P is isomorphic to a divided poly-
nomial algebra on a class in dimension 2k

H∗( ˆK/P ; Zp) = Γ[x2k].

Proof. Recall the integers gm defined as the g.c.d. of the pair (cm, dm) described
in equation 3.7.1. Let k, p and n be as discussed in the beginning of this section. For
any integer m define η(m) to be the exponent of p in gmk. By equation 3.4.5 we have

H2mk(K; Zp) = H2mk+3(K; Zp) = Z/pη(m)Z.(5.2.11)

Now by Browder’s results on torsion in H-spaces (cf. [6] pg. 103), one can show that

η(m) = n+ ν(m)(5.2.12)

where ν(m) is the exponent of p in m. Now the map Ŝ3 −→ K̂ is surjective in p-adic
cohomology and thus from the Serre spectral sequence for the fibration

Ŝ3 −→ K̂ −→ ˆK/S3

it follows easily that

H2mk( ˆK/S3; Zp) = Z/pη(m)Z.(5.2.13)

Now using the Eilenberg-Moore spectral sequence for the fibration

ˆK/P −→ BP −→ ˆBN(T )

it follows that H∗( ˆK/P ; Fp) is a vector space of dimension 1 in degrees which are a

multiple of 2k. Hence H∗( ˆK/P ; Zp) is a free Zp module of rank 1 in degrees which
are a multiple of 2k. At this point the Serre spectral sequence for the fibration

Ŝ2k−1 −→ ˆK/S3 −→ ˆK/P

along with 5.2.12 and 5.2.13 forces the p-adic cohomology of ˆK/P to have the structure
of a divided polynomial algebra on a class in dimension 2k completing the proof.

Theorem 5.2.14. The mod p Steenrod algebra acts trivially on H∗( ˆK/P ; Fp).
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Proof. The map K̂ −→ ˆK/P is injective in mod p cohomology and by equation
3.5.4 it is easy to see that the mod p Steenrod algebra acts trivially on the sub

Hopf-algebra of H∗(K; Fp) given by the image of H∗( ˆK/P ; Fp).

Theorems 5.2.10 and 5.2.14 give us evidence to conjecture

Conjecture 5.2.15. There is a homotopy equivalence

ˆΩS2k+1 ∼= ˆK/P

and the corresponding fibration

Ŝ2k−1 −→ ˆK/S3 −→ ˆΩS2k+1

is equivalent to the Anick fibration [1] of the form

Ŝ2k−1 −→ T∞(pn) −→ ˆΩS2k+1.

Note that K contains two standard Levi subgroups each containing a canonical
copy of S3. So one can construct a homogeneous space K/S3 which has the homotopy
type of a CW-complex of finite type. It is not hard to see that, on p-completion, this

homogeneous space K/S3 is equivalent to the fiber of the map ˆBS3 −→ ˆBN(T )

(which we have been calling ˆK/S3). Hence if 5.2.15 is answered in the affirmative,
then we obtain a “nice” integral lift of the spaces T∞(pn) constructed by D. Anick.
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