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Abstract

The goal of this thesis is to begin to lay the foundations for a theory of enriched ∞-
categories. We introduce a definition of such objects, based on a non-symmetric version of
Lurie’s theory of ∞-operads. Our first main result is a construction of the correct homo-
topy theory of enriched ∞-categories as a localization of an “algebraic” homotopy theory
defined using ∞-operads; this is joint work with David Gepner.

We then prove some comparison results: When a monoidal ∞-category arises from a
nice monoidal model category we show that the associated homotopy theory of enriched
∞-categories is equivalent to the homotopy theory induced by the model category of en-
riched categories; when the monoidal structure is the Cartesian product we also show that
this is equivalent to the homotopy theory of enriched Segal categories. Moreover, we prove
that the homotopy theory of (∞, n)-categories enriched in spaces, obtained by iterating our
enrichment procedure, is equivalent to that of n-fold complete Segal spaces.

We also introduce notions of natural transformations and correspondences in the set-
ting of enriched ∞-categories, and use these to construct (∞, 2)-categories of enriched ∞-
categories, functors, and natural transformations, and double ∞-categories of enriched
∞-categories, functors, and correspondences.

Finally, we briefly discuss a non-iterative definition of enriched (∞, n)-categories, based
on a version of ∞-operads over Joyal’s categories�n, and define what should be the correct
∞-category of these.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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2.1.11 The Makkai-Paré Accessibility Theorem . . . . . . . . . . . . . . . . . 37
2.1.12 Categorical Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.13 Some Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Other Higher-Categorical Structures . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 Segal Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Double ∞-Categories and (∞, 2)-Categories . . . . . . . . . . . . . . 45
2.2.3 �n-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 ∞-Operads over Operator Categories 53
3.1 Review of Operator Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Basic Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2 Wreath Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Monoidal Categories and Operads . . . . . . . . . . . . . . . . . . . . 55
3.1.4 Perfect Operator Categories and Monoids . . . . . . . . . . . . . . . . 58
3.1.5 The Inert-Active Factorization System . . . . . . . . . . . . . . . . . . 60
3.1.6 The May-Thomason Category of a Φ-Operad . . . . . . . . . . . . . . 62
3.1.7 Generalized Operads and Multiple Categories . . . . . . . . . . . . . 63

7



3.1.8 Subcategories of Operator Categories . . . . . . . . . . . . . . . . . . 64
3.2 ∞-Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Model Categories of ∞-Operads . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Trivial Generalized ∞-Operads . . . . . . . . . . . . . . . . . . . . . . 70
3.2.4 Monoids and Category Objects . . . . . . . . . . . . . . . . . . . . . . 71
3.2.5 Filtered Colimits of ∞-Operads . . . . . . . . . . . . . . . . . . . . . . 72
3.2.6 Wreath Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.7 Colimits of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.8 The Algebra Fibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Non-Symmetric ∞-Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 Monoidal Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2 Operadic Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.3 Operadic Kan Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.4 Free Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.5 Colimits of Algebras in Monoidal ∞-Categories . . . . . . . . . . . . 89
3.3.6 Approximations of ∞-Operads . . . . . . . . . . . . . . . . . . . . . . 91
3.3.7 More on the Algebra Fibration . . . . . . . . . . . . . . . . . . . . . . 93
3.3.8 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Enriched ∞-Categories 99
4.1 Categorical Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 The Double ∞-Categories �op
C . . . . . . . . . . . . . . . . . . . . . . 99

4.1.2 The ∞-Operad Associated to �op
X . . . . . . . . . . . . . . . . . . . . . 101

4.1.3 The ∞-Category of Categorical Algebras . . . . . . . . . . . . . . . . 105
4.1.4 Categorical Algebras in Spaces . . . . . . . . . . . . . . . . . . . . . . 108

4.2 The ∞-Category of Enriched ∞-Categories . . . . . . . . . . . . . . . . . . . 109
4.2.1 Equivalences in Enriched ∞-Categories . . . . . . . . . . . . . . . . . 109
4.2.2 Fully Faithful and Essentially Surjective Functors . . . . . . . . . . . 114
4.2.3 Local Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.4 Categorical Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.5 Completion in the Presentable Case . . . . . . . . . . . . . . . . . . . 121
4.2.6 The Non-Presentable Case . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2.7 Properties of the Localized Category . . . . . . . . . . . . . . . . . . . 125

4.3 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.1 The Baez-Dolan Stabilization Hypothesis . . . . . . . . . . . . . . . . 127
4.3.2 En-Algebras as Enriched (∞, n)-Categories . . . . . . . . . . . . . . . 129

4.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.1 Fibrewise Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.2 Rectifying Associative Algebras . . . . . . . . . . . . . . . . . . . . . 145
4.4.3 Comparison with Enriched Categories . . . . . . . . . . . . . . . . . . 151
4.4.4 Comparison with Segal Categories . . . . . . . . . . . . . . . . . . . . 154
4.4.5 Comparison with Iterated Segal Spaces . . . . . . . . . . . . . . . . . 157

4.5 Natural Transformations and Functor Categories . . . . . . . . . . . . . . . . 161
4.5.1 Internal Natural Transformations . . . . . . . . . . . . . . . . . . . . . 161
4.5.2 External Natural Transformations . . . . . . . . . . . . . . . . . . . . 163
4.5.3 The (∞, 2)-Category of V-∞-Categories . . . . . . . . . . . . . . . . . 165

4.6 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8



4.6.1 Correspondences between V-∞-Categories . . . . . . . . . . . . . . . 167
4.6.2 The Double ∞-Categories �op,q

X0<···<Xn
. . . . . . . . . . . . . . . . . . . 168

4.6.3 The Double ∞-Category of V-∞-Categories . . . . . . . . . . . . . . . 175

5 Enriched (∞, n)-Categories 177
5.1 n-Categorical Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1.1 The Φ-Multiple ∞-Categories LΦ
X . . . . . . . . . . . . . . . . . . . . . 177

5.1.2 The ∞-Category of n-Categorical Algebras . . . . . . . . . . . . . . . 179
5.1.3 n-Categorical Algebras in Spaces . . . . . . . . . . . . . . . . . . . . . 182
5.1.4 Complete n-Categorical Algebras . . . . . . . . . . . . . . . . . . . . . 183

5.2 n-Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.2.1 The Φ-Multiple ∞-Categories LΦ[I, {Xα}] . . . . . . . . . . . . . . . . 186
5.2.2 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Bibliography 189

9



10



Chapter 1

Introduction

The language of category theory has played an important role in many areas of math-
ematics for the past half-century. In recent years, however, taking seriously the higher-
categorical nature of many structures has turned out to be a very fruitful idea. In particu-
lar, the theory of ∞-categories has had many applications in algebraic topology and other
areas of mathematics. Roughly speaking, the notion of ∞-category (or (∞, 1)-category) is a
generalization of the notion of category where in addition to objects and morphisms we
also have homotopies between morphisms, homotopies between homotopies, and so on.
One way to think of an ∞-category is as a category where the morphisms between two
objects form a space rather than just a set — such topological categories, or equivalently sim-
plicial categories (where the morphisms form a simplicial set), give the simplest model of
∞-categories. However, topological and simplicial categories are very rigid, which makes
it hard to understand the homotopically correct functors between them, and in general
make homotopy-invariant constructions (such as homotopy limits and colimits); more-
over, many naturally occurring composition laws are not strictly associative, but only as-
sociative up to coherent homotopy. It is therefore usually more convenient to work with a
notion of ∞-category where composition of morphisms is associative up to coherent homo-
topy. There are several ways to make this idea precise, including Segal categories, complete
Segal spaces, and quasicategories.

In some cases, the morphisms between objects in an ∞-category have more structure
than just forming a space; in algebraic topology, for example, we often come across ∞-
categories where the morphisms naturally form a spectrum. It is possible to think of these
objects as spectral categories, i.e. categories enriched in a model category of spectra (such
as symmetric spectra), and more generally we can consider categories enriched in nice
monoidal model categories. However, these suffer from the same problems as simplicial
categories do when considered as a model for ∞-categories. This suggests that a weaker
notion of enrichment, where composition is only associative up to coherent homotopy,
should be useful. The goal of this thesis is to begin to lay the foundations for a theory
of such enriched ∞-categories; specifically, we will define and study ∞-categories enriched
in monoidal ∞-categories, which are ∞-categories equipped with a tensor product that is
associative and unital up to coherent homotopy.

From an algebro-topological perspective, the most interesting monoidal ∞-category1

is the ∞-category of spectra equipped with the smash product, and I expect that the the-

1Apart from the ∞-category of spaces, with the Cartesian product, but enriching in this just gives ordinary
∞-categories.
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ory developed in this thesis will have interesting applications in the context of spectral
∞-categories, i.e. ∞-categories enriched in spectra. For instance, many naturally occurring
structures that “ought to be” spectral categories can be very difficult to define, because the
natural composition maps are only associative up to homotopy; I hope that in many cases
these structures can be more easily described as spectral ∞-categories.

As a specific example, it has long been expected that the spectral category of genuine
G-spectra for a finite group G “ought to be” the spectral category of spectral presheaves
on a small spectral category BG

+; if BG is the 2-category of finite G-sets, spans of finite
G-sets, and isomorphisms of spans, then BG

+ ought to be constructed by applying group
completion to the mapping groupoids of BG. However, in the setting of ordinary cate-
gories group completion is only a multiplicative functor when restricted to permutative cat-
egories (i.e monoidal categories where the tensor product is strictly associative); Guillou
and May have recently constructed a version of BG

+ by replacing BG by a category enriched
in permutative categories, and using this they can show that spectral presheaves on this
spectral category does indeed give genuine G-spectra [GM11b, GM11a, GM12]. However,
their construction is quite complicated — by contrast, in the setting of ∞-categories it is
straightforward to see that group completion is a lax monoidal functor, and since our the-
ory of enriched ∞-categories is functorial with respect to lax monoidal functors it is trivial
to construct BG

+ as a spectral ∞-category. Moreover, it is equally easy to construct spectral
∞-categories by applying other lax monoidal functors, such as topological Hochschild ho-
mology or topological cyclic homology; for example, this gives a rigorous construction of
Morava’s category of TC-motives [Mor11].

We will set up our theory of enriched ∞-categories entirely within the context of ∞-
categories (rather than working with model categories, say); apart from greater generality,
working in this setting has several advantages:

• Weak or homotopy-coherent enrichment is the only natural notion of enrichment,
which allows us to define our enriched ∞-categories as certain “algebraic” objects in
the ∞-categorical sense.

• It is easy to consider enriched categories with spaces of objects rather than just sets,
which turns out to make the resulting homotopy theory nicer and easier to set up,
analogously to the way complete Segal spaces are better-behaved than Segal cate-
gories or simplicial categories.

• We automatically get naturality properties that would be difficult even to define in a
model-categorical framework — for example, our ∞-categories are natural in func-
tors between monoidal ∞-categories that are lax monoidal in the appropriate ∞-
categorical sense.

• Beyond just constructing a homotopy theory, our theory gives a good setting to de-
velop ∞-categorical analogues of many concepts from enriched category theory. In
this thesis we will discuss analogues of natural transformations and correspondences,
and we hope to study analogues of other concepts, such as weighted colimits, in fu-
ture work.

Part of this thesis is joint work with David Gepner — specifically, the results of §3.3 and
§4.1–4.3 are taken from our article [GH], as are many of the results scattered in §2.1.
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1.1 From Enriched Categories to Enriched ∞-Categories

To orient the reader, we now attempt to motivate our approach to enriched ∞-categories
by describing how it relates to ordinary enriched categories.

1.1.1 Multicategories and Enrichment

Let’s begin with the usual definition of an enriched category: if V is a monoidal category,
a V-enriched category (or V-category) C consists of:

• a set ob C of objects,

• for all pairs x, y ∈ ob C an object C(x, y) in V,

• composition maps C(x, y)⊗ C(y, z)→ C(x, z),

• units idx : I → C(x, x).

The composition must be associative (this involves the associator isomorphism for V) and
unital. When formulated in this way, it is very hard to see how this notion ought to be
generalized in the setting of ∞-categories. We should therefore look for alternative ways
of defining enriched categories that have more obvious generalization; we first consider a
definition in terms of multicategories.

A multicategory (or non-symmetric coloured operad) is roughly speaking a category where
a morphism has a list of objects as its source. More precisely, a multicategory M consists of a
set of objects and for objects x1, . . . , xn, y a set M((x1, . . . , xn), y) of “multimorphisms” from
(x1, . . . , xn) to y; these have an associative composition, in the sense that we can compose
multimorphisms

(z1, . . . , zi1)→ y1, (zi1+1, . . . , zi2)→ y2, . . . , (zin−1+1, . . . , zin)→ yn

with a multimorphism (y1, . . . , yn) → x to get a multimorphism (z1, . . . , zin) → x. A
multicategory with a single object is precisely a non-symmetric operad.2

If V is a monoidal category, we can view it as a multicategory by defining

V((x1, . . . , xn), y) := V(x1 ⊗ · · · ⊗ xn, y).

An algebra for a multicategory M in a monoidal category V is then just a functor of multi-
categories from M to V viewed as a multicategory.

Given a set X, there is a simple multicategory OX such that OX-algebras in a monoidal
category V are precisely V-categories: the objects of OX are X×X, and the multimorphism
sets are defined by

OX(((x0, y1), (x1, y2), . . . , (xn−1, yn)), (y0, xn)) :=

{
∗, if yi = xi, i = 0, . . . , n,
∅, otherwise.

Thus an OX-algebra C in V assigns an object C(x, y) to each pair (x, y) of elements of
X, with a unit I → C(x, x) from the unique map () → ((x, x)), and a composition map

2Below, we will refer to (non-symmetric) coloured operads as just (non-symmetric) operads, for consis-
tency with the terminology used by Lurie [Lur11] and Barwick [Bar13]; here we stick to the more common
terminology.
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C(x, y)⊗C(y, z)→ C(x, z) from the unique multimorphism ((x, y), (y, z))→ (x, z). Look-
ing at triples of pairs we see that this composition is associative, and it is also clearly unital,
so C is precisely a V-category.

If we had an ∞-categorical generalization of the theory of multicategories (which in-
cluded a theory of monoidal ∞-categories as a special case), it would therefore make sense
to define an ∞-category enriched in a monoidal ∞-category V with set of objects X to be an
OX-algebra in V. To generalize multicategories to the ∞-categorical setting we could use
simplicial multicategories, i.e. multicategories enriched in simplicial sets. However, these
suffer from the same technical problems as simplicial categories considered as a model
for ∞-categories. Just as for ∞-categories, there are several better-behaved models for ∞-
categorical (symmetric) multicategories, namely the dendroidal sets (and related construc-
tions such as Segal operads and dendroidal Segal spaces) studied by Moerdijk together with
Berger, Cisinski, and Weiss, and the ∞-operads of Lurie. In this thesis we will primarily use
a non-symmetric variant of Lurie’s theory.

We can regard the multicategories OX as non-symmetric ∞-operads, and considering
algebras for these in a monoidal ∞-category V does indeed give the right objects — for
example, if X is a one-element set then OX-algebras are precisely A∞-algebras in V, which
is what we expect. Moreover, the machinery of ∞-operads gives ∞-categories AlgOX

(V) of
OX-algebras in a fixed monoidal ∞-category V, and we can combine these to form an ∞-
category Algcat(V), which has objects V-∞-categories and 1-morphisms V-functors in the
appropriate sense. However, a morphism f : C → D in Algcat(V) is an equivalence if and
only if it is fully faithful, i.e. C(x, y) → D( f x, f y) is an equivalence for all objects x, y of C,
and a bijection on objects. These are clearly not the correct equivalences of V-∞-categories
— these ought to be the fully faithful and essentially surjective functors. To get the right
∞-category of V-∞-categories we must therefore localize Algcat(V) to invert these.

For the localized ∞-category to be well-behaved we need this to be an accessible local-
ization (the ∞-categorical analogue of left Bousfield localization of model categories) —
this means that the localized ∞-category is a full subcategory of the original ∞-category
consisting of local objects. However, this is not possible for Algcat(V) as we’ve defined it
here: For example, if V is the category of sets, then Algcat(Set) is just the ordinary category
of categories and functors; the correct localization, on the other hand, is the (2, 1)-category
of categories, functors, and natural isomorphisms, which clearly can’t be a full subcategory
of the 1-category Algcat(Set).

It turns out that we can avoid this problem if we allow V-∞-categories to have spaces
of objects, rather than just sets, which is also very natural from the ∞-categorical point of
view. We would thus like to define non-symmetric ∞-operads analogous to OX with X a
space; one way to do this is to define simplicial multicategories, taking as input simplicial
categories whose nerves are Kan complexes3, but this generalization is much easier and
more natural if we start from a slightly different approach to enriched categories.

1.1.2 Virtual Double Categories and Enrichment

Virtual double categories4 are a common generalization of double categories and multicate-
gories. Roughly speaking, a virtual double category has objects and vertical and horizontal

3We will in fact define and make brief but crucial use of these in §4.1.2 below.
4Also known as fc-multicategories; we will later call them generalized (non-symmetric) operads, for consis-

tency with Lurie’s terminology.
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morphisms between them, but in addition to a collection of “squares” there are cells with
a list of vertical arrows as source; we refer the reader to [CS10] or [Lei04] for more details.

We will instead consider virtual double categories from another perspective, by gen-
eralizing the category of operators of a multicategory: if M is a multicategory, its category
of operators M⊗ is a category with objects lists (x0, . . . , xn) of objects xi ∈ M, and a mor-
phism (x0, . . . , xn) → (y0, . . . , ym) given by a morphism φ : [m] → [n] in � and, for each
i = 0, . . . , m, a multimorphism (xφ(i), xφ(i)+1, . . . , xφ(i+1)−1)→ yi in M. We can characterize
the categories E over�op that are categories of operators for multicategories — in particu-
lar, E[n] must be equivalent to E×n

[1] via the maps {i, i + 1} ↪→ [n]. If we relax this to a more
general “Segal condition”, E[n] ' E[1] ×E[0] · · · ×E[0] E[1], we obtain precisely the analogous
“categories of operators” for virtual double categories.

Given a set X, we can define a virtual double category DX with objects X where the ver-
tical morphisms are trivial, and there is a unique horizontal morphism between any two
elements of X. Then a functor of virtual double categories from DX to a monoidal category
V is precisely a V-category with objects X. In terms of categories of operators, this virtual
double category corresponds to the category �op

X whose objects are non-empty sequences
(x0, . . . , xn) of elements xi ∈ X, and a unique morphism (x0, . . . , xn) → (xφ(0), . . . , xφ(m))
for each φ : [m] → [n] in �. If V is a monoidal category, and V⊗ is its category of op-
erators, a functor DX → V corresponds to a functor C : �op

X → V⊗ over �op such that
C(x0, . . . , xn) = (C(x0, x1), . . . , C(xn−1, xn)); it is easy to see that this is precisely a V-
category.

An ∞-categorical version of the theory of virtual double categories is provided by
Lurie’s generalized ∞-operads. This is the setting in which we will mainly develop our the-
ory of enriched ∞-categories; the advantage of working with these rather than only with
∞-operads is that there is an easy and natural ∞-categorical definition of ∞-categories�op

X
where X is a space. If V is a monoidal ∞-category we will define an ∞-category enriched in
V with space of objects X to be a map of generalized ∞-operads from �

op
X to V.

1.1.3 Lax Functors and Enrichment

A third approach to enriched categories is to consider them as certain lax functors. Recall
that if C and D are 2-categories, a lax functor F from C to D assigns

• to each object X ∈ C an object F(X) in D,

• to each 1-morphism f : X → Y in C a 1-morphism F( f ) : F(X)→ F(Y) in D,

• to each 2-morphism α : f → g in C a 2-morphism F(α) : F( f )→ F(g) in D,

• to each composable pair of 1-morphisms f : X → Y, g : Y → Z, a 2-morphism F(g) ◦
F( f )→ F(g ◦ f ), satisfying associativity in the obvious sense for sequences of 3 com-
posable 1-morphisms,

• to each object X ∈ C, a 2-morphism idF(X) → F(idX), which must be compatible with
the 2-morphisms for composable pairs of 1-morphisms.

A monoidal category V corresponds to a 2-category ΣV with one object, and if V and W are
monoidal categories, a lax functor ΣV→ ΣW is precisely a lax monoidal functor V→ W.

If X is a set, let EX denote the “codiscrete” category with objects X, and a unique
morphism between any two objects. Then a V-category with objects X, for some monoidal
category V, is the same thing as a lax functor EX → ΣV.
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This definition is related to the definition using virtual double categories as follows: we
can regard 2-categories as double categories with no non-trivial vertical morphisms, and
thus as a special kind of virtual double categories. Under this identification, a lax functor
between 2-categories is precisely a morphism of virtual double categories. Moreover, the
virtual double category associated to ΣV is precisely the one we obtain by regarding V as a
multicategory. Similarly, the virtual double category associated to EX is the one we denote
DX above — thus a lax functor EX → ΣV corresponds to a morphism of virtual double
categories from DX to V, which was the definition of enriched category we considered
above.

In the ∞-categorical context, we can similarly regard generalized (non-symmetric) ∞-
operads as a natural setting for studying lax functors between (∞, 2)-categories.

1.2 Overview

The next two chapters mainly comprise background material. In Chapter 2 we review
some basic definitions and results on ∞-categories and other higher-categorical structures,
and also prove some technical results we will need later on. Chapter 3 reviews Barwick’s
theory of operator categories and describes how to generalize Lurie’s ∞-operads to this set-
ting; we also prove some results about ∞-categories of algebras over operads.

Chapter 4 is the heart of this thesis — here we introduce and study our theory of en-
riched ∞-categories. In §4.1 we use the machinery of ∞-operads from Chapter 3 to set up
an “algebraic” ∞-category of enriched ∞-category, then in §4.2 we construct the correct
∞-category of enriched ∞-categories by localizing this at the fully faithful and essentially
surjective functors — the key result is that this localization is given by restricting to “com-
plete” enriched ∞-categories, which is proved analogously to the main theorem of [Rez01].
After briefly describing some simple applications of this construction in §4.3, we compare
our homotopy theory to homotopy theories of categories enriched in model categories, en-
riched Segal categories, and iterated Segal spaces in §4.4. Then we discuss natural transfor-
mations and construct the (∞, 2)-category of enriched ∞-categories, functors, and natural
transformations in §4.5. We extend this to a double ∞-category of enriched ∞-categories,
functors, and correspondences (or profunctors) in §4.6.

Finally, in Chapter 5 we begin to study the generalization of our construction to a (non-
iterative) theory of enriched (∞, n)-categories. Unfortunately we are not able to accomplish
very much in this setting, primarily because we have not yet been able to prove some key
results about the appropriate theory of ∞-operads. We do, however, set up the correct
∞-category of (∞, n)-categories enriched in a given En-monoidal ∞-category.

1.3 Notation and Terminology

We generally recycle the notation and terminology used by Lurie in [Lur09a, Lur11]. Here
are some exceptions and reminders:

• Generic categories are generally denoted by single capital bold-face letters (e.g. V)
and generic ∞-categories by single caligraphic letters (e.g. V). Specific categories and
∞-categories both get names in the normal text font: thus the category of small V-
categories is denoted CatV and the ∞-category of small V-∞-categories is denoted
CatV∞.

16



• We make use of the elegant theory of Grothendieck universes to avoid set-theoretical
problems; specifically, we fix three nested universes, and refer to sets contained in
them as small, large and very large. When C is an ∞-category of small objects of a
certain type, we generally refer to the corresponding ∞-category of large objects as
Ĉ. For example, Cat∞ is the (large) ∞-category of small ∞-categories, and Ĉat∞ is the
(very large) ∞-category of large ∞-categories.

• As far as possible we argue using the “high-level” language of ∞-categories, without
referring to their specific implementation as quasicategories. Following this philos-
ophy we have generally not distinguished notationally between categories and their
nerves, since categories are a special kind of ∞-category. However, we do indicate the
nerve (using N) when we think of the nerve of a category as being a specific simplicial
set; by the same principle we always indicate the nerves of simplicial categories. This
should hopefully not cause any confusion.

• We will refer to the notion dual to that of Grothendieck fibration as coGrothendieck
fibration, by analogy with the terminology of Cartesian and coCartesian fibrations in
the ∞-categorical case.
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Chapter 2

Background on Higher Categories

This chapter contains some background material for the main part of this thesis: in §2.1 we
briefly review ∞-categories and prove some technical results, and in §2.2 we review some
other higher-categorical structures we will encounter.

2.1 Preliminaries on ∞-Categories

In this thesis we will work throughout in the setting of ∞-categories. Specifically, we will
make use of the theory of quasicategories, as due to the work of Joyal and Lurie it is cur-
rently by far the best-developed theory of ∞-categories. In this section we briefly review
some of the main definitions and results from [Lur09a, Lur11] that we will make use of.
Along the way, we also prove a number of fairly technical results that we will need later
on.

2.1.1 Quasicategories

Quasicategories are a class of simplicial sets. Roughly speaking, the idea is that just as a
category has a nerve in simplicial sets, an ∞-category, however we define these, should
also have a nerve. The definition of quasicategory then characterizes those simplicial sets
that “ought to be” nerves of ∞-categories.

Definition 2.1.1.1. Let � denote the simplicial indexing category, i.e. the category whose
objects are the ordered sets [n] := {0, . . . , n} for n = 0, 1, . . ., and whose morphisms are the
order-preserving maps between these. Equivalently, we may also regard� as the category
of non-empty finite ordered sets. A simplicial set is a presheaf of sets on �, i.e. a functor
�op → Set. We write Set∆ for the category Fun(�op, Set) of simplicial sets.

Definition 2.1.1.2. The n-simplex ∆n is the simplicial set corepresented by the object [n] ∈
�. The ith horn Λn

i of ∆n is the simplicial subset obtained by removing the face opposite
the ith vertex from ∆n. The horn Λn

i is inner if 0 < i < n.

If C is a category, its nerve is the simplicial set NC with NCk := Hom([k], C) where
[k] is the category associated to the ordered set {0, 1, . . . , n}. We can characterize those
simplicial sets that are isomorphic to nerves of categories in terms of certain horn-filling
conditions: a simplicial set X is the nerve of a category precisely when every map from an
inner horn Λn

k → X extends to a unique n-simplex ∆n → X. For example, in the smallest
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case of a map Λ2
1 → X this says that any pair of composable morphisms has a unique

composite.
For an ∞-category we do not want such composites to be unique. Instead, a 2-simplex

should describe the data of two composable morphisms and a homotopy from their com-
posite to a third morphism; alternatively, since there is no preferred choice of composite,
we can say that a 2-simplex exhibits this third morphism as a composite. Generalizing this
idea to higher dimensions, we get the definition of a quasicategory:

Definition 2.1.1.3. A quasicategory is a simplicial set that satisfies the right lifting property
with respect to the inner horn inclusions Λn

i ↪→ ∆n. In other words, a simplicial set X is a
quasicategory if and only if every inner horn Λn

i → X, 0 < i < n, can be extended to an
n-simplex, but the extension need not be unique.

Following Lurie, we will generally refer to quasicategories as ∞-categories. If X is an
∞-category, we will often refer to its vertices as objects and its edges as morphisms.

Definition 2.1.1.4. An inner fibration is a morphism of simplicial sets that has the right
lifting property with respect to the inner horn inclusions Λn

i ↪→ ∆n, 0 < i < n.

Definition 2.1.1.5. If X is an ∞-category, the interior or underlying space ιX of X is the largest
subspace of X that is a Kan complex. A morphism of X is an equivalence if it is contained
in ιX.

There is a left proper combinatorial model structure on Set∆, originally constructed by
Joyal, whose cofibrations are monomorphisms and whose fibrant objects are ∞-categories
(cf. [Lur09a, Theorem 2.2.5.1]). We refer to the weak equivalences in this model structure
as categorical equivalences.

The Joyal model structure is Cartesian closed. If C is an ∞-category an K is any simpli-
cial set then we will denote the usual internal hom of simplicial sets by Fun(K,C); this is
an ∞-category (cf. [Lur09a, Proposition 1.2.7.3]).

There is also a related model structure on marked simplicial sets:

Definition 2.1.1.6. A marked simplicial set (X, S) consists of a simplicial set X together with
a set S ⊆ X1 of edges of X that includes all the degenerate edges. We write Set+∆ for the
category of marked simplicial sets. If X is a simplicial set, we write X[ for X equipped with
the minimal marking (X, s0X0) and X] for X equipped with the maximal marking (X, X1).
If X is an ∞-category we write X\ for X marked by the set of equivalences.

There is a model structure on Set+∆ whose cofibrations are the monomorphisms and
whose fibrant objects are of the form X\ where X is an ∞-category (cf. [Lur09a, Proposition
3.1.3.7]). The forgetful functor Set+∆ → Set∆ is a right Quillen equivalence (cf. [Lur09a,
Theorem 3.1.5.1]).

2.1.2 Simplicial Categories and Simplicial Groupoids

A simplicial category is a category enriched in simplicial sets. We write Cat∆ for the category
of simplicial categories.

Definition 2.1.2.1. A functor of simplicial categories F : C→ D is weakly fully faithful if for
all x, y ∈ C the map C(x, y)→ D(Fx, Fy) is a weak equivalence of simplicial sets.
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Definition 2.1.2.2. The functor π0 : Set∆ → Set is strong monoidal, and so induces a func-
tor π0 : Cat∆ → Cat. We say a functor F : C → D of simplicial categories is essentially
surjective up to homotopy if the functor π0F of ordinary categories is essentially surjective.

Definition 2.1.2.3. A functor of simplicial categories F : C → D is a local fibration if for all
x, y ∈ C the map C(x, y)→ D(Fx, Fy) is a Kan fibration of simplicial sets.

Definition 2.1.2.4. A functor F : C → D of ordinary categories is an isofibration if, given
c ∈ C and an isomorphism f : Fc → d there is an isomorphism f̄ : c → c′ in C such that
F( f̄ ) = f .

Theorem 2.1.2.5 (Bergner [Ber07]). There is a model structure on Cat∆ such that a functor
F : C→ D is

(W) a weak equivalence if and only if F is weakly fully faithful and essentially surjective
up to homotopy,

(F) a fibration if and only if F is a local fibration and π0F is an isofibration.

Definition 2.1.2.6. If i ≤ j are positive integers, let Pij be the partially ordered set of subsets
of {i, i+ 1, . . . j} containing i and j, regarded as a category; if i > j let Pij = ∅. Let C(∆n) de-
note the simplicial category with objects 0, . . . , n and C(∆n)(i, j) = NPij, with composition
defined by taking unions in the obvious way. Taking colimits, this extends to a functor

C : Set∆ → Cat∆

with right adjoint N: Cat∆ → Set∆ given by

NCn = Hom(C(∆n), C).

Theorem 2.1.2.7 (Joyal, Lurie [Lur09a, Theorem 2.2.5.1]). The adjunction C a N is a Quillen
equivalence between the Joyal model structure on Set∆ and the Bergner model structure
on Cat∆.

Thus if C is a simplicial category whose mapping objects are all Kan complexes, the
simplicial set NC is an ∞-category; this is an important way of constructing ∞-categories.
For example, if M is a simplicial model category, and M◦ denotes the full simplicial sub-
category of fibrant-cofibrant objects, then NM◦ is an ∞-category.

Example 2.1.2.8. The ∞-category of spaces S can be defined as the nerve NSet◦∆ of the full
subcategory Set◦∆ of Set∆ spanned by the Kan complexes. Similarly, the ∞-category of ∞-
categories Cat∞ can be defined as N(SetJ

∆)
◦, where SetJ

∆ denotes Set∆ equipped with the
Joyal model structure.

A simplicial category can be viewed as a simplicial object in categories whose simplicial
set of objects is constant. This suggests the following definition of a simplicial groupoid:

Definition 2.1.2.9. A simplicial groupoid is a simplicial object in groupoids with constant set
of objects.

There is a model structure on simplicial groupoids where the weak equivalences are
the weakly fully faithful and essentially surjective functors [DK84, Theorem 2.5], and the
simplicial nerve functor restricts to a right Quillen equivalence from this to the usual model
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structure on simplicial sets [DK84, Theorem 3.3]. In particular, it follows that every space is
modelled by a fibrant object in simplicial groupoids, which is a simplicial groupoid whose
mapping spaces are Kan complexes.

Remark 2.1.2.10. Since a simplicial category can be viewed as a simplicial object in cate-
gories with constant set of objects, a simplicial groupoid C can be regarded as a simplicial
category with an involution i : C→ Cop such that iop ◦ i = idC, which sends a morphism to
its inverse.

2.1.3 Limits and Colimits

We now recall the definition of limits and colimits in an ∞-category; this requires first
reviewing some notation:

Definition 2.1.3.1. Let ∗ : �×� → � denote concatenation of finite ordered sets, i.e. if I
and J are finite ordered sets then I ∗ J is the set I q J ordered so that every element of J is
greater than every element of I. Thus [n] ∗ [m] ∼= [n + m + 1].

Remark 2.1.3.2. This is the restriction to � of a monoidal structure on the category �+ of
all finite ordered sets (including ∅).

Definition 2.1.3.3. Suppose K and L are simplicial sets. Their join K ∗ L is the left Kan
extension of K× L : �op ×�op → Set along ∗ : �op ×�op → �op. Concretely, we have

(K ∗ L)n = Kn q Ln q ä
i+j=n−1

Ki × Lj.

Remark 2.1.3.4. This can be regarded as the Day convolution product on presheaves on
�+ with the monoidal structure given by ∗.

Definition 2.1.3.5. Let K be a simplicial set. The left cone K/ on K is the join ∆0 ∗ K, and the
right cone K. on K is the join K ∗ ∆0. We will often denote the “cone point”, i.e. the vertex
coming from ∆0, by −∞ ∈ K/ and ∞ ∈ K..

Definition 2.1.3.6. Let p : K → S be a map of simplicial sets. The simplicial set S/p is
defined by the universal property

Hom(X, S/p) = Homp(X ∗ K, S),

where the right-hand side denotes the set of morphisms X ∗ K → S that restrict to p on K.
Similarly, the simplicial set Sp/ is defined by the universal property

Hom(X, Sp/) = Homp(K ∗ X, S).

If C is an ∞-category, for any map p : K → C the simplicial sets Cp/ and Cp/ are also
∞-categories (cf. [Lur09a, Proposition 1.2.9.3]).

Definition 2.1.3.7. Let C be an ∞-category. An object X ∈ C is a final object if the projec-
tion C/X → C is a categorical equivalence. Similarly, X is an inital object if CX/ → C is a
categorical equivalence.

Equivalently, X is a final object if and only if for every object Y ∈ C the mapping space
MapC(Y, X) is contractible (cf. [Lur09a, Corollary 1.2.12.5]).
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Definition 2.1.3.8. Let C be an ∞-category and p : K → C a map of simplicial sets. A colimit
of p is a final object of Cp/, and a limit of p is an initial object of C/p.

Remark 2.1.3.9. A colimit of p can thus be regarded as a diagram p̄ : K. → C that restricts
to p on K. From the definition of final objects it follows immediately that an arbitrary such
diagram p̄ is a colimit precisely when

Cp̄/ → Cp/

is a categorical equivalence.

We now recall the definition of relative colimits, from [Lur09a, §4.3.1]:

Definition 2.1.3.10. Let f : C→ D be an inner fibration of simplicial sets, and let p : K → C

be a diagram. A diagram p̄ : K. → C extending p is an f -colimit of p if the map

Cp̄/ → Cp/ ×D f p/ D f p̄/

is a categorical equivalence.

2.1.4 Left and Right Fibrations

Here we briefly discuss left and right fibrations, which correspond to (covariant and con-
travariant) functors to the ∞-category S of spaces.

Definition 2.1.4.1. A morphism of simplicial sets is a left fibration if it has the right lifting
property with respect to all horn inclusions Λn

i ↪→ ∆n with 0 ≤ i < n, and a right fibration
if it has the right lifting property with respect to Λn

i ↪→ ∆n with 0 < i ≤ n.

If S is a simplicial set, there are model structures on (Set∆)/S, the covariant and con-
travariant model structures, whose fibrant objects are, respectively, left and right fibrations
with target S (cf. [Lur09a, Proposition 2.1.4.7]).

Theorem 2.1.4.2 (Lurie [Lur09a, Theorem 2.2.1.2]). Let S be a simplicial set. There is a
Quillen equivalence

(Set∆)/S � Fun(C(S)op, Set∆)

where (Set∆)/S is equipped with the contravariant model structure and Fun(C(S)op, Set∆)
with the projective model structure for the usual model structure on Set∆.

Corollary 2.1.4.3. Suppose C is an ∞-category. Let LFib(C) denote the ∞-category of left
fibrations over C (for example obtained from the covariant model structure on (Set∆)/C.
There is an equivalence

LFib(C) ' Fun(C, S).

Proposition 2.1.4.4. Suppose given functors f , g : X → S and a natural transformation η
from f to g. Let p : F → X and q : G → X be left fibrations associated to f and g, and let
e : F → G be a functor over X associated to η. Then e is equivalent to a left fibration.

Proof. We may regard f and g as functors C[X]→ Set∆; without loss of generality we may
assume f and g correspond to fibrant objects and η to a fibration in the projective model
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structure on Fun(C[X], Set∆). Since unstraightening is a right Quillen functor, we obtain a
commutative diagram

F G

X

e

p q

where p and q are left fibrations associated to f and g, and e is a fibration in the covariant
model structure associated to η. By [Lur09a, Proposition 2.1.4.9] the map e is then a left
fibration.

2.1.5 Cartesian and coCartesian Fibrations

Definition 2.1.5.1. Suppose p : X → S is an inner fibration of simplicial sets. We say an
edge f : x → y in X is p-Cartesian if the map

X/ f → X/y ×S/p(y)
S/p( f )

is a categorical equivalence. Similarly, f is p-coCartesian if

X f / → Xx/ ×Sp(x)/
Sp( f )/

is a categorical equivalence.

Definition 2.1.5.2. Suppose p : X → S is an inner fibration of simplicial sets. An edge
f : x → y in X is a locally p-(co)Cartesian if it is a p′-(co)Cartesian edge of X×S ∆1, where p′

is the pullback of p along p( f ) : ∆1 → S.

Proposition 2.1.5.3 (Lurie [Lur09a, Proposition 2.4.4.3]). Suppose p : C → D is an inner
fibration of ∞-categories. A morphism f : y→ z in C is p-Cartesian if and only if for every
x ∈ C composition with f gives a homotopy Cartesian square

MapC(x, y) MapC(x, z)

MapD(p(x), p(y)) MapD(p(x), p(z)).

Definition 2.1.5.4. A map p : X → S of simplicial sets is a Cartesian fibration if p is an inner
fibration and for every object x ∈ X and every morphism f : s → p(x) in S there exists a
p-Cartesian morphism f̄ : f ∗x → x with p( f̄ ) = f . Similarly, p is a coCartesian fibration if
pop is a Cartesian fibration, i.e. if p is an inner fibration and for every object x ∈ X and
every morphism f : p(x) → s in S there exists a p-Cartesian morphism f̄ : x → f!x with
p( f̄ ) = f .

Definition 2.1.5.5. A map p : X → S is a locally (co)Cartesian fibration if p is an inner fibra-
tion and for every edge σ : ∆1 → S the pullback X×S ∆1 → ∆1 is a (co)Cartesian fibration.
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Corollary 2.1.5.6. Suppose given a commutative triangle

A B

C

f

p q

where p and q are Cartesian fibrations and f is an inner fibration that takes p-Cartesian
edges to q-Cartesian edges. If for each c ∈ C the pullback fc : Ac → Bc is a Cartesian
fibration, and the functor Ac′ → Ac induced by a morphism c→ c′ in C takes fc′-Cartesian
edges to fc-Cartesian edges, then f is also a Cartesian fibration.

Proof. We must show that for every a ∈ A and every morphism β : b → f (a) in B there
exists an f -Cartesian morphism β∗a → a over φ. Write γ : q(b) → p(a) for the image of β
in C. Since p is a Cartesian fibration, there exists a p-Cartesian morphism α : γ∗a → a in A

over γ, and by assumption f (α) is q-Cartesian. Since q is a Cartesian fibration, it follows
that β factors as

b
β′−→ f (γ∗a)

f (α)−−→ f (a),

where β′ lies over idq(b). Now as fq(b) : Aq(b) → Bq(b) is a Cartesian fibration, there exists
an fq(b)-Cartesian edge β′∗γ∗a → γ∗a. It is easy to check using the criterion of Proposi-
tion 2.1.5.3 that the composite β′∗γ∗a→ γ∗a→ a is f -Cartesian.

If S is a simplicial set, there are model structures on (Set+∆ )/S, the Cartesian and coCarte-
sian model structures, whose fibrant objects are, respectively, Cartesian and coCartesian
fibrations with target S, with their (co)Cartesian edges marked (cf. [Lur09a, Proposition
3.1.3.7]).

Theorem 2.1.5.7 (Lurie [Lur09a, Theorem 3.2.0.1]). Let S be a simplicial set. There is a
Quillen equivalence

(Set+∆ )/S � Fun(C(S)op, Set+∆ )

where (Set+∆ )/S is equipped with the Cartesian model structure and Fun(C(S)op, Set+∆ )
with the projective model structure with respect to the model structure on Set+∆ that models
∞-categories.

Corollary 2.1.5.8. Let C be an ∞-category, and write Cart(C) and CoCart(C) for the ∞-
categories of Cartesian and coCartesian fibrations to C, respectively, i.e. the ∞-categories
associated to the Cartesian and coCartesan model structures on (Set+∆ )/C. Then there are
equivalences

Cart(C) ' Fun(Cop, Cat∞), CoCart(C) ' Fun(C, Cat∞).

Definition 2.1.5.9. A morphism of ∞-categories φ : C→ D is an essentially coCartesian fibra-
tion if there exists a factorization

C
ε−→ C′

φ′−→ D

such that ε is a categorical equivalence and φ′ is a coCartesian fibration.

We can describe colimits in the total space of a coCartesian fibration:
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Lemma 2.1.5.10. Suppose π : E → B is a coCartesian fibration such that both B and the
fibres Eb for all b ∈ B admit small colimits, and the functors f! : Eb → Eb′ preserve colimits
for all morphisms f : b→ b′ in B. Then E admits small colimits.

Proof. The coCartesian fibration π satisfies the conditions of [Lur09a, Corollary 4.3.1.11]
for all small simplicial sets K, and so in every diagram

K E

K. B

p

π

q̄

p̄

there exists a lift p̄ that is a π-colimit of p. Given a diagram p : K → E we can apply this
with q̄ a colimit of π ◦ p to get a colimit p̄ : K. → E of p.

It is easy to see that colimits of coCartesian edges are coCartesian:

Lemma 2.1.5.11. Suppose p : X → S is a coCartesian fibration, and let r̄ : K. → Fun(∆1, X)
be a colimit diagram such that for every i ∈ K the edge r̄(i, 0) → r̄(i, 1) is coCartesian.
Then the edge r̄(∞, 0)→ r̄(∞, 1) is also coCartesian.

Proof. Since colimits in functor categories are pointwise, we must show that for all x ∈ X
the diagram

MapX(colimi r̄(i, 1), x) MapX(colimi r̄(i, 0), x)

MapS(colimi pr̄(i, 1), p(x)) MapS(colimi pr̄(i, 0), p(x))

is Cartesian, which is clear since limits commute.

In good cases it is also true that the colimit of Cartesian edges is Cartesian:

Proposition 2.1.5.12. Suppose π : E → B is a Cartesian and coCartesian fibration, where
B is an ∞-category with all colimits. Let p̄ : I. → E be a colimit diagram; then π ◦ p̄ is
a colimit diagram in B. Suppose the associated contravariant functor Bop → Ĉat∞ takes
π ◦ p̄ to a limit diagram of ∞-categories, and that p̄ takes each edge of I to a π-Cartesian
morphism in E. Then p̄ takes every edge of I. to a π-Cartesian morphism.

Proof. Write b for π( p̄(∞)) and p for p̄|K. Then the fibre Eb is the limit of Eπp(i) for i in I.
This limit is given by the ∞-category of Cartesian sections I → E of π ◦ p. Since p takes
every edge of I to a Cartesian edge in E, the diagram p = p̄|K corresponds to an object x of
Eb.
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Write φi for the canonical map i→ ∞. Then for y in Eb we have

MapEb
(x, y) ' lim MapEπp(i)

(p(i), φ∗i y)

' lim MapEb
(φi,! p(i), y)

' MapEb
(colim φi,! p(i), y)

' MapEb
( p̄(∞), y).

Thus x ' p̄(∞). In particular φ∗i p̄(∞) ' p(i), or in other words the morphism p(i)→ p̄(∞)
is Cartesian.

In the setting of ordinary categories, the total space of a coGrothendieck fibration is
the lax colimit of the associated functor. An ∞-categorical theory of lax colimits has not
yet been developed, but we will now prove that the total space of a coCartesian fibration
satisfies a version of the expected universal property:

Proposition 2.1.5.13. Suppose D : O → Cat∞ is a functor, OD → O is the associated co-
Cartesian fibration, and C is a locally small ∞-category. Let E → O be the Cartesian
fibration associated to the functor Fun(D,C) that sends x ∈ O to Fun(D(x),C). Then
Fun(OD,C) is equivalent to the ∞-category of sections FunO(O,E).

Proof. We first consider the case where C is an ∞-category P(D) of presheaves on an ∞-
category D. Then we have equivalences

Fun(OD,C) ' Fun(OD ×Dop, S) ' LFib(OD ×Dop)

Composition with the coCartesian fibration OD ×Dop → O×Dop → O gives a functor

LFib(OD ×Dop)→ CoCart(O)/OD×Dop

since any functor between left fibrations over OD ×Dop gives a coCartesian-morphism-
preserving functor — indeed, this shows that this functor is fully faithful. We claim that
under the equivalence CoCart(O) ' Fun(O, Cat∞) this full subcategory corresponds to the
full subcategory X of Fun(O, Cat∞)/D×Dop spanned by those natural transformations that
are pointwise left fibrations.

It is clear that LFib(OD ×Dop) lands in the full subcategory X, since left fibrations are
closed under pullback. It thus suffices to show that any object of X corresponds to a right
fibration over OD ×Dop. The functor to OD ×Dop is a coCartesian fibration by (the dual
of) Corollary 2.1.5.6, and its fibres are spaces since the pullbacks to D(x)×Dop are right
fibrations for all x ∈ O, thus this is true.

Write L for the full subcategory of Fun(∆1, Cat∞) spanned by the left fibrations. Since
left fibrations are closed under pullback, the functor L → Cat∞ given by evaluation at
1 ∈ ∆1 is a Cartesian fibration. Let L′ → O be the pullback of L along D ×Dop : O →
Cat∞. This is the Cartesian fibration associated to the functor Oop → Cat∞ that sends x
to LFib(D(x) ×Dop) ' Fun(D(x) ×Dop, S) ' Fun(D(x),C), i.e. L′ → O is equivalent
to the Cartesian fibration E → O. A section of L′ → O clearly corresponds to a functor
φ : O× ∆1 → Cat∞ such that φ(x, 0)→ φ(x, 1) is a left fibration for all x ∈ O and φ|O×{1} is
D×Dop. In other words, FunO(O,L′) ' X. This completes the proof when C ' P(D).

Now suppose C is a full subcategory of P(D) for some ∞-category D. Then we can
identify Fun(OD,C) with a full subcategory of Fun(OD,P(D)), and E with a full sub-
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category of L′, and it is clear that under these equivalences Fun(OD,C) corresponds to
FunO(O,E) under the equivalence Fun(OD,P(D)) ' FunO(O,L′) constructed above. Since
every locally small ∞-category C can be identified with a full subcategory of P(C) via the
Yoneda embedding, this completes the proof.

2.1.6 Adjunctions

Definition 2.1.6.1. Suppose C and D are ∞-categories. An adjunction between C and D

is a map p : M → ∆1 that is both a Cartesian and a coCartesian fibration, together with
equivalences C ∼−→M0 and D

∼−→M1. If f : C→ D and g : D→ C are functors associated to
the adjunction M we say that f is left adjoint to g and g is right adjoint to f .

Definition 2.1.6.2. Suppose given a pair of functors

f : C � D : g

between ∞-categories. A unit transformation for f , g is a natural transformation u : idC →
g ◦ f such that for all c ∈ C, d ∈ D, the composite

MapD( f (c), d)→ MapC(g f (c), g(d))→ MapC(c, g(d))

is an equivalence of spaces.

Proposition 2.1.6.3 ([Lur09a, Proposition 5.2.2.8]). Suppose given a pair of functors

f : C � D : g

between ∞-categories. Then f is left adjoint to g if and only if there exists a unit transfor-
mation u : idC → g ◦ f .

Lemma 2.1.6.4. Let E and B be ∞-categories and p : E→ B a functor. Suppose

(1) E has finite limits and p preserves these,

(2) p has a right adjoint r : B→ E such that p ◦ r ' idB.

Then p is a Cartesian fibration.

Proof. Given x ∈ E and a morphism f : b → p(x), we must show there exists a Cartesian
arrow in E lying over f with target x. Define f̄ : y→ x by the pullback diagram

y x

r(b) rp(x)

f̄

r( f )

Since p preserves pullbacks, the morphism p( f̄ ) is equivalent to f . Moreover, for any z ∈ E
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we have a pullback diagram

MapE(z, y) MapE(z, x)

MapE(z, r(b)) MapE(z, rp(x)).

Under the adjunction this corresponds to the commutative diagram

MapE(z, y) MapE(z, x)

MapB(p(z), b) MapE(p(z), p(x))

induced by the functor p. But then f̄ is Cartesian by Proposition 2.1.5.3.

Proposition 2.1.6.5. Suppose p : E → B is a functor between ∞-categories such that E has
pullbacks, these are preserved by p, and for all b ∈ B the ∞-category E/b has a final object,
which lies in the fibre over b of p. Then p is a Cartesian fibration.

Proof. By Lemma 2.1.6.4 it suffices to show that p has a right adjoint r : B → E that is a
section of p. Let Q → B be a coCartesian fibration associated to the functor b 7→ E/b; by
the dual of [Lur09a, Proposition 2.4.4.9] this fibration has an (essentially unique) section
B → Q that sends b ∈ B to a final object in E/b. Combining this with the natural map
Q → E associated to the forgetful functors E/b → E we get a section r : B → E that sends
b ∈ B to a final object ∗b of E/b. Then r is a right adjoint of p: by definition all fibres of the
map MapE(x, ∗b)→ MapB(px, b) are contractible, so this map is an equivalence.

2.1.7 Accessible and Presentable ∞-Categories

Definition 2.1.7.1. Suppose κ is a regular cardinal. A simplicial set K is κ-small if all the
sets Kn are κ-small. A κ-small (co)limit is a (co)limit indexed by a κ-small simplicial set.

Definition 2.1.7.2. Suppose κ is a regular cardinal. An ∞-category I is κ-filtered if the col-
imit functor Fun(I, S)→ S preserves κ-small limits.

Proposition 2.1.7.3 ([Lur09a, Proposition 5.3.3.3]). An ∞-category I is κ-filtered if and only
if for every κ-small simplicial set K and every map f : K → I there exists a map f̄ : K. → I

extending f .

Definition 2.1.7.4. Suppose κ is a regular cardinal. An object c in an ∞-category C is κ-
compact if the representable functor MapC(c, –) preserves κ-filtered colimits. We denote the
full subcategory of C spanned by the κ-compact objects by Cκ.

Definition 2.1.7.5. Suppose κ is a regular cardinal. If C is an ∞-category, we let Indκ C

denote the full subcategory of P(C) := Fun(Cop, S) spanned by the the functors f : Cop → S

that classify right fibrations E→ C such that E is κ-filtered.
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Definition 2.1.7.6. Suppose κ is a regular cardinal. An ∞-category C is κ-accessible if there
exists a small ∞-category C0 and an equivalence Indκ C0

∼−→ C.

Proposition 2.1.7.7 ([Lur09a, Proposition 5.4.2.2]). Suppose κ is a regular cardinal. An ∞-
category C is κ-accessible if and only if C has κ-filtered colimits and contains an essentially
small full subcategory C′ that consists of κ-compact objects and generates C under κ-filtered
colimits.

Definition 2.1.7.8. We say an ∞-category is accessible if it is κ-accessible for some κ. If C is
an accessible ∞-category, we say a functor f : C → D is accessible if it preserves κ-filtered
colimits for some κ.

Definition 2.1.7.9. Suppose κ is a regular cardinal. An ∞-category is κ-presentable if it
is κ-accessible and admits small colimits. We say an ∞-category is presentable if it is κ-
presentable for some κ.

Theorem 2.1.7.10 (Adjoint Functor Theorem, [Lur09a, Corollary 5.5.2.9]). Suppose F : C→
D is a functor between presentable ∞-categories. Then F has a right adjoint if and only if it
preserves small colimits, and a left adjoint if and only if it is accessible and preserves small
limits.

Lemma 2.1.7.11. Suppose F : C � D : U is an adjunction such that the right adjoint U
preserves κ-filtered colimits. Then F preserves κ-compact objects.

Proof. Suppose X ∈ C is a κ-compact object, and p : K. → D is a κ-filtered colimit diagram.
Then we have

MapD(F(X), colim p) ' MapC(X, G(colim p)) ' MapC(X, colim G ◦ p)
' colim MapC(X, G ◦ p) ' colim MapD(F(X), p).

Thus MapD(F(X), –) preserves κ-filtered colimits, i.e. the object F(X) is κ-compact.

Definition 2.1.7.12. Let PrL be the ∞-category of presentable ∞-categories and colimit-
preserving functors.

2.1.8 Localizations

Definition 2.1.8.1. Suppose C is an ∞-category and W is a subcategory of C that contains
all the equivalences. The localization C[W−1] of C with respect to W is the ∞-category with
the universal property that for any ∞-category E, a functor C[W−1] → E is the same thing
as a functor C → E that sends morphisms in W to equivalences in E. More precisely, we
have for every E a pullback square

Map(C[W−1],E) Map(W, ιE)

Map(C,E) Map(W,E).

Definition 2.1.8.2. The inclusion S ↪→ Cat∞ has left and right adjoints. The right adjoint,
ι : Cat∞ → S, sends an ∞-category C to its maximal Kan complex, i.e. its subcategory of
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equivalences. The left adjoint κ : Cat∞ → S sends an ∞-category C to a Kan complex κC
such that C→ κC is a weak equivalence of spaces.

Remark 2.1.8.3. It follows that, in the situation above, the ∞-category C[W−1] is given by
the pushout square in Cat∞

W κW

C C[W−1].

Using this we can prove the following basic fact about localizations of ∞-categories
(generalizing [DK80b, Corollary 3.6]):

Lemma 2.1.8.4. Suppose C and D are ∞-categories and V ⊆ C and W ⊆ D are subcategories
containing all the equivalences. Let C[V−1] and D[W−1] be localizations with respect to V

and W. Suppose
F : C � D : G

is an adjunction such that

(1) F(V) ⊆W,

(2) G(W) ⊆ V,

(3) the unit morphism ηc : c→ GFc is in V for all c ∈ C,

(4) the counit morphism γd : FGd→ d is in W for all d ∈ D.

Then F and G induce an equivalence C[V−1] ' D[W−1].

Proof. Let κV and κW be Kan complexes that are fibrant replacements for V and W in the
usual model structure on simplicial sets. Then the ∞-categories C[V−1] and D[W−1] can be
described as the homotopy pushouts

V κV

C C[V−1],

W κW

D D[W−1]

in the Joyal model structure. Then from (1) and (2) it is clear that F and G induce functors
F′ : C[V−1] → D[W−1] and G′ : D[W−1] → C[V−1], and the natural transformations η and
γ induce natural transformations η′ : id → G′F′ and γ′ : F′G′ → id. The objects of C[V−1]
and D[W−1] are the same as those of C and D, so by (3) and (4) the morphisms η′c and γ′d are
equivalences for all c ∈ C[V−1] and d ∈ D[W−1]. Thus η′ and γ′ are natural equivalences
and F′ and G′ are hence equivalences of ∞-categories.

Unfortunately, pushouts in Cat∞ are in general difficult to describe. However, in good
cases the functor C→ C[W−1] has a fully faithful right adjoint, i.e. we can find the localized
∞-category as a full subcategory of C. In fact, all functors of this kind are localizations:
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Definition 2.1.8.5. A functor f : C→ D is a localization if f has a fully faithful right adjoint.

Proposition 2.1.8.6 ([Lur09a, Proposition 5.2.7.12]). Suppose F : C → D is a localization
functor, and let W be the subcategory of C with morphisms the morphisms f : c → c′ in C

such that F( f ) is an equivalence. Then the induced functor C[W−1]→ D is an equivalence.

We now recall how to describe localizations in the presentable case:

Definition 2.1.8.7. Let C be an ∞-category and suppose S is a collection of morphisms in
C. An object z ∈ C is S-local if for every s : x → y in S, composition with S induces an
equivalence

MapC(y, z)→ MapC(x, z).

A morphism f : x → y is an S-equivalence if for every S-local object z, composition with f
induces an equivalence

MapC(y, z)→ MapC(x, z).

Definition 2.1.8.8. We say a class of morphisms in an ∞-category satisfies the 2-out-of-3
property if for any 2-simplex

x

y z

f g

h

in C, if any two out of f , g, h is in the class, so is the third.

Definition 2.1.8.9. Let C be an ∞-category with small colimits and let S be a collection of
morphisms in C. We say S is strongly saturated if it satisfies the following conditions:

(1) S is closed under pushouts along arbitrary morphisms in C.

(2) The full subcategory of Fun(∆1,C) spanned by S is stable under small colimits.

(3) S satisfies the 2-out-of-3 property.

Proposition 2.1.8.10 ([Lur09a, Proposition 5.5.4.15]). Let C be a presentable ∞-category
and suppose S is a set of morphisms of C. Let S denote the strongly saturated class of
morphisms generated by S, and let D denote the full subcategory of C spanned by the
S-local objects. Then

(i) The inclusion D ↪→ C has a left adjoint L.

(ii) The ∞-category D is presentable.

(iii) For every morphism f in C, the following are equivalent:

(a) f is an S-equivalence.

(b) f belongs to S.

(c) L f is an equivalence.

We end with a few results about fibrewise localizations of coCartesian fibrations:
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Lemma 2.1.8.11. Suppose E→ ∆1 is a coCartesian fibration, and E′ is a full subcategory of
E such that the inclusion E′1 ↪→ E1 admits a left adjoint L : E1 → E′1. Then the restriction
E′ → ∆1 is also a coCartesian fibration.

Proof. We must show that for each x ∈ E′0 there exists a coCartesian arrow with source x
over 0 → 1 in ∆1. Suppose φ : x → y is such a coCartesian arrow in E, and let y → Ly

be the unit of the adjunction. Then any composite x
φ−→ y → Ly is a coCartesian arrow in

E′: by Proposition 2.1.5.3 it suffices to show that for all z ∈ E′1 the map MapE′(Ly, z) →
MapE′(x, z) is an equivalence, which is clear since MapE′(Ly, z) ' MapE(y, z) as z ∈ E′,
MapE′(x, z) ' MapE(x, z) as E′ is a full subcategory of E, and x → y is a coCartesian
morphism in E.

Lemma 2.1.8.12. Let E → B be a locally coCartesian fibration and E0 a full subcategory
of E such that for each b ∈ B the induced map on fibres E0

b ↪→ Eb admits a left adjoint
Lb : Eb → E0

b. Assume these localization functors are compatible in the sense that the
following condition is satisfied:

(∗) Suppose f : b → b′ is a morphism in B and e is an object of Eb. Let e → e′ and
Lbe → e′′ be locally coCartesian arrows lying over f , and let Lb′e′ → Lb′e′′ be the
unique morphism such that the diagram

e e′ Lb′e′

Lbe e′′ Lb′e′′

commutes. Then the morphism Lb′e′ → Lb′e′′ is an equivalence.

Then

(i) the composite map E0 → B is also a locally coCartesian fibration,

(ii) the inclusion E0 ↪→ E admits a left adjoint L : E→ E0 relative to B.

Proof. (i) is immediate from the previous lemma, and then (ii) follows from [Lur11, Propo-
sition 7.3.2.11] — condition (2) of this result is satisfied since, in the notation of condition
(∗), a locally coCartesian arrow in E0 over f with source Lbe is given by the composite
Lbe→ e′′ → Lb′e′′.

Proposition 2.1.8.13. Let E → B be a coCartesian fibration and E0 a full subcategory of
E. Suppose that for each b ∈ B the induced map on fibres E0

b ↪→ Eb admits a left adjoint
Lb : Eb → E0

b and that the functors φ! : Eb → Eb′ corresponding to edges φ : b → b′ in B

preserve the fibrewise local equivalences. Then

(i) the composite map E0 → B is a coCartesian fibration,

(ii) the inclusion E0 ↪→ E admits a left adjoint L : E → E0 over B, and L preserves co-
Cartesian arrows.
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Proof. Lemma 2.1.8.12 implies (ii) and also that E0 → E → B is a locally coCartesian fi-
bration, since for a coCartesian fibration condition (∗) says precisely that fibrewise local
equivalences are preserved by the functors φ!. It remains to show that locally coCartesian
morphisms are closed under composition. Suppose f : b → b′ and g : b′ → b′′ are mor-
phisms in B, and that e ∈ E0

b. Let e→ e′ be a coCartesian arrow in E over f , and let e′ → e′′1
and Lb′e′ → e′′2 be coCartesian arrows in E over g. Then a locally coCartesian arrow over
f in E0 is given by e → e′ → Lb′e′ and a locally coCartesian arrow over g is given by
Lb′e′ → e′′2 → Lb′′e′′2 . We have a commutative diagram

e e′ e′′1 Lb′′e′′1

Lb′e′ e′′2 Lb′′e′′2

Here the composite along the top row is a locally coCartesian arrow for g f , and the com-
posite along the bottom is the composite of locally coCartesian arrows for g and f . By
condition (∗) the rightmost edge is an equivalence, hence the composite map e → Lb′′e′′2 is
locally coCartesian.

2.1.9 Monads

Here we briefly review the theory of monads in the ∞-categorical setting; for this we as-
sume the reader is familiar with the notions of monoidal ∞-categories, associative algebra
objects, and modules from [Lur11].

Definition 2.1.9.1. Suppose C is an ∞-category. The ∞-category Fun(C,C) has a monoidal
structure given by composition. A monad in C is an algebra object in this monoidal ∞-
category. The monoidal ∞-category Fun(C,C)◦ acts on the ∞-category C; if T is a monad
on C, a T-algebra is a left module object for T in C. We write AlgT(C) for the ∞-category of
T-algebras.

Proposition 2.1.9.2 ([Lur11, Proposition 6.2.2.3]). Suppose F : C→ D is a functor between
∞-categories that has a right adjoint G. Then G ◦ F extends canonically to a monad on C

such that G is a left module for this monad in Fun(C,D).

Definition 2.1.9.3. Suppose F : C → D is a functor between ∞-categories that has a right
adjoint G. Let T be the monad associated to G ◦ F. Then G factors canonically as

D
G′−→ AlgT(C)→ C,

through the forgetful functor AlgT(C) → C. We say the adjunction F a G is monadic if the
functor G′ is an equivalence.

Definition 2.1.9.4. Let �−∞ be the category with objects [n], n ≥ −1, and with mor-
phisms [m] → [n] given by non-decreasing maps α : [m] ∪ {−∞} → [n] ∪ {−∞} such
that α(−∞) = −∞ (and −∞ is regarded as less than the other elements of [m], [n]). If C is
an ∞-category, we say an augmented simplicial object U• : �op

+ → C is split if it extends to
a functor�op

−∞ → C, and we say a simplicial object is split if it extends to a split augmented
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simplicial object. Given a functor G : D→ C we say a simplicial object U• of D is G-split if
G(U•) is a split simplicial object of C.

Theorem 2.1.9.5 (Barr-Beck Theorem for ∞-Categories, [Lur11, Theorem 6.2.2.5]). Suppose
F : C → D is a functor between ∞-categories that has a right adjoint G. The adjunction
F a G is monadic if and only if G satisfies the following conditions:

(1) G is conservative, i.e. a morphism f in D is an equivalence if and only if G( f ) is an
equivalence in C.

(2) G preserves colimits of G-split simplicial objects in D, and all G-split simplicial objects
have colimits.

Now we make some simple observations about monadic adjunctions:

Lemma 2.1.9.6. Suppose F : C � D : U is a monadic adjunction such that C has all small
colimits, D has sifted colimits, and U preserves sifted colimits. Then D has all small colim-
its.

Proof. Since D by assumption has all sifted colimits, it suffices to prove that D has finite
coproducts. Since C has coproducts and F preserves colimits, the ∞-category D has co-
products for objects in the essential image of F.

Let A1, . . . , An be a finite collection of objects in D. By [Lur11, Proposition 6.2.2.12],
there exist simplicial objects Ai

• in D such that each Ai
k is in the essential image of F and

|Ai
•| ' Ai. Since coproducts of elements in the essential image of F exist, we can form a

simplicial diagram äi Ai
•. By [Lur09a, Lemma 5.5.2.3], the geometric realization |äi Ai

•| is
a coproduct of the Ai’s.

Proposition 2.1.9.7. Suppose F : C � D : U is a monadic adjunction such that C is κ-
presentable, D has small colimits, and the right adjoint U preserves κ-filtered colimits.
Then D is κ-presentable.

Proof. Since C is κ-presentable, every object of C is a colimit of κ-compact objects. Since U
preserves κ-filtered colimits, F preserves κ-compact objects by Lemma 2.1.7.11. Therefore
every object in the essential image of F is a colimit of κ-compact objects. But by [Lur11,
Proposition 6.2.2.12], every object of D is a colimit of objects in the essential image of F,
so every object of D is a colimit of κ-compact objects. Since by assumption D has all small
colimits, this implies that D is κ-presentable.

2.1.10 Groupoid Objects

Definition 2.1.10.1. Suppose C is an ∞-category. A groupoid object U of C is a simplicial
object U : �op → C such that for every n ≥ 0 and every partition [n] = S ∪ S′ such that
S ∩ S′ consists of a single element s, the diagram

U([n]) U(S)

U(S′) U({s})

is a pullback square in C.
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Definition 2.1.10.2. Suppose C is an ∞-category. An augmented simplicial object

U : �op
+ → C

is a Čech nerve if U|�op is a groupoid object, and the diagram

U1 U0

U0 U−1

is a pullback square. In this case, the augmented simplicial object U is determined up to
equivalence by the map u : U0 → U−1, and we say that U is the Čech nerve of u.

Definition 2.1.10.3. Suppose C is an ∞-category and U is a groupoid object in C. We say
that U is effective if it can be extended to a colimit diagram �

op
+ → C and this is a Čech

nerve, i.e. if U is the restriction to �op of the Čech nerve of U0 → |U•|.

Lemma 2.1.10.4. Suppose U• is an effective groupoid object in an ∞-category C. The fol-
lowing are equivalent:

(i) The map U0 → |U•| is an equivalence.

(ii) The map s0 : U0 → U1 is an equivalence.

(iii) The simplicial object U• is constant, i.e. for every map φ : [n] → [m] in �op the in-
duced map ιnC→ ιmC is an equivalence.

Proof. We first show that (i) implies (ii): Since U• is effective, it is equivalent to the Čech
nerve of the map U0 → |U•|. Thus we have a pullback diagram

U1 U0

U0 |U•|,

d0

d1

so the maps d0, d1 are equivalences. From the 2-out-of-3 property it follows that s0 is also
an equivalence.

To show that (ii) implies (iii) first observe that if s0 : U0 → U1 is an equivalence, then
by the 2-out-of-3 property d0, d1 : U1 → U0 are also equivalences. Since U• is a groupoid
object we have pullback diagrams

Un Un−1

U1 U0

di

d1
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(corresponding to the decomposition {0, . . . , n} = {0, . . . , i − 1, i + 1, . . . , n} ∪ {i − 1, i}),
and so the face maps di : Un → Un−1 are equivalences for all i and n. By the 2-out-of-3
property the degeneracies si : Un−1 → Un are also equivalences, hence φ : Un → Um must
be an equivalence for all φ : [n]→ [m] in �op.

Finally (iii) implies (i) since the simplicial set �op is weakly contractible.

Dually, we have the notion of a cogroupoid object:

Definition 2.1.10.5. A cosimplicial object X : � → C in an ∞-category C is a cogroupoid
object if for every partition [n] = S ∪ S′ such that S ∩ S′ consists of a single element, the
diagram

X(S ∩ S′) X(S)

X(S′) X([n])

is a pushout square.

Remark 2.1.10.6. We could of course have used the dual version of any of the conditions
of [Lur09a, Proposition 6.1.2.6] to define a cogroupoid object.

Lemma 2.1.10.7. If X : � → C is a cogroupoid object in an ∞-category C, then for every
object Y ∈ C the simplicial space MapC(X, Y) is a groupoid object in spaces.

Proof. Given a partition [n] = S ∪ S′ such that S ∩ S′ consists of a single element, the
diagram

MapC(X([n]), Y) MapC(X(S), Y)

MapC(X(S′), Y) MapC(X(S ∩ S′), Y)

is a pullback square, by the definition of a cogroupoid object. Thus MapC(X, Y) satisfies
condition (4”) of [Lur09a, Proposition 6.1.2.6].

2.1.11 The Makkai-Paré Accessibility Theorem

An accessible fibration is a Cartesian fibration E→ B such that B is accessible and the asso-
ciated functor from Bop to Ĉat∞ factors through the ∞-category of accessible ∞-categories,
and preserves κ-filtered limits for κ sufficiently large. In [MP89, Theorem 5.3.4] Makkai
and Paré prove that the total space of an accessible fibration of ordinary categories is ac-
cessible. The ∞-categorical analogue of this result is surely also true; however, the proof of
Makkai and Paré unfortunately does not seem to have a direct analogue for ∞-categories
using current technology. In this subsection we will instead prove the easiest special case
of this theorem, which luckily will suffice for our needs:

Theorem 2.1.11.1. Let B be a presentable ∞-category, and let p : E → S be a Cartesian fi-
bration associated to the functor Sop → Cat∞ sending X to Fun(X,B). Then E is accessible,
and p is an accessible functor.
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The key step in the proof is identifying the total space E, which we do in the following
preliminary result:

Proposition 2.1.11.2. Suppose C is a small ∞-category. Let s : ∗ → C/ be the inclusion of
the cone point, and let s∗ : P(C/)→ S be the functor induced by composition with s. Then:

(i) s∗ is a Cartesian fibration.

(ii) The fibre of s∗ at X ∈ S is naturally equivalent to Fun(X,P(C)), and under these
equivalences the contravariant functor associated to s∗ is Fun(–,P(C)).

(iii) Suppose C admits κ-small colimits, and let E be the full subcategory of P(C/) spanned
by functors F : (Cop). → S that take diagrams q̄op,/ : K/. → (Cop). to limit diagrams
in S, where q̄ : (Kop). → C is a colimit diagram in C and K is a κ-small simplicial set.
Then the restricted functor p : E→ S is a Cartesian fibration.

(iv) The fibre EX is naturally equivalent to Fun(X, Indκ C), and the contravariant functor
associated to p preserves limits.

(v) The contravariant functor associated to p is the unique limit-preserving functor Sop →
Cat∞ sending ∗ to Indκ(C).

Proof. (i) follows from Proposition 2.1.6.5. The fibre P(C/)X is the full subcategory of
presheaves (C/)op → S that send −∞ to X. By the definition of overcategories, this is
naturally equivalent to Fun(Cop, S/X). It is also clear that the functor f ∗ : Fun(Cop, S/X)→
Fun(Cop, S/Y) induced by a map f : Y → X corresponds to composition with pullback
along f . Now there are natural isomorphisms S/X ' Fun(X, S), under which pullback
along f correspond to composition with f , and this induces natural equivalences

P(C/)X ' Fun(Cop, S/X) ' Fun(Cop × X, S) ' Fun(X,P(C)).

This gives a natural equivalence between the functor associated to s∗ and Fun(–,P(C)),
which proves (ii).

To prove (iii) it suffices to show that if F ∈ E and g : X → s∗F is a morphism in S, then
g∗F is also in E. Identify F with a functor F′ : Cop → S/X and suppose q̄ : K/ → Cop is a
κ-small limit diagram. Then it is clear that the composite F′ ◦ q̄ is a limit diagram in S/X if
and only if the composite

K/. q̄.−→ (Cop).
F−→ S

is a limit diagram in S. The former condition is clearly preserved under composition with
g∗ : S/s∗F → S/X, and so g∗F is also in E.

Since C has κ-small colimits, by [Lur09a, Corollary 5.3.5.4] we can identify Indκ C with
the full subcategory of P(C) consisting of presheaves that preserve κ-small limits. As we
observed above, the fibre EX can be identified with the full subcategory of Fun(Cop, S/X)
spanned by functors that preserve κ-small limits. Since limits in functor categories are
computed pointwise, under the equivalence

Fun(Cop, S/X) ' Fun(Cop, Fun(X, S)) ' Fun(Cop × X, S)

this corresponds to the full subcategory spanned by functors Cop × X → S such that for
each x ∈ X the restriction to Cop × {x} preserves κ-small limits. Under the equivalence
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Fun(Cop × X, S) ' Fun(X,P(C)) this clearly corresponds to the full subcategory of func-
tors X → P(C) such that the value at each x ∈ X is a presheaf on C that preserves κ-small
limits, i.e. a functor from X to the full subcategory Indκ C of these presheaves. (iv) now
follows in the same way as (ii), and (v) is immediate from (iv).

Lemma 2.1.11.3. Suppose C is a small ∞-category, and let S = { p̄α : K.
α → C} be a small

set of diagrams in C. Then the full subcategory of P(C) spanned by presheaves that take
the diagrams in S to limit diagrams in S is accessible.

Proof. Let j : C→ P(C) denote the Yoneda embedding. A presheaf F : Cop → S takes p̄op
α to

a limit diagram if and only if it is local with respect to the map of presheaves

colim(j ◦ p̄|Kα)→ j(∞),

where ∞ denotes the cone point. Thus if S′ is the set of these morphisms for p̄α ∈ S,
the subcategory in question is precisely the full subcategory of S′-local objects. Since S,
and hence S′, is by assumption a small set, it follows that this subcategory is an accessible
localization of P(C), so in particular it is itself accessible.

Proof of Theorem 2.1.11.1. Choose κ such that B is κ-presentable; then B ' Indκ(Bκ). By
Proposition 2.1.11.2, the ∞-category E is equivalent to a full subcategory of P(Bκ,/) spanned
by presheaves F that preserve certain limit diagrams. It suffices to take a set of such dia-
grams (for example, we can restrict ourselves to κ-small coproduct diagrams and pushout
diagrams in Bκ), and thus E is accessible by Lemma 2.1.11.3.

Remark 2.1.11.4. It is not necessary to assume that C admits κ-small colimits in Propo-
sition 2.1.11.2 (cf. [MP89, §5.3.2] for the 1-categorical version), but this is the only case
we’re interested in and making this assumption considerably simplifies the proof. Thus
Theorem 2.1.11.1 remains true if B is merely accessible instead of presentable.

2.1.12 Categorical Patterns

In this section we review Lurie’s categorical patterns and the associated model structures.

Definition 2.1.12.1. A categorical pattern P = (X, M, S, {pα : K/
α → X) consists of a simpli-

cial set X equipped with a marking M (i.e. a subset M ⊆ X1 containing all the degenerate
1-simplices), a scaling T (i.e. a subset S ⊆ X2 containing all the degenerate 2-simplices)
and a collection of diagrams pα : K/

α → X such that pα takes every edge in K/
α to an element

of M and every 2-simplex of K/
α to an element of S.

Definition 2.1.12.2. Let P = (X, M, S, {pα : K/
α → X}) be a categorical pattern. A marked

simplicial set (Y, T) over (X, M) is P-fibrant if the following conditions are satisfied:

(1) The underlying map of simplicial sets f : Y → X is an inner fibration.

(2) For each edge ∆1 → X in M, the pullback Y×X ∆1 → ∆1 is a coCartesian fibration.

(3) An edge e of Y belongs to M if and only if f (e) is in M and e is locally f -coCartesian.

39



(4) Given a commutative diagram

∆{0,1} Y

∆2 X

e

σ

with e ∈ M and σ ∈ S, then e determines a coCartesian edge of the pullback Y ×X
∆2 → ∆2.

(5) For every α, the coCartesian fibration fα : Y ×X K/
α → K/

α is classified by a limit dia-
gram K/

α → Cat∞.

(6) For every α, every coCartesian section s of fα is an f -limit diagram in Y.

Remark 2.1.12.3. In all the examples of categorical patterns we will consider in this thesis,
the scaling S will simply consist of all 2-simplices in X whose edges are in M. However,
to avoid confusion with Lurie’s terminology we have chosen to describe the more general
case in this review.

Examples 2.1.12.4.

(i) If C is an ∞-category, let PcoCart
C be the categorical pattern (C,C1,C2, ∅). Then (E, T)→

C] is PcoCart
C -fibrant if and only if π : E→ C is a coCartesian fibration, and T is the set

of π-coCartesian edges in E.

(ii) If C is an ∞-category, let Peq
C be the categorical pattern (C, ιC1, ιC2, ∅). Then (E, T) →

C\ is P
eq
C -fibrant if and only if E is an ∞-category, the map π : E → C is a categorical

fibration, and T is the set of equivalences in E. (This follows from the description of
categorical fibrations to ∞-categories in [Lur09a, Corollary 2.4.6.5].)

(iii) If C is an ∞-category and D is a subcategory if C, let PcoCart
C,D be the categorical pat-

tern (C,D1,D2, ∅). Then (E, T) → (C,D1) is PcoCart
C,D -fibrant if and only if E is an

∞-category, the map π : E → C is an inner fibration, and E has a π-coCartesian edge
over every morphism in D.

We will see more examples of categorical patterns in the next chapter.

Definition 2.1.12.5. Let C be a category with small colimits. A class S of morphisms in C
is weakly saturated if it has the following properties:

(1) S is closed under pushouts along arbitrary morphisms in C.

(2) S is closed under transfinite composition. More precisely, suppose α is an ordinal and
{Dβ}β<α is a system of objects of CC/ indexed by α. For β ≤ α we let D<β be a colimit
of {Dγ}γ<β in CC/. If for all β < α the map D<β → Dβ belongs to S, then the induced
map C → D<α belongs to S.

(3) S is closed under retracts.
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Definition 2.1.12.6. Let P = (X, M, S, {pα : K/
α → X}) be a categorical pattern. A mor-

phism of marked simplicial sets over (X, M) is P-anodyne if it is contained in the smallest
weakly saturated class of morphisms containing all morphisms of the following types:

(1) (Λ2
1)

] q(Λ2
1)

[ (∆2)[ ↪→ (∆2)], for every map ∆2 → X in S that takes every edge into M,

(2) Q[ ↪→ Q] where Q = ∆0 q∆{0,2} ∆3 q∆{1,3} ∆0 for any map Q → X that carries every
edge of Q into M and every 2-simplex of Q into S,

(3) {0}] ↪→ (∆1)] for every edge in M,

(4) K]
α ↪→ (K/

α)
] for every α, where K/

α maps to X via pα,

(5) (Λn
0)

[ q(∆{0,1})[ (∆
{0,1})] ↪→ (∆n)[ q(∆{0,1})[ (∆

{0,1})] for every n > 1 and every map
∆n → X such that ∆{0,1,n} belongs to S,

(6) (Λn
i )

[ ↪→ (∆n)[, for all 0 < i < n and all maps ∆n → X,

(7) for every map f : ∆n ∗ Kα → X extending pα : {n} ∗ Kα → X, the inclusion

(∂∆n ∗ Kα)
[ q({n}∗Kα)[

({n} ∗ Kα)
] ↪→ (∆n ∗ Kα)

[ q({n}∗Kα)[
({n} ∗ Kα)

].

Proposition 2.1.12.7 ([Lur11, Proposition B.1.6]). Let P = (X, M, S, {pα}) be a categorical
pattern. Then a marked simplicial set (Y, T) over (X, M) is P-fibrant if and only if it has
the right lifting property with respect to P-anodyne maps.

Definition 2.1.12.8. Let P = (X, M, S, {pα}) be a categorical pattern. A morphism f : Ȳ →
Z̄ of marked simplicial sets is a P-equivalence if for every P-fibrant object W̄ over X̄ =
(X, M) the induced map

Map]
X̄(Z̄, W̄)→ Map]

X̄(Ȳ, W̄)

is a weak equivalence of Kan complexes.

Theorem 2.1.12.9 ([Lur11, Theorem B.0.19]). Let P = (X, M, S, {pα}) be a categorical pat-
tern. Then there exists a left proper combinatorial simplicial model structure on the cate-
gory (Set+∆ )/(X,M) such that:

(C) The cofibrations are the morphisms whose underlying morphisms of simplicial sets
are monomorphisms.

(W) The weak equivalences are the P-equivalences.

(F) The fibrant objects are the P-fibrant objects.

We write (Set+∆ )P for (Set+∆ )/(X,M) equipped with this model structure.

Remark 2.1.12.10. Moreover, this model structure is enriched in the model category of
marked simplicial sets — this follows from [Lur11, Remark B.2.5] (taking P′ to be the
trivial categorical pattern on ∆0).

Remark 2.1.12.11. Suppose P = (X, M, S, {pα}) is a categorical pattern, and let P− be
the categorical pattern (X, M, S, ∅). It follows from the proof of [Lur11, Theorem B.0.19]
that the model category (Set+∆ )P is the left Bousfield localization of the model category
(Set+∆ )P− with respect to the generating P-anodyne maps of type (4) and (7).
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Examples 2.1.12.12.

(i) If C is an ∞-category, the model category (Set∆)
+
PcoCart

C

is the coCartesian model struc-

ture on (Set+∆ )/C] . Thus the associated ∞-category is the ∞-category CoCart(C) of
coCartesian fibration over C, which is equivalent to Fun(C, Cat∞).

(ii) If C is an ∞-category, the model category (Set∆)
+
P

eq
C

is the over-category model struc-

ture on (Set+∆ )/C\ from the model structure on Set+∆ . The associated ∞-category is thus
the over-category (Cat∞)/C.

(iii) If C is an ∞-category and D is a subcategory of C, the model category (Set+∆ )PcoCart
C,D

gives an ∞-category of functors E → C that have coCartesian morphisms over the
morphisms in D; we write CoCart(C,D) for this ∞-category.

Definition 2.1.12.13. Let P = (X, M, S, {pα}) and Q = (Y, N, T, {qβ}) be categorical
patterns. A morphism of categorical patterns f : P → Q is a morphism of simplicial sets
f : X → Y such that f (M) ⊆ N, f (S) ⊆ T, and for every α the composite

K/
α

pα−→ X
f−→ Y

is in {qβ}.

Proposition 2.1.12.14 ([Lur11, Proposition B.2.9]). Let f : P → Q be a map of categorical
patterns. Then composition with f induces a left Quillen functor

f! : (Set+∆ )P → (Set+∆ )Q.

The right adjoint f ∗ is given by pullback along f .

Example 2.1.12.15. If P = (X, M, S, ∅) is any categorical pattern with no limit diagrams,
the map X → ∆0 gives a map of categorical patterns P → P0 := P

eq
∆0 and so a colimit-

preserving forgetful functor from the ∞-category associated to (Set+∆ )P to Cat∞.

Remark 2.1.12.16. Under certain rather complicated conditions, the functor f ∗ is also a left
Quillen functor, i.e. it has a right adjoint f∗ that is a right Quillen functor — see [Lur11,
Proposition B.4.1].

2.1.13 Some Technical Results

Here we collect a small number of results that do not fit anywhere else in our discussion.
First we prove a characterization of certain colimits in relative functor categories; I thank
Jacob Lurie for explaining the proof of this result to me.

Theorem 2.1.13.1. Let K be a weakly contractible simplicial set. Suppose p : X → S is a
coCartesian fibration such that for all s ∈ S the fibre Xs admits K-indexed colimits, and for
all edges f : s→ t in S the functor f! : Xs → Xt preserves K-indexed colimits. Then for any
map g : T → S,

(i) the ∞-category FunS(T, X) admits K-indexed colimits,
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(ii) a map K. → FunS(T, X) is a colimit diagram if and only if for all t ∈ T the composite

K. → FunS(T, X)→ Xg(t)

is a colimit diagram,

(iii) if E is a set of edges of T, the full subcategory of FunS(T, X) spanned by functors that
take the edges in E to coCartesian edges of X is closed under K-indexed colimits in
FunS(T, X).

Proof. The ∞-category FunS(T, X) is a fibre of the functor p∗ : Fun(T, X) → Fun(T, S) in-
duced by composition with p. The functor p∗ is a coCartesian fibration by [Lur09a, Propo-
sition 3.1.2.1]. Since the functors f! preserve K-indexed colimits, by [Lur09a, Proposition
4.3.1.10] a diagram q̄ : K. → FunS(T, X) is a colimit diagram if and only if the composite
q̄′ : K. → FunS(T, X)→ Fun(T, X) is a p∗-colimit diagram. By [Lur09a, Corollary 4.3.1.11],
K-indexed p∗-colimits exist in Fun(T, X), which proves (i).

Moreover, a diagram in Fun(T, X) is a colimit diagram if and only if it is a p∗-colimit
diagram and its image in Fun(T, S) is a colimit diagram. Since q̄′ lands in one of the fibres
of p∗, the projection to Fun(T, S) is constant, which means it is a colimit as K is weakly con-
tractible. Thus q̄′ is a p∗-colimit diagram if and only if it is a colimit diagram in Fun(T, X).
By [Lur09a, Corollary 5.1.2.3] this means that q̄′ is a colimit diagram if and only if for all
t ∈ T the induced maps K. → X are colimit diagrams. A diagram in X is a colimit if and
only if it is a p-colimit and the projection to S is a colimit. Since K is weakly contractible,
applying [Lur09a, Proposition 4.3.1.10] we see that this is true if and only if the induced
map K. → Xg(t) is a colimit diagram in Xg(t). This proves (ii).

Suppose e : t → t′ is an edge of T and q : K → FunS(T, X) is a diagram such that for
all vertices k ∈ K the functor q(k) : T → X takes e to a p-coCartesian edge of X. Let
q̄ : K. → FunS(T, X) be a colimit diagram extending q. To prove (iii) we must show that
the functor q̄(∞) also takes e to a coCartesian edge of X. From our description of colimits
in FunS(T, X) it follows that this is equivalent to showing that coCartesian edges of X are
closed under colimits, which is true by Lemma 2.1.5.11.

Proposition 2.1.13.2. Let I be a category and p : I → Cat∞ a functor. Let D be an ∞-
category and η : I× ∆1 → Cat∞ a natural transformation from p to the constant functor
at D. Let K → I be a coCartesian fibration associated to p; the natural transformation η
induces a map q : K → D× I → D. Suppose each of the diagrams ηα : p(α) → D has a
colimit; by [Lur09a] there exists an (essentially unique) map q+ : K+ → D, where

K+ := K× ∆1 qK×{1} I,

that restricts to q on K and to a colimit of ηα on p(α). ' K+ ×I {α}. Then the maps
Dq/ ← Dq+/ → Dq+|I/ are trivial fibrations.

In particular, we have equivalences colim q ' colim q+|I ' colimα∈I colimp(α) ηα.

Proof. It follows from [Lur09a, Lemma 4.2.3.5] that the inclusion I ↪→ K+ is right anodyne,
hence Dq+/ → Dq+|I/ is a trivial fibration. On the other hand, Dq+/ → Dq/ is a trivial
fibration since q+ is clearly a left Kan extension of q along K ↪→ K+.

43



2.2 Other Higher-Categorical Structures

In this section we review some other higher-categorical structures that we will encounter,
namely Segal spaces, double ∞-categories, (∞, 2)-categories, and�n-spaces. We will think
of all of these as being constructed within an ambient theory of ∞-categories (rather than
describing them as model categories, say).

2.2.1 Segal Spaces

Segal spaces are an alternative definition of (∞, 1)-categories, introduced by Rezk [Rez01].

Definition 2.2.1.1. Suppose C is an ∞-category with finite limits. A category object in C is a
simplicial object F : �op → C such that for each n the map

Fn → F1 ×F0 · · · ×F0 F1

induced by the inclusions {i, i + 1} ↪→ [n] and {i} ↪→ [n] is an equivalence. A Segal space
is a category object in the ∞-category S of spaces.

Let δn denote the simplicial space obtained from the simplicial set ∆n by composing
with the inclusion Set ↪→ S. A simplicial space is then a Segal space if and only if it is local
with respect to the map

segn : δn → δ1 qδ0 · · · qδ0 δ1.

Definition 2.2.1.2. Let Seg(S) denote the full subcategory of Fun(�op, S) spanned by the
Segal spaces; this is the localization of Fun(�op, S) with respect to the maps seg∗.

Remark 2.2.1.3. Similarly, if C is a κ-presentable ∞-category, the ∞-category Cat(C) of
category objects is the localization of Fun(�op,C) with respect to the morphisms segn ⊗ c,
where c is a κ-compact object of C.

Definition 2.2.1.4. The inclusion Gpd(S) ↪→ Seg(S) admits a right adjoint ι : Seg(S) →
Gpd(S). We say a Segal space F is complete if the groupoid object ιF is constant.

Remark 2.2.1.5. By Lemma 2.1.10.4, a Segal space F is complete if and only if the map
ιF(s0) : ιF[0]→ ιF[1] is an equivalence.

Definition 2.2.1.6. Let j denote the inclusion {[0]} → �op. Composition with j gives a
functor Fun(�op, S) → S, which has a right adjoint j∗, given by right Kan extension. It is
clear that j∗X is a Segal space for all X ∈ S. We write En for the Segal space j∗{0, . . . , n}.
Proposition 2.2.1.7 (Rezk [Rez01, Proposition 6.4]). A Segal space is complete if and only
if it is local with respect to the morphism E1 → E0.

Definition 2.2.1.8. Let CSS(S) denote the full subcategory of Seg(S) spanned by the com-
plete Segal spaces; by Proposition 2.2.1.7 this is the localization of Seg(S) with respect to
the morphism E1 → E0.

Theorem 2.2.1.9 (Joyal-Tierney [JT07]). The ∞-category CSS(S) is equivalent to Cat∞.

Lemma 2.2.1.10. Suppose X• is a Segal space. Then the following are equivalent:

(i) The functor X• is constant.

(ii) The map s0 : X0 → X1 is an equivalence.

Proof. This follows by induction using the Segal condition and the simplicial identitites.
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2.2.2 Double ∞-Categories and (∞, 2)-Categories

Just as a double category is an internal category in the category of categories, so a double
∞-category should be an internal category in the ∞-category of ∞-categories:

Definition 2.2.2.1. A double ∞-category is a category object in Cat∞. We write Cat(Cat∞)
for the full subcategory of Fun(�op, Cat∞) spanned by the double ∞-categories.

Remark 2.2.2.2. Using the equivalence Fun(�op, Cat∞) ' CoCart(�op), we can equiva-
lently define a double ∞-category to be a coCartesian fibration E → �

op, such that the
functors

E[n] → E[1] ×E[0]
· · · ×E[0]

E[1]

induced by the morphisms {i, i + 1} ↪→ [n] and {i} ↪→ [n] are equivalences.

Definition 2.2.2.3. A double Segal space is a category object in Seg(S), i.e. a bisimplicial
space �op ×�op → S all of whose rows and columns are Segal spaces. We write Cat2(S)
for the ∞-category of double Segal spaces.

Using the equivalence Cat∞ ' CSS(S), we can also regard a double ∞-category as a
category object in complete Segal spaces, i.e. a double Segal space all of whose rows are
complete Segal spaces.

Definition 2.2.2.4. A double Segal space is complete if all its rows and columns are complete
Segal spaces.

Lemma 2.2.2.5. The following are equivalent for a double ∞-category C•:

(i) C• corresponds to a complete double Segal space under the equivalence Cat(Cat∞) '
Cat(CSS).

(ii) Map(∆n,C•) is a complete Segal space for all n.

(iii) C• is local with respect to E1 × ∆n → ∆n for all n.

If C• satisfies these equivalent conditions, we say that C• is a complete double ∞-category.
Write CDbl∞ for the full subcategory of Cat(Cat∞) spanned by the complete double ∞-
categories; this is an accessible localization of Cat(Cat∞). We claim that CDbl∞ is the “cor-
rect” ∞-category of double ∞-categories, but will not justify this further here.

Lemma 2.2.2.6. Suppose C• is a double ∞-category. Then C• is complete if and only if
Map(∆n,C•) is a complete Segal space for n = 0, 1.

Proof. Write C∆n

• for the Segal space Map(∆n,C•). Suppose we know C∆n

• is a complete
Segal space, where n ≥ 1. Then the pushout diagram of ∞-categories

∆{n} ∆{n,n+1}

∆n ∆n+1
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induces a pullback diagram of Segal spaces

C∆n+1

• C∆n

•

C∆1

• C∆0

• .

This means that in the diagram

C∆n+1

0 C∆n

0 ×C∆0
0
C∆1

0

Map(E1,C∆n+1

• ) Map(E1,C∆n

• )×Map(E1,C∆0
• )

Map(E1,C∆1

• )

the horizontal maps are equivalences. But the right vertical map is also an equivalence,
since C∆k

• is by assumption complete for k = 0, 1, n. Thus C∆n+1

• is also complete. By induc-
tion, C∆k

• is therefore complete for all k, i.e. C• is a complete double ∞-category.

Just as we can think of 2-categories as a special kind of double category, we can think
of (∞, 2)-categories as a special kind of double ∞-category — this gives Barwick’s notion
of a 2-fold Segal space:

Definition 2.2.2.7. A double Segal space X is a 2-fold Segal space if the 0th row X0 is con-
stant. Write Seg2(S) for the full subcategory of Cat2(S) spanned by the 2-fold Segal spaces.

Definition 2.2.2.8. A 2-fold Segal space X is complete if all its rows Xi are complete Segal
spaces and the 0th column X•,0 is a complete Segal space. We write CSS2(S) for the full
subcategory of Seg2(S) spanned by the complete 2-fold Segal spaces.

The ∞-category CSS2(S) is the “correct” ∞-category of (∞, 2)-categories. Under the
equivalence Cat(Cat∞) ' Cat(CSS(S)) it is clear that complete 2-fold Segal spaces corre-
spond to double ∞-categories C• such that C0 is a space and C∆0

• is a complete Segal space.
We write Cat(∞,2) for the full subcategory of Cat(Cat∞) spanned by these objects.

Lemma 2.2.2.9. Let X•• be a double Segal space. Suppose x, y ∈ X00 and φ ∈ X11 satisfies
dh

0φ ' sv
0x ∈ X10 and dh

1φ ' sv
0y (where the superscripts h and v refer to the horizontal

and vertical simplicial structure maps, respectively). Then φ is an equivalence in the Segal
space X1 • if and only if φ is an equivalence in X• 1 and dv

i φ is an equivalence in X0,• for
i = 0, 1.

Proof. Write f = d1φ and g = d0φ. Suppose φ is an equivalence in X1,• and let ψ be an
inverse. It is clear that f−1 = d1ψ and g−1 = d0ψ are inverses of f and g, respectively.
Consider the object of X23 represented by the diagram

id f id f−1 φ

id f ψ idg
.
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Let α be a composite of the bottom row. If we compose the diagram horizontally and then
vertically it is clear that we get the vertical composite of φ and α. On the other hand, if we
compose first vertically and then horizontally we get the horizontal composite of ψ and
φ, which is the identity. Since these give equivalent objects of X11 we see that the vertical
composite of φ and α is id f . Similarly, considering the object represented by

id f ψ idg

φ idg−1 idg

we see that the vertical composite of α and φ is idg. Thus α is an inverse for φ with respect
to vertical composition, i.e. φ is an equivalence in X1•.

Now suppose φ is an equivalence in X•1 such that f and g are equivalences. Let ψ be a
(vertical) inverse for φ and choose inverses f−1 and g−1 of f and g. Considering the objects

φ idg−1 idg id f−1

idg idg−1 ψ id f−1

idg−1 ψ id f−1 id f

idg−1 id f id f−1 φ

of X24 we see that the horizontal composite id f−1 ◦ψ ◦ idg−1 is a horizontal inverse of φ.

Lemma 2.2.2.10. Suppose C• is a double ∞-category such that C0 is a space and C∆0

• is
complete. Then a morphism φ in C1 is an equivalence in C∆1

• if and only if diφ, i = 0, 1, are
equivalences in C∆0

• and φ is an equivalence in C1.

Proposition 2.2.2.11. Cat(∞,2) is a full subcategory of CDbl∞, i.e. if C• is a double ∞-
category such that C0 is a space and C∆0

• is complete, then C• is a complete double ∞-
category.

Proof. By Lemma 2.2.2.6 it suffices to prove that C∆1

• is a complete Segal space. Thus we
need to show that the morphism (C∆1

1 )eq → C∆1

0 , where (C∆1

1 )eq denotes the subspace of C∆1

1
consisting of the components corresponding to equivalences in the Segal space C∆1

• , is an
equivalence of spaces. Consider the commutative square

Map(∆1,C0) Map(∆1,C1)
eq

Map(∆0,C0) Map(∆0,C1)
eq.

Here the left vertical map is an equivalence since C0 is a space and the bottom horizontal
map is an equivalence since C∆0

• is complete. To prove that the top horizontal map is an
equivalence it therefore suffices to show that the right vertical map is an equivalence.

Observe that Map(∆1, (C∆0

1 )eq) is a full subcategory of Map(∆1,C1), as is Map(∆1,C1)
eq.

By Lemma 2.2.2.10 these subcategories have the same objects, so we get an equivalence
Map(∆1,C1)

eq ∼−→ Map(∆1, (C∆0

1 )eq). Since (C∆0

1 )eq is a space, it follows that Map(∆1,Ceq
1 ) '

(C∆0

1 )eq, which completes the proof.

The automorphism of double Segal spaces that swaps the two simplicial directions
corresponds to an automorphism of CDbl∞. Under this automorphism, the double ∞-
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categories corresponding to complete 2-fold Segal spaces get taken to complete double
∞-categories C• such that C∆0

• is constant. Thus, these give yet another model for (∞, 2)-
categories. We will now prove a criterion for a double ∞-category to be an (∞, 2)-category
of this kind:

Proposition 2.2.2.12. Suppose C• is a double ∞-category such that s0 : C0 → C1 is essen-
tially surjective (hence an isomorphism on π0 by the simplicial identities) and C∆1

is com-
plete. Let Ceq

1 be the subcategory of C1 whose morphisms are those that are equivalences
in Map(∆1,C•). Then s0 : C0 → C

eq
1 is an equivalence of ∞-categories.

Proof. Since s0 is essentially surjective by assumption, it suffices to prove that it is fully
faithful, i.e. that for all x, y ∈ C0 the induced map C0(x, y) → C

eq
1 (x, y) is an equivalence.

We can identify C
eq
1 (x, y) with the fibre Map(∆1,C1)

eq
x,y of the projection

(C∆1

1 )eq → (C∆0

1 )×2

at (s0x, s0y), where (C∆1

1 )eq denotes the subspace of C∆1

1 whose components correspond
to the equivalences in C∆1

• . Now since C∆1

• is a complete Segal space, the map s0 induces
an equivalence C∆1

0
∼−→ (C∆1

1 )eq. Passing to fibres over (x, y) ∈ (C∆0

0 )×2 this shows that s0

indeed induces an equivalence C0(x, y) ∼−→ C
eq
1 (x, y).

Corollary 2.2.2.13. Suppose C• is a double ∞-category such that s0 : C0 → C1 is essentially
surjective and C∆1

is complete. Then the Segal space C∆0

• is constant.

Proof. By Lemma 2.2.1.10 it suffices to show that C∆0

0 → C∆0

1 is an equivalence of spaces. By
Lemma 2.2.2.9 the inclusion C∆0

1 → C1 factors through C
eq
1 , hence we have an equivalence

C∆0

1
∼−→ (C∆0

1 )eq. But the composite C∆0

0 → (C∆0

1 )eq is an equivalence by Proposition 2.2.2.12,
hence by the 2-out-of-3 property so is the map C∆0

0 → C∆0

1 .

Suppose X is a complete double Segal space. Then we can extract two complete 2-fold
Segal spaces from X, by restricting to the subobject lying over the constant part of the 0th
row or column. In other words, we can extract a vertical and a horizontal (∞, 2)-category
from a double ∞-category.

Definition 2.2.2.14. Let Vert, Hor : CDbl∞ → Cat(∞,2) be the corresponding functors on
complete double ∞-categories.

There are many other models for (∞, 2)-categories in the literature. In this thesis we
will also make use of marked simplicial categories, i.e. categories enriched in the model cat-
egory Set+∆ of marked simplicial sets; see [Lur09b] for a comparison of these with com-
plete 2-fold Segal spaces and other models, and [BSP11] for axioms characterizing the ∞-
category of (∞, 2)-categories.

2.2.3 �n-Spaces

We now briefly review the theory of �n-spaces, which give a model for (∞, n)-categories.
These were introduced by Rezk [Rez10] (but our discussion is also based on the summary
given in [BSP11]). We first review the definition of the categories �n — these were origi-
nally introduced by Joyal, but we use the inductive definition due to Berger [Ber07]:
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Definition 2.2.3.1. Let�0 = ∗, and for n > 0 define the category�n inductively as follows:

• objects of �n are of the form [n](X1, . . . , Xn), where [n] ∈ � and Xi ∈ �n−1;

• a morphism [n](X1, . . . , Xn) → [m](Y1, . . . , Ym) consists of a morphism φ : [n] → [m]
in � and morphisms ψij : Xi → Yj where 0 < i ≤ m and φ(i− 1) < j ≤ φ(i).

Composition is defined in the obvious way.

The category �n can also be regarded as a full subcategory of the category of strict
n-categories spanned by certain free strict n-categories (cf. [Ber07, §3]).

Definition 2.2.3.2. We define the following important functors between �n’s:

(i) The functor jn : �n−1 → �n corresponds to the inclusion of (n− 1)-categories into n-
categories; we define it inductively by letting j1 : ∗ = �0 → �1 = � be the inclusion
of the object [0] and defining

jn([m](X1, . . . , Xm)) = [m](jn−1X1, . . . , jn−1Xm)

for n > 1.

(ii) The functor σn : �n−1 → �n corresponds to “suspending” an (n− 1)-category to an n-
category with two objects and that (n− 1)-category as the morphisms between them.
More precisely,

σn(X) = [1](X).

(Notice that σn jn−1 = jnσn−1.)

(iii) The functor pn : �n → �n−1 corresponds to “collapsing” the n-morphisms in an n-
category to produce an (n− 1)-category. More precisely, we define p1 : �op = �1 →
�0 = ∗ to be the unique functor to the final object, and set

pn([m](X1, . . . , Xm)) = [m](pn−1X1, . . . , pn−1Xm)

for n > 1.

Definition 2.2.3.3. The k-cell Cn
k (or just Ck) in �n (k = 0, . . . , n) is defined by Ck = jnCk

for k < n and Cn = σnCn−1 (with C0
0 being the unique object of �0). Equivalently we have

Cn
k = jn−kσkC0

0 . The k-cell Ck corresponds to the “free k-morphism”.

Definition 2.2.3.4. Recall that a morphism φ : [n]→ [m] in� is inert if it is the inclusion of
a subinterval of [m], i.e. if φ(i) = φ(0) + i for all i. By induction, we define a morphism
(φ, ψij) : [n](X1, . . . , Xn) → [m](Y1, . . . , Ym) in �k to be inert if φ : [n] → [m] is inert, and
ψiφ(i) : Xi → Yφ(i) is inert for each i = 1, . . . , n. Let Gn denote the subcategory of �n
with objects the cells C0, . . . , Cn and morphisms the inert morphisms between these. For
X ∈ �n, we write (Gn)/X for the full subcategory of Gn ×�n (�n)X/ spanned by the inert
morphisms Ck → X.

Definition 2.2.3.5. Let y : �n → Fun(�op
n , S) denote the Yoneda embedding. For X in �n,

the Segal morphism segX in Fun(�op
n , S) is the obvious morphism

colim
Ck→X∈(Gn)/X

y(Ck)→ y(X).
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We say a presheaf F ∈ Fun(�op
n , S) is a �n-space if it is local with respect to the Segal

morphisms segX for all X ∈ �n, i.e. if the natural map

F(X)→ lim
Ck→X∈(Gn)/X

F(Ck)

is an equivalence for all X ∈ �n. We write Seg
�n

(S) for the full subcategory of Fun(�op
n , S)

spanned by the �n-spaces; this is an accessible localization of Fun(�op
n , S) and so is a

presentable ∞-category.

Remark 2.2.3.6. If n = 1, a �1-space is precisely a Segal space.

Definition 2.2.3.7. Composition with j : �n−1 → �n gives a functor

j∗ : Seg
�n

(S)→ Seg
�n−1

(S);

this corresponds to taking the underlying (∞, n− 1)-category of an (∞, n)-category. The
functor j∗ has left and right adjoints j! and j∗, given by left and right Kan extension, respec-
tively (it is easy to see that this preserves the Segal conditions). The functor j∗ freely adds
n-morphisms between all parallel (n− 1)-morphisms, while the functor j! gives the inclu-
sion of (∞, n− 1)-categories into (∞, n)-categories. Similarly, the functor p : �n → �n−1
induces p∗ : Seg

�n−1
(S) → Seg

�n
(S) with left adjoint p!. Since p ◦ j = id�n−1 we have

j∗p∗ ' id.

Definition 2.2.3.8. If X ∈ �n, let X∗ denote the �n−1-space defined by

X∗(Y) = Hom�n(jY, X).

We write EX for the �n-space j∗X∗, and if F is a �n-space we write ι•F : �op
n → S for the

functor ιXF := Map(EX,F), and we define ιF := p!ι•F.

Lemma 2.2.3.9. EjX ' yjX for X ∈ �n−1. Thus j∗ι•F ' j∗F for any �n-space F.

Conjecture 2.2.3.10. The functor E(–) : �n → Seg
�n

(S) is a co-�n-Segal object, i.e.

colim
Ck→X∈(Gn)/X

ECk → EX

is an equivalence for all X. Moreover, the cosimplicial object Eσn−1(–) is a cogroupoid object.

Corollary 2.2.3.11. If F is a �n-space, then so is ι•F.

Definition 2.2.3.12. A �n-space X is complete if the natural map

j∗X ' j∗ι•X → j∗p∗p!ι•X ' p!ι•X = ιX

is an equivalence, and the�n−1-space j∗X is complete. (We define all�0-spaces to be com-
plete.) We write CSS�n(S) for the full subcategory of Seg

�n
(S) spanned by the complete

�n-spaces.

Definition 2.2.3.13. The free k-equivalence Eqk ∈ Seg
�n

(S) (k = 1, . . . , n) is defined by
Eqn := j∗(Cn)∗ and Eqk := j!Eqk for k < n.
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Lemma 2.2.3.14. Eqk ' σ!Eqk−1 for k > 1. In particular, Eqk ' jn−k
! σk

! Eq1.

Definition 2.2.3.15. Define morphisms εk : Eqk → yCk−1 by letting

εn : j∗(Cn)
∗ → j∗(Cn−1)

∗ = yCn−1

be induced by the unique map Cn → Cn−1, and εk := j!εk−1 for k < n. Equivalently, let ε1
be the unique morphism from Eq1 to the final object C0 and let εk := σ!εk−1 = σk−1

! ε1 for
k > 1.

Proposition 2.2.3.16. A �n-space is complete if and only if it is local with respect to the
morphisms εk, k = 1, . . . , n.

Sketch Proof. Let us first show that a �n-space F is local with respect to εn if and only
if the morphism j∗F → ιF is an equivalence. From the Segal conditions it is easy to see
that a morphism of�n−1-spaces φ : G→ H is an equivalence if and only if φ(Ck) : G(Ck)→
H(Ck) is an equivalence of spaces for k = 0, . . . , n− 1. Observe that for any�n-space F, for
k < n− 1 the space ιF(Ck) = p!ι•F(Ck) is equivalent to ι•F(Ck) ' ιCkF ' F(Ck) since Ck
is a final object of�n ×�n−1 (�n−1)/Ck (for k = n− 1 this is not the case, since e.g. Cn gives
two non-equivalent objects of this category). Thus the map j∗F → ιF is an equivalence if
and only if F(Cn−1)→ (ιF)(Cn−1) = colim(X,pX→Cn−1) F(X) is an equivalence.

Now consider σn−1 : � = �1 → �n; this gives a cofinal map�→ �n ×�n−1 (�n−1)/Ck .
Thus it suffices to show that

F(Cn−1)→ |ι•F(σn−1[•])| ' |Map(Eσn−1[•],F)|

is an equivalence if and only if F is local with respect to εn. But Eσn−1[•] is a cogroupoid
object, so by Lemma 2.1.10.4 this morphism is an equivalence if and only if F(Cn−1) '
Map(yCn−1,F) → Map(Eσn−1[1],F) ' Map(Eqn,F) is an equivalence, i.e. if and only if F
is local with respect to εn.

For k < n observe that j∗F is local with respect to εk if and only if F is local with respect
to j!εk = εk, so by induction we conclude the F is complete if and only if it is local with
respect to εk for k = 1, . . . , n.

Definition 2.2.3.17. If F is a �n-space and x, y ∈ F(Cn−1), write F(x, y) for the fibre of
F(Cn) at (x, y) ∈ F(Cn−1)× F(Cn−1). A morphism of �n-spaces φ : F → G is fully faithful
if for all x, y ∈ F(Cn−1) the morphism F(x, y) → G(φ(x), φ(y)) is an equivalence. We
say that φ is fully faithful and essentially surjective if φ is fully faithful and the morphism of
�n−1-spaces ιφ : ιF → ιG is fully faithful and essentially surjective. (We say a morphism of
�0-spaces is fully faithful and essentially surjective if and only if it is an equivalence.)

Lemma 2.2.3.18. A morphism of complete �n-spaces is fully faithful and essentially sur-
jective if and only if it is an equivalence.

Proof. Observe that a morphism φ : F → G of�n-spaces is an equivalence if and only if it is
fully faithful and j∗φ : j∗F → j∗G is an equivalence of�n−1-spaces. If F and G are complete
it follows that φ is an equivalence if and only if φ is fully faithful and ιφ is an equivalence.
Since ιF and ιG are by assumption also complete, by induction we conclude that φ is an
equivalence if and only if it is fully faithful and essentially surjective.

Conjecture 2.2.3.19. The fully faithful and essentially surjective morphisms between �n-
spaces are precisely the morphisms in the saturated class generated by ε1, . . . , εn.
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Chapter 3

∞-Operads over Operator Categories

In this chapter we indicate how to generalize Lurie’s theory of ∞-operads to the setting
of Barwick’s operator categories. These are categories that can be used to parametrize
multiplicative structures; apart from symmetric and non-symmetric ∞-operads, we are
particularly interested in the interpolating ∞-operads with En-symmetry, which we will
use to define enriched (∞, n)-categories in Chapter 5.

In §3.1 we review the theory of operator categories and the 1-categorical notions of op-
erads, monoids, and monoidal categories over an operator category. Then in §3.2 we define
∞-operads and monoidal ∞-categories over operator categories, and in §3.3 we describe
some results for non-symmetric ∞-operads that we unfortunately do not yet know how to
generalize to more general ∞-operads.

3.1 Review of Operator Categories

In this section we summarize part of Clark Barwick’s theory of operator categories. Much
of this material has now appeared in [Bar13]; the remainder (possibly excepting the rather
trivial material in §3.1.7 and §3.1.8) is based either on earlier preprints or on conversations
with Barwick and Chris Schommer-Pries. Since much of this section is only intended to
motivate our definitions in §3.2 of ∞-categorical generalizations of the concepts we discuss
here, we have often omitted proofs and even details of some definitions.

3.1.1 Basic Definitions and Examples

An operator category is a category that can be thought of as parametrizing a type of multi-
plicative structure. The definition is simple:

Definition 3.1.1.1. An operator category is a small category Φ that

(i) is locally finite, i.e. for all I, J ∈ Φ the set HomΦ(I, J) is finite,

(ii) has a terminal object ∗,
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(iii) has fibres Ji for every morphism J → I at all points i : ∗ → I, i.e. the pullbacks

Ji J

∗ I
i

exist.

Examples 3.1.1.2. The following are all operator categories:

(1) The trivial one-object category 0; this parametrizes trivial multiplicative structures.

(2) The category O of finite ordered sets (possibly empty). This parametrizes associative
monoids, monoidal categories, and non-symmetric operads.

(3) The category F of finite sets. This parametrizes commutative monoids, symmetric
monoidal categories, and symmetric operads.

The basic notion of a morphism between operator categories is an admissible functor:

Definition 3.1.1.3. If Φ and Ψ are operator categories, an admissible functor F : Φ → Ψ is a
functor that preserves the terminal object and all fibres.

However, for many purposes it is better to consider a more restricted class of mor-
phisms, the operator morphisms:

Definition 3.1.1.4. Suppose Φ is an operator category. If I is an object of Φ, we write |I|
for the set HomΦ(∗, I). We say an admissible functor F : Φ → Ψ is an operator morphism if
the map |I| → |F(I)| is a bijection for all I ∈ Φ.

Remark 3.1.1.5. Any admissible functor F : Φ → Ψ such that |I| → |F(I)| is surjective for
all I ∈ Φ is necessarily an operator morphism (cf. [Bar13, Proposition 1.8]).

Example 3.1.1.6. For any operator category Φ, the functor |–| gives an operator morphism
Φ → F. This is the unique operator morphism from Φ to F, and we will also denote it by
uΦ : Φ→ F.

Remark 3.1.1.7. Below, in §3.1.8, we will see that certain subcategories of operator categories
also play an interesting role, despite the inclusions not being admissible functors.

3.1.2 Wreath Products

The wreath product of operator categories gives a monoidal structure on the category of
operator categories and operator morphisms.

Definition 3.1.2.1. Let Ψ be an operator category, and let nΨ : Fop → Cat be the functor that
sends a finite set S to Fun(S, Ψ) ∼= Ψ×|S|. If Φ is another operator category, composing with
the unique operator morphism uΦ = |–| : Φ → F gives a functor Φop → Cat. We define
the wreath product Ψ oΦ→ Φ to be a Grothendieck fibration associated to this functor.

54



Remark 3.1.2.2. Thus, an object of Ψ oΦ is determined by an object I ∈ Φ and, for each i ∈
|I|, an object Ji ∈ Ψ. We write I(Ji)i∈|I| for this object. A morphism I(Ji)i∈|I| → I′(J′k)k∈|I′|
consists of a morphism f : I → I′ in Φ and, for each i ∈ |I|, a morphism Ji → J′f ◦i in Ψ.

Remark 3.1.2.3. The wreath product of operator categories has a universal property: a
Ψ o Φ-algebra is, roughly speaking, a Ψ-algebra in Φ-algebras; we will give several more
precise statements along these lines below.

Remark 3.1.2.4. The wreath product Ψ oΦ is functorial with respect to all admissible func-
tors in the first variable, but only with respect to operator morphisms in the second vari-
able.

Proposition 3.1.2.5 ([Bar13, Proposition 3.9]). The operation o gives a monoidal structure
on the category of operator categories and operator morphisms.

Remark 3.1.2.6. The unit for the wreath product is the trivial operator category 0. This is
also the initial operator category (and the zero object with respect to admissible functors)
so given operator categories Φ and Ψ there are canonical maps

iΦ : Φ ' 0 oΦ→ Ψ oΦ, I 7→ I(∗)i∈|I|,

jΨ : Ψ ' Ψ o 0→ Ψ oΦ, J 7→ ∗(J),

pΦ : Ψ oΦ→ 0 oΦ ' Φ, I(Ji)i∈|I| 7→ I.

The functors iΦ and jΨ are operator morphisms, whereas pΦ is merely an admissible func-
tor.

The wreath product allows us to define the key examples of operator categories we will
be interested in in this thesis:

Example 3.1.2.7. We write O(n) for the n-fold wreath power Oon of the operator category
O of finite ordered sets. In the setting of ordinary categories O(2) parametrizes braided
monoidal categories and braided operads, while O(n) parametrizes symmetric monoidal
categories and symmetric operads for n > 2. When working with ∞-categories, however,
O(n) gives En-monoidal ∞-categories, as we will see below.

3.1.3 Monoidal Categories and Operads

We will now justify the claim that operator categories parameterize multiplicative struc-
tures by defining Φ-monoidal categories and Φ-operads, where Φ is an operator category.

Definition 3.1.3.1. A Φ-monoidal category is a category C equipped with:

(i) For each I ∈ Φ a functor
⊗

I : C×|I| → C, such that
⊗
∗ = id.

(ii) For each morphism f : J → I in Φ, a natural isomorphism

α f :
⊗

J

∼−→
⊗

I

◦
(⊗

Ji

)
i∈|I|

.
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These isomorphisms must be functorial, i.e. α f ◦g = α f ◦ αg and αidI = id⊗I . If C and D
are Φ-monoidal categories, a lax Φ-monoidal functor from C to D is a functor F : C → D
together with natural transformations

⊗
I ◦F → F ◦⊗I , compatible with the natural iso-

morphisms α f for f in Φ. A strong Φ-monoidal functor is a lax Φ-monoidal functor such that
these natural transformations are natural isomorphisms. We write MonΦ for the category
of Φ-monoidal categories and strong Φ-monoidal functors, and MonΦ,lax for the category
of Φ-monoidal categories and lax Φ-monoidal functors.

Examples 3.1.3.2.

(1) A 0-monoidal category is a category.

(2) An O-monoidal category is a monoidal category.

(3) An O(2)-monoidal category is a braided monoidal category.

(4) An F-monoidal category is a symmetric monoidal category, as is an O(n)-monoidal
category for n > 2.

More generally, we can consider Φ-operads; here we will restrict ourselves to Φ-operads
in sets:

Definition 3.1.3.3. A Φ-operad M consists of a set ob M of objects and, given I ∈ Φ, a
collection (xi)i∈|I| of objects indexed by the points of I, and an object y, a set

MI((xi), y)

of multimorphisms from (xi) to y. Given a morphism J → I in Φ we have a composition
operation

∏
i∈|I|

MJi((xj)j∈|Ji |, yi)×MI((yi)i∈|I|, z)→ MJ((xj)j∈|J|, z).

This must be associative in the obvious sense, and there is also an identity morphism idx ∈
M∗(x, x) for all objects x.

Remark 3.1.3.4. For consistency with Lurie’s terminology for ∞-categories we have cho-
sen to use the term Φ-operad instead of Φ-multicategory or coloured Φ-operad for this
concept.

Remark 3.1.3.5. An obvious variant of this definition gives a notion of Φ-operads enriched
in, for example, a symmetric monoidal category. In the next section we will make use of
simplicial Φ-operads, which are Φ-operads enriched in the category of simplicial sets.

Definition 3.1.3.6. A functor of Φ-operads F : M → N consists of a function ob M → ob N
and a function MI((xi), y) → NI((F(xi))i, F(y) for each I ∈ Φ and xi, y ∈ ob M; these
must preserve identities and be compatible with composition in the obvious sense. We
write OpdΦ for the category of Φ-operads and functors.

Definition 3.1.3.7. If F, G : M → N are functors of Φ-operads, a natural transformation
η : F → G consists of, for each x ∈ M a morphism ηx ∈ N∗(Fx, Gx), compatible with com-
positions in the obvious way. We write OPDΦ for the 2-category of Φ-operads, functors,
and natural transformations.

56



Example 3.1.3.8. We can consider a Φ-monoidal category C as a Φ-operad by defining
CI((xi), y) to be the set of morphisms C(

⊗
I(xi), y), with composition defined using the

natural isomorphisms α f and ordinary composition in C. Then MonΦ,lax is the full subcat-
egory of OpdΦ spanned by Φ-operads of this form.

Examples 3.1.3.9.

(1) A 0-operad is a category.

(2) An O-operad is a multicategory or (coloured) non-symmetric operad.

(3) An O(2)-operad is a braided multicategory or (coloured) braided operad.

(4) An F-operad is a symmetric multicategory or (coloured) symmetric operad, as is an
O(n)-operad for n > 2.

Remark 3.1.3.10. A Φ-operad O with a single object can equivalently be described by sets
O(I) for I ∈ Φ and composition morphisms

O(I)× ∏
i∈|I|

O(Ji)→ O(J)

for each morphism J → I in Φ.

Definition 3.1.3.11. If C is a Φ-monoidal category (or more generally a Φ-operad), and O
is a Φ-operad, an O-algebra in C is a functor of Φ-operads A : O → C. We write AlgΦ

O(C)

for the category of O-algebras in C, i.e. the mapping category OPDΦ(O, C).

Remark 3.1.3.12. Suppose f : Φ→ Ψ is an operator morphism. Then f allows us to regard
a Ψ-operad as a Φ operad, giving a functor f ∗ : OpdΨ → OpdΦ: if M is a Ψ-operad, then
f ∗M has the same objects as M, and

f ∗MI((xi), y) := M f (I)((xi), y).

This functor has a left adjoint f! : OpdΦ → OpdΨ, which forms the “free” Ψ-operad on
a Φ-operad. For example, uO

! : OpdO → OpdF gives the usual way of regarding a non-
symmetric operad as a symmetric operad.

Remark 3.1.3.13. If Φ is an operator category, we let U(Φ) denote the F-operad uΦ
! ∗. For

example, U(O) is the usual associative (symmetric) operad. The functor uΦ
! : OpdΦ →

OpdF
/U(Φ) is often an equivalence, for example if Φ is O.

The wreath product of operator categories can be extended to a wreath product of
operads: If O is a Φ-operad and Q is a Ψ-operad, both with a single object, then Q oO is a
Ψ oΦ-operad, also with a single object, with

(Q oO)(I(Ji)i∈|I|) = O(I)× ∏
i∈|I|

Q(Ji).

The general definition is somewhat more complicated:
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Definition 3.1.3.14. Suppose M is a Φ-operad an N is a Ψ-operad. Then N oM is a Ψ oΦ-
operad with objects ob M× ob N and multimorphism sets defined by

(M oN)I(Ji)((m(i,j), n(i,j)), (m
′, n′)) := MI((mi), m′)× ∏

i∈|I|
NJi((ni,j), n′),

if m(i,j) is equal to mi for all j ∈ JI , and ∅ otherwise, with composition defined in the
obvious way.

Remark 3.1.3.15. The wreath product of operads has a universal property, which we can
roughly describe as follows: suppose M is a Φ-operad, N is a Ψ-operad, and X is a Ψ oΦ-
operad. Then the category AlgΦ

M(j∗ΦX) has a natural Ψ-operad structure, and there is an
equivalence

AlgΨoΦ
NoM(X) ' AlgΨ

N(AlgΦ
M(j∗ΦX)).

3.1.4 Perfect Operator Categories and Monoids

We will now introduce the most important class of operator categories, namely the so-
called perfect operator categories, which includes all the examples we are interested in
here.

Definition 3.1.4.1. A point classifier for an operator category Φ is an object (T, t : ∗ → T) ∈
Φ∗/ such that for any object (V, v : ∗ → V) ∈ Φ∗ there exists a unique morphism V → T
in Φ such that

∗ V

∗ T

v

t

is a pullback square.

Definition 3.1.4.2. An operator category Φ is perfect if it has a point classifier (T, t) and the
functor (–)t : Φ/T → Φ that takes the fibre at t has a right adjoint T∗ : Φ → Φ/T. We refer
to t as the special point of T and its other points as generic points. We write T : Φ → Φ for
the composite of T∗ with the forgetful functor to Φ.

Example 3.1.4.3. The operator categories O and F are perfect, with point classifiers {1} →
{0, 1, 2} and {1} → {0, 1}, respectively.

Proposition 3.1.4.4 ([Bar13, Proposition 5.11]). If Φ and Ψ are perfect operator categories,
with point classifiers t→ T and t′ → T′, respectively, then Ψ oΦ is also perfect, with point
classifier T(Ii) where It = T′ and Ii = ∗ for i 6= t.

Example 3.1.4.5. The operator categories O(n) are perfect for all n.

Theorem 3.1.4.6 ([Bar13, Theorem 6.9]). If Φ is a perfect operator category, then the functor
T is a monad on Φ.

Definition 3.1.4.7. Suppose Φ is a perfect operator category. The Leinster category LΦ of Φ
is the Kleisli category of the monad T. In other words, the objects of LΦ are the same as
those of Φ, but morphisms are given by

HomLΦ(I, J) = HomΦ(I, TJ),
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with composition defined using the monadic structure of T. We will generally denote a
map from I to J in the Leinster category with a barred arrow, I 7→ J.

Example 3.1.4.8. Suppose Φ is a perfect operator category. A point i : ∗ → I corresponds
to a unique morphism I → T such that i is the pullback of t : ∗ → T, and so to a morphism
i∨ : I 7→ ∗ in LΦ.

Proposition 3.1.4.9. Let Ψ be an operator category, and let nΨ : � = (LF)op → Cat be the
functor sending a pointed finite set S to the category Fun∗(S,LΨ) of functors that take the
base point of S to ∗ ∈ LΨ, i.e. (LΨ)×|S|−1. If Φ is another operator category, composing
with the functor LΦ → LF induced by the unique operator morphism uΦ = |–| : Φ → F

gives a functor (LΦ)op → Cat. The Leinster category LΦoΨ is equivalent to the total space
of the Grothendieck fibration associated to this functor.

Proof. This is a special case of [Bar13, Proposition 7.7].

Examples 3.1.4.10.

(i) The Leinster category L0 is just 0.

(ii) The Leinster category LO is the opposite category �op of the simplicial indexing cat-
egory � (cf. [Bar13, Example 7.6]).

(iii) The Leinster category LF is the category �op of finite pointed sets (cf. [Bar13, Example
7.5]).

(iv) The Leinster category LO(n) is the opposite category �op
n of Joyal’s category �n (cf.

[Bar13, Example 7.8]).

Using the Leinster category we can define Φ-monoids when Φ is a perfect operator
category:

Definition 3.1.4.11. Let Φ be a perfect operator category, and suppose C is a category with
finite products. A Φ-monoid M in C is a functor M : LΦ → C such that for every object I, the
morphism M(I) → ∏i∈|I| M(∗) induced by the morphisms i∨ : I 7→ ∗ is an isomorphism.
We write MndΦ(C) for the obvious category of Φ-monoids in C.

Examples 3.1.4.12.

(i) A 0-monoid is just an object.

(ii) An O-monoid is an associative monoid.

(iii) An F-monoid is a commutative monoid, as is an O(n)-monoid for n > 1.

Remark 3.1.4.13. The wreath product of operator categories also has a universal property
in terms of monoids: Let Φ and Ψ be perfect operator categories, and suppose C is a
category with finite products. Then there is an equivalence of categories

MndΦoΨ(C) ' MndΦ(MndΨ(C)),

i.e. a Φ oΨ-monoid in C is equivalent to a Φ-monoid in Ψ-monoids in C.

Remark 3.1.4.14. Let f : Φ → Ψ be an operator morphism. Then composition with L f

takes Ψ-monoids to Φ-monoids and so induces a functor f ∗ : MndΨ(C)→ MndΦ(C). If C
is a presentable category where the Cartesian product preserves colimits in each variable
then f ∗ has a left adjoint f! : MndΦ(C)→ MndΨ(C).
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3.1.5 The Inert-Active Factorization System

If Φ is a perfect operator category, there is an important factorization system on the Lein-
ster category LΦ:

Definition 3.1.5.1. Let Φ be a perfect operator category. If φ : I 7→ J is a morphism in LΦ,
consider the pullback square

F J

I TJ.

uJ

φ

We say that φ is active if the morphism F → I is an isomorphism, and inert if the morphim
F → J is an isomorphism.

Remark 3.1.5.2. A morphism φ : I 7→ J is active if and only if it is in the image of Φ, i.e. it
is of the form

I
f−→ J

uJ−→ TJ,

where f is a morphism in Φ. It is clear from the definition that every active morphism is
of this form, and the converse holds because the diagram

J J

J TJ

id

id uJ

uJ

is a pullback square in Φ for all J.

Examples 3.1.5.3.

(i) A morphism f : [n] → [m] in � corresponds to an active morphism in LO ' �op if
and only if f (0) = 0 and f (n) = m, and an inert morphism if and only if f is the
inclusion of a subinterval, i.e. f (j) = f (0) + j for j = 0, . . . , n.

(ii) A morphism f : 〈n〉 → 〈m〉 in �op ' LF is active if and only if f−1(∗) = {∗}, and
inert if and only if | f−1(i)| = 1 for i 6= ∗.

Proposition 3.1.5.4 ([Bar13, Lemma 8.3]). If Φ is a perfect operator category, then the inert
and active morphisms form a factorization system on LΦ.

Proof. We first show that any morphism φ : I 7→ J has a factorization as an inert morphism
followed by an active morphism. We may regard I → TJ as a morphism in Φ/T via the
map T(J → ∗), i.e. a morphism from Ī = (I → T) to T∗(J). This is adjoint to a morphism
α : Īt → J, giving a factorization

Ī → T( Īt)
T(α)−−→ T(J).
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The fibre Īt is the fibre product F in the pullback square

F J

I TJ

uJ

φ

in Φ, so we have factored φ as a composite

I
β−→ TF

T(α)−−→ TJ,

i.e. as a composite (uJα) ◦ β in LΦ. The morphism uJα is obviously active. Here F is also
the fibre of the composite I → TJ → T at the special point t, i.e. F is (I → T)t. Since the
diagram

F J

TF TJ

α

uF uJ

Tα

is a pullback, it is clear that β is inert.
This also shows that any inert morphism φ : I 7→ J factors as the counit I → T(It)

followed by an isomorphism. Since this counit does not change when we compose with an
active map, it follows that the inert-active factorization is unique up to isomorphism.

Remark 3.1.5.5. This factorization system is probably a particular case of that described
by Weber [Web04] on the Kleisli categories of certain monads; this observation is due to
David Gepner. However, the “generic morphisms”, which are the equivalent of our inert
morphisms, do not have as nice a description in this more general setting.

Definition 3.1.5.6. We write LΦ
int and LΦ

act for the subcategories of LΦ where the morphisms
are the inert and active morphisms in LΦ, respectively.

Definition 3.1.5.7. An object A of Φ is an atom if there exists an inert morphism ∗ 7→ A in
LΦ, i.e. A is the fibre at t : ∗ → T of some other point ∗ → T. The globular category GΦ is
then the full subcategory of LΦ

int spanned by the atoms. If I is an object of Φ, we write GΦ
I/

for GΦ ×LΦ
int
(LΦ

int)I/.

Example 3.1.5.8. Suppose Φ and Ψ are perfect operator categories. Then the atoms of Ψ oΦ
are ∗(A), where A is an atom of Ψ, and A() where A is an atom of Φ other than ∗ (which
must necessarily have no points).

Examples 3.1.5.9.

(i) The unique object of 0 is an atom, and G0 is just 0.

(ii) The atoms of F are ∅ and ∗, and GF is

∗ → ∅.
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(iii) The atoms of O are ∅ and ∗, and GO is

∗⇒ ∅.

(iv) The atoms of O(n) are CO(n)
k , k = 0, . . . , n, which we can inductively define by CO(1)

0 =

∅, CO(1)
1 = ∗, and

CO(n)
k =

{
∗(CO(n−1)

k−1 ), k = 1, . . . , n,
∅, k = 0.

The category GO(n) is
CO(n)

n ⇒ CO(n)
n−1 ⇒ · · ·⇒ CO(n)

0 ,

i.e. G
op
n . In terms of the description of the objects of �n as certain strict n-categories,

the object CO(n)
k corresponds to the k-cell or free k-morphism.

Definition 3.1.5.10. Let Φ be a perfect operator category, and let C be a category with finite
limits. A Φ-category object M in C is a functor M : LΦ → C such that M|LΦ

int
is a right Kan

extension of M|GΦ . In particular, for I ∈ Φ the object M(I) is the limit of M|GΦ
I/

.

Example 3.1.5.11. An O(n)-category object in sets is a strict n-category.

Definition 3.1.5.12. A perfect operator category Φ is self-categorical if the functor

I∗ := HomLΦ(I, –) : LΦ → Set

is a Φ-category object for all I ∈ Φ.

Examples 3.1.5.13. The operator categories O(n) are self-categorical for all n, whereas F is
not.

3.1.6 The May-Thomason Category of a Φ-Operad

For a perfect operator category Φ we can give an alternative definition of Φ-operads as
certain functors to LΦ, by considering the May-Thomason category of a Φ-operad. This is
the definition we will generalize to define ∞-operads in the next section.

Definition 3.1.6.1. Let Φ be a perfect operator category. If M is a Φ-operad, the May-
Thomason category M⊗ of M has objects pairs (I, (xi)i∈|I|) where I ∈ Φ and xi ∈ M, and a
morphism (I, (xi)) → (J, (yj)) is given by a morphism I 7→ J in LΦ and for each j ∈ |J| a
morphism in MIj((xi)i∈|I|, yj), where Ij is the fibre of I → TJ at

∗ j−→ J
uJ−→ TJ.

There is an obvious projection M⊗ → LΦ.

Remark 3.1.6.2. If M is a Φ-operad enriched in a symmetric monoidal category C that
has coproducts and whose tensor product commutes with these, then the same definition
applied to M gives a C-category M⊗.

Proposition 3.1.6.3. A functor π : C→ LΦ is equivalent to the May-Thomason category of
a Φ-operad if and only if the following conditions hold:
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(i) If φ : I 7→ J is an inert morphism in LΦ and x ∈ CI then there exists a π-coCartesian
morphism x → φ!x.

(ii) For every I ∈ Φ the functor CI → ∏i∈|I| C∗ induced by the coCartesian arrows over
i∨ for i ∈ |I| is an equivalence of categories.

(iii) Given a morphism φ : I 7→ J in LΦ and y ∈ CJ , the coCartesian morphisms y → yj
induced by the inert morphisms j∨ : J 7→ ∗ give an isomorphism

Cφ(x, y) ∼−→ ∏
j∈|J|

Cj◦φ(x, yj),

where Cφ(x, y) denotes the subset of C(x, y) of morphisms that map to φ in LΦ.

Moreover, a functor F : C→ D over LΦ between such categories corresponds to a func-
tor of Φ-operads if and only if it preserves coCartesian morphisms over inert morphisms in
LΦ. We can thus equivalently define a Φ-operad to be a functor C→ LΦ satisfying (i)–(iii).

Remark 3.1.6.4. A functor π : C → LΦ is equivalent to the May-Thomason category of
a Φ-monoidal category if and only if it satisfies conditions (i)–(iii) above, and is also a
coGrothendieck fibration, i.e. for any morphism φ : I 7→ J in LΦ and any x ∈ CI there
exists a π-coCartesian morphism x → φ!x. A functor F : C → D between such categories
over LΦ corresponds to a strong monoidal functor of Φ-monoidal categories if and only if
it preserves all coCartesian arrows.

3.1.7 Generalized Operads and Multiple Categories

Replacing the Segal conditions for monoids with those for category objects in the char-
acterization of May-Thomason categories above gives a generalization of the notion of
Φ-operad:

Definition 3.1.7.1. Let Φ be a perfect operator category. A generalized Φ-operad is a functor
π : C→ LΦ such that the following conditions hold:

(i) If φ : I 7→ J is an inert morphism in LΦ and x ∈ CI then there exists a π-coCartesian
morphism x → φ!x.

(ii) For every I ∈ Φ the functor CI → limI 7→A∈GΦ
I/

CA induced by the coCartesian arrows
over I 7→ A is an equivalence of categories.

(iii) Given a morphism φ : I 7→ J in LΦ and y ∈ CJ , the coCartesian morphisms y → yα

induced by the inert morphisms α : J 7→ A in GΦ
J/ give an isomorphism

Cφ(x, y) ∼−→ lim
α

Cα◦φ(x, yα).

Example 3.1.7.2. A generalized O-operad is the same as a virtual double category as defined
by Cruttwell and Shulman [CS10], or fc-multicategory as defined by Leinster [Lei04]. Gen-
eralized O(n)-operads for a general n may be regarded as the most general objects for
which we can define a notion of “lax functor” extending that for n-categories.
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Remark 3.1.7.3. A generalized Φ-operad C → LΦ is (equivalent to the May-Thomason
category of) a Φ-operad precisely when the fibre CA is equivalent to ∗ when A ∈ Φ is an
atom other than ∗.

Definition 3.1.7.4. If C and D are generalized Φ-operads, a functor of generalized Φ-operads
F : C → D is a functor over LΦ that preserves coCartesian arrows lying over inert mor-
phisms in LΦ. A natural transformation of functors between generalized Φ-operads is just
an ordinary natural transformation of such functors. We write OpdΦ,gen for the category
of generalized Φ-operads and functors, and OPDΦ,gen for the 2-category of Φ-operads,
functors, and natural transformations.

Definition 3.1.7.5. A Φ-multiple category is a generalized Φ-operad C → LΦ that is also a
coGrothendieck fibration.

Example 3.1.7.6. An O-multiple category is a double category.

Definition 3.1.7.7. A lax monoidal functor between Φ-multiple categories is just a functor
of generalized Φ-operads; we write MultΦ,lax for the full subcategory of OpdΦ,gen spanned
by the Φ-multiple categories. A strong monoidal functor between Φ-multiple categories is a
functor over LΦ that preserves all coCartesian morphisms; we write MultΦ for the category
of Φ-multiple categories and strong monoidal functors.

Remark 3.1.7.8. An operator morphism does not generally induce a pullback functor on
generalized operads or multiple categories.

3.1.8 Subcategories of Operator Categories

We will now observe that subcategories of perfect operator categories determined by atoms
are often themselves operator categories:

Lemma 3.1.8.1. Let Φ be a perfect operator category. If A is an atom of Φ then A is a
subobject of ∗. In particular, the forgetful functor Φ/A → Φ is fully faithful.

Proof. We have a pullback diagram

A ∗

∗ T

t

s

where t is the special point. Thus a morphism X → A corresponds to a commutative
diagram

X ∗

∗ T.

t

s

Since ∗ is the final object of Φ we see that such a diagram is unique if it exists. In other
words, an object of Φ admits at most one morphism to A.
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Lemma 3.1.8.2. Let Φ be a perfect operator category and A an atom of Φ such that Φ has
A-fibres, i.e. pullbacks along morphisms from A. Then Φ/A is a perfect operator category
with respect to the restriction of T.

Proof. It is clear that Φ/A is an operator category if A-fibres exist in Φ. We have a pullback
diagram

A TA

∗ T.

uA

t

Given a morphism Y → TA the pullback along A ↪→ TA is therefore Yt → A. In the
diagram

Hom(Yt, X) HomT(Y, TX)

Hom(Yt, A) HomT(Y, TA)

the horizontal morphisms are isomorphisms since (–)t is left adjoint to T. Taking fibres at
Yt → A we get a natural isomorphism

HomA(Yt, X)
∼−→ HomTA(Y, TX)

hence pullback along A ↪→ TA is left adjoint to T : Φ/A → Φ/TA. In particular, TA is a
point classifier for Φ/A.

Remark 3.1.8.3. In this case the induced functor LΦ/A → LΦ clearly preserves the inert-
active factorization system.

Restricting a Φ-operad or Φ-monoidal category to Φ/A always gives a trivial Φ/A-
operad. However, in good cases we can restrict generalized Φ-operads to Φ/A:

Definition 3.1.8.4. Let Φ be a perfect operator category. We say an atom A of Φ is clean if

(i) Φ has A-fibres.

(ii) If I is in Φ/A, then G
Φ/A
I/ → GΦ

I/ is an equivalence.

Lemma 3.1.8.5. Let Φ be a perfect operator category, and suppose A is a clean atom in Φ.
Then pullback along the inclusion LΦ/A ↪→ LΦ induced by the inclusion jA : Φ/A ↪→ Φ
gives functors

jA,∗ : OpdΦ,gen → OpdΦ/A,gen,

jA,∗ : MultΦ → MultΦ/A .

Remark 3.1.8.6. These functors have left adjoints jA
! and right adjoints jA

∗ .

Example 3.1.8.7. The atoms CO(n)
k in O(n) are all clean. The subcategory O(n)/Ck can

be identified with O(k), so we have inclusions jn
k : O(k) ↪→ O(n). The corresponding

inclusion �k ↪→ �n is the obvious inclusion of the basic k-categories as n-categories with
no non-trivial i-morphisms for i > k, i.e. jn−k in the notation of §2.2.3.
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3.2 ∞-Operads

In this section we indicate how to extend parts of Lurie’s theory of (symmetric) ∞-operads
to the setting of operator categories. Given the material in §3.1 this is mostly a straightfor-
ward generalization of definitions and results from [Lur11] — the exception is the discus-
sion of wreath products in §3.2.6 which is based on results of Barwick from [Bar13].

3.2.1 Basic Definitions

Let Φ be a perfect operator category. We will now define the basic objects we will study in
this section, as well as the appropriate morphisms between them:

Definition 3.2.1.1. A Φ-∞-operad is an inner fibration p : O⊗ → LΦ such that:

(i) For each inert map φ : I 7→ J in LΦ and every X ∈ O⊗I , there exists a p-coCartesian
edge X → φ!X over φ.

(ii) For every I in LΦ, the map
O⊗I → ∏

i∈|I|
O⊗∗

induced by the inert maps i∨ : I 7→ ∗ is an equivalence.

(iii) Given C ∈ O⊗I and coCartesian morphisms i∨! : C → Ci for each inert map i∨ : I 7→ ∗,
the object C is a p-limit of the Ci’s.

Remark 3.2.1.2. If O⊗ is a Φ-∞-operad we will sometimes denote the fibre O⊗∗ at ∗ ∈ LΦ

by O.

Definition 3.2.1.3. A Φ-monoidal ∞-category is a Φ-∞-operad that is also a coCartesian fi-
bration.

Definition 3.2.1.4. A generalized Φ-∞-operad is an inner fibration p : M→ LΦ such that:

(i) For each inert map φ : I 7→ J in LΦ and every X ∈ MI , there exists a p-coCartesian
edge X → φ!X over φ.

(ii) For every I in LΦ, the map
MI → lim

I 7→A∈GΦ
I/

MA

induced by the inert morphisms I 7→ A is an equivalence.

(iii) Every coCartesian section (GΦ
I/)

/ →M is a p-limit diagram.

Remark 3.2.1.5. Condition (iii) in the definition says, roughly speaking, that given C ∈MI ,
D ∈MJ , and φ : J 7→ I, the map

Mapφ
M(D, C)→ lim

ξ∈GΦ
I/

Mapξφ
M (D, ξ!C)

is an equivalence, where the superscripts denote the obvious fibres over maps in LΦ.

Definition 3.2.1.6. A Φ-multiple ∞-category is a generalized Φ-∞-operad that is also a co-
Cartesian fibration.
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Definition 3.2.1.7. We refer to O-∞-operads as non-symmetric ∞-operads, generalized O-
∞-operads as generalized non-symmetric ∞-operads, O-monoidal ∞-categories as monoidal
∞-categories, and O-multiple ∞-categories as double ∞-categories. Similarly, we refer to F-
∞-operads as symmetric ∞-operads, generalized F-∞-operads as generalized symmetric ∞-
operads, and F-monoidal ∞-categories as symmetric monoidal ∞-categories.

Definition 3.2.1.8. Let π : M → LΦ be a generalized Φ-∞-operad. We say a morphism f
in M is inert if it is coCartesian and π( f ) is an inert morphism in LΦ, and active if π( f ) is
an active morphism in LΦ.

Lemma 3.2.1.9. The active and inert morphisms form a factorization system on any gener-
alized Φ-∞-operad.

Proof. This is a special case of [Lur11, Proposition 2.1.2.5].

Definition 3.2.1.10. Let M,N → LΦ be (generalized) Φ-∞-operads. A morphism of (gen-
eralized) Φ-∞-operads from M to N is a commutative diagram

M N

LΦ

F

such that F takes inert morphisms in M to inert morphisms in N. A morphism of (gen-
eralized) Φ-∞-operads is a fibration of (generalized) Φ-∞-operads if it is also a categorical
fibration, and a coCartesian fibration of (generalized) Φ-∞-operads if it is also a coCartesian
fibration.

Definition 3.2.1.11. If M and N are generalized Φ-∞-operads, then an M-algebra in N is
just a morphism of generalized Φ-∞-operads M → N. We write AlgΦ

M(N) for the full
subcategory of FunLΦ(M,N) spanned by the M-algebras. Similarly, if M and N are gener-
alized Φ-∞-operads over a generalized Φ-∞-operad Q, then we write AlgΦ

M/Q(N) for the
full subcategory of FunQ(M,N) spanned by the functors that preserve inert morphisms.

Remark 3.2.1.12. We will also refer to a morphism of (generalized) Φ-∞-operads between
Φ-monoidal ∞-categories, or more generally Φ-multiple ∞-categories, as a lax monoidal
functor.

Definition 3.2.1.13. A strong monoidal functor between Φ-multiple ∞-categories is a lax
monoidal functor that preserves all coCartesian morphisms. If M and N are Φ-multiple
∞-categories, we write Fun⊗(M,N) for the full subcategory of FunLΦ(M,N) spanned by
the strong monoidal functors.

Definition 3.2.1.14. If M is a generalized Φ-∞-operad, then an M-multiple ∞-category N is
a coCartesian fibration of generalized Φ-∞-operads N → M. Similarly, an M-monoidal ∞-
category is an M-multiple ∞-category E⊗ → M such that E⊗ is a Φ-∞-operad. A strong
monoidal functor between M-multiple ∞-categories is a morphism of generalized Φ-∞-
operads over M that preserves all coCartesian morphisms.

One source of Φ-∞-operads is simplicial Φ-operads:
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Definition 3.2.1.15. A simplicial Φ-operad O is fibrant if all the simplicial sets OI((xi)i∈|I|, y)
where xi, y ∈ obO are Kan complexes.

Lemma 3.2.1.16. Suppose O is a fibrant simplicial Φ-operad, and let O⊗ denote the simpli-
cially enriched version of the May-Thomason category. Then the projection NO⊗ → LΦ is
a Φ-∞-operad.

Proof. As [Lur11, Proposition 2.1.1.27].

3.2.2 Model Categories of ∞-Operads

Using Lurie’s theory of categorical patterns, we now construct ∞-categories and (∞, 2)-
categories of the objects defined above.

Definition 3.2.2.1. Let Φ be a perfect operator category. Write IΦ for the set of inert mor-
phisms in LΦ, MΦ for the set of 2-simplices in NLΦ all of whose edges are inert morphisms,
and for I ∈ Φ let KI be the set of inert morphisms I 7→ ∗ in LΦ. Then we define OΦ to be
the categorical pattern

(NLΦ, IΦ, MΦ, {K/
I → LΦ}).

Lemma 3.2.2.2. A map (X, S) → (LΦ, IΦ) is OΦ-fibred if and only if the underlying map
X → LΦ is a Φ-∞-operad and S is the set of inert morphisms in X.

Definition 3.2.2.3. Let Ogen
Φ be the categorical pattern

(NLΦ, IΦ, MΦ, {(GΦ
I/)

/ → LΦ}).

Lemma 3.2.2.4. A map (X, S) → (LΦ, IΦ) is Ogen
Φ -fibred if and only if the underlying map

X → LΦ is a generalized Φ-∞-operad and S is the set of inert morphisms in X.

Definition 3.2.2.5. Let Φ be a perfect operator category. The categorical patterns OΦ and
O

gen
Φ induce two model structures on (Set+∆ )/(LΦ,IΦ). We call these the Φ-∞-operad model

structure and the generalized Φ-∞-operad model structure, respectively.

Definition 3.2.2.6. The ∞-categories OpdΦ
∞ and OpdΦ,gen

∞ of Φ-∞-operads and generalized
Φ-∞-operads are the ∞-categories associated to the simplicial model categories (Set+∆ )OΦ

and (Set+∆ )Ogen
Φ

, respectively. Since these model categories are enriched in marked simpli-

cial sets by Remark 2.1.12.10, they also define (∞, 2)-categories OPDΦ
∞ and OPDΦ,gen

∞ .

Remark 3.2.2.7. If M and N are generalized Φ-∞-operads, then the ∞-category AlgΦ
M(N)

of M-algebras in N is the mapping ∞-category in the (∞, 2)-category OPDΦ,gen
∞ .

Definition 3.2.2.8. Let Φ be a perfect operator category. Define MΦ to be the categorical
pattern

(NLΦ, (NLΦ)1, (NLΦ)2, {K/
I → LΦ}).

Lemma 3.2.2.9. A map (X, S) → LΦ,] is MΦ-fibred if and only if the underlying map
X → LΦ is a Φ-monoidal ∞-category and S is the set of coCartesian morphisms in X.

Definition 3.2.2.10. Let Φ be a perfect operator category. Define M
gen
Φ to be the categorical

pattern
(NLΦ, (NLΦ)1, (NLΦ)2, {(GΦ

I/)
/ → LΦ}).
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Lemma 3.2.2.11. A map (X, S) → LΦ,] is M
gen
Φ -fibred if and only if the underlying map

X → LΦ is a Φ-multiple ∞-category and S is the set of coCartesian morphisms in X.

Definition 3.2.2.12. Let Φ be a perfect operator category. The categorical patterns MΦ and
M

gen
Φ induce two model structures on (Set+∆ )/LΦ,] . We call these the Φ-monoidal ∞-category

model structure and the Φ-multiple ∞-category model structure, respectively.

Definition 3.2.2.13. The ∞-categories MonΦ
∞ and MultΦ

∞of Φ-monoidal ∞-categories and
Φ-multiple ∞-categories, and strong monoidal functors, are the ∞-categories associated to
the simplicial model categories (Set+∆ )MΦ and (Set+∆ )Mgen

Φ
, respectively. Since these model

categories are enriched in marked simplicial sets by Remark 2.1.12.10, they also define
(∞, 2)-categories MONΦ

∞ and MULTΦ
∞.

Definition 3.2.2.14. If M is a generalized Φ-∞-operad, we write MonΦ,M
∞ for the full sub-

category of CoCart(M) spanned by the M-monoidal ∞-categories, and MultΦ,M
∞ for the full

subcategory spanned by the M-multiple ∞-categories.

Proposition 3.2.2.15. The identity is a right (marked simplicially enriched) Quillen functor
(Set+∆ )OΦ → (Set+∆ )Ogen

Φ
and (Set+∆ )MΦ → (Set+∆ )Mgen

Φ
.

Proof. As [Lur11, Corollary 2.3.2.6].

Corollary 3.2.2.16. The inclusions OpdΦ
∞ → OpdΦ,gen

∞ and MonΦ
∞ → MultΦ

∞ have left ad-
joints OpdΦ,gen

∞ → OpdΦ
∞ and MultΦ

∞ → MonΦ
∞.

Remark 3.2.2.17. There are obvious maps of categorical patterns OΦ → MΦ and O
gen
Φ →

M
gen
Φ . These induce adjunctions

OpdΦ
∞ � MonΦ

∞,

OpdΦ,gen
∞ � MultΦ

∞.

Definition 3.2.2.18. We write MonΦ,lax
∞ and MultΦ,lax

∞ for the full subcategories of OpdΦ
∞

and OpdΦ,gen
∞ spanned by the Φ-monoidal ∞-categories and Φ-multiple ∞-categories, re-

spectively.

Definition 3.2.2.19. Let Φ and Ψ be perfect operator categories, and let f : Φ → Ψ be an
operator morphism. Then f induces a map of categorical patterns OΦ → OΨ, and so an
adjunction

f! : OpdΦ
∞ � OpdΨ

∞ : f ∗.

Example 3.2.2.20. If Φ is a perfect operator category, the operator morphism uΦ induces a
functor uΦ

! : OpdΦ
∞ → OpdF

∞. We write U⊗Φ for the symmetric ∞-operad uΦ
! L

Φ.

Remark 3.2.2.21. An operator morphism does not in general induce functors between ∞-
categories of generalized ∞-operads.

Definition 3.2.2.22. Let Φ be a perfect operator category, and let A be a clean atom in Φ.
Then the inclusion jA : Φ/A → Φ induces a map of categorical patterns Ogen

Φ/A
→ O

gen
Φ , and

so an adjunction
jA
! : OpdΦ/A,gen

∞ → OpdΦ,gen
∞ : jA,∗.

Conjecture 3.2.2.23. The functor jA,∗ induced by a clean atom A in a perfect operator cat-
egory Φ also has a right adjoint jA

∗ : OpdΦ,gen
∞ : OpdΦ/A,gen

∞ .
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Definition 3.2.2.24. By [Lur11, Proposition 6.3.1.14] the ∞-category PrL of presentable ∞-
categories and colimit-preserving functors has a symmetric monoidal structure (PrL)⊗

such that a colimit-preserving functor C⊗D→ E is equivalent to a functor C×D→ E that
is colimit-preserving in each variable. If Φ is a perfect operator category, we write MonΦ,Pr

∞
for the ∞-category AlgΦ

LΦ(uΦ,∗(PrL)⊗). We will refer to objects of MonΦ,Pr
∞ as presentably

Φ-monoidal ∞-categories. These are Φ-monoidal ∞-categories C⊗ → LΦ such that C is a
presentable ∞-category and the operations φ! : C×|I| ' C⊗I → C induced by active mor-
phisms φ : I → ∗ preserve colimits in each variable. Morphisms in MonΦ,Pr

∞ correspond to
strong monoidal functors F⊗ : C⊗ → D⊗ such that F : C→ D preserves colimits.

3.2.3 Trivial Generalized ∞-Operads

Definition 3.2.3.1. Let M be a generalized Φ-∞-operad. Define the generalized Φ-∞-
operad Mtriv by the pullback diagram

Mtriv M

LΦ
int LΦ

τM

This is the trivial generalized Φ-∞-operad over M.

Definition 3.2.3.2. Let Otriv
Φ denote the categorical pattern

(NLΦ
int, (NLΦ

int)1, (NLΦ
int)2, {(GΦ

I/)
/ → LΦ

int}).

Remark 3.2.3.3. An object (X, S) of (Set+∆ )/LΦ,]
int

is thus Otriv
Φ -fibrant if X → LΦ

int is a co-
Cartesian fibration, S is the set of coCartesian edges, and the Segal morphisms XI →
lim(I 7→A)∈GΦ

I/
XA are equivalences.

Under the equivalence between coCartesian fibrations and functors the ∞-category as-
sociated to the model category (Set+∆ )Otriv

Φ
therefore corresponds to the full subcategory of

Fun(LΦ
int, Cat∞) spanned by the functors that are right Kan extensions along the inclusion

γΦ : GΦ → LΦ
int. Thus we have proved the following:

Lemma 3.2.3.4. The ∞-category associated to the model category (Set+∆ )Otriv
Φ

is equivalent
to Fun(GΦ, Cat∞).

The obvious map of categorical patterns Otriv
Φ → O

gen
Φ then induces an adjoint pair of

functors
γΦ

! : Fun(GΦ, Cat∞) � OpdΦ,gen
∞ : γΦ,∗.

Since composition with the inclusion LΦ
int → LΦ takes Otriv

Φ -fibrant objects to O
gen
Φ -

fibrant objects, the left adjoint γΦ
! sends a functor GΦ → Cat∞ to its right Kan extension to

LΦ
int → Cat∞, then to the composite E → LΦ

int → LΦ, where E → LΦ
int is the associated co-

Cartesian fibration. In particular, if M is a generalized Φ-∞-operad, then Mtriv is γΦ
! γ∗ΦM,

and the natural map Mtriv →M is the adjunction morphism.
Taking the (∞, 2)-categories associated to the categorical patterns into account, we get

the following:
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Proposition 3.2.3.5. Let F : GΦ → Cat∞ be a functor, and let F → GΦ be the associated
coCartesian fibration. If M is a generalized Φ-∞-operad let Mglob denote the pullback
of M along GΦ → LΦ. Then there is a natural equivalence between AlgΦ

γΦ
! F(M) and the

full subcategory FuncoCart
GΦ (F,Mglob) of FunGΦ(F,Mglob) spanned by functors that preserve

coCartesian arrows. In particular, if O⊗ is a Φ-∞-operad, then

AlgΦ
γΦ

! F(O
⊗) ' Fun(F(∗),O).

Corollary 3.2.3.6. Let F : GΦ → Cat∞ be a functor, and let F → GΦ be the associated co-
Cartesian fibration. Given a morphism of generalized Φ-∞-operads M → N there is a
natural equivalence between AlgΦ

γΦ
! F/N(M) and the full subcategory FuncoCart

Nglob
(F,Mglob) of

FunNglob(F,Mglob) spanned by functors that preserve coCartesian arrows. In particular, if
O⊗ → P⊗ is a morphism of Φ-∞-operads, then

AlgΦ
γΦ

! F/P⊗(O
⊗) ' FunP(F(∗),O).

Proof. Apply Proposition 3.2.3.5 to identify the fibre in the pullback square

AlgΦ
γΦ

! F/N(M) AlgΦ
γΦ

! F(M)

∗ AlgΦ
γΦ

! F(N).

3.2.4 Monoids and Category Objects

Definition 3.2.4.1. Let Φ be a perfect operator category. Suppose M is a small generalized
Φ-∞-operad and C an ∞-category with small limits. An M-monoid object in C is a functor
F : M→ C such that its restriction F|Mtriv is a right Kan extension of F|M∗ along the inclusion
M∗ ↪→ Mtriv. Write MndΦ

M(C) for the full subcategory of Fun(M,C) spanned by the M-
monoid objects. When M is LΦ we refer to LΦ-monoids as just Φ-monoids and write
MndΦ(C) for MndΦ

LΦ(C).

Definition 3.2.4.2. Let Φ be a perfect operator category. Suppose M is a small generalized
Φ-∞-operad and C is an ∞-category with small limits. An M-category object in C is a functor
F : M → C such that its restriction F|Mtriv is a right Kan extension of F|Mglob along the
inclusion Mglob ↪→Mtriv. Write CatΦ

M(C) for the full subcategory of Fun(M,C) spanned by
the M-category objects. When M is LΦ we refer to LΦ-category objects as just Φ-category
objects and write CatΦ(C) for CatΦ

LΦ(C).

Definition 3.2.4.3. Let Φ be a perfect operator category. A Segal Φ-space is a Φ-category
object in the ∞-category S of spaces. We write SegΦ

∞ for the ∞-category CatΦ
LΦ(S) of Segal

Φ-spaces.

Example 3.2.4.4. Segal O(n)-spaces are precisely �n-spaces as defined in §2.2.3.
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Proposition 3.2.4.5. Suppose C is an ∞-category with small limits, and denote the pullback
of the Cartesian symmetric monoidal structure on C to a Φ-monoidal structure by C× →
LΦ. Then for any generalized Φ-∞-operad M we have AlgΦ

M(C×) ' MndΦ
M(C).

Proof. As [Lur11, Proposition 2.4.2.5].

Proposition 3.2.4.6. Let M be a Φ-multiple ∞-category. We have equivalences MonΦ,M
∞ '

MndΦ
M(Cat∞) and MultΦ,M

∞ ' CatΦ
M(Cat∞).

Proof. We can identify MonΦ,M
∞ with the full subcategory of the ∞-category of coCartesian

fibrations over M spanned by the M-monoidal ∞-categories. Under the equivalence be-
tween coCartesian fibrations over M and functors M → Cat∞ these correspond precisely
to those functors satisfying the condition for a monoid object. Similarly, the double ∞-
categories correspond to the category objects.

Proposition 3.2.4.7. Let Φ be a perfect operator category and suppose M is a generalized

Φ-∞-operad. Pullback along M → uΦ
! M gives an equivalence MonΦ,M

∞ ' MonF,uΦ
! M

∞ . In

particular, we have an equivalence MonΦ
∞ ' MonF,U⊗Φ

∞ .

Proof. Using Proposition 3.2.4.6 we have a sequence of equivalences

MonΦ,M
∞ ' MndΦ

M(Cat∞) ' AlgΦ
M(Cat×∞) ' AlgF

uΦ
! M

(Cat×∞)

' MndF
uΦ

! M
(Cat∞) ' MonΦ,uΦ

! M
∞ .

3.2.5 Filtered Colimits of ∞-Operads

Colimits of (generalized) Φ-∞-operads are in general difficult to describe explicitly. How-
ever, we will now show that filtered colimits can be computed in Cat∞:

Lemma 3.2.5.1. Let q be a diagram in OpdΦ
∞ or OpdΦ,gen

∞ , and let Q be a colimit of q com-
posed with the forgetful functor to Cat∞; there is a canonical map Q→ LΦ. If Q→ LΦ is a
(generalized) Φ-∞-operad, then this is the colimit of q.

Proof. By Example 2.1.12.15, the object Q → LΦ is the colimit of the diagram obtained
by composing q with the inclusion to CoCart(LΦ,LΦ

int). But by Remark 2.1.12.11 the ∞-
categories OpdΦ

∞ and OpdΦ,gen
∞ are localizations of CoCart(LΦ,LΦ

int), so the colimit of q
is obtained by localizing the colimit in CoCart(LΦ,LΦ

int). Thus if this colimit is already
a (generalized) Φ-∞-operad, it is also the colimit in the full subcategory of (generalized)
Φ-∞-operads.

Lemma 3.2.5.2. The forgetful functors OpdΦ
∞, OpdΦ,gen

∞ → Cat∞ preserve filtered colimits.

Proof. Let p be a filtered diagram in OpdΦ
∞ or OpdΦ,gen

∞ , and let P be a colimit of the di-
agram obtained by composing p with the forgetful functor to Cat∞. By Lemma 3.2.5.1 to
prove that P → LΦ is the colimit of the diagram p it suffices to show that P → LΦ is a
(generalized) Φ-∞-operad.

In other words, we must show that P, considered as an object of CoCart(LΦ,LΦ
int), is

local with respect to the generating P-anodyne maps, where P is the categorical pattern
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OΦ or O
gen
Φ . Compact objects in CoCart(LΦ,LΦ

int) are detected in Cat∞ (since the right
adjoint to the forgetful functor, which sends an ∞-category C to C × LΦ → LΦ, clearly
preserves colimits). It is therefore clear from Definition 2.1.12.6 that for each generating P-
anodyne map f : A → B both A and B are compact objects in CoCart(LΦ,LΦ

int). It follows
that in the commutative diagram

Map(B,P) colimα Map(B, p(α))

Map(A,P) colimα Map(A, p(α))

the horizontal maps are equivalences, since p is a filtered diagram. The right vertical map
is also an equivalence, since p(α) is a (generalized) Φ-∞-operad for all α. Thus the left
vertical morphism must also be an equivalence, and so P is local with respect to f . In other
words, P is a (generalized) Φ-∞-operad, as required.

3.2.6 Wreath Products

Definition 3.2.6.1. Suppose Φ and Ψ are perfect operator categories. Let W : LΨ × LΦ →
LΨoΦ be the functor that sends (J, I) to I((J)i∈|I|) and a morphism (ψ : J 7→ J′, φ : I 7→ I′)
to the morphism I((J)i∈|I|) 7→ I′((J′)i∈|I′) corresponding to the morphism I((J)i∈|I|) →
T(I′((J′)i∈|I′)) = TI′((Ki)) (where Ki = TJ′ if i ∈ |I′| ⊆ |TI′| and ∗ otherwise) determined
by φ : I → I′ and Ji → Kφ(i) being either ψ or the unique morphism to ∗, according to
whether φ(i) ∈ |I′| or not.

Definition 3.2.6.2. Suppose Φ and Ψ are perfect operator categories, and suppose X ∈
(Set+∆ )OΦ and Y ∈ (Set+∆ )OΨ . Then we define Y o X ∈ (Set+∆ )OΨoΦ to be the product Y × X,
regarded as a marked simplicial set over LΦoΨ via

Y× X → LΨ ×LΦ W−→ LΨoΦ.

Theorem 3.2.6.3 (Barwick, [Bar13, Theorem 9.6]). The functor

o : (Set+∆ )OΨ × (Set+∆ )OΦ → (Set+∆ )OΨoΦ

is a left Quillen functor in each variable.

Remark 3.2.6.4. Theorem 3.2.6.3 is proved by applying [Lur11, Proposition B.2.9], since
W gives a morphism of categorical patterns OΨ ×OΦ → OΨoΦ. This is not the case if we
consider generalized ∞-operads however, and so this result does not obviously generalize
to this setting.

Consequently, o induces a functor of ∞-categories

o : OpdΨ
∞ ×OpdΦ

∞ → OpdΨoΦ
∞ ,

with right adjoints
AlgΨ,ΨoΦ : (OpdΨ

∞)
op ×OpdΨoΦ

∞ → OpdΦ
∞,
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AlgΦ,ΨoΦ : (OpdΦ
∞)

op ×OpdΨoΦ
∞ → OpdΨ

∞

with respect to the two variables. In other words, if O⊗ is a Φ-∞-operad, P⊗ is a Ψ-∞-
operad, and Q⊗ is a Ψ oΦ-∞-operad, then we have canonical equivalences

AlgΨoΦ
P⊗oO⊗(Q

⊗) ' AlgΦ
O⊗(AlgΨ,ΨoΦ

P⊗ (Q⊗)),

AlgΨoΦ
P⊗oO⊗(Q

⊗) ' AlgΨ
P⊗(AlgΦ,ΨoΦ

O⊗ (Q⊗)).

Lemma 3.2.6.5. The underlying ∞-category of the Ψ-∞-operad AlgΦ,ΨoΦ
O⊗ (Q⊗) can be iden-

tified with AlgΦ
O⊗(i

∗
ΦQ
⊗), and the underlying ∞-category of the Φ-∞-operad AlgΨ,ΨoΦ

P⊗ (Q⊗)

with AlgΨ
P⊗(j∗ΨQ

⊗).

Proof. Considering ∗ = L0 → LΦ as an object of (Set+∆ )OΦ (whose fibrant replacement is
given by LΦ

int) we see that
∗ oO⊗ = iΦ,!O

⊗

as functors (Set+∆ )OΦ → (Set+∆ )OΨoΦ . If C is the underlying ∞-category of AlgΦ,ΨoΦ
O⊗ (Q⊗), we

thus have equivalences

C ' AlgΨ
∗ (AlgΦ,ΨoΦ

O⊗ (Q⊗)) ' AlgΨoΦ
∗oO⊗(Q

⊗) ' AlgΨoΦ
iΦ,!O⊗

(Q⊗) ' AlgΦ
O⊗(i

∗
ΦQ
⊗).

Similarly P⊗ o ∗ = jΨ,!P
⊗, which gives the underlying ∞-category of AlgΨ,ΨoΦ

P⊗ (Q⊗) in the
same way.

Theorem 3.2.6.3 thus gives a “universal property” for the wreath product of ∞-operads.

Proposition 3.2.6.6 (Barwick, [Bar13, Proposition 9.3]). Suppose F : Φ′ → Φ and G : Ψ′ →
Ψ are operator morphisms, O⊗ is a Φ′-∞-operad and P⊗ is a Ψ′-∞-operad. There is a
natural equivalence

(G o F)!(O
⊗ o P⊗) ' G!O

⊗ o F!P
⊗.

Definition 3.2.6.7. If O⊗ and P⊗ are F-∞-operads, we write O⊗ ⊗ P⊗ for uFoF
! (O⊗ o P⊗).

This is the Boardman-Vogt tensor product of F-∞-operads; it is proved in [Lur11, §2.2.5]
that this extends to a symmetric monoidal structure on OpdF

∞.

Corollary 3.2.6.8. Suppose Φ and Ψ are perfect operator categories. Then we have a natu-
ral equivalence U⊗ΨoΦ ' U⊗Ψ ⊗U⊗Φ.

Proof. By definition U⊗Ψ ⊗ U⊗Φ ' uFoF
! (U⊗Ψ o U

⊗
Φ). Now Proposition 3.2.6.6 gives an equiva-

lence
uFoF

! (U⊗Ψ oU
⊗
Φ) ' uFoF

! (uΨ o uΦ)!(L
Ψ oLΦ) ' uΨoΦ

! (LΨoΦ) ' U⊗ΨoΦ.

Corollary 3.2.6.9 (Barwick, [Bar13, Proposition 11.5]). There are equivalences U⊗
O(n) ' E⊗n .

Proof. Combining [Lur11, Proposition 4.1.2.10] and [Lur11, Example 5.1.0.7] gives an equiv-
alence U⊗

O
' E⊗1 . Now Corollary 3.2.6.8 and [Lur11, Theorem 5.1.2.2] give equivalences

U⊗
O(n) ' (U⊗O)

⊗n ' (E⊗1 )
⊗n ' E⊗n .
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Definition 3.2.6.10. An operator morphism f : Φ→ Ψ between perfect operator categories
is étale if the induced functor

f! : OpdΦ
∞ → (OpdΨ

∞)/ f!LΦ

is an equivalence. We say a perfect operator category Φ is étale if the unique operator
morphism uΦ : Φ→ F is étale, i.e. induces an equivalence OpdΦ

∞
∼−→ (OpdF

∞)/U⊗Φ
.

Theorem 3.2.6.11 (Lurie). O is an étale operator category.

Proof. Combine [Lur11, Proposition 4.1.2.10] and [Lur11, Theorem 6.1.1.10].

Conjecture 3.2.6.12. The operator categories O(n) are étale for all n.

In other words, the ∞-category OpdO(n)
∞ of O(n)-∞-operads should be equivalent to

the ∞-category (OpdF
∞)/E⊗n

of symmetric ∞-operads over E⊗n . This may well follow from
the results of [Lur11, §5.1.2], or variants thereof, but we will not consider this further here.

3.2.7 Colimits of Algebras

Ideally we would like to prove that colimits of algebras exist by generalizing Lurie’s theory
of operadic colimits and operadic Kan extensions from symmetric ∞-operads to general
∞-operads, but unfortunately it is not obvious how to carry out such a generalization. In
the next section we will summarize the construction for non-symmetric ∞-operads, where
trivial variants of Lurie’s proofs work. Here, we restrict ourselves to what we can deduce
from Lurie’s results using adjunctions.

We first consider the symmetric case, i.e. the existence of colimits in the ∞-category
AlgF

P⊗/O⊗(C
⊗) where C⊗ is an O⊗-monoidal ∞-category and P⊗ is a symmetric ∞-operad

over the symmetric ∞-operad O⊗. For this we need slight generalizations of the results of
[Lur11, §3.2.3]. We first consider the case of sifted colimits:

Lemma 3.2.7.1 ([Lur11, Lemma 3.2.3.7]). Suppose K is a sifted simplicial set and C⊗ → O⊗

is an O⊗-monoidal ∞-category that is compatible with K-indexed colimits. Then for every
morphism φ : X → Y in O⊗ the associated functor φ! : C⊗X → C⊗Y preserves K-indexed
colimits.

Proposition 3.2.7.2. Suppose K is a sifted simplicial set and C⊗ → O⊗ is an O⊗-monoidal
∞-category that is compatible with K-indexed colimits. Then for any morphism p : M →
O⊗ of generalized symmetric ∞-operads, we have:

(i) The ∞-category FunO⊗(M,C⊗) admits K-indexed colimits.

(ii) A map K. → FunO⊗(M,C⊗) is a colimit diagram if and only if for every X ∈ M the
induced diagram K. → C⊗p(X)

is a colimit diagram.

(iii) The full subcategory AlgF
M/O⊗(C

⊗) of FunO⊗(M,C⊗) is stable under K-indexed colim-
its.

(iv) A map K. → FunO⊗(M,C⊗) is a colimit diagram if and only if, for every X ∈ O⊗〈1〉 and
Y ∈MX, the induced diagram K. → C⊗X is a colimit diagram.
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(v) The restriction functor AlgF
M/O⊗(C

⊗) → FunO⊗〈1〉
(M〈1〉,C

⊗
〈1〉) detects K-indexed colim-

its.

Proof. Sifted simplicial sets are weakly contractible by [Lur09a, Proposition 5.5.8.7] so (i)–
(iii) follow from Theorem 2.1.13.1 (which is implicit in the proof of [Lur11, Proposition
3.2.3.1]). Then (iv) and (v) follow as in the proof [Lur11, Proposition 3.2.3.1].

Lemma 3.2.7.3. Suppose C⊗ is an O⊗-monoidal ∞-category and p : M→ O⊗ is a morphism
of generalized symmetric ∞-operads. Then the forgetful functor

τ∗M : AlgF
M/O⊗(C

⊗)→ AlgF
Mtriv/O⊗(C

⊗) ' FunO⊗〈1〉
(M〈1〉,C)

is conservative.

Proof. The ∞-category AlgF
M/O⊗(C

⊗) is a full subcategory of FunO⊗(M,C⊗). Therefore a
map of algebras f : A→ B is an equivalence in AlgF

M/O⊗(C
⊗) if and only if it is an equiva-

lence in FunO⊗(M,C⊗). Applying Proposition 3.2.7.2 to ∆0-indexed colimits, we see that a
morphism f : A → B in FunO⊗(M,C⊗) is an equivalence if and only if fX : A(X) → B(X)
is an equivalence in C⊗ for all X ∈ M. Thus equivalences are detected after restricting to
Mtriv.

Corollary 3.2.7.4. Suppose C⊗ is an O⊗-monoidal ∞-category compatible with small col-
imits, and P⊗ → O⊗ is a morphism of symmetric ∞-operads. Then the adjunction

τP⊗,! : AlgF
P⊗triv/O⊗(C

⊗) � AlgF
P⊗/O⊗(C

⊗) : τ∗P⊗

is monadic.

Proof. We showed that the functor τ∗
P⊗ is conservative in Lemma 3.2.7.3, and that it pre-

serves sifted colimits in Proposition 3.2.7.2. The adjunction τP⊗,! a τ∗
P⊗ is therefore monadic

by Theorem 2.1.9.5.

Corollary 3.2.7.5. Suppose C⊗ is an O⊗-monoidal ∞-category compatible with small col-
imits and P⊗ → O⊗ is a morphism of symmetric ∞-operads. Then AlgF

P⊗/O⊗(C
⊗) has all

small colimits. Moreover, if C is presentable, so is AlgF
P⊗/O⊗(C

⊗).

Proof. Apply Lemma 2.1.9.6 and Proposition 2.1.9.7 to the monadic adjunction τP⊗,! a τ∗
P⊗ .

Corollary 3.2.7.6. Let Φ be a perfect operator category, and suppose C⊗ is a U⊗Φ-monoidal
∞-category compatible with small colimits. If M is a generalized Φ-∞-operad, then the
∞-category AlgΦ

M(uΦ,∗C⊗) has small colimits. Moreover, if C is presentable, then so is
AlgΦ

M(uΦ,∗C⊗).

Proof. Let M denote the image of M under the left adjoint of the inclusion OpdΦ
∞ ↪→

OpdΦ,gen
∞ . Then the result follows from Corollary 3.2.7.5 since we have an equivalence

AlgΦ
M(uΦ,∗C⊗) ' AlgF

uΦ
! M/U⊗Φ

(C⊗),

where L denotes the localization functor OpdΦ,gen
∞ → OpdΦ

∞.
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Of course, since we in general have no way of accessing uΦ
! M, this does not give us

any description of the colimits in AlgΦ
M(uΦ,∗C⊗). Although every Φ-monoidal ∞-category

is of the form uΦ,∗C for some U⊗Φ-monoidal ∞-category C by Proposition 3.2.4.7, it is also
unsatisfying that we need a hypothesis on C that we do not know how to express in terms
of uΦ,∗C.

3.2.8 The Algebra Fibration

We now construct an ∞-category of algebras for all Φ-∞-operads in a given Φ-monoidal ∞-
category, and then consider its properties as we vary this Φ-monoidal ∞-category. Since
we do not have a theory of operadic colimits for Φ-∞-operads, for most of our results
we are forced to only consider Φ-monoidal ∞-categories that are pulled back from U⊗Φ-
monoidal ∞-categories compatible with small colimits.

Definition 3.2.8.1. Let O⊗ be a Φ-∞-operad. By Remark 2.1.12.10 (Set+∆ )OΦ is a marked
simplicial model category, so we have a functor

(Set+∆ )
op
OΦ
→ Set+∆

represented by O⊗. This restricts to a functor between the fibrant objects in these marked
simplicial model categories; forgetting from the marked simplicial enrichment down to
enrichment in simplicial sets (by forgetting the unmarked 1-simplices) and taking nerves
we get a functor

(OpdΦ
∞)

op → Cat∞;

this sends a non-symmetric ∞-operad P⊗ to AlgΦ
P⊗(O

⊗). We define

AlgΦ(O⊗)→ OpdΦ
∞

to be a Cartesian fibration corresponding to this functor. If V⊗ is a U⊗Φ-monoidal ∞-
category we will abbreviate AlgΦ(uΦ,∗V⊗) to AlgΦ(V⊗).

Remark 3.2.8.2. Similarly, if O⊗ is a Φ-∞-operad and P⊗ is a Φ-∞-operad over O⊗, we can
define a relative algebra fibration AlgΦ

/O⊗(P
⊗) → (OpdΦ

∞)/O⊗ whose fibre at Q⊗ → O⊗ is
AlgΦ

Q⊗/O⊗(P
⊗).

Moreover, if p : M → LΦ is a generalized Φ-∞-operad and N is a generalized Φ-∞-
operad over M we can define AlgΦ

/M(N)→ (OpdΦ,gen
∞ )/M with fibre AlgΦ

Q/M(N) over Q→
M. If O⊗ is a Φ-∞-operad we abbreviate AlgΦ

/M(p∗O⊗) to AlgΦ
/M(O⊗).

Definition 3.2.8.3. For O⊗ a Φ-∞-operad, let

AlgΦ
triv(O

⊗)→ OpdΦ
∞

be the pullback of AlgΦ(O⊗) along the functor γΦ
! γΦ,∗ from OpdΦ

∞ to itself that sends P⊗

to P⊗triv. The natural maps τP⊗ : P⊗triv → P⊗ then induce a functor

τ∗ : AlgΦ(O⊗)→ AlgΦ
triv(O

⊗).

Remark 3.2.8.4. Similarly, if P⊗ → O⊗ is a morphism of Φ-∞-operads, we can define
AlgΦ

/O⊗,triv(O
⊗) as the pullback of AlgΦ

/O⊗(O
⊗)→ (OpdΦ

∞)/O⊗ along the functor that sends
Q⊗ → O⊗ to Q⊗triv → O⊗.
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Lemma 3.2.8.5. Suppose V⊗ is a U⊗Φ-monoidal ∞-category compatible with small colimits.
Then the projection AlgΦ(V⊗)→ OpdΦ

∞ is both Cartesian and coCartesian.

Proof. By [Lur09a, Corollary 5.2.2.5] it suffices to prove that for each f : O⊗ → P⊗ in
OpdΦ

∞ the map f ∗ : AlgΦ
P⊗(V

⊗) → AlgΦ
O⊗(V

⊗) has a left adjoint. This follows from [Lur11,
Corollary 3.1.3.4] after passing to the equivalent ∞-categories of relative algebras for F-∞-
operads.

Lemma 3.2.8.6. Suppose V⊗ is a U⊗Φ-monoidal ∞-category compatible with small colimits.
Then the functor τ∗ has a left adjoint

τ! : AlgΦ
triv(V

⊗)→ AlgΦ(V⊗)

relative to OpdΦ
∞.

Proof. By [Lur11, Proposition 8.3.2.6] it suffices to prove that τ∗ admits fibrewise left ad-
joints, which follows from [Lur11, Corollary 3.1.3.4] after passing to the equivalent ∞-
categories of relative algebras for F-∞-operads, and that τ∗ preserves Cartesian arrows,
which is clear since it is the functor associated to a natural transformation between the
corresponding functors to Cat∞.

Lemma 3.2.8.7. The functor AlgΦ
(–)(V

⊗) : (OpdΦ
∞)

op → Cat∞ takes colimits in OpdΦ
∞ to

limits.

Proof. For any categorical pattern P, the product

Set+∆ × (Set+∆ )P → (Set+∆ )P

is a left Quillen bifunctor by [Lur11, Remark B.2.5]. Thus the induced functor of ∞-
categories preserves colimits in each variable. In particular, the tensor functor

Cat∞ ×OpdΦ
∞ → OpdΦ

∞

preserves colimits in each variable. Now AlgΦ
(–)(–) is defined as a right adjoint to this, so

for any ∞-category C we have

MapCat∞
(C, AlgΦ

colimα O
⊗
α
(P⊗)) ' MapOpdΦ

∞
(C× colim

α
O⊗α ,P⊗)

' MapOpdΦ
∞
(colim

α
(C×O⊗α ),P

⊗)

' lim
α

MapOpdΦ
∞
(C×O⊗α ,P⊗)

' lim
α

MapCat∞
(C, AlgΦ

O⊗α
(P⊗))

' MapCat∞
(C, lim

α
AlgΦ

O⊗α
(P⊗)).

Thus AlgΦ
colimO⊗α

(P⊗) ' limα AlgΦ
O⊗α

(P⊗).

Proposition 3.2.8.8. Suppose V⊗ is a U⊗Φ-monoidal ∞-category compatible with small col-
imits. Then AlgΦ(V⊗) admits small colimits.
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Proof. By Lemma 3.2.8.5, the fibration π : AlgΦ(V⊗)→ OpdΦ
∞ is coCartesian. Moreover, its

fibres have all colimits and the functors f! induced by morphisms f in OpdΦ
∞ preserve col-

imits, being left adjoints. Thus π satisfies the conditions of Lemma 2.1.5.10, which implies
that AlgΦ(V⊗) has small colimits.

Proposition 3.2.8.9. Let P⊗ be a F-∞-operad and suppose V⊗ is a P⊗-monoidal ∞-category
compatible with small colimits. Then the forgetful functor

τ∗ : AlgF
/P⊗(V

⊗)→ AlgF
/P⊗,triv(V

⊗)

preserves filtered colimits.

Proof. Suppose φ : I→ AlgF
/P⊗(V

⊗) is a filtered diagram, sending α ∈ I to

(O⊗α , Aα : O⊗α → V⊗).

Let O⊗ be the colimit of the non-symmetric ∞-operads O⊗α and write fα : O⊗α → O⊗ for the
canonical maps. Then the colimit A of φ in AlgF

/P⊗(V
⊗) can be described as the colimit of

fα,! Aα in AlgF
O⊗/P⊗(V

⊗). Since τ∗
O⊗ preserves sifted colimits, we have

τ∗A ' colim
I

τ∗O⊗( fα)! Aα,

On the other hand, colim τ∗Aα can be described as

colim
I

f triv
α,! τ∗

O⊗α
Aα,

where f triv
α denotes the map O⊗α,triv → O⊗triv induced by fα.

To show that the natural map colim τ∗Aα → τ∗A is an equivalence, it suffices to show
that for each x ∈ O the map

colim
I

f triv
α,! Aα(x)→ colim

I
fα,! Aα(x)

is an equivalence, where the colimits are now occurring in V. The functor f triv
α,! is just a left

Kan extension, so the source of this map can be described as

colim
α∈I

colim
y∈(Oα)/x

Aα(y)

and from [Lur11, Proposition 3.1.1.16] and the definition of free algebras in terms of op-
eradic Kan extensions we know that the target can be described as

colim
α∈I

colim
Y∈(O⊗α )act

/x

A⊗α (Y)

where we write A⊗α (Y) for the coCartesian pushforward of Aα(Y) in V⊗X along the given
active map in P⊗.

We have functors I→ Cat∞ sending α to (Oα)/x and (O⊗α )
act
/x , with natural transforma-

tions to the constant functor at V. Let J,K → I denote coCartesian fibrations associated
to these functors, then by Proposition 2.1.13.2 the map we are interested in is the map on
colimits induced by the obvious functor J → K. It therefore suffices to prove that this
functor is cofinal.
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By [Lur09a, Theorem 4.1.3.1] (“Quillen’s Theorem A” for ∞-categories) it suffices to
show that for each Y ∈ K, the ∞-category JY/ is weakly contractible. We will show that this
∞-category is in fact filtered. To see this we must prove that given a diagram p : K → JY/,
where K is a finite simplicial set, there exists an extension p̄ : K. → JY/ of p.

Since I is filtered, the composite K → Iα/ extends to K. → Iα/; let β be the image of the
cone point ∞. Choosing a coCartesian lift along the maps to β, we may therefore suppose
that p factors through p′ : K → ((O⊗β )act)g!(Y)//x where g : α → β. On the other hand, the
composite K → JY/ → ((O⊗)act) fαY//x corresponds to a diagram K/. → O⊗act. Since filtered
colimits of symmetric ∞-operads are computed in Cat∞ by Lemma 3.2.5.2, this map factors
through O⊗γ,act for some γ, giving a map K → ((O⊗γ )act)Y′//x′ . Since this ∞-category has a
final object, there is an obvious extension q̄ : K. → (O⊗γ,act)Y′//x. Now observe that there
must exist some δ with maps γ→ δ, β→ δ such that the pushforwards of q̄|K and p′ agree.
Then the pushforward of q̄ induces the desired extension K. → JY/.

Corollary 3.2.8.10. Suppose V⊗ is a U⊗Φ-monoidal ∞-category compatible with small col-
imits. Then the forgetful functor τ∗ : AlgΦ(V⊗)→ AlgΦ

triv(V
⊗) preserves filtered colimits.

Proof. We can identify AlgΦ(V⊗) with the pullback of AlgF
/U⊗Φ

(V⊗) along uΦ
! : OpdΦ

∞ →
(OpdF

∞)/U⊗Φ
, and similarly AlgΦ

triv(V
⊗) is the pullback of AlgF

/U⊗Φ ,triv(V
⊗). Since uΦ

! is colimit-
preserving, it is easy to see that this follows from Proposition 3.2.8.9.

Next we observe that the ∞-category AlgΦ(O⊗) is functorial in O⊗:

Definition 3.2.8.11. Since the model category (Set+∆ )OΦ is enriched in marked simplicial
sets, the enriched Yoneda functor

H : (Set+∆ )
op
OΦ
× (Set+∆ )OΦ → Set+∆

sending (O⊗,P⊗) to AlgΦ
O⊗(P

⊗) induces a functor of ∞-categories (OpdΦ
∞)

op ×OpdΦ
∞ →

Cat∞. Let AlgΦ
co → OpdΦ

∞ × (OpdΦ
∞)

op be a Cartesian fibration corresponding to this func-
tor.

The fibre of AlgΦ
co at O⊗ in the second component is AlgΦ(O⊗). Thus the composite

AlgΦ
co → (OpdΦ

∞)
op with projection to the second factor is a Cartesian fibration correspond-

ing to a functor OpdΦ
∞ → Cat∞ that sends O⊗ to AlgΦ(O⊗). Thus we see that AlgΦ(O⊗) is

functorial in O⊗.

Definition 3.2.8.12. Let AlgΦ → OpdO
∞ be a coCartesian fibration corresponding to the

functor O⊗ 7→ AlgΦ(O⊗).

Now we show that the algebra fibration is compatible with products of Φ-∞-operads:

Proposition 3.2.8.13. AlgΦ(–) is lax monoidal with respect to the Cartesian product of
non-symmetric ∞-operads.

Proof. Observe that H is lax monoidal with respect to the Cartesian product of marked
simplicial sets over LΦ. This induces an ((OpdΦ

∞)
op ×OpdΦ

∞)
×-monoid in Cat∞, and so a

Cartesian fibration (AlgΦ
co)
× → (((OpdΦ

∞)
op ×OpdΦ

∞)
×)op. Projecting to the second factor

gives a Cartesian fibration that corresponds to a monoid (OpdΦ
∞)
× → Cat∞, and so a lax

monoidal functor (OpdΦ
∞)
× → Cat×∞. This shows that AlgΦ(–) is a lax monoidal functor.
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This construction gives an “external product”

� : AlgΦ(O⊗)×AlgΦ(P⊗)→ AlgΦ(O⊗ ×LΦ P⊗),

which sends an A⊗-algebra A in O⊗ and a B⊗-algebra B in P⊗ to the fibre product

A⊗ ×LΦ B⊗
A×

LΦ B
−−−−→ O⊗ ×L⊗ P

⊗.

When V is Cartesian monoidal, we can equivalently work with the analogous monoid
fibration:

Definition 3.2.8.14. Suppose V is an ∞-category with finite products. Let MonΦ(V) →
OpdΦ

∞ be the Cartesian fibration with fibre MonΦ
O⊗(V) at O⊗ ∈ OpdΦ

∞. This is equivalent to
AlgΦ(V×) over OpdΦ

∞.

Proposition 3.2.8.15. Suppose V is an ∞-category with finite products. Then the natural
symmetric monoidal structure on AlgΦ(V×) is Cartesian.

Proof. By [Lur11, Corollary 2.4.1.8] it suffices to prove that the unit for this monoidal struc-
ture is the final object, and for each pair of objects A, B the canonical maps

A ' A⊗ ∗ ← A⊗ B→ ∗⊗ B ' B

exhibit A⊗ B as a product of A and B. The equivalence AlgΦ(V×)
∼−→ MonΦ(V) takes the

lax monoidal structure on AlgΦ(–) to the natural lax monoidal structure on MonΦ(–). Sup-
pose given Φ-∞-operads O⊗, P⊗, and Q⊗ and monoids A ∈ MonΦ

O⊗(V), B ∈ MonΦ
P⊗(V),

and C ∈ MonΦ
Q⊗(V). If µ : V × V → V is the Cartesian product functor, the natural

transformation from µ to the projections on the two factors of V× V induce morphisms
B � C → B, C. We must prove that the induced map

Map(A, B � C)→ Map(A, B)×Map(A, C)

is an equivalence. It suffices to show that it induces an equivalence on fibres over each
( f , g) ∈ Map(O⊗,P⊗ ×LΦ Q⊗) ' Map(O⊗,P⊗)×Map(O⊗,Q⊗), i.e. we must show

Map(A, ( f , g)∗(B � C)→ Map(A, f ∗B)×Map(A, f ∗C)

is an equivalence. It is clear that ( f , g)∗(B�C) ' ∆∗( f ∗B� g∗C), where ∆ : O⊗ → O⊗×LΦ

O⊗ is the diagonal map. It follows that the map in question is an equivalence, since maps
of O⊗-monoids are just natural transformations, and ∆∗( f ∗B � g∗C) is the product of the
functors f ∗B and g∗C : O⊗ → V.

3.3 Non-Symmetric ∞-Operads

In this section we discuss versions of some results from [Lur11] for non-symmetric ∞-
operads that we do not know how to extend to more general ∞-operads. We then use
these to say a bit more about algebra fibrations in this context.
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3.3.1 Monoidal Envelopes

Definition 3.3.1.1. Let Act(�op) be the full subcategory of Fun(∆1,�op) spanned by the
active morphisms. If M is a generalized non-symmetric ∞-operad, we define Env(M) to
be the fibre product

M×Fun({0},�op) Act(�op).

Proposition 3.3.1.2. The map Env(M)→ �
op induced by evaluation at 1 in ∆1 is a double

∞-category.

Proof. As [Lur11, Proposition 2.2.4.4].

Proposition 3.3.1.3. Suppose M is a generalized non-symmetric ∞-operad and N is a dou-
ble ∞-category. The inclusion M→ Env(M) induces an equivalence

Fun⊗(Env(M),N)→ AlgO
M(N).

Proof. As [Lur11, Proposition 2.2.4.9].

Corollary 3.3.1.4. Suppose O⊗ is a non-symmetric ∞-operad. Then Env(O⊗) is a monoidal
∞-category, and if C⊗ is a monoidal ∞-category then

Fun⊗(Env(O⊗),C⊗) ' AlgO
O⊗(C

⊗).

Proof. The only object of� that admits an active map from [0] is [0], hence for any general-
ized non-symmetric ∞-operad M we have Env(M)[0] 'M[0]. In particular Env(O⊗)[0] ' ∗,
so the result follows from Proposition 3.3.1.2 and Proposition 3.3.1.3.

Definition 3.3.1.5. If O⊗ is a non-symmetric ∞-operad, the monoidal ∞-category Env(O⊗)
is the monoidal envelope of O⊗. This gives a monoidal structure on the subcategory O⊗act of
O⊗ determined by the active morphisms. We denote this tensor product on O⊗act by ⊕.

3.3.2 Operadic Colimits

Definition 3.3.2.1. Suppose q : O⊗ → �op is a non-symmetric ∞-operad. Given a diagram
p : K → O⊗act we write Oact

p/ := O×O⊗ (O
⊗
act)p/. A diagram p̄ : K. → O⊗act is a weak operadic

colimit diagram if the induced map Oact
p̄/ → Oact

p/ is a categorical equivalence

A diagram p̄ : K. → O⊗act is an operadic colimit diagram if the composite functors

K. → O⊗act
–⊕X−−→ O⊗act

K. → O⊗act
X⊕–−−→ O⊗act

are weak operadic colimit diagrams for all X ∈ O⊗.

Remark 3.3.2.2. By [Lur09a, Proposition 2.1.2.1], the map Oact
p̄/ → Oact

p/ in the definition of
weak operadic colimits is always a left fibration, hence it is a categorical equivalence if and
only if it is a trivial Kan fibration.
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Proposition 3.3.2.3. Let O⊗ be a non-symmetric ∞-operad, and suppose given finitely
many operadic colimit diagrams p̄i : K.

i → O⊗act, i = 0, . . . , n. Let K = ∏i Ki, and let p̄
be the composite

K. →∏
i

K.
i →∏

i
O⊗act ' Env(O⊗)[n]

⊕−→ O⊗act.

Then p̄ is an operadic colimit diagram.

Proof. As [Lur11, Proposition 3.1.1.8].

Definition 3.3.2.4. Suppose V⊗ → �
op is a monoidal ∞-category. If K is a simplicial set,

we say that V⊗ is compatible with K-indexed colimits if

(1) the ∞-category V⊗
[1] has K-indexed colimits (hence so does V⊗

[n] ' ∏V⊗
[1] and φ! pre-

serves them for any inert map φ)

(2) for all (active) maps φ : [n]→ [m] in �op, the map

φ! : ∏V⊗
[1] ' V⊗

[n] → V⊗
[m]

preserves K-indexed colimits separately in each variable

Lemma 3.3.2.5. Suppose K is a sifted simplicial set, and V⊗ → �op is a monoidal ∞-
category that is compatible with K-indexed colimits. Then φ! : V⊗

[n] → V⊗
[m]

preserves K-
indexed colimits for all φ in �op.

Proof. As [Lur11, Lemma 3.2.3.7].

Proposition 3.3.2.6. Let V⊗ be a monoidal ∞-category, and let p̄ : K. → V⊗
[m]

be a diagram.
Then p̄ is a weak operadic colimit diagram if and only if the composite

K. → V⊗
[m]

r!−→ V

is a colimit diagram, where r is the unique active map [m]→ [1].

Proof. This follows as in the proof of [Lur11, Proposition 3.1.1.6].

Corollary 3.3.2.7. Let V⊗ be a monoidal ∞-category, and let p̄ : K. → V⊗
[m]

be a diagram.
Then p̄ is an operadic colimit diagram if and only if for every object Y ∈ V⊗ with image
[n] in �op the composites

K. → V⊗
[m]

–⊕Y−−→ V⊗
[n+m]

r!−→ C

K. → V⊗
[m]

Y⊕–−−→ V⊗
[n+m]

r!−→ V

are colimit diagrams in V, where r is the unique active map [n + m]→ [1].

Proposition 3.3.2.8. Let q : O⊗ → �op be a non-symmetric ∞-operad, and suppose given
a map h̄ : ∆1 × K. → O⊗act; write h̄i := h̄|{i}×K. , i = 0, 1. Suppose that

(a) For every vertex x of K., the restriction h̄|∆1×{x} is a q-coCartesian edge of O⊗.
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(b) The composite map

∆1 × {∞} ↪→ ∆1 × K. h̄−→ O⊗
q−→ �

op

is an equivalence in �op.

Then h̄0 is a weak operadic colimit diagram if and only if h̄1 is a weak operadic colimit
diagram. Moreover, if O⊗ is a monoidal ∞-category, then h̄0 is an operadic colimit diagram
if and only if h̄1 is an operadic colimit diagram.

Proof. As [Lur11, Proposition 3.1.1.15]

Corollary 3.3.2.9. Let C⊗ and D⊗ be monoidal ∞-categories compatible with small colim-
its, and suppose F⊗ : C⊗ → D⊗ is a strong monoidal functor such that F : C→ D preserves
colimits. Then composition with F preserves operadic colimit diagrams.

Proof. Suppose p̄ : K. → C⊗ is an operadic colimit diagram. We wish to show that the
composite map K. → D⊗ is also an operadic colimit diagram. By Proposition 3.3.2.8 we
may assume that p̄ lands in a fibre C⊗

[m]
. We now apply Corollary 3.3.2.7 to conclude that it

suffices to show that the composites

K. → C⊗
[m]
→ D⊗

[m]

–⊕Y−−→ D⊗
[n+m]

r!−→ D

K. → C⊗
[m]
→ D⊗

[m]

Y⊕–−−→ D⊗
[n+m]

r!−→ D

are colimit diagrams. Observe that the functors r!(–⊕ Y) and r!(Y ⊕ –) are equivalently
given by m!(r!(–) ⊕ Y) and m!(Y ⊕ r!(–)), where m : [2] → [1] is the unique active map.
Since m! preserves colimits in each variable in both C⊗ and D⊗, it suffices to show that

K. → D⊗
[m]

r!−→ D

is a colimit diagram. But we have a commutative diagram

C⊗
[m]

D⊗
[m]

C D

F⊗
[m]

r! r!

F

so this is true since K. → C⊗
[m]
→ C is a colimit diagram and F preserves colimits.

Proposition 3.3.2.10. Let q : C⊗ → �op be a monoidal ∞-category compatible with K-
indexed colimits for some simplicial set K. Suppose given a diagram p̄ : K. → C⊗act that
sends the cone point ∞ to an object in C⊗

[1]. Let q̄ : K. → C⊗ be a coCartesian lift of p̄ along
the active maps to [1]. Then p̄ is an operadic colimit diagram if and only if q̄ is a colimit
diagram. In particular, given a diagram p : K. → C⊗act there exists an operadic colimit
diagram p̄ : K. → C⊗act extending p that sends ∞ to an object of C⊗

[1].

Proof. As [Lur11, Proposition 3.1.1.20].
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3.3.3 Operadic Kan Extensions

In this section we work in slightly more generality than for the corresponding results in
[Lur11] — the proof of Lurie’s existence result for operadic Kan extensions can also be used
to construct operadic Kan extensions along a restricted class of morphisms of generalized
non-symmetric ∞-operads that we will now define:

Definition 3.3.3.1. Let C be an ∞-category. A C-family of (generalized) non-symmetric ∞-
operads is a categorical fibration π : O⊗ → �

op × C such that:

(i) For c ∈ C, x ∈ O⊗c , and α an inert morphism in�op from the image of x, there exists a
coCartesian morphism x → y over α in O⊗c .

(ii) For x ∈ O⊗c with image [n] ∈ �op let px : K/
[n] → O⊗ be a coCartesian lift of K/

[n] → �
op

(or consider a lift of GO
[n]/ → �

op for a generalized non-symmetric ∞-operad). Then
px is a π-limit diagram.

(iii) For each c ∈ C, the induced map O⊗c → �op is a (generalized) non-symmetric ∞-
operad.

A ∆1-family will also be referred to as a correspondence of (generalized) non-symmetric ∞-
operads.

Definition 3.3.3.2. A ∆1-family of generalized non-symmetric ∞-operads M → �op × ∆1

has the Kan extension property if given B ∈ M×∆1 {1} and coCartesian morphisms B → Bi
over the inert maps [n] → [1], the induced map (Mact ×∆1 {0})/B → ∏i(Mact ×∆1 {0})/Bi

is a categorical equivalence.

Lemma 3.3.3.3.

(i) Every ∆1-family of non-symmetric ∞-operads has the Kan extension property.

(ii) Suppose F : A → B is a morphism of generalized non-symmetric ∞-operads such
that A[0] is a Kan complex and π0A[0] → π0B[0] is an injection. Then the associated
correspondence M→ �op × ∆1 has the Kan extension property.

Proof. (i) is clear, so we suppose the hypothesis of (ii) holds. Given B ∈ B[n] choose co-
Cartesian maps B → Bi and B → Bi(i+1) along the inert maps [n] → [1] and [n] → [0].
These induce an equivalence

(Aact)/B ' (Aact)/B01 ×(Aact)/B1
· · · ×(Aact)/Bn−1

(Aact)/B(n−1)n
.

But the only active map to [0] is the identity, so (Aact)/X is (A[0])/X for X ∈ B[0]. This is
contractible if A[0] is a Kan complex and there’s only one component that hits X.

Definition 3.3.3.4. Let M→ �op × ∆1 be a correspondence of generalized non-symmetric
∞-operads from A to B satisfying the Kan extension property, let O⊗ be a non-symmetric
∞-operad, and let F̄ : M → O⊗ be a map of generalized non-symmetric ∞-operads. The
map F̄ is an operadic left Kan extension of F = F̄|A if for every B ∈ B[1] the composite map

((Mact)/B ×M A). → (M/B)
. →M

F̄−→ O⊗

is an operadic colimit diagram.
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Theorem 3.3.3.5.

(i) Suppose given a ∆1-family of generalized non-symmetric ∞-operads M → �
op × ∆1

satisfying the Kan extension property, a non-symmetric ∞-operad O⊗ and a commu-
tative diagram of generalized non-symmetric ∞-operad family maps

M×∆1 {0} O⊗

M �
op.

f

Then there exists an operadic left Kan extension f̄ of f if and only if for every B in
M×∆1 {1}, the diagram

(Mact)/B ×∆1 {0} →M×∆1 {0}
f−→ O⊗

can be extended to an operadic colimit diagram lifting

((Mact)/B ×∆1 {0}). →M→ �
op.

(ii) Suppose given a ∆n-family of generalized non-symmetric ∞-operads M→ �op × ∆n

with n ≥ 1 such that all sub-∆1-families have the Kan extension property, a non-
symmetric ∞-operad O⊗ and a commutative diagram of generalized non-symmetric
∞-operad family maps

M×∆n Λn
0 O⊗

M �op

f

such that the restriction of f to M ×∆n ∆{0,1} is an operadic left Kan extension of
f |M×∆n{0}. Then there exists a morphism f̄ : M→ O⊗ extending f .

Proof. As [Lur11, Theorem 3.1.2.3].

3.3.4 Free Algebras

Let A and B be generalized non-symmetric ∞-operads, let O⊗ be a non-symmetric ∞-
operad, and let i : A → B be a map of generalized non-symmetric ∞-operads. Then i
induces by composition a functor i∗ : AlgO

B(O
⊗) → AlgO

A(O
⊗). In this section we will

prove that when O⊗ is a monoidal ∞-category compatible with small colimits and i has
the Kan extension property, then this has a left adjoint i! given by forming free algebras:

Definition 3.3.4.1. Let A and B be generalized non-symmetric ∞-operads, let O⊗ be a
non-symmetric ∞-operad, and let i : A → B be a map of generalized non-symmetric ∞-
operads with the Kan extension property. Suppose A ∈ AlgO

A(O
⊗), B ∈ AlgO

B(O
⊗), and

φ : A→ i∗B is a map of A-algebras in O⊗. For b ∈ B[1], let (Aact)/b := A×B (Bact)/b. Then
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A and B induce maps α, β : (Aact)/b → O⊗act and φ determines a natural transformation
η : α → β. The map β clearly extends to β̄ : (Aact)/b → (O⊗act)/B(b). Since the projection
(O⊗act)/B(b) → O⊗act ×�op

act
(�

op
act)/[n] (where b lies over [n] ∈ �

op) is a right fibration, we
can lift η to an essentially unique η̄ : ᾱ → β̄ (over �op). We say that φ exhibits B as a free
B-algebra generated by A if for every b ∈ B[1] the map ᾱ determines an operadic q-colimit
diagram (Aact)./b → O⊗.

Remark 3.3.4.2. The map φ : A→ i∗B above determines a map

H : (A× ∆1)qA×{1} B→ O⊗ × ∆1.

Choose a factorization of H as

H : (A× ∆1)qA×{1} B
H′−→M

H′′−→ O⊗ × ∆1,

where H′ is a categorical equivalence and M is an ∞-category. The composite map M →
�op × ∆1 exhibits M as a correspondence of non-symmetric ∞-operads. Then the map φ
exhibits B as a free B-algebra generated by A if and only if the composite M → O⊗ is an
operadic left Kan extension.

Proposition 3.3.4.3. Suppose φ : A → i∗B exhibits B as a free B-algebra in O⊗ generated
by A. Then for every B′ ∈ AlgO

B(O
⊗) composition with φ induces a homotopy equivalence

MapAlgO
B(O⊗)(B, B′)→ MapAlgO

A(O⊗)(A, i∗B′).

Proof. As [Lur11, Proposition 3.1.3.2].

Proposition 3.3.4.4. Suppose A ∈ AlgO
A(O

⊗). Then there exists a free B-algebra B gener-
ated by A if and only if for every b ∈ B∗ the induced map

(Aact)/b → Aact
A−→ O⊗

can be extended to an operadic colimit diagram lying over

(Aact)
.
/b → Bact → �

op
act.

Proof. As [Lur11, Proposition 3.1.3.3].

Corollary 3.3.4.5. Let O⊗ be a non-symmetric ∞-operad, and suppose i : A → B is a map
of generalized non-symmetric ∞-operads with the Kan extension property. The functor
i∗ : AlgO

B(O
⊗)→ AlgO

A(O
⊗) admits a left adjoint i!, provided that for every A-algebra A in

O⊗ and every b ∈ B∗, the diagram

(Aact)/b → Aact
A−→ O⊗

can be extended to an operadic colimit diagram lying over

(Aact)
.
/b → Bact → �

op
act.

Proof. As [Lur11, Corollary 3.1.3.4].
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Combining this with Proposition 3.3.2.10 gives the following:

Theorem 3.3.4.6. Suppose C⊗ is a monoidal ∞-category compatible with κ-small colimits
for some uncountable regular cardinal κ, and i : A → B is a map of generalized non-
symmetric ∞-operads satisfying the Kan extension property, with A and B essentially κ-
small. Then the functor i∗ : AlgO

B(C
⊗)→ AlgO

A(C
⊗) admits a left adjoint i!.

Lemma 3.3.4.7. Suppose C⊗ and D⊗ are monoidal ∞-categories compatible with small
colimits, and let F⊗ : C⊗ → D⊗ be a strong monoidal functor such that F : C→ D preserves
colimits. Then the induced functor

F⊗∗ : AlgO
M(C⊗)→ AlgO

M(D⊗)

preserves free algebras, i.e. for all maps of generalized non-symmetric ∞-operads f : N→
M with the Kan extension property the natural map f!F⊗∗ → F⊗∗ f! (adjoint to F⊗∗ →
F⊗∗ f ∗ f! ' f ∗F⊗∗ f!) is an equivalence.

Proof. This follows immediately from Corollary 3.3.2.9.

Suppose M is a generalized non-symmetric ∞-operad such that the inclusion

τM : Mtriv ↪→M

has the Kan extension property; by Lemma 3.3.3.3 this is true if M[0] is a Kan complex. Then
we can give a more explicit description of the left adjoint (τM)!. Recall that by Proposi-
tion 3.2.3.5, if O⊗ is a non-symmetric ∞-operad then we have AlgMtriv

(O⊗) ' Fun(M[1],O).
We can therefore regard (τM)! as a functor

Fun(M[1],O)→ AlgO
M(O⊗).

Definition 3.3.4.8. For [n] ∈ �op and x ∈ M[1], let PM
x,n be the full subcategory of Mtriv ×M

M/y of morphisms y→ x over the active map [n]→ [1].

Suppose C⊗ is a monoidal ∞-category and F : M[1] → C⊗
[1] is a functor. Let F̄ be the

associated Mtriv-algebra in C⊗. We have a canonical map h : PM
x,n × ∆1 → M, a natural

transformation from PM
x,n → Mtriv ↪→ M to the constant functor at x. Since C⊗ → �op

is coCartesian, from F̄ ◦ h we get a coCartesian natural transformation h̄ from a functor
g : PM

x,n → C⊗
[1] to the constant functor at F(x). We let Pn

M,x(F) denote a colimit of g, if it
exists.

Proposition 3.3.4.9. Suppose C⊗ is a monoidal ∞-category compatible with κ-small colim-
its, and M is a κ-small generalized non-symmetric ∞-operad such that τM satisfies the Kan
extension property. Suppose moreover that A is an M-algebra in C⊗ and F : M[1] → C⊗

[1] is

a functor. Then a map F → (τM)∗A is adjoint to an equivalence τM,!F
∼−→ A if and only if

for every x ∈M[1] the maps Pn
M,x(F)→ A(x) exhibit A(x) as a coproduct

ä
[n]∈�op

Pn
M,x(F)→ A(x)

Proof. As [Lur11, Proposition 3.1.3.11].
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3.3.5 Colimits of Algebras in Monoidal ∞-Categories

In this subsection we show that colimits exist in the ∞-categories AlgO
O⊗(C

⊗) for all small
non-symmetric ∞-operads O⊗ when C⊗ is a monoidal ∞-category compatible with small
colimits. We first consider the case of sifted colimits:

Lemma 3.3.5.1. Suppose K is a sifted simplicial set and C⊗ → �
op is a monoidal ∞-

category that is compatible with K-indexed colimits. Then for every φ : [n] → [m] in �op

the associated functor φ! : C⊗
[n] → C⊗

[m]
preserves K-indexed colimits.

Proof. As [Lur11, Lemma 3.2.3.7].

Proposition 3.3.5.2. Suppose K is a sifted simplicial set and C⊗ → �
op is a monoidal

∞-category that is compatible with K-indexed colimits. Then for any generalized non-
symmetric ∞-operad p : M→ �

op, we have:

(i) The ∞-category Fun�op(M,C⊗) admits K-indexed colimits.

(ii) A map K. → Fun�op(M,C⊗) is a colimit diagram if and only if for every X ∈ M the
induced diagram K. → C⊗p(X)

is a colimit diagram.

(iii) The full subcategory AlgO
M(C⊗) of Fun�op(M,C⊗) is stable under K-indexed colimits.

(iv) A map K. → Fun�op(M,C⊗) is a colimit diagram if and only if, for every X ∈ M[1],
the induced diagram K. → C⊗

[1] is a colimit diagram.

(v) The restriction functor AlgO
M(C⊗)→ Fun(M[1],C

⊗
[1]) detects K-indexed colimits.

Proof. Sifted simplicial sets are weakly contractible by [Lur09a, Proposition 5.5.8.7] so (i)–
(iii) follow from Theorem 2.1.13.1 (which is implicit in the proof of [Lur11, Proposition
3.2.3.1]). Then (iv) and (v) follow as in the proof [Lur11, Proposition 3.2.3.1].

We now use this to that show the adjunction τM,! a τ∗M is monadic; we first check τ∗M is
conservative:

Lemma 3.3.5.3. Suppose M is a generalized non-symmetric ∞-operad and C⊗ is a monoidal
∞-category. Then the forgetful functor

τ∗M : AlgO
M(C⊗)→ AlgO

Mtriv
(C⊗) ' Fun(M[1],C)

is conservative.

Proof. The ∞-category AlgO
M(C⊗) is a full subcategory of Fun�op(M,C⊗). Therefore a map

of algebras f : A → B is an equivalence in AlgO
M(C⊗) if and only if it is an equivalence in

Fun�op(M,C⊗). Applying Proposition 3.3.5.2 to ∆0-indexed colimits, we see that a mor-
phism f : A → B in Fun�op(M,C⊗) is an equivalence if and only if fX : A(X) → B(X) is
an equivalence in C⊗ for all X ∈ M. Thus equivalences are detected after restricting to
Mtriv.
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Corollary 3.3.5.4. Suppose C⊗ is a monoidal ∞-category compatible with small colimits,
and M is a small generalized non-symmetric ∞-operad such that τM satisfies the Kan ex-
tension property. Then the adjunction

(τM)! : AlgO
Mtriv

(C⊗) � AlgO
M(C⊗) : (τM)∗

is monadic.

Proof. We showed that the functor τ∗M is conservative in Lemma 3.3.5.3, and that it pre-
serves sifted colimits in Proposition 3.3.5.2. The adjunction (τM)! a τ∗M is therefore monadic
by [Lur11, Theorem 6.2.2.5].

Corollary 3.3.5.5. Suppose C⊗ is a monoidal ∞-category compatible with small colimits
and M is a small generalized non-symmetric ∞-operad such that τM satisfies the Kan ex-
tension property. Then AlgO

M(C⊗) has all small colimits. Moreover, if C is presentable, so
is AlgO

M(C⊗).

Proof. Apply Lemma 2.1.9.6 and Proposition 2.1.9.7 to the monadic adjunction τM,! a τ∗M.

Proposition 3.3.5.6. Let M be a generalized non-symmetric ∞-operad such that τM satisfies
the Kan extension property, and let C⊗ and D⊗ be monoidal ∞-categories compatible with
small colimits. Suppose F⊗ : C⊗ → D⊗ is a strong monoidal functor such that F : C → D

preserves colimits. Then the induced functor

F⊗∗ : AlgO
M(C⊗)→ AlgO

M(D⊗)

preserves colimits.

Proof. Write F⊗,triv
∗ for the induced functor AlgO

Mtriv
(C⊗)→ AlgO

Mtriv
(D⊗). Under the equiv-

alences AlgO
Mtriv

(C⊗) ' Fun(M[1],C) and AlgO
Mtriv

(D⊗) ' Fun(M[1],D) this corresponds to
composition with F, and so preserves colimits. Clearly τ∗MF⊗∗ ' F⊗,triv

∗ τ∗M. Since τ∗M detects
sifted colimits, it follows that F∗ preserves sifted colimits. To prove that it preserves all
colimits, it remains to prove F∗ also preserves finite coproducts.

Since F⊗ is strong monoidal, by Lemma 3.3.4.7 the functor F⊗∗ preserves free algebras,
i.e. F⊗∗ τM,! ' τM,!F

⊗,triv
∗ . Therefore F∗ preseves colimits of free algebras. Let A and B

be objects of AlgO
M(C⊗) and let A• and B• be free resolutions of A and B. Then we have

natural equivalences

F⊗∗ (Aq B) ' F⊗∗ (|A• q B•|) ' |F⊗∗ (A• q B•)| ' |F⊗∗ (A•)q F⊗∗ (B•)|
' |F⊗∗ (A•)| q |F⊗∗ (B•)| ' F⊗∗ (|A•|)q F⊗∗ (|B•|) ' F⊗∗ (A)q F⊗∗ (B),

so F⊗∗ does indeed preserve coproducts.

Proposition 3.3.5.7. Let C⊗ and D⊗ be presentably monoidal ∞-categories and suppose
F⊗ : C⊗ → D⊗ is a strong monoidal functor such that the underlying functor F : C → D

preserves colimits. Let G : D→ C be a right adjoint of F. Then there exists a lax monoidal
functor G⊗ : D⊗ → C⊗ extending G such that for any small non-symmetric ∞-operad O⊗

we have an adjunction

F⊗∗ : AlgO
O⊗(C

⊗) � AlgO
O⊗(D

⊗) : G⊗∗ .
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Proof. By Proposition 3.3.5.6 the functor F⊗∗ is colimit-preserving, and by Corollary 3.3.5.5
these ∞-categories of O⊗-algebras are presentable. It follows by Theorem 2.1.7.10 that F⊗∗
has a right adjoint

RO⊗ : AlgO
O⊗(D

⊗)→ AlgO
O⊗(C

⊗).

Moreover, since F⊗∗ is natural in O⊗ so is RO⊗ , by [Lur09a, Corollary 5.2.2.5]. Taking the
underlying spaces of the ∞-categories of algebras, we see that R(–) induces a natural trans-
formation ρ : Map(–,D⊗)→ Map(–,C⊗) of functors (OpdO

∞)
op → S.

Since D is presentable, it is the union of its full subcategories Dκ of κ-compact objects,
and the ∞-categories Dκ are all small — i.e. D is the colimit of a (large) diagram of small
∞-categories Dκ indexed by cardinals κ. Similarly, if we write D⊗κ for the full subcategory
of D⊗ of objects X ∈ D⊗

[n] whose components Xi ∈ D, i = 1, . . . , n lie in Dκ, then D⊗ is the
union of the small ∞-categories D⊗κ . The ∞-categories D⊗κ are non-symmetric ∞-operads,
though not necessarily monoidal ∞-categories.

Applying RD⊗κ
to the inclusion D⊗κ → D⊗ gives compatible maps G⊗κ : D⊗κ → C⊗.

Combining these we get a map G⊗ : D⊗ → C⊗ from the colimit D⊗, which is clearly a lax
monoidal functor (since each inert map in D⊗ lies in some D⊗κ ).

Since every map O⊗ → D⊗ where O⊗ is a small non-symmetric ∞-operad factors
through D⊗κ for some κ, we see that ρ is given by composition with G⊗. Moreover, the func-
tor R(–) must also be given by composition with G⊗, since AlgO

O⊗(D
⊗) is the ∞-category

associated to the simplicial space Map(O⊗ ⊗ ∆•,D⊗).
It remains to show that G⊗ is indeed a lax monoidal extension of G. This follows

from taking O⊗ to be the trivial non-symmetric ∞-operad �
op
int: then AlgO

�
op
int
(C⊗) ' C

and AlgO

�
op
int
(D⊗) ' D and under these identifications F⊗∗ corresponds to F and G⊗∗ to

the functor G⊗
[1]. Thus G and G⊗

[1] are both right adjoint to F and so must be equivalent.

Definition 3.3.5.8. Suppose V⊗ is a monoidal ∞-category. A unit for V⊗ is an initial object
of AlgO

�op(V⊗).

Proposition 3.3.5.9. If V⊗ is a monoidal ∞-category, then V⊗ has a unit �op → V⊗.

Proof. As [Lur11, Proposition 3.2.1.8].

3.3.6 Approximations of ∞-Operads

In this subsection we use Lurie’s theory of approximations to give a criterion for a map
to be the operadic localization of a generalized non-symmetric ∞-operad. Here we write
L : OpdO,gen

∞ → OpdO
∞ for the left adjoint to the inclusion OpdO

∞ ↪→ OpdO,gen
∞ .

Definition 3.3.6.1. Suppose M is a generalized non-symmetric ∞-operad, O⊗ is a non-
symmetric ∞-operad, and f : M → O⊗ is a fibration of generalized non-symmetric ∞-
operads. Then f is an approximation if for all C ∈ M and α : X → f (C) active in O⊗ there
exists an f -Cartesian morphism ᾱ : X̄ → C lifting α, and a weak approximation if given
C ∈M and α : X → f (C) an arbitrary morphism in O⊗, the full subcategory of

M/C ×O⊗/ f (C)
O⊗X// f (C)
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corresponding to pairs (β : C′ → C, γ : X → f (C′)) with γ inert is weakly contractible.
More generally, a map f : M→ O⊗ is a (weak) approximation if it factors as a composition

M
f ′−→M′

f ′′−→ O⊗

where f ′ is an equivalence of generalized non-symmetric ∞-operads and f ′′ is a categorical
fibration that is a (weak) approximation.

Proposition 3.3.6.2. An approximation is a weak approximation.

Proof. As [Lur11, Lemma 2.3.3.10].

Proposition 3.3.6.3. A fibration of generalized non-symmetric ∞-operads f : M → O⊗,
where O⊗ is a non-symmetric ∞-operad, is a weak approximation if and only if for every
object C ∈M and every active morphism α : X → f (C) in O⊗, the ∞-category

M/C ×O⊗/ f (C)
{X}

is weakly contractible.

Proof. As [Lur11, Proposition 2.3.3.11].

Proposition 3.3.6.4. Let f : M → O⊗ be a fibration of generalized non-symmetric ∞-
operads, where O⊗ is a non-symmetric ∞-operad. If O⊗

[1] is a Kan complex, then f is a
weak approximation if and only if f is an approximation.

Proof. As [Lur11, Corollary 2.3.3.17].

Theorem 3.3.6.5. Suppose f : M→ O⊗ is a weak approximation such that f[1] : M[1] → O⊗
[1]

is a categorical equivalence. Then for any non-symmetric ∞-operad P⊗, the induced map

f ∗ : AlgO
O⊗(P

⊗)→ AlgO
M(P⊗)

is an equivalence.

Proof. As [Lur11, Theorem 2.3.3.23].

Corollary 3.3.6.6. Suppose f : M → O⊗ is a weak approximation such that f[1] is a cate-
gorical equivalence. Then the induced map of non-symmetric ∞-operads LM → O⊗ is an
equivalence.

Proposition 3.3.6.7. Suppose f : O⊗ → P⊗ is a map of non-symmetric ∞-operads, and P⊗
[1]

is a Kan complex. The commutative diagram

AlgO
P⊗(S

×) AlgO
O⊗(S

×)

Fun(P⊗
[1], S) Fun(O⊗

[1], S)

f ∗

τ∗
P⊗ τ∗

O⊗

f ∗[1]
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induces a natural transformation α : τO⊗,! ◦ f ∗[1] → f ∗ ◦ τP⊗,!. If α induces an equivalence

τO⊗,! f ∗[1]A
∼−→ f ∗τP⊗,! A where A is the constant functor P⊗

[1] → S with value ∗, then f is an
approximation.

Proof. As [Lur11, Proposition 2.3.4.8].

Corollary 3.3.6.8. Let O⊗ be a non-symmetric ∞-operad such that O⊗
[1] is a Kan complex,

and let f : M → O⊗ be a map of generalized non-symmetric ∞-operads such that the
functor f[1] : M[1] → O⊗

[1] is an equivalence. Write A for the constant functor from M[1] '
O⊗
[1] to S with value ∗. If the natural map τM,! A → f ∗τO⊗,! A is an equivalence, then f

exhibits O⊗ as the operadic localization of M.

Proof. Applying Proposition 3.3.6.7 to the induced map f ′ : LM → O⊗, we see that this
map is an approximation and induces an equivalence LM[1] → O⊗

[1]. By Theorem 3.3.6.5, it
follows that f ′ is an equivalence.

Corollary 3.3.6.9. Let O⊗ be a non-symmetric ∞-operad such that O⊗
[1] is a Kan complex,

and suppose f : M → O⊗ is a map of generalized non-symmetric ∞-operads such that
f[1] : M[1] → O⊗

[1] is an equivalence. If the induced map (Mact)/x → (O⊗act)/x is cofinal for
all x ∈M[1] ' O⊗

[1], then f exhibits O⊗ as the operadic localization of M.

Proof. By Corollary 3.3.6.8 it suffices to show that the natural map of M-algebras τM,! A →
f ∗τO⊗,! A is an equivalence. Since τ∗M detects equivalences by Lemma 3.3.5.3, to see this it
suffices to show that for all x ∈ M[1] the map of spaces (τM,! A)(x) → (τO⊗,! A)(x) is an
equivalence. Recalling the definition of an operadic Kan extension, we see that this is the
map

colim
(Mact)/x

∗ → colim
(O⊗act)/x

∗

of colimits induced by (Mact)/x → (O⊗act)/x. If this map is cofinal, then the induced map
on colimits is an equivalence.

Remark 3.3.6.10. The same argument shows that for any presentably monoidal ∞-category
V⊗ the natural map τM,!F → f ∗τO⊗,!F is an equivalence for any functor F : M[1] → V. It
follows that τM,! and τO⊗,! are given by the same monad on Fun(M[1],V), hence the ∞-
categories of algebras AlgO

M(V⊗) and AlgO
O⊗(V

⊗) must be equivalent, since they are both
∞-categories of algebras for this monad. An alternative proof of Corollary 3.3.6.9 (not
using the notion of approximation) results by embedding any small non-symmetric ∞-
operad P⊗ in a presentably monoidal ∞-category P̂⊗ and showing that AlgO

M(P⊗) and
AlgO

O⊗(P
⊗) are the same subcategory of AlgO

M(P̂⊗) ' AlgO
O⊗(P̂

⊗).

3.3.7 More on the Algebra Fibration

Here we use the results of this section to say a bit more about algebra fibrations in the non-
symmetric case. First we observe that colimit-preserving strong monoidal functors induce
colimit-preserving functors on algebra fibrations:

Proposition 3.3.7.1. Let C⊗ and D⊗ be monoidal ∞-categories compatible with small col-
imits, and suppose F⊗ : C⊗ → D⊗ is a strong monoidal functor such that F : C → D pre-
serves colimits. Then F⊗∗ : AlgO(C⊗)→ AlgO(D⊗) preserves colimits.
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Proof. Since C⊗ and D⊗ are compatible with small colimits, the projections

AlgO(C⊗), AlgO(D⊗)→ OpdO
∞

are coCartesian fibrations by Lemma 3.2.8.5. Thus a diagram in AlgO(D⊗) is a colimit
diagram if and only if it is a relative colimit diagram whose projection to OpdO

∞ is a colimit
diagram.

It therefore suffices to prove that F∗ preserves coCartesian arrows and preserves colim-
its fibrewise. The former follows from Lemma 3.3.4.7, and the latter we proved in Propo-
sition 3.3.5.6.

Our next goal is to prove that for algebras in monoidal ∞-categories the external prod-
uct � preserves colimits in each variable:

Lemma 3.3.7.2. Suppose C⊗ and D⊗ are monoidal ∞-categories compatible with small
colimits. Then the external product � preserves free algebras, i.e. given non-symmetric ∞-
operads O⊗ and P⊗, algebras A ∈ AlgO

O⊗(C
⊗) andB ∈ AlgO

P⊗(D
⊗), and morphisms of non-

symmetric ∞-operads f : O⊗ → Q⊗ and g : P⊗ → R⊗, we have f! A� g!B ' ( f × g)!(A�B)
in AlgO

Q⊗×
�

opR⊗(C
⊗ ×�op Dop).

Proof. This follows from considering operadic colimits in C⊗ ×�op D⊗.

Proposition 3.3.7.3. Suppose C⊗ and D⊗ are monoidal ∞-categories compatible with small
colimits, and let O⊗ and P⊗ be non-symmetric ∞-operads and A ∈ AlgO

O⊗(C
⊗) an O⊗-

algebra. Then
A � (–) : AlgO

P⊗(D
⊗)→ AlgO

O⊗×
�

opP⊗(C
⊗ ×�op D⊗)

preserves colimits.

Proof. First we consider the case of trival non-symmetric ∞-operads. Suppose A′ is an
O⊗triv-algebra. Then

A′ � – : AlgO
P⊗triv

(D⊗)→ AlgO
O⊗triv×�opP⊗triv

(C⊗ ×�op D⊗)

clearly preserves colimits, since it is equivalent to the the functor

A′|O⊗
[1]
× – : Fun(P⊗

[1],D)→ Fun(O⊗
[1] × P⊗

[1],C×D).

Since we have τ∗C×D(A � B) ' τ∗C A � τ∗DB and τ∗C×D detects sifted colimits, it follows that
A � – preserves sifted colimits.

Next we consider the case where A is a free algebra τC,! A′ where A′ is an O⊗triv-algebra
in C. By Lemma 3.3.7.2 we have

τC,! A′ � τD,!B′ ' τC×D,!(A′ � B′),

so the functor τC,! A � – preserves colimits of free algebras. Thus it must preserve all col-
imits, by monadicity.

Finally, suppose A• is a free resolution of A, and α 7→ Bα is any diagram. Then since �
preserves sifted colimits we have

A � colim Bα ' |A•|� colim Bα ' |A• � colim Bα|.
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From the case of free algebras we then see that this is equivalent to

| colim(A• � Bα)| ' colim |A• � Bα|.

But since � preserves sifted colimits in each variable, this is

colim(|A•|� Bα) ' colim(A � Bα).

Remark 3.3.7.4. The Cartesian product of non-symmetric ∞-operads does not preserve
colimits, so it is not possible for the external product A � (–) to preserve colimits as a
functor AlgO(D⊗)→ AlgO(C⊗ ×�op D⊗).

3.3.8 Modules

Here we briefly introduce a definition of modules over associative algebras, to motivate
our definition of correspondences between enriched ∞-categories. Our definition is a little
different from that used by Lurie, but we will not bother to compare them here.

Definition 3.3.8.1. For [n] in�op the functor Hom�op([n], –) : �op → Set satisfies the Segal
conditions. Let �op[n] → �op be an associated coGrothendieck fibration — then �op[n] is
a double ∞-category. If φ : [m]→ [n] is a morphism in�op, then there is clearly an induced
functor φ : �op[m]→ �op[n].

Remark 3.3.8.2. The objects of �op[n] can be described as sequences (i0, . . . , ik) where 0 ≤
i0 ≤ i1 ≤ · · · ≤ ik ≤ n. There is a unique morphism (i0, . . . , ik) → (iφ(0), . . . , iφ(m)) over
every map φ : [m]→ [k] in �.

Definition 3.3.8.3. Let M be a generalized non-symmetric ∞-operad. A bimodule in M is a
�op[1]-algebra in M. We write Bimod(M) := AlgO

�op[1](M) for the ∞-category of bimod-
ules in M. If M is a bimodule in M then A = d∗1 M and B = d∗0 M are associative algebras in
M, and we say that M is an A-B-bimodule.

Remark 3.3.8.4. Let M : �op[1] → M be a bimodule; then we see that M is determined by
an object M(0, 1) ∈ M with compatible actions of associative algebras M(0, 0) on the left
and M(1, 1) on the right.

Lemma 3.3.8.5. The projection (d∗1 , d∗0) : Bimod(M)→ AlgO
�op(M)×AlgO

�op(M) is a Carte-
sian fibration.

Definition 3.3.8.6. If A, B are associative algebra objects in a generalized non-symmetric
∞-operad M, we write BimodA,B(M) for the fibre of Bimod(M) at (A, B).

Definition 3.3.8.7. For [n] ∈ �op, the inert maps [n]→ [1], [0] determine a map of general-
ized non-symmetric ∞-operads κn : �op

q [n] := �op[1]q�op · · · q�op �op[1] → �op[n]. We
say a�op[n]-algebra X in a generalized non-symmetric ∞-operad M is a tensor product if X
is a left operadic Kan extension of its restriction κ∗nX, i.e. the natural map κn,!κ

∗
nX → X is

an equivalence.

Remark 3.3.8.8. A �op[2]-algebra X is a tensor product if and only if the map

colim
[n]∈�op

rn,!X(0, 1, . . . , 1, 2)→ X(0, 2),
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where rn is the unique active map [n] → [1], is an equivalence (because this copy of �op

is cofinal in the category of active maps to (0, 2)). If M is a monoidal ∞-category this says
that X(0, 2) is given by the bar construction |X(0, 1) ⊗ X(1, 1)⊗• ⊗ X(1, 2)|, which is the
usual definition of the (derived) tensor product of modules.

Definition 3.3.8.9. Let BIMODn(M) be the full subcategory of AlgO
�op[n](M) spanned by the

�
op[n]-algebras that are tensor products. Then BIMOD•(M) is a simplicial ∞-category.

Proposition 3.3.8.10. Suppose V⊗ is a presentably monoidal ∞-category. Then for any
�

op
q [n]-algebra X in V⊗ the adjunction morphism X → κ∗nκn,!X is an equivalence.

Proof. This is a special case of Corollary 4.6.2.6; as the proof is rather complicated (although
slightly simpler than the general case), we will not prove this case separately.

Corollary 3.3.8.11. Suppose V⊗ is a presentably monoidal ∞-category. Then BIMOD•(V⊗)
is a double ∞-category — the double ∞-category of bimodules.

Remark 3.3.8.12. Given associative algebras A, B, C in V⊗, looking at fibres the functor
d1 : BIMOD2(V⊗)→ BIMOD1(V

⊗) gives a tensor product functor

⊗B : BimodA,B(V
⊗)× BimodB,C(V

⊗)→ BimodA,C(V
⊗).

The remaining structure of the double ∞-category BIMOD•(V⊗) shows that these relative
tensor products are coherently associative.

Definition 3.3.8.13. Suppose V⊗ is a presentably monoidal ∞-category, and let A be an
associative algebra object in V⊗. Let BimodA(V

⊗)⊗ be the full subcategory of BIMOD•(V⊗)
of objects over A ∈ AlgO

�op(V⊗) ' BIMOD0(V⊗). This is a monoidal ∞-category — the
monoidal ∞-category of A-bimodules.

Definition 3.3.8.14. Let LM be the full subcategory of�op[1] spanned by objects (0, . . . , 0, 1)
and (0, . . . , 0). This is a double ∞-category. A left module in a generalized non-symmetric
∞-operad M is an LM-algebra in M; we write LMod(M) := AlgO

LM(M) for the ∞-category
of left modules in M. The inclusion l : �op → LM that sends [n] to (1, . . . , 1) is a morphism
of generalized non-symmetric ∞-operads. If M is a left module in M and A = l∗M, then
we say that M is a left A-module.

Lemma 3.3.8.15. Let M be a generalized non-symmetric ∞-operad. The functor

l∗ : LMod(M)→ AlgO
�op(M)

is a Cartesian fibration. We write LModA(M) for the fibre of l∗ at A ∈ AlgO
�op(M) — this is

the ∞-category of left A-modules in M.

Definition 3.3.8.16. Let RM be the full subcategory of�op[1] spanned by objects (0, 1, . . . , 1)
and (1, . . . , 1). This is a double ∞-category. A right module in a generalized non-symmetric
∞-operad M is an RM-algebra in M; we write RMod(M) := AlgO

RM(M) for the ∞-category
of right modules in M. The inclusion r : �op → RM that sends [n] to (0, . . . , 0) is a
morphism of generalized non-symmetric ∞-operads. If M is a right module in M and
A = r∗M, then we say that M is a right A-module.
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Lemma 3.3.8.17. Let M be a generalized non-symmetric ∞-operad. The functor

r∗ : RMod(M)→ AlgO
�op(M)

is a Cartesian fibration. We write RModA(M) for the fibre of r∗ at A ∈ AlgO
�op(M) — this

is the ∞-category of right A-modules in M.
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Chapter 4

Enriched ∞-Categories

In this, the main chapter of this thesis, we introduce our theory of enriched ∞-categories.
In §4.1 we define these objects as algebras for certain non-symmetric ∞-operads and con-
struct an “algebraic” ∞-category of ∞-categories enriched in a fixed monoidal ∞-category
V using the ∞-categories of algebras for these ∞-operads. Then in §4.2 we construct the
correct ∞-category of V-∞-categories by localizing this at the fully faithful and essentially
surjective functors; our main result here is that this is an accessible localization, given by
restricting to certain “complete” objects. §4.3 contains some simple applications of our
setup. We next compare our ∞-categories of enriched ∞-categories to those coming from
model categories of enriched categories and Segal categories in §4.4, where we also show
that iterated enrichment in spaces gives an ∞-category equivalent to that of complete n-
fold Segal spaces. In §4.5 we study natural transformations and functor categories, and
construct an (∞, 2)-category of V-∞-categories, and in §4.6 we introduce correspondences
between V-∞-categories.

4.1 Categorical Algebras

In this section we use the theory of generalized ∞-operads developed in Chapter 3 to
define categorical algebras and construct ∞-categories of these.

In §4.1.1 we construct double ∞-categories�op
C , where C is an ∞-category; we then de-

fine ∞-categories enriched in a monoidal ∞-category V to be�op
X -algebras in V when X is a

space. Next, in §4.1.2 we identify the non-symmetric ∞-operad associated to�op
X with that

arising from a certain simplicial multicategory. Then in §4.1.3 we use the algebra fibration
from §3.3.7 to construct “algebraic” ∞-categories of enriched ∞-categories. Finally in §4.1.4
we prove that ∞-categories enriched in spaces are equivalent to Segal spaces.

4.1.1 The Double ∞-Categories �op
C

Here we introduce double ∞-categories �op
C , observe some of their basic properties, and

define enriched ∞-categories to be algebras for these when C is a space.

Definition 4.1.1.1. Let i denote the inclusion {[0]} ↪→ �op. Taking right Kan extensions
along i gives a functor i∗ : Cat∞ → Fun(�op, Cat∞). If C is an ∞-category we write �op

C →
�op for a coCartesian fibration corresponding to the functor i∗C.
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Remark 4.1.1.2. If C is an ∞-category, then i∗C is the simplicial ∞-category with nth space
C×n+1, face maps given by the appropriate projections, and degeneracies by the appropri-
ate diagonal maps.

Lemma 4.1.1.3. Let C be an ∞-category. The coCartesian fibration �op
C → �

op is a double
∞-category.

Proof. It is clear that i∗C is a category object, hence�op
C is a double ∞-category by Proposi-

tion 3.2.4.6.

Definition 4.1.1.4. Let V⊗ be a monoidal ∞-category. A categorical algebra in V⊗, or V-
enriched ∞-category, or V-∞-category, with underlying space of objects X, is a �op

X -algebra in
V⊗.

Remark 4.1.1.5. This definition clearly does not require V⊗ to be a monoidal ∞-category
— we can define ∞-categories with space of objects X enriched in any generalized non-
symmetric ∞-operad as �op

X -algebras. This gives an ∞-categorical version of Leinster’s
notion of enrichment in an fc-multicategory [Lei02]. However, as there are technical ob-
stacles in the theory of ∞-operads to extending most of our results below beyond the case
of monoidal ∞-categories we will not consider this generalization here.

Definition 4.1.1.6. If C and D are V-∞-categories with spaces of objects X and Y, a V-functor
F from C to D consists of a map of spaces f : X → Y and a map of �op

X -algebras from C to
(�

op
f )∗D, i.e. a natural transformation C→ D ◦�op

f of functors �op
X → V⊗.

Remark 4.1.1.7. The functor
�

op
(–) : Cat∞ → OpdO,gen

∞

is a right adjoint to the functor OpdO,gen
∞ → Cat∞ that sends a generalized non-symmetric

∞-operad M to its fibre M[0] at [0]: it is a composite of the right Kan extension func-
tor i∗ : Cat∞ → Dbl∞, which is right adjoint to the fibre-at-[0] functor, and the inclusion
Dbl∞ ↪→ OpdO,gen

∞ , right adjoint to the monoidal envelope functor, which preserves fibres
at [0] (cf. §3.3.1).

Proposition 4.1.1.8. The functor �op
(–) : Cat∞ → OpdO,gen

∞ preserves sifted colimits.

Proof. Suppose we have a sifted diagram of ∞-categories p : I → Cat∞ with colimit C.
Since �op

C is a generalized non-symmetric ∞-operad, by Lemma 3.2.5.1 it suffices to show
that �op

C is the colimit of �op
p(–) in Cat∞. Now this composite functor

Cat∞
�

op
(–)−−→ OpdO,gen

∞ → Cat∞

factors as
Cat∞

i∗−→ Fun(�op, Cat∞)
∼−→ CoCart(�op)

q−→ Cat∞,

where the rightmost functor q is the forgetful functor that sends a fibration E→ �op to the
∞-category E. Since the ∞-category CoCart(�op) is the ∞-category associated to the model
category (Set+∆ )PcoCart

�
op

, it follows from Example 2.1.12.15 that q preserves colimits. It thus
remains to prove that i∗ preserves sifted colimits. Colimits in functor categories are com-
puted pointwise, so to see this it suffices to show that for each [n] the composite functor
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Cat∞ → Cat∞ induced by composing with evaluation at [n] preserves sifted colimits. This
functor sends D to the product D×(n+1), and so preserves sifted colimits by [Lur09a, Propo-
sition 5.5.8.6], since the Cartesian product of ∞-categories preserves colimits separately in
each variable.

4.1.2 The ∞-Operad Associated to �op
X

By Corollary 3.2.2.16 there is a universal non-symmetric ∞-operad L�op
X receiving a map

from the double ∞-category�op
X . In this subsection we describe a concrete model for L�op

X
as a simplicial multicategory; this will allow us to conclude that the functor that sends X
to L�op

X preserves products.

Remark 4.1.2.1. Although it is obvious that the functor �op
(–) preserves products, since it’s

a right adjoint by Remark 4.1.1.7, it is not clear that the localization functor L : OpdO,gen
∞ →

OpdO
∞ preserves products (and this may well be false in general).

First we define simplicial categories D(C) that model �op
NC when C is a simplicial cate-

gory:

Definition 4.1.2.2. Given a simplicial category C, the simplicial category D(C) has objects
finite sequences (c0, . . . , cn) of objects of C; morphisms are given by

D(C)((c0, . . . , cn), (d0, . . . , dm)) := ä
φ : [m]→[n]

m

∏
i=0

C(cφ(i), di),

with the obvious composition maps induced by those in C.

Proposition 4.1.2.3. Suppose C is a fibrant simplicial category. Then:

(i) The projection ND(C)→ N�op is a coCartesian fibration.

(ii) The fibre ND(C)[0] is equivalent to NC.

(iii) There is a natural map ND(C)→ �
op
NC.

(iv) This map is an equivalence of ∞-categories.

Proof.

(i) It is clear that D(C) → �op is a fibration in the model structure on simplicial cate-
gories; since N is a right Quillen functor, it follows that ND(C) → N�op is a categor-
ical fibration. It therefore suffices to check that ND(C) has coCartesian morphisms.
Given an object C = (c0, . . . , cn) in D(C) and a map φ : [m] → [n] in �, let φ! de-
note the obvious map C → C′ = (cφ(0), . . . , cφ(m)) in D(C). We apply the criterion of
[Lur11, Proposition 2.4.1.10] to see that φ! is coCartesian in ND(C); thus we need to
show that for every X ∈ D(C) over [k] ∈ �op the commutative diagram

D(C)(C′, X) D(C)(C, X)

Hom�op([m], [k]) Hom�op([n], [k])
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is a homotopy Cartesian square of simplicial sets. Since the simplicial category C is
fibrant, so is D(C), hence the vertical maps are Kan fibrations. It therefore suffices
to show that the induced maps on fibres are equivalences, which is clear from the
definition of D(C).

(ii) We have a pullback diagram of simplicial categories

C D(C)

{[0]} �
op.

Since the simplicial nerve is a right adjoint, it follows that NC is the fibre of the map
of simplicial sets ND(C) → �

op at [0]. Since this map is a coCartesian fibration, by
[Lur09a, Corollary 3.3.1.4] NC is also the homotopy fibre in the Joyal model structure.

(iii) By definition�op
NC corresponds to the right Kan extension i∗NC of NC along the inclu-

sion i : {[0]} ↪→ �op. The functor i∗ is right adjoint to the fibre-at-[0] functor i∗, and
from (ii) we know that i∗D(C) ' NC. The adjunction i∗ a i∗ then gives the required
map D(C)→ �

op
NC.

(iv) By [Lur09a, Corollary 2.4.4.4] it suffices to show that for each [n] in �op the induced
map on fibres

(ND(C))[n] → (�
op
NC)[n]

is a categorical equivalence. As in (ii) we can identify the fibre (ND(C))[n] with NC×n,
via the Segal maps, so by naturality we have a commutative diagram

(ND(C))[n] (�
op
N )[n]

NC×n NC×n,

where all but the top horizontal map are known to be categorical equivalences. Hence
this must also be a categorical equivalence, by the 2-out-of-3 property.

Definition 4.1.2.4. Let C be a simplicial category. The simplicial multicategory OC has
objects obC× obC and multimorphism spaces defined by

OC((x0, y1), . . . , (xn−1, yn); (y0, xn)) :=
C(y0, x0)× C(y1, x1)× · · · × C(yn−1, xn−1)× C(yn, xn).

Composition is defined in the obvious way, using composition in C. Write O⊗C for the
associated simplicial May-Thomason category over �op, defined as in Remark 3.1.6.2.

If C is a fibrant simplicial category, then OC is a fibrant simplicial multicategory in the
sense of Definition 3.2.1.15, and so NO⊗C is a non-symmetric ∞-operad by Lemma 3.2.1.16.

102



The simplicial multicategory OC is only a model for �op
NC when NC is a space, but is

easier to define than the version that works more generally. Indeed there is not even a
natural map from D(C) to OC in general; however, we can construct one if C is a simplicial
groupoid. By Remark 2.1.2.10 we may regard a simplicial groupoid C as a simplicial cat-
egory equipped with an involution i that sends a morphism to its inverse. Using this we
can define a functor D(C)→ O⊗C :

Definition 4.1.2.5. Suppose C is a simplicial groupoid. Let Φ : DC → O⊗C be the functor
sending an object (c0, . . . , cn) of D(C) to ((c0, c1), (c1, c2), . . . , (cn−1, cn)) and given on mor-
phisms by applying i on the first factor and inserting identities into the factors that are
missing in D(C) in the obvious way.

Theorem 4.1.2.6. Let C be a fibrant simplicial groupoid. Then the map

NΦ : ND(C)→ NO⊗C

exhibits NO⊗C as the operadic localization of ND(C).

Proof. By Corollary 3.3.6.9 it suffices to show that for all (x, y) ∈ C× C the induced map
g : (ND(C)act)/(x,y) → (N(O⊗C )act)/(x,y) is cofinal. We will prove that g is a categorical
equivalence; to see this we show that g is essentially surjective and induces equivalences
on mapping spaces.

We first observe that g is essentially surjective: an active morphism to (x, y) in O⊗C is
determined by an object T = ((t0, s1), (t1, s2), . . . , (tn−1, sn)) and morphisms α : x → t0,
β1 : s1 → t1, . . . , βn−1 : sn−1 → tn−1, γ : sn → y in C. Such a morphism is in the image of g
if and only if the βi’s are all identities. Since C is by assumption a simplicial groupoid all
morphisms in C are equivalences, and so the morphism

((t0, s1), (s1, s2), . . . , (sn−1, sn))→ ((t0, s1), (t1, s2), . . . , (tn−1, sn))

given by (id, id, β1, id, β2, . . . , id) is an equivalence from an object in the image of g to T.
It remains to show that g is fully faithful. Given objects Z = (z0, . . . , zn) and Z′ =

(z′0, . . . , z′m) in D(C) we must show that for each active map φ : [m]→ [n] in �op the map

Mapφ

ND(C)/(x,y)
(Z, Z′)→ Mapφ

(NO⊗C )/(x,y)
(g(Z), g(Z′))

is an equivalence, where the superscripts denote the fibres over φ in �op. Let α be the
unique active map [1] → [n] in �; then we can identify this as a map of homotopy fibres
from the commutative square

D(C)φ(Z, Z′) D(C)α(Z, (x, y))

(O⊗C )
φ(g(Z), g(Z′)) (O⊗C )

α(g(Z), (x, y)),

where the superscripts again denote the fibres of these spaces over maps in �op. To see
that our map of homotopy fibres is an equivalence it suffices to show that this diagram is
homotopy Cartesian.

103



We have equivalences

D(C)φ(Z, Z′) '
m

∏
i=0

C(zφ(i), z′i),

D(C)α(Z, (x, y)) ' C(z0, x)× C(zn, y),

(O⊗C )
φ(g(Z), g(Z′)) ' C(z′0, zφ(0))× C(zφ(0)+1, zφ(0)+1)× · · · × C(zφ(1)−1, zφ(1)−1)

× C(zφ(1), z′1)× C(z′1, zφ(1))× · · · × C(zφ(m), z′m),

(O⊗C )
α(g(Z), (x, y)) ' C(x, z0)× C(z1, z1)× · · · × C(zn−1, zn−1)× C(zn, y).

Under these equivalences our commutative square is the product of the squares

∗ ∗

C(zj, zj) C(zj, zj)

for j not in the image of φ,

C(z0, z′0)× C(zn, z′m) C(z0, x)× C(zn, y)

C(z′0, z0)× C(zn, z′m) C(x, z0)× C(zn, y),

(i, id) (i, id)

and
C(zφ(i), z′i) ∗

C(zφ(i), z′i)× C(z′i, zφ(i)) C(zφ(i), zφ(i))

(id, i)

for i = 1, . . . , m− 1.
The first squares are obviously homotopy Cartesian, the second is homotopy Carte-

sian since the maps induced by the involution i are equivalences, and the last squares are
homotopy Cartesian since C is a simplicial groupoid.

Corollary 4.1.2.7. Let X be a space and X a fibrant simplicial groupoid such that the Kan
complex NX is equivalent to X. Then the composite map �op

X ' ND(X) → NO⊗X induces
an equivalence of non-symmetric ∞-operads L�op

X
∼−→ NO⊗X .

Corollary 4.1.2.8. L(�op
(–)) : S→ OpdO

∞ preserves products.

Proof. Given spaces X and Y, there exist fibrant simplicial groupoids X and Y such that
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NX ' X and NY ' Y. Then by Corollary 4.1.2.7 we have a commutative diagram

L�op
X×Y L�op

X ×�op L�op
Y

NO⊗X×Y N(O⊗X ×�op O⊗Y )

where the vertical maps are equivalences. It is clear from the definition that OX×Y ' OX ×
OY, so the natural map O⊗X×Y → O⊗X ×�op O⊗Y is a weak equivalence of fibrant simplicial
categories. By the 2-out-of-3 property the top horizontal map in the commutative square
is therefore an equivalence of ∞-categories.

4.1.3 The ∞-Category of Categorical Algebras

In this subsection we use the algebra fibration

AlgO(V⊗)→ OpdO
∞

from §3.2.8 to define an ∞-category of categorical algebras, and then show that this has
various good properties.

Definition 4.1.3.1. Suppose V⊗ is a monoidal ∞-category. The ∞-category AlgO
cat(V

⊗) is
defined by the pullback square

AlgO
cat(V

⊗) AlgO(V⊗)

S OpdO
∞,

L�op
(–)

where the lower horizontal map sends a space X to the non-symmetric ∞-operad L�op
X

associated to the generalized non-symmetric ∞-operad �op
X . The objects of AlgO

cat(V
⊗) are

thus categorical algebras in V⊗ and its 1-morphisms are V-functors as defined above. We
will refer to AlgO

cat(V
⊗) as the ∞-category of categorical algebras.

Remark 4.1.3.2. Since V⊗ is a monoidal ∞-category, and so in particular a non-symmetric
∞-operad, we could equivalently have defined AlgO

cat(V) using the analogue of the al-
gebra fibration over the base OpdO,gen

∞ , since there is natural equivalence AlgO

�
op
X
(V⊗) '

AlgO

L�op
X
(V⊗).

Our next goal is to prove that the ∞-category AlgO
cat(V

⊗) is presentable if V⊗ is pre-
sentably monoidal; to do this we first introduce the ∞-category of graphs in V:

Definition 4.1.3.3. Let V⊗ be a monoidal ∞-category. The ∞-category GraphV
∞ of V-graphs
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is defined by the pullback

GraphV
∞ AlgO

triv(V
⊗)

S OpdO
∞.

L�op
(–)

Thus the fibre of GraphV
∞ at X ∈ S is Fun(X× X,V).

Lemma 4.1.3.4. Suppose V is an accessible ∞-category. Then the ∞-category GraphV
∞ is

accessible.

Proof. Let F → S be the Cartesian fibration associated to the functor S → Cat∞ sending X
to Fun(X,V). Then there is a pullback square

GraphV
∞ F

S S,
∆

where the lower horizontal map is the diagonal functor, sending X to X× X.
The ∞-category F is accessible, and the projection F → S is an accessible functor, by

Theorem 2.1.11.1. Moreover, the functor ∆ clearly preserves sifted colimits, and so is ac-
cesible. The pullback GraphV

∞ is therefore accesible and the projection GraphV
∞ → S is an

accessible functor, by [Lur09a, Proposition 5.4.6.6].

Proposition 4.1.3.5. Suppose V⊗ is a monoidal ∞-category compatible with small colimits.
Then AlgO

cat(V
⊗) has all small colimits. Moreover, if V is presentable then so is AlgO

cat(V
⊗).

Proof. By Lemma 3.2.8.5, the fibration π : AlgO(V⊗) → OpdO
∞ is both Cartesian and co-

Cartesian, hence the same is true of its pullback p : AlgO
cat(V

⊗) → S. Moreover, the fibres
AlgO

�
op
X
(V⊗) have all colimits by Corollary 3.3.5.5 and the functors f! induced by mor-

phisms f in S preserve colimits, being left adjoints. Thus p satisfies the conditions of
Lemma 2.1.5.10, which implies that AlgO

cat(V
⊗) has small colimits.

Since the functor τ∗ : AlgO(V⊗) → AlgO
triv(V

⊗) preserves filtered colimits by Corol-
lary 3.2.8.10, it is clear that so does its pullback U : AlgO

cat(V
⊗) → GraphV

∞. Moreover, the
pullback of the left adjoint τ! of τ∗ gives a functor F : GraphV

∞ → AlgO
cat(V

⊗) left adjoint to
U; this preserves compact objects by Lemma 2.1.7.11.

Every object of AlgO(V⊗) is a (sifted) colimit of objects in the image of τ! : AlgO
triv(V

⊗)→
AlgO(V⊗), hence every object of AlgO

cat(V
⊗) is a (sifted) colimit of objects in the image of

F. The ∞-category GraphV
∞ is accessible by Lemma 4.1.3.4; suppose it is generated un-

der colimits by κ-compact objects. Since F preserves colimits it follows that every object
of AlgO

cat(V
⊗) is the colimit of objects that are the images of κ-compact objects of GraphV

∞
under F. As the functor F preserves κ-compact objects, this means there is a small sub-
category of κ-compact objects of AlgO

cat(V
⊗) — namely the images of κ-compact objects of
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GraphV
∞ — such that every object of AlgO

cat(V
⊗) is a colimit of objects in this ∞-category. In

other words, the ∞-category AlgO
cat(V

⊗) is κ-accessible.

Now we show that AlgO
cat(V

⊗) is functorial in V⊗:

Definition 4.1.3.6. As in §3.2.8, let AlgO
co → OpdO

∞ × (Ôpd
O

∞)
op be a Cartesian fibration

classifying the functor AlgO
(–)(–). Let AlgO

cat,co be the pullback

AlgO
cat,co AlgO

co

S× (M̂on
O,lax
∞ )op OpdO

∞ × (Ôpd
O

∞)
op.

Lemma 4.1.3.7. AlgO
cat(V

⊗) is functorial in V⊗ with respect to lax monoidal functors.

Proof. The composite AlgO
cat,co → (M̂on

O,lax
∞ )op is a Cartesian fibration classifying a functor

O⊗ 7→ AlgO
cat(O

⊗).

Proposition 4.1.3.8. The restriction of AlgO
cat(–) to the ∞-category MonO,Pr

∞ of presentably
monoidal ∞-categories factors through the ∞-category PrL of presentable ∞-categories and
colimit-preserving functors.

Proof. If V⊗ is presentably monoidal, then AlgO
cat(V

⊗) is presentable by Proposition 4.1.3.5.
Moreover, it follows by the same proof as that of Proposition 3.3.7.1 that a strong monoidal
functor F⊗ : V⊗ →W⊗ such that F⊗

[1] preserves colimits induces a colimit-preserving func-

tor AlgO
cat(V

⊗)→ AlgO
cat(W

⊗).

Proposition 4.1.3.9. AlgO
cat(–) is lax monoidal with respect to the Cartesian product of

monoidal ∞-categories.

Proof. The functor L�op
(–) is strong monoidal with respect to the Cartesian products of

spaces and non-symmetric ∞-operads, by Corollary 4.1.2.8. The result therefore follows
by the same proof as that of Proposition 3.2.8.13.

Proposition 4.1.3.10. Suppose V is an ∞-category with finite products. Then the natural
symmetric monoidal structure on AlgO

cat(V
×) is Cartesian.

Proof. This follows from Proposition 3.2.8.15, since AlgO
cat(V

×) is a full monoidal subcate-
gory of AlgO(V×).

Proposition 4.1.3.11. Let V⊗ be a monoidal ∞-category, and suppose that C is a categorical
algebra in V⊗. Then C� – : AlgO

cat(W
⊗)→ AlgO

cat(V
⊗ ×�op W⊗) preserves colimits.

Proof. Since the Cartesian product of spaces preserves colimits in each variable, it suffices
to prove that C� (–) preserves colimits fibrewise, and preserves coCartesian arrows. This
follows from Lemma 3.3.7.2 and Proposition 3.3.7.3.
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Remark 4.1.3.12. This is where we need to know that L�op
(–) preserves products, since the

Cartesian product of non-symmetric ∞-operads doesn’t preserve colimits in each variable.

Corollary 4.1.3.13. The functor AlgO
cat(–) : MonO,Pr

∞ → PrL is lax monoidal with respect to
the tensor product of presentable ∞-categories.

Proof. We have constructed a lax monoidal functor AlgO
cat(–) : (M̂on

O,lax
∞ )× → Ĉat

×
∞. By

Proposition 4.1.3.11 and Propositon 4.1.3.8, the composite (MonO,Pr
∞ )⊗ → (M̂on

O,lax
∞ )× →

Ĉat
×
∞ factors through (PrL)⊗.

Corollary 4.1.3.14. If V⊗ is presentably monoidal, then AlgO
cat(V

⊗) is tensored and coten-
sored over AlgO

cat(S
×).

Definition 4.1.3.15. If V⊗ is a presentably monoidal ∞-category, C is a V-∞-category, and X

is an S-∞-category, then we denote their tensor and cotensor by X⊗C and CX, respectively.

4.1.4 Categorical Algebras in Spaces

In this subsection we prove that the ∞-category AlgO
cat(S

×) of categorical algebras in spaces
is equivalent to the ∞-category SegO

∞ of Segal spaces.

Definition 4.1.4.1. Suppose V is an ∞-category with finite products. The Cartesian fibra-
tion MndO

cat(V)→ S is defined by pulling back MndO(V)→ OpdO
∞ along L�op

(–).

Remark 4.1.4.2. There is a natural equivalence over S between MndO
cat(V) and AlgO

cat(V
×).

We can also define a Cartesian fibration MonO,cat
∞ → S whose fibre at X is the ∞-

category MonO,�op
X

∞ of �op
X -monoidal ∞-categories. Using the equivalence between func-

tors to S and left fibrations, we can identify MndO
cat(S) with the full subcategory LMonO,cat

∞
of MonO,cat

∞ spanned by those �op
X -monoidal ∞-categories that are left fibrations.

Similarly, we can identify the ∞-category SegO
∞ of Segal spaces with the full subcategory

LDbl∞ of Dbl∞ spanned by the double ∞-categories that are left fibrations.
There is an obvious functor

p : LMonO,cat
∞ → LDbl∞

given by composing a �op
X -monoidal ∞-category C → �

op
X that is a left fibration with the

map �op
X → �op, which is also a left fibration and a double ∞-category.

Proposition 4.1.4.3. This functor p : LMonO,cat
∞ → LDbl∞ is an equivalence.

Proof. Let i denote the inclusion {[0]} ↪→ �op. Then there is an adjunction

i∗ : SegO
∞ � S : i∗,

and �op
X is the object of LDbl∞ corresponding to i∗X. Moreover, i∗ is a Cartesian fibration

by Lemma 2.1.6.4; if A ∈ SegO
∞, a Cartesian arrow with target A over X → i∗A is given by

taking the pullback of A→ i∗i∗A along i∗X → i∗i∗A.
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To prove that p is an equivalence, we must show that it is fully faithful and essentially
surjective. We thus have to prove that the map

MapLMonO,cat
∞

(A, B)→ MapLDbl∞
(p(A), p(B))

is an equivalence. Since the functor p clearly preserves Cartesian morphisms over S, it
suffices to show that the induced maps on fibres over f : i∗p(A)→ i∗p(B) are equivalences.
But this is clear: on both sides the fibre at f can be identified with the space of those maps
over �op

i∗A from A to the pullback of B along �op
f that preserve inert morphisms.

It remains to prove that p is essentially surjective. Suppose α : A → �
op is an object

of LDbl∞. The adjunction i∗ a i∗ induces a map h : A → �
op
A[0]

; this is equivalent to a left
fibration by Proposition 2.1.4.4 and so α is in the essential image of p.

Corollary 4.1.4.4. The composite functor AlgO
cat(S

×)→ SegO
∞ is an equivalence.

Remark 4.1.4.5. It is easy to see that the Segal space corresponding to an S-∞-category C is
MapAlgO

cat(S
×)([•],C), cf. the more general discussion in §4.5.1.

4.2 The ∞-Category of Enriched ∞-Categories

Our goal in this section is to prove the first main result of this thesis: we can always lo-
calize the ∞-category of categorical algebras at the fully faithful and essentially surjective
functors by restricting to the full subcategory of complete objects.

In §4.2.1 we define equivalences in enriched ∞-categories and study the classifying
space for equivalences in an enriched ∞-category; the complete enriched ∞-categories are
those whose classifying space of equivalences is equivalent to their underlying space of ob-
jects. Next we study three types of equivalences of V-∞-categories: in §4.2.2 we introduce
fully faithful and essentially surjective functors, in §4.2.3 we consider the local equivalences
(those in the saturated class of a certain map) and finally in §4.2.4 we introduce categorical
equivalences (those with an inverse up to natural equivalence). In §4.2.5 we prove that for
∞-categories enriched in a presentably monoidal ∞-category the fully faithful and essen-
tially surjective functors are the same as the local equivalences, hence the full subcategory
of complete objects gives the localization. In §4.2.6 we extend this result to ∞-categories
enriched in a general large monoidal ∞-category by embedding this in a presentable ∞-
category in a larger universe. Finally in §4.2.7 we prove that the localized ∞-category
inherits the good functoriality properties of AlgO

cat(V
⊗).

4.2.1 Equivalences in Enriched ∞-Categories

In this subsection we study equivalences in enriched ∞-categories. In order to define these
we must first introduce trivial enriched ∞-categories:

Definition 4.2.1.1. Suppose V⊗ is a monoidal ∞-category. By Proposition 3.3.5.9 V⊗ has
a unit, i.e. an initial associative algebra object IV : �op → V⊗. For any space X, the trivial
V-∞-category EV

X with objects X is given by the composite

�
op
X → �

op IV−→ V⊗.
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We will generally drop the V from the notation and just write EX when the monoidal ∞-
category in question is obvious from the context. The V-∞-categories EX are functorial in
X. We abbreviate En := E{0,...,n}; restricting to order-preserving maps between the sets
{0, . . . , n} (n = 0, 1, . . .) we then have a cosimplicial V-∞-category E•.

The identity map �op → �
op is the unique monoidal structure on the point ∗. This

is the unit for the Cartesian product of monoidal ∞-categories, and so for every monoidal
∞-category V⊗ the ∞-category AlgO

cat(V
⊗) is tensored over AlgO

cat(�
op), since AlgO

cat(–) is
lax monoidal by Proposition 4.1.3.9. Clearly the only ∗-∞-categories are of the form E∗X for
spaces X; we can identify the V-∞-category EV

X with the tensor E∗X ⊗ IV:

Lemma 4.2.1.2. For any monoidal ∞-category V⊗ and space X, we have EV
X ' E∗X ⊗ IV.

Moreover, if V⊗ is presentably monoidal (so AlgO
cat(V

⊗) is tensored over AlgO
cat(S

×)), then
EV

X ' ES
X ⊗ IV.

Proof. Considering the construction of the external product in AlgO, we see that E∗X ⊗ IV is
given by

E∗X ×�op IV : �op
X ×�op �

op → �
op ×�op V⊗ ' V⊗.

We can factor this as

�
op
X ×�op �

op E∗X×�op id
−−−−−→ �

op ×�op �
op id×

�
op IV−−−−−→ �

op ×�op V⊗,

which is clearly the same as EV
X.

In the presentable case, we have

ES
X ⊗ IV ' (E∗X ⊗ IS)⊗ IV ' E∗X ⊗ (IS ⊗ IV) ' E∗X ⊗ IV ' EV

X,

since it is easy to see that the tensorings with AlgO
cat(�

op) and AlgO
cat(S

×) are compatible.

Definition 4.2.1.3. Suppose C is a V-∞-category. An equivalence in C is a V-functor E1 → C.

Definition 4.2.1.4. Let C be a V-∞-category. We write ιnC := Map(En,C). Thus ι1C :=
Map(E1,C) is the space of equivalences in C.

Lemma 4.2.1.5. Let C : �op
X → V⊗ be a V-∞-category. Then the map

ι0C := MapAlgO
cat(V

⊗)(E0,C)→ MapS(∗, X) ' X

induced by the Cartesian fibration AlgO
cat(V

⊗)→ S is an equivalence.

Proof. It suffices to check that the homotopy fibres of this map are contractible. By [Lur09a,
Proposition 2.4.4.2] the homotopy fibre at a point p : ∗ → X is

MapAlgO
�

op (V⊗)
(IV, p∗C),

which is contractible since the unit IV is the initial associative algebra object of V.

Definition 4.2.1.6. Let C be a V-∞-category. The classifying space of equivalences ιC of C is
the geometric realization |ι•C| of the simplicial space ι•C := Map(E•,C).
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We regard ιC as the “correct” space of objects of C, and by analogy with Rezk’s notion
of complete Segal space we say that an enriched ∞-category is complete if its underlying
space is the correct one:

Definition 4.2.1.7. A V-∞-category C is complete if the natural map ι0C → ιC is an equiva-
lence.

Our next goal is to prove that the simplicial space ι•C is always a groupoid object; we
prove this by showing that the cosimplicial object E• satisfies the dual condition of being
a cogroupoid object:

Theorem 4.2.1.8. Let V⊗ be a presentably monoidal ∞-category. Then the cosimplicial
object E• is a cogroupoid object.

Proof. We will show that EN qE{N} E{N,N+1} → EN+1 is an equivalence; as the ordering of
the objects is arbitrary, by induction this will imply that E• is a cogroupoid object. Since
V⊗ is presentably monoidal, AlgO

cat(V
⊗) is tensored over AlgO

cat(S
×), and the tensoring is

colimit-preserving in each variable; if therefore suffices to prove this when V⊗ is S×.
Under the equivalence AlgO

cat(S
×) ' SegO

∞, the S-∞-category EX clearly corresponds
to the Segal space i∗X. If S is a set it follows that in the model category structure on
bisimplicial sets modelling Segal spaces, ES corresponds to π∗NIS where IS is the ordinary
category with objects S and a unique morphism between any pair of objects, and π : �op×
�op → �op is the projection onto the first factor.

Define GN := NI{0,...,N}. By [Rez01, Remark 10.2], for 0 < i < n the map π∗Λn
k → π∗∆n

is a Segal equivalence, so (since π∗ is a left adjoint and thus preserves colimits) it suffices
to prove that GN qG{N} G{N,N+1} ↪→ GN+1 is an inner anodyne morphism of simplicial sets.
To prove this we consider a series of nested filtrations of the simplices of GN+1. First we
must introduce some notation:

An n-simplex σ of GN+1 can be described by a list a0 · · · an of elements ai ∈ {0, . . . , N +
1}; it is non-degenerate if ai 6= ai+1 for all i. If σ is a non-degenerate simplex, let β(σ) be
the number of times the sequence jumps between {0, . . . , N} and {N, N + 1}.

Also let τ(σ) be the position of the first N + 1 where the sequence jumps from {N, N +
1} to {0, . . . , N}; if there is no such jump let τ(σ) = ∞ and let τ′(σ) denote the position of
the first jump from {0, . . . , N} to {N, N + 1}. Then define

• If t 6= ∞, let Sb,t
n be the set of non-degenerate n-simplices σ in GN+1 such that β(σ) = b,

τ(σ) = t, and at+1 6= N. Let S1,∞,t
n be the set of non-degenerate n-simplices in GN+1

such that β(σ) = 1, τ(σ) = ∞, τ′(σ) = t, and at−1 6= N.

• If t 6= ∞, let Tb,t
n be the set of non-degenerate (n + 1)-simplices σ in GN+1 such that

β(σ) = b, τ(σ) = t and at+1 = N. Let T1,∞,t
n be the set of non-degenerate (n + 1)-

simplices σ in GN+1 such that β(σ) = 1, τ(σ) = ∞, τ′(σ) = t + 1, and at = N.

Define a filtration
GN qG{N} G{N,N+1} =: F0 ⊆ F1 ⊆ · · · ⊆ GN+1

by letting Fn be the subspace of GN+1 whose non-degenerate simplices are those of F0

together with all the non-degenerate i-simplices for i ≤ n and the (n + 1)-simplices in Tb,t
n

and T1,∞,t
n for all b, t. Then GN+1 =

⋃
n Fn so to prove that GN qG{N} G{N,N+1} ↪→ GN+1 is

inner anodyne it suffices to prove that the inclusions Fn−1 ↪→ Fn are inner anodyne.
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Next define a filtration

Fn−1 = F0
n ⊆ F1

n ⊆ · · · ⊆ Fn−1
n = Fn

by setting Fb
n to be the subspace of Fn containing Fn−1 together with the simplices in Si,t

n

and Ti,t
n for all i ≤ b together with S1,∞,t

n and T1,∞,t
n for all t. To prove that the inclusions

Fn−1 ↪→ Fn are inner anodyne it suffces to prove that the inclusions Fb−1
n ↪→ Fb

n are all
inner anodyne.

Finally define a filtration

Fb−1
n = Fb,n+1

n ⊆ Fb,n
n ⊆ · · · ⊆ Fb,0

n = Fb
n,

by setting Fb,t
n to be the subspace of Fb

n containing Fb−1
n together with the simplices in Sb,j

n

and Tb,j
n (as well as S1,∞,j

n and T1,∞,j
n if b = 1) for all j ≥ t. To prove that the inclusions

Fb−1
n ↪→ Fb

n are inner anodyne it suffices to prove that the inclusions Fb,t−1
n ↪→ Fb,t

n are all
inner anodyne.

Now observe that (for b > 1) if σ ∈ Tb,t
n then dtσ ∈ Sb,t

n and diσ ∈ Fb,t−1
n for i 6= t, and σ

is uniquely determined by dtσ. Thus we get a pushout diagram

äσ∈Tb,t
n

Λn+1
t äσ∈Tb,t

n
∆n+1

Fb,t−1
n Fb,t

n

where we always have 0 < t < n + 1. Thus the bottom horizontal map is inner anodyne.
The proof is similar when b = 1, expect that we must also consider the simplices in S1,∞,t

n ,
so we conclude that GN qG{N} G{N,N+1} → GN+1 is indeed inner anodyne.

Remark 4.2.1.9. We can generalize this to the case of an arbitrary large monoidal ∞-
category V⊗ as follows: by [Lur11, Remark 6.3.1.8] there exists a presentably monoidal
structure on the (very large) presentable ∞-category P̂(V) of presheaves of large spaces on
V, such that the Yoneda embedding V → P̂(V) is strong monoidal. This induces a fully

faithful embedding AlgO
cat(V

⊗) → Âlg
O

cat(P̂(V)
⊗); moreover, if X a small space then EP̂(V)

X

is clearly the image of EV
X. Thus if a diagram of EV

X’s is a colimit diagram in Âlg
O

cat(P̂(V)
⊗)

it must also be a colimit diagram in AlgO
cat(V

⊗) — in particular E•V is a cogroupoid object
in AlgO

cat(V
⊗).

Corollary 4.2.1.10. The simplicial space ι•C is a groupoid object in spaces for all V-∞-
categories C.

Corollary 4.2.1.11. Let C be a V-∞-category. The following are equivalent:

(i) C is complete.

(ii) The natural map s0 : ι0C→ ι1C is an equivalence.

(iii) The simplicial space ι•C is constant (i.e. for every map φ : [n] → [m] in �op the in-
duced map ιnC→ ιmC is an equivalence).
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Proof. Since S is an ∞-topos, the groupoid object ι•C is effective (cf. [Lur09a, Corollary
6.1.3.20]). The result therefore follows from Lemma 2.1.10.4.

We end this subsection by showing that several other reasonable definitions of an
equivalence in an enriched ∞-category are equivalent to the one we introduced above:

Definition 4.2.1.12. Suppose V is presentably monoidal, and let [1]V be the V-∞-category
[1]⊗ IV.

The inclusion [1]V → E1
V corresponding to the map from 0 to 1 induces a map ι1C →

Map([1]V,C). The two inclusions of E0
V into [1]V and E1

V then give a commutative triangle

ι1C Map([1]V,C)

ι0C× ι0C.

Lemma 4.2.1.13. The fibre of Map([1]V,C)x,y at points x, y ∈ ι0C is Map(I,C(x, y)).

Proof. The functor t : S → V given by tensoring with I is a strong monoidal colimit-
preserving functor, and therefore the induced map t∗ : Alg

�
op
{0,1}

(S×) → Alg
�

op
{0,1}

(V⊗) has

by Proposition 3.3.5.7 a right adjoint, given by u∗ where u : V⊗ → S× is a canonical lax
monoidal structure on the functor Map(I, –).

Thus Map([1]V,C)x,y ' Map([1]S, u∗C)x,y. Since [1]S is the free S-∞-category on the
graph having a single edge from 0 to 1 this is given by u∗C(x, y) ' Map(I,C(x, y)).

Definition 4.2.1.14. Suppose C is a V-∞-category and x, y are objects of C. We denote the
subspace of Map(I,C(x, y)) consisting of the components that are in the image of ι1Cx,y
under the induced map on fibres in the diagram above by Map(I,C(x, y))eq.

Proposition 4.2.1.15. The map ι1Cx,y → Map(I,C(x, y))eq is an equivalence.

Proof. Observe (by Proposition 3.3.5.7 again) that it suffices to prove this for the S-∞-
category u∗C obtained by composing with the lax monoidal functor u ' Map(I, –). Using
the identification of S-∞-categories with Segal spaces, this therefore follows from the cor-
responding statement in that setting. The latter is a consequence of [Rez01, Theorem 6.2],
since a map I → C(x, y) is a “homotopy equivalence” in the sense of [Rez01, §5.5] if and
only if it extends to a map from E1

S, by [Rez01, Proposition 11.1])

Proposition 4.2.1.16. Suppose C is a V-∞-category and α : I → C(x, y) is a morphism in C.
Then the following are equivalent:

(i) α is an equivalence (i.e. it extends to a functor E1 → C).

(ii) For all z ∈ ι0C, the composite map

C(y, z)→ (I,C(y, z))→ (C(x, y),C(y, z))→ C(x, z)

given by composing with α is an equivalence.
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(iii) For all z ∈ ι0C, the composite map

C(z, x)→ (C(z, x), I)→ (C(z, x),C(x, y))→ C(x, y)

given by composing with α is an equivalence.

Proof. We will show that (i) is equivalent to (ii); the proof that (i) is equivalent to (iii) is
similar.

Suppose (i) holds, and let α̂ : E1 → C be an equivalence extending α. Composing with
the inverse equivalence from y to x gives an inverse to composition with α, since the com-
posite map is composing with the composite x → y→ x, which is the identity.

Now suppose (ii) holds. Without loss of generality, we may assume that V⊗ is pre-
sentably monoidal (by embedding in a presentably monoidal ∞-category of presheaves in
a larger universe, if necessary); then a map E1

V ' t∗E1
S → C is adjoint to a map E1

S → u∗C
where u : V→ S is again the lax monoidal functor given by Map(I, –). Clearly if (ii) holds
for α then the analogous condition holds for α considered as a morphism in u∗C. It thus
suffices to show that (ii) implies (i) in the case where V is S. We again use the equivalence
between S-∞-categories and Segal spaces; the map α is clearly a “homotopy equivalence”
in the sense of [Rez01, §5.5], and so extends to a map from E1 by [Rez01, Theorem 6.2].

4.2.2 Fully Faithful and Essentially Surjective Functors

In this subsection we introduce the notions of fully faithful and essentially surjective functors
between enriched ∞-categories, and prove their basic properties.

Definition 4.2.2.1. A V-functor is fully faithful if it is a Cartesian morphism in AlgO
cat(V)

with respect to the projection AlgO
cat(V)→ S.

Lemma 4.2.2.2. A V-functor F : C → D is fully faithful if and only if the maps C(x, y) →
D(Fx, Fy) are equivalences in V for all x, y in ι0C.

Proof. If f : X → ι0D is a map of spaces, then a Cartesian morphism over f with target
D has source f ∗D = D ◦�op

f ; in particular a Cartesian morphism induces equivalences
f ∗D(x, y)→ D( f (x), f (y)) for all x, y ∈ X.

Conversely, suppose F : C→ D gives an equivalence on all mapping spaces. The func-
tor F factors as

C
F′−→ (ι0F)∗D F′′−→ D,

where F′′ is Cartesian. The morphism F′ induces an equivalence on underlying spaces and
is given by equivalences C(x, y)→ D(ι0F(x), ι0F(y)) for all x, y ∈ ι0C. By Lemma 3.3.5.3 it
follows that F′ is an equivalence in AlgO

�
op
ι0C
(V⊗) and so in AlgO

cat(V
⊗). In particular F′ is a

Cartesian morphism and hence so is the composite F ' F′′ ◦ F′.

Definition 4.2.2.3. A functor F : C→ D is essentially surjective if the induced map ιC→ ιD
is surjective on π0.

Lemma 4.2.2.4. A functor F : C → D is essentially surjective if and only if for every point
x ∈ ι0D there exists an equivalence E1 → D from x to a point in the image of ι0F.
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Proof. Since ι•D is a groupoid object, the set π0ιD is the quotient of π0ι0D where we iden-
tify two components of ι0D if there exists a point of ι1D, i.e. an equivalence E1 → D,
connecting them. Thus F : C → D is essentially surjective if and only if every point of ι0D
is connected by an equivalence to a point in the image of ι0F.

Proposition 4.2.2.5. If f : C → D is fully faithful and essentially surjective, then the in-
duced map ι f : ιC→ ιD is an equivalence.

Proof. The simplicial spaces ι•C and ι•D are groupoid objects by Corollary 4.2.1.10, and
since f is essentially surjective the map ι f is by definition an effective epimorphism in
the ∞-topos S (since these are precisely the maps of spaces that are surjective on π0). By
[Lur09b, Remark 1.2.17] it therefore suffices to show that the diagram

ι1C ι1D

ι0C× ι0C ι0D× ι0D

is a pullback square. To prove this we must show that given points x, y ∈ ι0C the map
of fibres ι1Cx,y → ι1D f x, f y is an equivalence. By Proposition 4.2.1.15, we can identify this
with the map Map(I,C(x, y))eq → Map(I,D( f x, f y))eq. Since f is fully faithful the map
C(x, y)→ D( f x, f y) is an equivalence in V, hence Map(I,C(x, y))→ Map(I,D(x, y)) is an
equivalence in S. To complete the proof it therefore suffices to show that

Map(I,C(x, y))eq → Map(I,D( f x, f y))eq

is surjective on components — i.e. if α : I → D( f x, f y) is an equivalence then it is the
image of an equivalence β : I → C(x, y). We know that α is the image of some map β, so
it suffices to show that such a β must be an equivalence. By Proposition 4.2.1.16 the map
β is an equivalence if and only if for every z ∈ ι0C the map C(z, x) → C(z, y) induced by
composition with β is an equivalence. Consider the diagram

C(z, x) D( f z, f x)

C(z, y) C( f z, f y).

Since f is fully faithful and α is an equivalence, all morphisms in this diagram except the
left vertical map are known to be equivalences. By the 2-out-of-3 property this must also
be an equivalence for all z, so β is indeed an equivalence.

Corollary 4.2.2.6. A fully faithful functor F is essentially surjective if and only if ιF is an
equivalence.

Corollary 4.2.2.7. A fully faithful and essentially surjective functor between complete V-
∞-categories is an equivalence in AlgO

cat(V
⊗).
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Proof. This follows by combining Lemma 4.2.2.2, Proposition 4.2.2.5, and Lemma 3.3.5.3.

Proposition 4.2.2.8. Fully faithful and essentially surjective functors satisfy the 2-out-of-3
property.

Proof. Suppose we have functors F : C → D and G : D → E of V-∞-categories. There are
three cases to consider:

(1) Suppose F and G are fully faithful and essentially surjective. The map AlgO
cat(V

⊗) →
S is a Cartesian fibration, so composites of Cartesian morphisms are Cartesian and
thus G ◦ F is fully faithful. Since π0ιF and π0ιG are surjective, so is their composite
π0ι(G ◦ F), thus G ◦ F is also essentially surjective.

(2) Suppose G and G ◦ F are fully faithful and essentially surjective. Then F is also Carte-
sian, i.e. fully faithful, by [Lur09a, Proposition 2.4.1.7]. By Proposition 4.2.2.5 the
maps ιG and ι(G ◦ F) are equivalences, hence so is ιF, thus F is also essentially surjec-
tive.

(3) Suppose F and G ◦ F are fully faithful and essentially surjective. By Proposition 4.2.2.5
the maps ιF and ι(G ◦ F) are equivalences, hence so is ιG, thus G is essentially sur-
jective. To see that G is fully faithful, we must show that for any x, y in ι0G the map
D(x, y) → E(Gx, Gy) is an equivalence. But since F is essentially surjective there
exist objects x′, y′ in ι0C and equivalences Fx′ ' x, Fy′ ' y in D. Then we have a
commutative diagram

D(Fx′, Fy′) E(GFx′, GFy′)

D(x, y) E(Gx, Gy),

where the vertical maps are equivalences by Proposition 4.2.1.16. The top horizontal
map is also an equivalence, since in the commutative triangle

C(x′, y′) E(GFx′, GFy′)

D(Fx′, Fy′)

the other two maps are equivalences. Thus by the 2-out-of-3 property the bottom
horizontal map D(x, y) → E(Gx, Gy) is also an equivalence, hence G is fully faithful
by Lemma 4.2.2.2.

Remark 4.2.2.9. Under the equivalence AlgO
cat(S

×) ' SegO
∞, the fully faithful and essen-

tially surjective functors correspond to the Dwyer-Kan equivalences in the sense of [Rez01,
§7.4].
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4.2.3 Local Equivalences

In this subsection we assume that V⊗ is a presentably monoidal ∞-category, so that the
∞-category AlgO

cat(V
⊗) is presentable by Proposition 4.1.3.8.

Definition 4.2.3.1. The local equivalences in AlgO
cat(V

⊗) are the elements of the strongly sat-
urated class of morphisms generated by the map s0 : E1 → E0.

Lemma 4.2.3.2. The following are equivalent, for a V-∞-category C:

(i) C is complete.

(ii) C is local with respect to E1 → E0, i.e. the map Map(E0,C) → Map(E1,C) is an
equivalence.

(iii) For every local equivalence A → B, the induced map Map(B,C) → Map(A,C) is an
equivalence.

Proof. (i) is equivalent to (ii) by Corollary 4.2.1.11, and (ii) is equivalent to (iii) by [Lur09a,
Proposition 5.5.4.15(4)].

Definition 4.2.3.3. Write CatV∞ for the full subcategory of AlgO
cat(V) spanned by the com-

plete V-∞-categories.

Lemma 4.2.3.4. The inclusion CatV∞ ↪→ AlgO
cat(V) has a left adjoint, which exhibits CatV∞ as

the localization of AlgO
cat(V) with respect to the local equivalences.

Proof. The ∞-category AlgO
cat(V

⊗) is presentable by Proposition 4.1.3.8, and the local equiv-
alences are generated by a set of maps. The existence of the left adjoint therefore follows
from [Lur09a, Proposition 5.5.4.15(4)] and Lemma 4.2.3.2.

Lemma 4.2.3.5. The ∞-category CatV∞ is presentable.

Proof. This follows from [Lur09a, Proposition 5.5.4.15(3)].

Lemma 4.2.3.6. CatS∞ is equivalent to Cat∞.

Proof. Under the equivalence AlgO
cat(S

×) ' SegO
∞ of Corollary 4.1.4.4, the subcategory CatS∞

corresponds to the subcategory of complete Segal spaces. By Theorem 2.2.1.9 this is equiv-
alent to Cat∞.

Lemma 4.2.3.7. The map id⊗ s0 : E1 ⊗ E1 → E1 ⊗ E0 ' E1 is a local equivalence.

Proof. It suffices to prove this when V⊗ is S×. We can identify E1 ⊗ E1 with E{0,1}×{0,1} '
E3; under this identification the map E1 ⊗ E1 → E1 is induced by the map {0, 1, 2, 3} →
{0, 1} sending 0, 1 to 0 and 2, 3 to 1. Using the equivalence

E3 ' E{0,1} qE{1} E{1,2} qE{2} E{2,3}

this corresponds to s0 ∪ id ∪ s0 : E1 qE0 E1 qE0 E1 → E0 qE0 E1 qE0 E0, which is clearly in
the strongly saturated class generated by s0.

Lemma 4.2.3.8. If C is a complete V-∞-category, then the V-∞-category CE1
is also com-

plete.
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Proof. We need to show that the natural map ι0C
E1 → ι1C

E1
is an equivalence. Using the

adjunction between cotensoring and tensoring we can identify this with the map

Map(E1,C)→ Map(E1 ⊗ E1,C)

induced by composition with id⊗ s0. This map is an equivalence since C is complete and
id⊗ s0 is a local equivalence by Lemma 4.2.3.7.

4.2.4 Categorical Equivalences

In this subsection we study categorical equivalences between enriched ∞-categories, which
are functors with an inverse up to natural equivalence. We show that categorical equiva-
lences are always local equivalences as well as fully faithful and essentially surjective.

Definition 4.2.4.1. Suppose A and B are V-∞-categories and f , g : A → B are V-functors.
A natural equivalence from f to g is a functor H : A⊗ E1 → B such that H ◦ (id⊗ d1) ' f
and H ◦ (id⊗ d0) ' g. We say that f and g are naturally equivalent if there exists a natural
equivalence from f to g.

Definition 4.2.4.2. A functor f : A → B is a categorical equivalence if there exists a functor
g : B→ A and natural equivalences from f ◦ g to idB and from g ◦ f to idA. Such a functor
g is called a pseudo-inverse of f .

Proposition 4.2.4.3. Categorical equivalences are fully faithful and essentially surjective.

Proof. Suppose f : C → D is a categorical equivalence, and let g : D → C be a pseudo-
inverse with natural equivalences φ : C⊗ E1 → C from g ◦ f to idC and ψ : D⊗ E1 → D

from f ◦ g to idD. For each object x in ι0D the natural equivalence ψ supplies an equiv-
alence between x and f g(x), which is in the image of f , so f is essentially surjective by
Lemma 4.2.2.4.

By Lemma 4.2.2.2, to prove that F is fully faithful it suffices to show that for all x, y in
ι0C the induced map α : C(x, y)→ D( f x, f y) is an equivalence.

The natural equivalence φ supplies an equivalence β : C(g f x, g f y) ∼−→ C(x, y) and a
commutative diagram

C(x, y) C(g f x, g f y)

C(x, y).

id β

The top map is the composite

C(x, y) α−→ D( f x, f y)
γ−→ C(g f x, g f y),

and so we get that β ◦ γ ◦ α ' id.
From f ◦ φ we likewise get an equivalence ε : D( f g f x, f g f y) ∼−→ D( f x, f y) and a com-
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mutative diagram

D( f x, f y) D( f g f x, f g f y)

D( f x, f y).

id ε

where the top map is the composite

D( f x, f y)
γ−→ C(g f x, g f y) δ−→ D( f g f x, f g f y),

and so ε ◦ δ ◦ γ ' id. Moreover, we have a commutative square

C(g f x, g f y) D( f g f x, f g f y)

C(x, y) D( f x, f y),

δ

β ε

α

and so we get α ◦ β ◦ γ ' ε ◦ δ ◦ γ ' id. This shows that β ◦ γ is an inverse of α, and so α
is an equivalence in V.

Corollary 4.2.4.4. A categorical equivalence between complete V-∞-categories is an equiv-
alence.

Proof. Combine Proposition 4.2.4.3 and Corollary 4.2.2.7.

Lemma 4.2.4.5. Categorical equivalences satisfy the 2-out-of-3 property.

Proof. Suppose we have functors f : C → D and f ′ : D → E. There are three cases to
consider:

(1) Suppose f has a pseudo-inverse g with natural equivalences φ : C ⊗ E1 → C and
ψ : D⊗ E1 → D, and f ′ has a pseudo-inverse g′ with natural equivalences φ′ : D⊗
E1 → D and ψ′ : E⊗ E1 → E. Then g ◦ φ′ ◦ ( f ⊗ id) is a natural equivalence from
gg′ f ′ f to g f . Combining this with φ gives a map (C⊗ E1)qC⊗E0 (C⊗ E1) → C. But
tensoring with C preserves colimits, and E1 qE0 E1 ' E2 by Theorem 4.2.1.8, so we
get a map C⊗ E2 → C. Composing with id⊗ d1 : C⊗ E1 → C⊗ E2 we get a natural
equivalence from gg′ f ′ f to the identity. Using the same argument we can also com-
bine f ′ ◦ ψ ◦ (g′ ⊗ id) and ψ′ to get a natural equivalence from f ′ f gg′ to the identity.
Thus f ′ f is a categorical equivalence with pseudo-inverse gg′.

(2) Suppose f has a pseudo-inverse g with natural equivalences φ : C ⊗ E1 → C and
ψ : D⊗ E1 → D, and f ′ f has a pseudo-inverse h with natural equivalences α : C⊗
E1 → C and β : E⊗ E1 → E. We will show that f h is a pseudo-inverse of f ′. Since β is
a natural equivalence from f ′( f h) to id it remains to construct a natural equivalence
from f h f ′ to id. Let ψ̄ denote ψ ◦ (id⊗ Eσ), where σ : {0, 1} → {0, 1} is the map that
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interchanges 0 and 1 (thus ψ̄ is ψ considered as a natural equivalence from id to f g).
Combining f h f ′ ◦ ψ̄, f ◦ α ◦ (g⊗ id) and ψ we get a map

D⊗ E3 ' D⊗ E1 qD D⊗ E1 qD D⊗ E1 → D

and composing with D⊗ E{0,3} → D⊗ E3 we get the required natural equivalence.

(3) Suppose f ′ has a pseudo-inverse g′ with natural equivalences φ′ : C⊗ E1 → C and
ψ′ : D⊗ E1 → D, and f ′ f has a pseudo-inverse h with natural equivalences α : C⊗
E1 → C and β : E⊗ E1 → E. We will show that h f ′ is a pseudo-inverse of f . Since α is
a natural equivalence from (h f ′) f to id it remains to construct a natural equivalence
from f h f ′ to id. Let φ̄′ denote φ ◦ (id⊗ Eσ); combining φ̄′ ◦ ( f h f ′ ⊗ id), g′ ◦ β ◦ ( f ′ ⊗
id) and φ′ we get a map

D⊗ E3 ' D⊗ E1 qD D⊗ E1 qD D⊗ E1 → D,

and composing with D⊗ E{0,3} → D⊗ E3 we get the required natural equivalence.

Our next goal is to prove that categorical equivalences are local equivalences; this will
require some preliminary results:

Lemma 4.2.4.6. Suppose f : S → T is a map of sets. Then E f : ES → ET is a categorical
equivalence.

Proof. It suffices to prove this in S×. First suppose f is surjective; let g : T ↪→ S be a section
of f . We claim that Eg is a pseudo-inverse to E f . We have E f ◦ Eg ' E f ◦g ' id, so it suffices
to construct a natural equivalence ES × E1 ' ES×{0,1} → ES from Eg◦ f to the identity. This
is given by Eh where h : S× {0, 1} → S sends (s, 0) to g f (s) and (s, 1) to s.

By the dual argument the result holds if f is injective. By Lemma 4.2.4.5 we can there-
fore conclude that it holds for a general f .

Lemma 4.2.4.7. Suppose V⊗ is a presentably monoidal ∞-category and f : A → B is a
categorical equivalence of S-∞-categories. Then for any V-∞-category C the induced map
CB → CA is a categorical equivalence.

Proof. A natural equivalence A⊗ E1 → A induces a natural equivalence CA ⊗ E1 → CA by
taking the adjoint of the induced map CA → CA⊗E1 ' (CA)E1

.

Lemma 4.2.4.8. If C is a complete V-∞-category, then the natural map C ' CE0 → CE1
is an

equivalence.

Proof. The map E1 → E0 is a categorical equivalence by Lemma 4.2.4.6, so it follows by
Lemma 4.2.4.7 that C → CE1

is also a categorical equivalence. But CE1
is complete by

Lemma 4.2.3.8, and a categorical equivalence between complete objects is an equivalence
by Corollary 4.2.4.4.

Proposition 4.2.4.9. For any V-∞-category C, the map id⊗ s0 : C⊗ E1 → C⊗ E0 ' C is a
local equivalence.

120



Proof. We must show that for any complete V-∞-category D the map

Map(C,D)→ Map(C⊗ E1,D)

is an equivalence. Using the adjunction between tensoring and cotensoring with E1, we
see that this map is equivalent to the map

Map(C,D)→ Map(C,DE1
)

given by composing with the map D → DE1
induced by s0. This is an equivalence by

Lemma 4.2.4.8.

Corollary 4.2.4.10. Suppose D is a complete V-∞-category; then for any V-∞-category C

we have |Map(C⊗ E•,D)| ' Map(C,D).

Proof. Since tensoring preserves colimits, and E• is a cogroupoid object, the simplicial
space Map(C ⊗ E•,D) is a groupoid object. By Lemma 2.1.10.4 it therefore suffices to
show that Map(C⊗ E0,D)→ Map(C⊗ E1,D) is an equivalence, which is true by Proposi-
tion 4.2.4.9.

Lemma 4.2.4.11. Suppose D is a complete V-∞-category. Then for any V-∞-category C the
two maps

(id⊗ d0)∗, (id⊗ d1)∗ : Map(C⊗ E1,D)→ Map(C,D)

are homotopic.

Proof. Clearly (id⊗ s0)∗ ◦ (id⊗ di)∗ : Map(C,D)→ Map(C,D) is homotopic to the identity
for i = 0, 1. But by Proposition 4.2.4.9, the map (id ⊗ s0) is a local equivalence, hence
(id⊗ s0)∗ is an equivalence since D is complete. Composing with its inverse we get that
(id⊗ d0)∗ ' (id⊗ d1)∗.

Theorem 4.2.4.12. Categorical equivalences are local equivalences.

Proof. Suppose f : C → D is a categorical equivalence with pseudo-inverse g : D → C and
natural equivalences φ : C⊗ E1 → C from g f to id and ψ : D⊗ E1 → D from f g to id. If E
is a complete V-∞-category we must show that the map

f ∗ : Map(C,E)→ Map(D,E)

is an equivalence of spaces. By Lemma 4.2.4.11 we have equivalences

g∗ f ∗ ' φ∗ ◦ (id⊗ d1)∗ ' φ∗ ◦ (id⊗ d0)∗ ' id,

f ∗g∗ ' ψ∗ ◦ (id⊗ d1)∗ ' ψ∗ ◦ (id⊗ d0)∗ ' id.

Thus g∗ is an inverse of f ∗, and so f ∗ is indeed an equivalence.

4.2.5 Completion in the Presentable Case

We will now construct an explicit completion functor, and use this to deduce that the local
equivalences are precisely the fully faithful and essentially surjective functors. We again
assume that V⊗ is a presentably monoidal ∞-category.
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Definition 4.2.5.1. If C is a V-∞-category, the cosimplicial S-∞-category E• gives a simpli-
cial V-∞-category CE• . We let Ĉ denote its geometric realization |CE• |.

Theorem 4.2.5.2. The natural map C→ Ĉ is both a local equivalence and fully faithful and
essentially surjective. Moreover, the V-∞-category Ĉ is complete.

Proof. The functors En → Em induced by maps [n]→ [m] in� are categorical equivalences
by Lemma 4.2.4.6, so the induced functors CEm → CEn

are also categorical equivalences by
Lemma 4.2.4.7. These functors are therefore all fully faithful and essentially surjective by
Proposition 4.2.4.3, and local equivalences by Theorem 4.2.4.12. Local equivalences are by
definition closed under colimits, so it follows that the map C→ Ĉ is a local equivalence.

By Lemma 3.2.8.7 we know that AlgO

�
op
ιC
(V⊗) ' lim AlgO

�
op
ιnC
(V⊗). Moreover, the maps

CEn → CEm
in the simplicial diagram CE• are fully faithful, i.e. Cartesian. By Proposi-

tion 2.1.5.12 it follows that the induced maps CEn → Ĉ are also Cartesian. In particular, the
map C → Ĉ is fully faithful, and since ι0 preserves colimits this functor is also essentially
surjective.

It remains to prove that Ĉ is complete, i.e. that the map ι0Ĉ → ι1Ĉ is an equivalence.
We have a commutative diagram

|ι0CE• | ι0Ĉ

|ι1CE• | ι1Ĉ,

where the top horizontal morphism is an equivalence since ι0 preserves colimits. The left
vertical map is also an equivalence: We have equivalences ι1C

En ' Map(E1 ⊗ En,C) '
ιnC

E1
, so |ι1CE• | ' ιCE1

, and under this equivalence the left vertical map corresponds to
that induced by the natural map C→ CE1

; we know that this is fully faithful and essentially
surjective, and so induces an equivalence on ι by Proposition 4.2.2.5. In order to show that
Ĉ is complete, it thus suffices to show that the bottom vertical map |ι1CE• | → ι1Ĉ is an
equivalence.

To see this we consider the commutative diagram

|ι1CE• | ι1Ĉ

|ι0CE• |×2 ι0Ĉ
×2.

Here the bottom horizontal map is an equivalence, so to prove that the top horizontal
map is an equivalence it suffices to show that this is a pullback square. Since C → Ĉ is
essentially surjective, to see this we need only show that for all (x, y) ∈ ι0C

×2 the induced
map on fibres |ι1CE• |(x,y) → ι1Ĉ(x,y) is an equivalence.

Since CEm → CEn
is fully faithful and essentially surjective for all [n] → [m] in �op, the

map ιCEm → ιCEn
is an equivalence by Proposition 4.2.2.5. Since the groupoid objects ι•CEm
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and ι•CEn
are effective, the diagram

ι1C
Em

ι1C
En

(ι0CEm
)×2 (ι0CEn

)×2

is therefore a pullback square. In other words, the natural transformation ι1C
E• → (ι0CE•)×2

is Cartesian. By [Lur09a, Theorem 6.1.3.9] the extended natural transformation of functors
(�op). → S that includes the colimits is also Cartesian. Thus we have a pullback square

ι1C |ι1CE• |

ι0C
×2 |ι0CE• |×2.

In particular, for (x, y) ∈ ι0C
×2 the induced map on fibres ι1C(x,y) → |ι1CE• |(x,y) is an

equivalence. Since C → Ĉ is fully faithful and essentially surjective, the map ι1C(x,y) →
ι1Ĉ(x,y) is also an equivalence. By the 2-out-of-3 property it then follows that |ι1CE• |(x,y) →
ι1Ĉ(x,y) is an equivalence too. This completes the proof that Ĉ is complete.

Remark 4.2.5.3. The proof that Ĉ is complete closely follows Rezk’s proof in [Rez01, §14]
of the equivalent statement for Segal spaces.

Corollary 4.2.5.4. The following are equivalent, for a functor f : C→ D of V-∞-categories:

(i) f is a local equivalence.

(ii) f is fully faithful and essentially surjective.

Proof. By Theorem 4.2.5.2 we have a commutative diagram

C D

Ĉ D̂,

f

f̂

where the vertical maps are both local equivalences and fully faithful and essentially sur-
jective, and Ĉ and D̂ are complete.

Since local equivalences form a strongly saturated class of morphisms, it follows from
the 2-out-of-3 property that f is a local equivalence if and only if f̂ is a local equivalence,
i.e. if and only if f̂ is an equivalence, since Ĉ and D̂ are complete.

Fully faithful and essentially surjective functors also satisfy the 2-out-of-3 property,
by Proposition 4.2.2.8, so f is fully faithful and essentially surjective if and only if f̂ is.
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But by Corollary 4.2.2.7 f̂ is fully faithful and essentially surjective if and only if it is an
equivalence, since Ĉ and D̂ are complete. Thus f is a local equivalence if and only if f̂ is
an equivalence, which is true if and only if f is fully faithful and essentially surjective.

Corollary 4.2.5.5. CatV∞ is the localization of AlgO
cat(V

⊗) with respect to the fully faithful
and essentially surjective functors.

Remark 4.2.5.6. We might expect that the fully faithful and essentially surjective functors
also coincide with the categorical equivalences, but this turns out not to be the case when
we allow spaces of objects. To see this, first observe that if f : A → B is a categorical
equivalence, then for every V-∞-category C the map f∗ : |Map(C⊗ E•,A)| → |Map(C⊗
E•,B)| is surjective on π0: suppose g : B → A is a pseudo-inverse to f , then given a
functor φ : C → B the natural equivalence from f ◦ g to id gives a natural equivalence
from f ◦ g ◦ φ to φ, so up to natural equivalence φ is in the image of f∗. Now if B →
B̂ is a categorical equivalence where B̂ is complete, then by Corollary 4.2.4.10 we have
|Map(C⊗ E•, B̂)| ' Map(C, B̂), and since Map(C⊗ E•,B) is a groupoid object the map
Map(C,B) → |Map(C ⊗ E•,B)| is surjective on π0. Thus Map(C,B) → Map(C, B̂) is
surjective on π0.

Now suppose ι0B is discrete and ιB is not; then there clearly exists for some n > 0
a map from the n-sphere Sn → ιB that does not factor through ι0B. But we have a V-
∞-category Sn ⊗ E0 such that Map(Sn ⊗ E0,B) ' Map(Sn, ι0B) — so if B → B̂ were a
categorical equivalence then Map(Sn, ι0B) → Map(Sn, ιB) would have to be surjective
on π0, a contradiction. This shows that completion maps B → B̂ cannot be categorical
equivalences in general.

4.2.6 The Non-Presentable Case

We now show that we can invert the fully faithful and essentially surjective functors of
V-∞-categories for a general large monoidal ∞-category V⊗ by restricting to complete V-
∞-categories:

Theorem 4.2.6.1. Let V⊗ be a large monoidal ∞-category. The inclusion of the full subcat-
egory of complete V-∞-categories CatV∞ ↪→ AlgO

cat(V
⊗) has a left adjoint that exhibits CatV∞

as the localization of AlgO
cat(V

⊗) with respect to the fully faithful and essentially surjective
functors.

Proof. Let P̂(V) be the ∞-category of presheaves of large spaces on V. By [Lur11, Proposi-
tion 6.3.1.10] there exists a monoidal structure on P̂(V) such that the Yoneda embedding
j : V→ P̂(V) is a strong monoidal functor. Let Âlgcat(P̂(V)

⊗) be the (very large) ∞-category

of large categorical algebras in P̂(V); this is a presentable ∞-category, and writing Ĉat
P̂(V)

∞
for its subcategory of complete P̂(V)-∞-categories we know from Corollary 4.2.5.5 that the

inclusion Ĉat
P̂(V)

∞ ↪→ Âlgcat(P̂(V)) has a left adjoint L̂ that exhibits Ĉat
P̂(V)

∞ as the localiza-
tion with respect to the fully faithful and essentially surjective functors.

If C is in the essential image of the fully faithful inclusion

AlgO
cat(V) ↪→ Âlgcat(P̂(V)),

then the natural map C→ L̂C is fully faithful and essentially surjective. But then ι0 L̂C ' ιC,
so ι0 L̂C is an (essentially) small space, and the mapping objects in L̂C are in the essential
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image of V in P̂(V). Thus L̂C is in the essential image of AlgO
cat(V), and so the functor L̂

restricts to a functor L : AlgO
cat(V)→ CatV∞, since CatV∞ is equivalent to the full subcategory

of Ĉat
P̂(V)

∞ spanned by objects in the essential image of AlgO
cat(V).

4.2.7 Properties of the Localized Category

In this subsection we prove that the ∞-category CatV∞ inherits the naturality properties of
AlgO

cat(V
⊗).

Proposition 4.2.7.1. Let AlgO
cat → M̂on

O,lax
∞ be a coCartesian fibration corresponding to

the functor AlgO
cat(–). Define Enr∞ to be the full subcategory of AlgO

cat whose objects are

the complete enriched ∞-categories. Then the restricted projection Enr∞ → M̂on
O,lax
∞ is a

coCartesian fibration, and the inclusion Enr∞ ↪→ AlgO
cat admits a left adjoint over M̂on

O,lax
∞ .

Proof. The result follows from Proposition 2.1.8.13; to apply this we must show that if
φ : V⊗ →W⊗ is a lax monoidal functor, then φ∗ preserves fully faithful and essentially sur-
jective functors. It is clear that φ∗ preserves fully faithful functors. To see that it preserves
essentially surjective ones we note that if two points of ι0C are equivalent as objects of C
then they are also equivalent as objects of φ∗C, since the map IW → φ(IV) induces a functor
E1
W → φ∗E1

V.

Lemma 4.2.7.2. Suppose V⊗ and W⊗ are monoidal ∞-categories compatible with small
colimits, and F : C⊗ → D⊗ is a strong monoidal functor such that F[1] : V → W preserves
colimits. Then the induced functor F∗ : CatV∞ → CatW∞ preserves colimits.

Proof. The functor F∗ is the composite

CatV∞ ↪→ AlgO
cat(V

⊗)
FAlg
∗−−→ AlgO

cat(W
⊗)

LW−→ CatW∞ ,

where LW is the completion functor for W, and we write FAlg
∗ for the functor on AlgO

cat

induced by composition with F for clarity. We know that FAlg
∗ preserves local equivalences,

so FAlg
∗ LVC and FAlg

∗ C are locally equivalent for all C; it follows that LW ◦ FAlg
∗ ◦ LV '

LW ◦ FAlg
∗ . If α 7→ Cα is a diagram in CatV∞ then its colimit is LV(colimCα) where this

colimit is computed in AlgO
cat(V

⊗). Thus we have

F∗(colimCα) ' LWFAlg
∗ LV(colimCα) ' LWFAlg

∗ (colimCα)

' colim LWFAlg
∗ (Cα) ' colim F∗Cα.

Proposition 4.2.7.3. The restriction of the functor Cat(–)∞ to MonO,Pr
∞ factors through PrL.

Proof. This follows from Lemma 4.2.7.2 and Lemma 4.2.3.5.

Proposition 4.2.7.4. Cat(–)∞ is a lax monoidal functor with respect to the Cartesian product
of monoidal ∞-categories.
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Proof. Given a V-∞-category B, a W-∞-category C and a V×W-∞-category A we clearly
have

Map(A,B� C) ' Map(π1,∗A,B)×Map(π2,∗A,C),

where π1 and π2 denote the projections from V×W to V and W, respectively. Moreover
πi,∗EX ' EX for all X, so

ι•(B� C) ' ι•B× ι•C.

It follows that the complete enriched ∞-categories are closed under the exterior product in
AlgO

cat, and so the definition of the lax monoidal structure on the functor AlgO
cat(–) implies

that Cat(–)∞ is lax monoidal.

Corollary 4.2.7.5. If V⊗ is an En-monoidal ∞-category, then the ∞-category CatV∞ inherits
an En−1-monoidal structure.

Proof. By Proposition 3.2.4.5 we can identify En-monoidal ∞-categories with En-algebras
in Cat∞. Since En ' (E1)

⊗n by [Lur11, Theorem 5.1.2.2], we have

MonF,E⊗n
∞ ' AlgF

E⊗n−1
(AlgF

E⊗1
(Cat×∞)) ' AlgF

E⊗n−1
(AlgO

�op(Cat×∞)) ' AlgF
E⊗n−1

(MonO
∞).

Thus En-monoidal ∞-categories are equivalent to En−1-algebras in monoidal ∞-categories.
Since Cat(–)∞ is lax monoidal, it takes En−1-algebras in monoidal ∞-categories to En−1-
algebras in Cat∞, i.e. En−1-monoidal ∞-categories.

Proposition 4.2.7.6. Suppose V is an ∞-category with finite products. Then the natural
symmetric monoidal structure on CatV∞ is Cartesian.

Proof. This follows from Proposition 4.1.3.10, since the inclusion

CatV∞ ↪→ AlgO
cat(V

×)

preserves limits.

Definition 4.2.7.7. If V⊗ is an En-monoidal ∞-category, we can iterate the enrichment
functor k times for k ≤ n to obtain ∞-categories CatV(∞,k) of (∞, k)-categories enriched in V.

Proposition 4.2.7.8. When restricted to MonO,Pr
∞ , the functor Cat(–)∞ is lax monoidal with

respect to the tensor product of presentable ∞-categories.

Proof. This follows because the complete enriched ∞-categories are closed under the exte-
rior product, as in the proof of Proposition 4.2.7.4.

4.3 Some Applications

In this section we describe two simple applications of our machinery: In §4.3.1 we show
that enriching in a monoidal (n, 1)-category gives an (n + 1, 1)-category, and use this
to prove the Baez-Dolan stabilization hypothesis for k-tuply monoidal n-categories, and
in §4.3.2 we prove that there is a fully faithful embedding of associative algebras in a
monoidal ∞-category into pointed enriched ∞-categories.
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4.3.1 The Baez-Dolan Stabilization Hypothesis

Recall that an (n, 1)-category is an ∞-category where the mapping spaces are (n− 1)-types,
i.e. there are no non-trivial k-morphisms for k > n. Our first goal in this subsection is
to prove that enriching in an (n, 1)-category gives an (n + 1, 1)-category of enriched ∞-
categories.

Remark 4.3.1.1. Suppose V⊗ is a monoidal ∞-category such that V⊗
[1] is an (n, 1)-category.

Then clearly V⊗ is also an (n, 1)-category. The phrase monoidal (n, 1)-category is thus un-
ambiguous.

Proposition 4.3.1.2. Suppose V⊗ is a monoidal (n, 1)-category and C is a V-∞-category.
Then the space ιC is an n-type.

Proof. Let s : π0(ι0C) → ι0C be a section of the projection ι0C → π0ι0C. Then the Cartesian
morphism s∗C → C is fully faithful and essentially surjective, and so induces an equiv-
alence ι(s∗C) → ιC by Proposition 4.2.2.5. Without loss of generality we may therefore
assume that the space ι0C is discrete.

The simplicial space ι•C is a groupoid object by Corollary 4.2.1.10. By [Lur09a, Corol-
lary 6.1.3.20] this groupoid object is effective, and so we have a pullback diagram

ι1C ι0C

ι0C ιC.

If x is a point of ι0C, we get a pullback diagram

ι1C{x} ι0C

{x} ιC,

where ι1C{x} is the fibre of ι1C → ι0C at x. Since the map ι0C → ιC is surjective on compo-
nents, by considering the long exact sequence of homotopy groups associated to this fibre
sequence we see that ιC is an n-type provided the spaces ι1C{x} are (n − 1)-types for all
x ∈ ι0C.

The space ι1C{x} is a union of components of ι1C, so it suffices to show that ι1C is
an (n − 1)-type. Since ι0C is discrete, i.e. a 0-type, by [Lur09a, Lemma 5.5.6.14] this is
equivalent to proving that the fibres of the map ι1C → ι0C× ι0C are (n − 1)-types. But
by Proposition 4.2.1.15 we can identify the fibre ι1Cx,y at (x, y) ∈ ι0C

×2 with the space
Map(I,C(x, y))eq that is the union of the components of Map(I,C(x, y)) corresponding to
equivalences. Since V is by assumption an n-category, the space Map(I,C(x, y)) is neces-
sarily an (n− 1)-type, hence so is the union of any subset of its components.

Theorem 4.3.1.3. Suppose V⊗ is a monoidal (n, 1)-category. Then CatV∞ is an (n + 1, 1)-
category.
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Proof. We need to show that if C and D are complete V-∞-categories then the space

MapCatV∞
(C,D) ' MapAlgO

cat(V
⊗)(C,D)

is an n-type. By Proposition 4.3.1.2, the space ι0D ' ιD is an n-type, hence so is the space
MapS(ι0C, ι0D). It then follows from [Lur09a, Lemma 5.5.6.14] that in order to prove that
MapAlgO

cat(V
⊗)(C,D) is an n-type it suffices to show that the fibres of the map

MapAlgO
cat(V

⊗)(C,D)→ MapS(ι0C, ι0D)

induced by the projection AlgO
cat(V

⊗)→ S are n-types.
Since the projection AlgO

cat(V
⊗) → S is a Cartesian fibration, by [Lur09a, Proposition

2.4.4.2] we can identify the fibre of this map at f : ι0C→ ι0D with

MapAlg
�

op
ι0C

(V⊗)(C, f ∗D).

This space is the fibre of

Map
�op(�

op
ι0C
× ∆1,V⊗)→ Map

�op(�
op
ι0C

,V⊗)×Map
�op(�

op
ι0C

,V⊗)

at (C, f ∗D). Since n-types are closed under all limits by [Lur09a, Proposition 5.5.6.5],
it suffices to show that the spaces Map

�op(�
op
ι0C

,V⊗) and Map
�op(�

op
ι0C
× ∆1,V⊗) are n-

types. Now these spaces are fibres of Map(�op
ι0C

,V⊗) → Map(�op,V⊗) and Map(�op
ι0C
×

∆1,V⊗) → Map(�op,V⊗), so by the same argument it’s enough to show that these map-
ping spaces are n-types. But V⊗ is by assumption an (n, 1)-category, so this holds by
[Lur09a, Proposition 2.3.4.18].

It follows that if V⊗ is a symmetric monoidal (n, 1)-category, then Ek-algebras in CatV∞
are equivalent to E∞-algebras for k large:

Corollary 4.3.1.4. Let V⊗ be a symmetric monoidal (n, 1)-category. Then

(i) the map E⊗k → �op induces an equivalence

AlgF
E⊗k

(CatV∞)
∼−→ AlgF

�op(CatV∞)

for k ≥ n + 1,

(ii) the stabilization map i : E⊗k → E⊗k+1 (defined in [Lur11, §5.1.1]) induces an equiva-
lence

i∗ : AlgF
E⊗k+1

(CatV∞)→ AlgF
E⊗k

(CatV∞)

for k ≥ n + 1.

Proof. (i) is immediate from [Lur11, Corollary 5.1.1.7], and (ii) follows by the 2-out-of-3
property.

We end this subsection by observing that when V⊗ is the monoidal ∞-category of n-
categories, this yields the Baez-Dolan stabilization hypothesis, by the same proof as Lurie’s
version for (n, 1)-categories [Lur09a, Example 5.1.2.3]. First we give the obvious definition
of (weak) n-categories using our machinery:
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Definition 4.3.1.5. The category Set of sets is a symmetric monoidal (1, 1)-category. We
can therefore define ∞-categories Catn := CatSet

(∞,n) of Set-(∞, n)-categories, i.e. (weak) n-
categories, as in Definition 4.2.7.7. Applying Theorem 4.3.1.3 inductively we see that Catn
is an (n + 1, 1)-category. A k-tuply monoidal n-category is an Ek-algebra in Catn, i.e. an
Ek-monoidal n-category.

Corollary 4.3.1.6 (Baez-Dolan Stabilization Hypothesis). The stabilization map i : E⊗k →
E⊗k+1 induces an equivalence

i∗ : AlgF
E⊗k+1

(Cat×n )→ AlgF
E⊗k

(Cat×n )

for k ≥ n + 2.

Proof. Apply Corollary 4.3.1.4 to Catn.

Remark 4.3.1.7. The Baez-Dolan stabilization hypothesis was originally stated by Baez
and Dolan in [BD95]. A version of it was proved by Simpson [Sim98], who showed that
for k ≥ n+ 2 a k-tuply monoidal n-category can be “delooped” to a (k+ 1)-tuply monoidal
n-category; the ∞-categorical version above extends this by showing that this construction
gives an equivalence of ∞-categories.

4.3.2 En-Algebras as Enriched (∞, n)-Categories

We now prove that the natural map from associative algebras in a monoidal ∞-category V⊗

to pointed complete V-∞-categories is fully faithful; we then show by induction that the
same is true for the natural map from En-algebras to pointed complete V-(∞, n)-categories.

Definition 4.3.2.1. We have a fully faithful inclusion

AlgO
�op(V⊗) ↪→ AlgO

cat(V
⊗)

since AlgO
�op(V⊗) is the fibre of AlgO

cat(V
⊗) at ∗ in S. The unit of V⊗ is the initial object

of AlgO
�op(V⊗), so this functor factors through AlgO

cat(V
⊗)E0/. Composing this with the

localization functor we get a functor i : AlgO
�op(V⊗)→ (CatV∞)E0/.

Proposition 4.3.2.2. The functor i : AlgO
�op(V⊗)→ (CatV∞)E0/ is fully faithful.

Proof. Let A and B be two �op-algebras in V⊗. We have a fibre sequence

Map(CatV∞)E0/
(i(A), i(B))→ MapCatV∞

(i(A), i(B))→ MapCatV∞
(E0, i(B)).

Let B̂ be the completion of B, regarded as a V-∞-category. Then we have equivalences

MapCatV∞
(i(A), i(B)) ' MapAlgO

cat(V
⊗)(A, B̂)

and
MapCatV∞

(E0, i(B)) ' MapAlgO
cat(V

⊗)(E0, B̂).
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The projection ι0 : AlgO
cat(V

⊗)→ S gives a commutative diagram

MapAlgO
cat(V

⊗)(A, B̂) MapAlgO
cat(V

⊗)(E0, B̂)

MapS(∗, ι0B̂) MapS(∗, ι0B̂)

where the right vertical map is an equivalence by Lemma 4.2.1.5 and the bottom horizontal
map is the identity, since E0 → A is the identity on ι0. Thus we can identify the fibre
of the top horizontal map at the functor E0 → B̂ corresponding to a point p : ∗ → ι0B̂
with the corresponding fibre of the left vertical map, which is MapAlgO

�
op (V⊗)

(A, p∗B̂) by
[Lur09a, Proposition 2.4.4.2].

Take p to be the underlying map of spaces of the completion functor B → B̂; since this
is fully faithful the induced map B→ p∗B̂ is an equivalence, and in particular

MapAlgO
�

op (V⊗)
(A, B) ∼−→ MapAlgO

�
op (V⊗)

(A, p∗B̂).

Thus the map MapAlgO
�

op (V⊗)
(A, B)→ Map(CatV∞)E0/

(i(A), i(B)) is also an equivalence, i.e. i
is fully faithful.

Remark 4.3.2.3. A pointed V-∞-category C is in the essential image of the functor i if and
only if ιC is connected, since then the functor p∗C → C induced by the chosen point p :
∗ → ι0C is fully faithful and essentially surjective, and p∗C is a �op-algebra. In other
words, �op-algebras in V⊗ are equivalent to V-∞-categories with a single object.

Definition 4.3.2.4. By Proposition 3.2.4.7, monoidal ∞-categories are equivalent to E⊗1 -
monoidal ∞-categories, and�op-algebras in a monoidal ∞-category are equivalent to E⊗1 -
algebras in the associated E⊗1 -monoidal ∞-category. Since E⊗n ⊗ E⊗m ' E⊗n+m for all n, m
by [Lur11, Theorem 5.1.2.2], we get maps

AlgF
E⊗n

(V⊗) ' AlgF
E⊗n−1

(AlgF
E1
(V⊗)⊗)→ AlgF

E⊗n−1
((CatV∞)

⊗
E0/).

We can identify (CatV∞)E0/ with AlgF
E⊗0

((CatV∞)⊗), so

AlgF
E⊗n−1

((CatV∞)
⊗
E0/) ' AlgF

E⊗n−1
(AlgF

E0
((CatV∞)

⊗)⊗)

' AlgF
E⊗n−1⊗E⊗0

((CatV∞)
⊗)

' AlgF
E⊗n−1

((CatV∞)
⊗).

Thus we have maps

AlgF
E⊗n

(V⊗)→ AlgF
E⊗n−1

((CatV∞)
⊗)→ · · · → AlgF

E⊗1
((CatV(∞,n−1))

⊗)→ (CatV(∞,n))E0/.

Applying Proposition 4.3.2.2 inductively, we get the following:

Corollary 4.3.2.5. Suppose V is an En-monoidal ∞-category. Then the composite functor

AlgF
E⊗n

(V⊗)→ (CatV(∞,n))E0/

130



is fully faithful.

4.4 Comparisons

Monoidal model categories are an important source of monoidal ∞-categories. One of
our main goals in this section is to prove that if V is a nice monoidal model category,
then the homotopy theory of V-categories is equivalent to that of ∞-categories enriched in
the monoidal ∞-category associated to V. When the tensor product in V is the Cartesian
product, we will use the same method to show that the latter is also equivalent to the
homotopy theory of Segal categories enriched in V. Our other main result is that S-(∞, n)-
categories are equivalent to n-fold Segal spaces.

In §4.4.1 we prove some technical results about ∞-categorical localizations of fibrations
of categories, and in §4.4.2 we review some results on rectification of associative algebras
in monoidal model categories. Then we carry out the comparison with enriched categories
in §4.4.3 and the comparison with Segal categories in §4.4.4. Finally, in §4.4.5 we compare
S-(∞, n)-categories and n-fold Segal spaces.

Notation 4.4.0.6. In this section, if V is a model category we write V∞ for the associated
∞-category. This can be constructed as the localization NVcof[W−1] where Vcof is the full
subcategory of V spanned by the cofibrant objects, and W is the class of weak equivalences
in V.

4.4.1 Fibrewise Localization

Suppose we have a functor of ordinary categories F : C → Cat together with a collection
of weak equivalences in each category F(c) that is preserved by the functors F( f ). Then
we have two ways to construct an ∞-category over C where these weak equivalences are
inverted: On the one hand we can invert the weak equivalences to get a functor C→ Cat∞,
which corresponds to a coCartesian fibration E → C. On the other hand, if E → C is a
coGrothendieck fibration corresponding to F then there is a natural collection W of weak
equivalences in E induced by those in the fibres, and we can invert these to get an ∞-
category E[W−1]. Our main goal in this subsection is to prove that in this situation the
natural map E[W−1]→ E is an equivalence of ∞-categories.

We will do this in two steps: first we show that the ∞-category E here is a fibrant
replacement in the coCartesian model structure on (Set+∆ )/NC for NE equipped with a
certain collection M of marked edges, and then we use an explicit model for E[W−1] to
show that this, equipped with a natural choice of marked edges, is also weakly equivalent
to (NE, M). In addition, we will prove that when the weak equivalences in each category
F(c) come from a (combinatorial) model structure, then there is a (combinatorial) model
structure on E whose weak equivalences are the morphisms in W.

Let’s explain the first step more precisely. Recall that a relative category is a category
C equipped with a collection of “weak equivalences”, i.e. a subcategory W containing all
objects and isomorphisms. Write RelCat for the obvious category of relative categories; this
has been studied as a model for the theory of (∞, 1)-categories by Barwick and Kan [BK12].
The usual nerve functor from categories to simplicial sets extends to a functor L : RelCat→
Set+∆ that sends (C, W) to (NC, NW1). In the model structure on Set+∆ , a fibrant replacement
for L(C, W) is given by the ∞-categorical localization of C that inverts the morphisms in
W (marked by the equivalences).
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In [Lur09a, §3.5.2] Lurie describes a right Quillen equivalence N+
C from the projective

model structure on Fun(C, Set+∆ ) to the coCartesian model structure on (Set+∆ )/NC. Given a
functor F : B→ RelCat we therefore have two reasonable ways to construct a fibrant object
of (Set+∆ )/NC:

(i) Find a fibrant replacement F̄ for the functor LF : C→ Set+∆ , and then form N+
C F̄.

(ii) Construct a coGrothendieck fibration E → C associated to F, regarded as a functor
to categories, and write S for the collection of 1-simplices in NE that correspond to
composites of (fibrewise) weak equivalences and coCartesian morphisms. Then find
a fibrant replacement in (Set+∆ )/NC for (NE, S)→ NC.

The precise statement of our first goal in this subsection is to prove that these give weakly
equivalent objects. We begin by reviewing the definition of the functor N+

C :

Definition 4.4.1.1. Let C be a category. Given a functor F : C→ Set∆, we define NCF to be
the simplicial set characterized by the property that a morphism ∆I → NCF, where I is a
partially ordered set, is determined by:

(1) a functor σ : I → C,

(2) for every non-empty subset J ⊆ I with maximal element j, a map τJ : ∆J → F(σ(j)),

such that for all subsets K ⊆ J ⊆ I with maximal elements k ∈ K and j ∈ J, the diagram

∆K F(σ(k))

∆J F(σ(j))

τK

τJ

commutes. This defines a functor NC : Fun(C, Set∆)→ (Set∆)/NC.

The functor NC has a left adjoint, which we denote

FC : (Set∆)/NC → Fun(C, Set∆).

Proposition 4.4.1.2. Let π : E → C be a functor. Then FCNE is isomorphic to the functor
Oπ : C→ Set∆ defined by c 7→ NE/c.

Proof. We must show that there is a natural isomorphism Hom(NE, NC(–)) ∼= Hom(Oπ, –);
we will do this by defining explicit natural transformations

φ : Hom(Oπ, –)→ Hom(NE, NC(–))

and
ψ : Hom(NE, NC(–))→ Hom(Oπ, –)

that are inverse to each other.
Given X : C → Set∆ and a natural transformation η : Oπ → X, define φ(η) : NE →

NCX to be the morphism that sends a simplex σ : ∆I → NE (which we can identify with a
functor I → E) to the simplex of NCX determined by
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• the composite functor I → E→ C,

• for J ⊆ I with maximal element j, the composite ∆J → NE/π(σ(j))
ηπ(σ(j))−−−→ X(π(σ(j))).

Conversely, given a map G : NE → NCX of simplicial sets over NC, let ψ(G) be
the natural transformation Oπ → X determined as follows: for c ∈ C, the morphism
ψ(G)c : NE/c → X(c) sends a simplex σ : ∆I → NE/c, where I has maximal element i, to
the composite

∆I τ−→ X(πσ(i))
X( f )−−→ X(c)

where

• τ is the I-simplex determined by the image under G of the I-simplex σ′ of NE under-
lying σ,

• f is the morphism π(σ(i))→ c in C from σ.

The remaining data in G ◦ σ′ implies that this defines a map of simplicial sets NE/c → X(c),
and it is also easy to see that ψ(G) is natural in c.

Both φ and ψ are obviously natural in X, and expanding out the definitions we see that
φψ = id and ψφ = id, so we have the required natural isomorphism.

Definition 4.4.1.3. Let C be a category. Given a functor F̄ : C→ Set+∆ we define N+
C F̄ to be

the marked simplicial set (NCF, M) where F is the underlying functor C→ Set∆ of F̄, and
M is the set of edges ∆1 → NCF determined by

• a morphism f : c→ c′ in C,

• a vertex x ∈ F(c),

• a vertex x′ ∈ F(c′) and an edge F( f )(x)→ x′ that is marked in F̄(c′).

This determines a functor N+
C : Fun(C, Set+∆ )→ (Set+∆ )/NC.

The functor N+
C has a left adjoint, which we denote F+

C .

Corollary 4.4.1.4. Let π : E → C be a functor, and let M be a set of edges of NE that
contains the degenerate edges. Then F+

C (NE, M) is isomorphic to the functor Ōπ defined
by c 7→ (NE/c, Mc), where Mc is the collection of edges determined by e → e′ in E and
π(e)→ π(e′)→ c in C such that π(e′) = c and e→ e′ is in M.

Proof. We must show that there is a natural isomorphism

Hom((NE, M)N+
C (–)) ∼= Hom(Ōπ, –).

Given X̄ : C → Set+∆ , with underlying functor X : C → Set∆, and a morphism G : NE →
NCX, it is immediate from the definitions that G takes an edge σ : e → e′ of NE lying over
c → c′ in C to a marked edge of N+

C X̄ if and only if φ(G)c′ takes σ, regarded as an edge
of NE/c′ , to a marked edge of X̄(c′). Thus the natural isomorphism Hom(NE, NCX) ∼=
Hom(Oπ, X) of Proposition 4.4.1.2 identifies Hom((NE, M), N+

C X̄), regarded as a subset
of Hom(NE, NCX), with Hom(Ōπ, X̄), regarded as a subset of Hom(Oπ, X).

Theorem 4.4.1.5 (Lurie, [Lur09a, Proposition 3.2.5.18]).

133



(i) The adjunction FC a NC is a Quillen equivalence between (Set∆)/NC equipped with
the covariant model structure and Fun(C, Set∆) equipped with the projective model
structure.

(ii) The adjunction F+
C a N+

C is a Quillen equivalence between (Set+∆ )/NC equipped with
the coCartesian model structure and Fun(C, Set+∆ ) equipped with the projective model
structure.

Recall that if C is an ∞-category we write C\ for the marked simplicial set given by C

marked by the equivalences, and that if E→ NC is a coCartesian fibration we write E\ for
the object of (Set+∆ )/NC given by E marked by the coCartesian morphisms.

Lemma 4.4.1.6. Let F : C → Cat be a functor. Write π : E → C for the coGrothendieck
fibration associated to F, so that E has objects pairs (c ∈ C, x ∈ F(c)) and a morphism
(c, x)→ (d, y) in E is given by a morphism f : c→ d in C and a morphism F( f )(x)→ y in
F(d). Then:

(i) NC(NF)→ NC is isomorphic to Nπ.

(ii) N+
C (NF\)→ NC is isomorphic to (NE)\ → NC.

Proof. It is clear from the definition of NC that there is a natural isomorphism between n-
simplices of NC(NF) and n-simplices of NE, which proves (i). From Corollary 4.4.1.4, an
edge of N+

C (NF\) is marked if it is given by f : c → c′ in C, x ∈ F(c) and F( f )(x) → x′

an isomorphism in F(c′). Under the identification with edges of NE, such edges precisely
correspond to the coCartesian edges. This proves (ii).

Proposition 4.4.1.7. Given F : C → RelCat, the counit map F+
C N+

C LF → LF is a weak
equivalence in Fun(C, Set+∆ ).

Proof. Since Fun(C, Set+∆ ) is equipped with the projective model structure, it suffices to
show that for all c ∈ C the morphism F+

C N+
C LF(c)→ LF(c) is a weak equivalence in Set+∆ .

Let F0 be the underlying functor C→ Cat, and let E→ C be the canonical coGrothendieck
fibration associated to F0. Then by Lemma 4.4.1.6 we can identify N+

C NF\
0 with NE\, and

so by Corollary 4.4.1.4 we can identify F+
C N+

C NF\
0(c) with NE/c, marked by the set Mc of

coCartesian morphisms e→ e′ such that π(e′) = c.
The adjunction F+

C a N+
C is a Quillen equivalence, so since NF\

0 is fibrant and every
object of (Set+∆ )/NC is cofibrant, the counit F+

C N+
C NF\

0 → NF\
0 is a weak equivalence in

Fun(C, Set+∆ ). In particular, (NE/c, Mc)→ NF0(c)\ is a weak equivalence.
Let M′c be the set of edges of NE/c corresponding to weak equivalences in F(c). Then

we have a pushout diagram

(NE/c, Mc) NF0(c)\

(NE/c, Mc ∪M′c) LF(c),

since both vertical maps are pushouts along ä f∈M′c ∆1 ↪→ ä f∈M′c(∆
1)]. As the model struc-

ture on Set+∆ is left proper, it follows that (NE/c, Mc ∪M′c)→ LF(c) is a weak equivalence.
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By Corollary 4.4.1.4 we can identify F+
C N+

C LF(c) with the simplicial set NE/c, marked
by the set M′′c of morphisms e → e′ with π(e′) = c such that given a coCartesian factor-
ization e → ē → e′ the morphism ē → e′ is a weak equivalence in LF(c). The obvious
map (NE/c, Mc ∪ M′c) → F+

C N+
C LF(c) is therefore marked anodyne, since the edges in

M′′c are precisely the composites of edges in Mc and M′c. In particular this is also a weak
equivalence, and so by the 2-out-of-3 property the map F+

C N+
C LF(c) → LF(c) is a weak

equivalence, as required.

Corollary 4.4.1.8. Given F : C → RelCat, let LF → F̄ be a fibrant replacement in the pro-
jective model structure on Fun(C, Set+∆ ). Then N+

C LF → N+
C F̄ is a coCartesian equivalence

in (Set+∆ )/NC.

Proof. The adjunction F+
C a N+

C is a Quillen equivalence, so since F̄ is fibrant and every
object of (Set+∆ )/NC is cofibrant, the morphism N+

C LF → N+
C F̄ is a weak equivalence if and

only if the adjunct morphism F+
C N+

C LF → F̄ is a weak equivalence. This follows by the
2-out-of-3 property, since in the commutative diagram

F+
C N+

C LF LF

F̄

the morphism LF → F̄ is a weak equivalence by assumption, and F+
C N+

C LF → LF is a
weak equivalence by Proposition 4.4.1.7.

Using Lemma 4.4.1.6 we can equivalently state this as:

Corollary 4.4.1.9. Given F : C → RelCat, suppose π : E → C is a coGrothendieck fibra-
tion corresponding to the underlying functor C → Cat. Let M be the set of morphisms
f : e → e′ in E such that given a coCartesian factorization e → π( f )!e → e′, the morphism
π( f )!e → e′ is a weak equivalence in F(π(e′)). Then if LF → F̄ is a fibrant replacement in
Fun(C, Set+∆ ), there is a coCartesian equivalence (NE, M)→ N+

C F̄.

Our next goal is to prove that, with F : C → RelCat and π : E → C as above, in-
verting the collection W of fibrewise weak equivalences in E gives a coCartesian fibration
E[W−1] → C. As a corollary, we will also see that E[W−1] is the total space of the coCarte-
sian fibration associated to the functor obtained from F by inverting the weak equivalences
in the relative categories F(c). We will prove this result by analyzing an explicit model for
E[W−1] as a simplicial category, namely the hammock localization. We now recall the defini-
tion of this, specifically the version defined in [DHKS04, §35], and its basic properties:

Definition 4.4.1.10. A zig-zag type Z = (Z+, Z−) consists of a decomposition {1, . . . , n} =
Z+ q Z−. The zig-zag category ZZ is the category with objects zig-zag types and mor-
phisms Z → Z′ given by order-preserving morphisms f : {1, . . . , n} → {1, . . . , n′} such
that f (Z+) ⊆ Z′+ and f (Z−) ⊆ Z′−. If Z is a zig-zag type, the associated zig-zag category
|Z| is the category with objects 0, . . . , n and

|Z|(i, j) =


∗, i ≤ j, k ∈ Z+ for k = i + 1, . . . , j,
∗, i ≥ j, k ∈ Z− for k = j + 1, . . . , i,
∅, otherwise.
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This clearly gives a functor |–| : ZZ→ Cat. If n is an odd integer, we abbreviate

〈n〉 := ({2, 4, . . . , n− 1}, {1, 3, . . . , n})

and if n is an even integer we abbreviate

〈n〉 := ({1, 3, . . . , n− 1}, {2, 4, . . . , n}).

Definition 4.4.1.11. Suppose (C, W) is a relative category. For x, y ∈ C and Z ∈ ZZ
we define LWCZ(x, y) to be the subcategory of Fun(|Z|, C) whose objects are the functors
F : |Z| → C such that F(0) = x, F(n) = y, and F(i → (i− 1)) is in W for all i ∈ Z−, and
whose morphisms are the natural transformations η : F → G such that η0 = idx, ηn = idy,
and ηi is in W for all i. We write LWCZ(x, y) := NLWCZ(x, y).

This construction gives a functor ZZop → Cat; we let LWC(x, y) → ZZ be the fibra-
tion associated to it by the Grothendieck construction. Using concatenation of zig-zags
we get a strict 2-category LWC with the same objects as C and with mapping categories
LWC(x, y); taking nerves, this gives a simplicial category LWC whose mapping spaces are
LWC(x, y) := NLWC(x, y). This simplicial category is the hammock localization of (C, W).

Theorem 4.4.1.12 (Dwyer-Kan). Let (C, W) be a relative category. Then:

(i) The diagram

W LWW

C LWC

is a homotopy pushout square in simplicial categories.

(ii) If LWW → L̄WW is a fibrant replacement in simplicial categories, then NL̄WW is a
Kan complex and NW → NL̄WW is a weak equivalence of simplicial sets.

Proof.

(i) This follows by combining [DHKS04, Proposition 35.7], [DK80b, Proposition 2.2], and
[DK80a, §4.5] (observe that a cofibration in the model structure on simplicial cate-
gories with a fixed set of objects described in [DK80a, §7] is also a cofibration in the
model structure on simplicial categories).

(ii) It follows from [DK80a, §9.1] that LWW is a simplicial groupoid. If LWW → L̄WW
is a fibrant replacement in simplicial categories, then NL̄WW is the nerve of a fibrant
simplicial groupoid, hence a Kan complex by [DK84, Theorem 3.3]. Let G denote
the left adjoint to the nerve of simplicial groupoids, as defined in [DK84, §3.1]; by
[DK84, Theorem 3.3] the morphism NW → NL̄WW is a weak equivalence if and only
if the adjunct GNW → L̄WW is a weak equivalence of simplicial groupoids. This
follows from [DK80a, §5.5], since this implies that the mapping spaces in both are the
appropriate loop spaces of NW.

Corollary 4.4.1.13. Let (C, W) be a relative category. Suppose LWC → L̄WC is a fibrant
replacement in the model category of simplicial categories. Then

L(C, W)→ NL̄WC\
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is a weak equivalence in Set+∆ .

Proof. We must show that for every ∞-category D, the induced map

MapSet+∆
(C\,D\)→ MapSet+∆

(L(C, W),D\)

is a weak equivalence of simplicial sets. Observe that

MapSet+∆
(L(C, W),D\) ' MapCat∞

(NC,D)×MapCat∞ (NW,D) MapCat∞
(NW, ιD)

and MapCat∞
(NW, ιD) ' MapS(NW, ιD) ' MapCat∞

(NW,D), where NW → NW denotes
a fibrant replacement in the usual model structure on simplicial sets, so this is equivalent
to requiring

NW NW

NC NL̄WC

to be a homotopy pushout square. Theorem 4.4.1.12(i) implies that

NW NL̄WW

NC NL̄WC

is a homotopy pushout square, since N is a right Quillen equivalence and all the objects are
fibrant. By Theorem 4.4.1.12(ii) we also have that NW → NL̄WW is a fibrant replacement
in the usual model structure on simplicial sets, so the result follows.

We now fix a functor F : C → RelCat, and let π : E → C be a coGrothendieck fibration
associated to the underlying functor C → Cat. We say a morphism f̄ : x → y in E lying
over f : a → b in C is a weak equivalence if f is an isomorphism and f!x → y is a weak
equivalence in F(b); write W for the subcategory of E whose morphisms are the weak
equivalences. Our goal is to show that the nerve of LWE → C is (equivalent to) a co-
Cartesian fibration. To prove this we need a technical hypothesis on the relative categories
F(c):

Definition 4.4.1.14. A relative category (C, W) satisfies the two-out-of-three property if given
morphisms r : A → B and s : B → C such that two out of r, s, s ◦ r are in W, then so is the
third.

Definition 4.4.1.15. We say that a relative category C = (C, W) is a partial model category if
C satisfies the two-out-of-three property and C admits a three-arrow calculus, i.e. there exist
subcategories U, V ⊆W such that

(i) for every zig-zag A′ u←− A
f−→ B in C with u ∈ U, there exists a functorial zig-zag

A′
f ′−→ B′ u′←− B with u′ ∈ U such that u′ f = f ′u and u′ is an isomorphism if u is,
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(ii) for every zig-zag X
g−→ Y′ v←− Y in C with v ∈ V, there exists a functorial zig-zag

X v′←− X′
g′−→ Y with v′ ∈ V such that gv′ = vg′ and v′ is an isomorphism if v is,

(iii) every map w ∈W admits a functorial factorization w = vu with u ∈ U and v ∈ V.

Remark 4.4.1.16. If M is a model category (with functorial factorizations), then the relative
category obtained by equipping M with the weak equivalences in the model structure is
a partial model category. Similarly, the relative categories obtained from the full subcate-
gories Mcof of cofibrant objects, Mfib of fibrant objects, and M◦ of fibrant-cofibrant objects
together with the weak equivalences between these objects are all partial model categories.
The term “partial model category” is taken from [BK], but we use the more general defi-
nition of [DHKS04, 36.1] since the more restrictive definition of Barwick and Kan does not
include what is for us the key example, namely Mcof for M a model category.

Theorem 4.4.1.17 (Dwyer-Kan). Suppose (C, W) is a partial model category. Then for ev-
ery pair of objects X, Y ∈ C, the morphism LWC〈n〉(X, Y)→ LWC(X, Y) is a weak equiva-
lence of simplicial sets for all n ≥ 3.

Proof. For n = 3 this is [DK80b, Proposition 6.2(i)]; the general case follows similarly.

Proposition 4.4.1.18. Suppose F : C→ RelCat is a functor such that F(C) is a partial model
category for each C ∈ C. Let φ : A → B be a morphism in C, and let X and Y be objects
of EA and EB, respectively. Write LWE(X, Y)φ for the subspace of LWE(X, Y) over φ. The
morphism

φ̄∗ : LWEB(φ!X, Y)→ LWE(X, Y)φ

given by composition with a coCartesian morphism φ̄ : X → φ!X is a weak equivalence of
simplicial sets.

Proof. It is easy to see that E is also a partial model category. The maps LWE〈4〉(X, Y)φ →
LWE(X, Y)φ and LW(EB)〈4〉(φ!X, Y) → LWEB(φ!X, Y) are therefore weak equivalences by
Theorem 4.4.1.17. Since composition with φ̄ gives a functor φ̄∗ : LB := LW(EB)〈4〉(φ!X, Y)→
LWE〈4〉(X, Y)φ =: L it therefore suffices to prove that this gives a weak equivalence upon
taking nerves.

We will prove this in two steps. Let L1 denote the full subcategory of L spanned by
objects

X = X0
f1−→ X1

f2←− X2
f3−→ X3

f4←− X4 = Y

such that Xi ∈ EB for i ≥ 1 and fi lies over idB in C for i ≥ 2. Then φ̄∗ factors as

LB
f−→ L1 i−→ L;

we will show that each of these functors gives a weak equivalence of nerves.
First we consider f : LB → L1, given by composition with φ̄. Define q : L1 → LB by

sending a zig-zag
X

g−→ Z ← Z′ → Y′ ← Y

in L1 to
φ!X

g′−→ Z ← Z′ → Y′ ← Y
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where X
φ̄−→ φ!X

g′−→ Z is the coCartesian factorization of g (which exists since the other
maps lie over idB). Then it is clear that q f ' id and f q ' id, so f is an equivalence of
categories.

Next we want to define a functor p : L→ L1. Given a zig-zag

X
g−→ Z′ ← Z h−→ Y′ ← Y

in L, this lies over

A→ C′
γ←− C → B′

β←− B

where γ and β are isomorphisms, since weak equivalences in E map to isomorphisms in
C. Thus the coCartesian maps Z′ → γ−1

! Z′ and B′ → β−1
! B′ are isomorphisms, and our

zig-zag is isomorphic to the zig-zag

X → γ−1
! Z′ ← Z → β−1

! Y′ ← Y.

To define p we may therefore assume that β and γ are identities, in which case p sends

X
f−→ Z′ ← Z

g−→ Y′ ← Y

lying over

A α−→ C id←− C
ψ−→ B id←− B

to
X → ψ!Z′ ← ψ!Z → Y′ ← Y

in L1; this is clearly functorial.
We wish to prove that p gives an inverse to i after taking nerves. It is obvious that

p ◦ i ' id, so it suffices to show that i ◦ p is homotopic to the identity after taking nerves.
To see this we consider the natural transformation η : L → Fun([1], LWE〈6〉(x, y)φ) that
sends our zig-zag to the diagram

X Z′ Z ψ!Z ψ!Z Y′ Y

X Z′ Z′ ψ!Z′ ψ!Z Y′ Y,

id

id

id id id id id

After composing with the inclusion LWE〈6〉(x, y)φ → LWE(x, y)φ the functor η0 is clearly
linked to the inclusion L→ LWE(x, y)φ by a sequence of natural transformations, and sim-
ilarly η1 is linked to the composite of i ◦ p with this inclusion. Since natural transformations
give homotopies of the induced maps between nerves it follows from Theorem 4.4.1.17 that
the morphism on nerves induced by i ◦ p is homotopic to the identity. This completes the
proof.

Corollary 4.4.1.19. Suppose F : C → RelCat is a functor such that F(C) is a partial model
category for each C ∈ C. There is an ∞-category E[W−1] such that L(E, W)→ E[W−1]\ is a
weak equivalence in Set+∆ , and E[W−1]→ NC is a coCartesian fibration.
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Proof. Let LWE → L̄WE → C denote a factorization of LWE → C as a trivial cofibration
followed by a fibration in the model category of simplicial categories. Then (NL̄WE)\

is a fibrant replacement for L(E, W) in Set+∆ . By [Lur09a, Proposition 2.4.4.3] to prove that
NL̄WE→ NC is a coCartesian fibration it suffices to show that for each morphism f : c→ d
in C and each x in Ec we have a homotopy pullback square of simplicial sets

LWE( f!x, y) LWE(x, y)

C(d, e) C(c, e)

for all e ∈ C and y ∈ Ee, where f̄ : x → f!x denotes a coCartesian morphism in E over f .
Since the inclusion of a point in a discrete simplicial set is a Kan fibration and the model

structure on simplicial sets is right proper, given g : d → e the fibres at {g} and {g ◦ f } in
this diagram are homotopy fibres. To see that the diagram is a homotopy pullback square
it thus suffices to show that composition with f̄ induces a weak equivalence

LWE( f!x, y)g → LWE(x, y)g f

for all g : d→ e. But by Proposition 4.4.1.18, in the commutative diagram

LWEe((g f )!x, y)

LWE( f!x, y)g LWE(x, y)g f

the diagonal morphisms are both weak equivalences, hence by the 2-out-of-3 property so
is the horizontal morphism.

Corollary 4.4.1.20. Suppose F : C → RelCat is a functor such that F(C) is a partial model
category for each C ∈ C. Let LF → F̄ be a fibrant replacement in Fun(C, Set+∆ ). Then there
is a weak equivalence L(E, W)→ (NC F̄)\ in Set+∆ .

Proof. The obvious map of categorical patterns p : Peq
NC → PcoCart

NC induces a Quillen ad-
junction

p! : (Set+∆ )/NC\ � (Set+∆ )/NC] : p∗

where p! is the identity on the underlying marked simplicial sets, and p∗ forgets the
marked edges that do not lie over isomorphisms in C. Since all objects are cofibrant, p!
preserves weak equivalences.

By Proposition 4.4.1.19, there exists a coCartesian fibration E[W−1] → NC with a map
φ : L(E, W) → E[W−1]\ that is a weak equivalence in Set+∆ . The map φ is also a weak
equivalence when regarded as a morphism in (Set+∆ )/NC\ , and since p! preserves weak
equivalences it is a weak equivalence in (Set+∆ )/NC] as well.

Let M′ be the set of edges of NE corresponding to coCartesian morphisms in E, and
let E[W−1]+ denote the marked simplicial set obtained from E[W−1]\ by also marking the
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morphisms in the image of M′. We have a pushout diagram

L(E, W) E[W−1]\

(NE, NW1 ∪M′) E[W−1]+,

as both vertical maps are pushouts along ä f∈M′ ∆1 ↪→ ä f∈M′(∆1)]. Since the model struc-
ture on (Set+∆ )/NC is left proper, it follows that (NE, NW1 ∪ M′) → E[W−1]+ is a weak
equivalence.

Let E[W−1]∗ denote E[W−1], marked by the coCartesian morphisms. These are com-
posites of equivalences and morphisms in the image of M′, so E[W−1]+ → E[W−1]∗ is
marked anodyne. Moreover, NE marked by the composites of morphisms in NW1 and
M′ is precisely N+

C F, so (NE, NW1 ∪ M′) → N+
C F is also marked anodyne. By the 2-out-

of-3 property we therefore have a weak equivalence N+
C LF → E[W−1]∗. Thus E[W−1]∗

and N+
C F̄ are both fibrant replacements for N+

C LF, and so are linked by a zig-zag of weak
equivalences between fibrant objects.

This implies that the underlying ∞-categories E[W−1] and NCLF are equivalent, and
so by the 2-out-of-3 property the map (NE, W) → (NC F̄)\ is a weak equivalence in Set+∆ ,
as required.

Although not strictly necessary for the applications we are interested in below, we will
now show that if the functor F : C → RelCat is obtained from a suitable functor from C to
combinatorial model categories, then the relative category structure on E considered above
also comes from a combinatorial model category.

Definition 4.4.1.21. Let ModCatR be the category of model categories and right Quillen
functors. A right Quillen presheaf on a category C is a functor Cop → ModCatR. A right
Quillen presheaf is combinatorial if it factors through the full subcategory of combinatorial
model categories.

Definition 4.4.1.22. Suppose C is a κ-accessible category. A right Quillen presheaf on C
is κ-accessible if for each κ-filtered diagram i : I → C with colimit x, the category F(x) is
the limit of the categories F(i(α)), and the model structure on F(x) is induced by those
on F(i(α)) in the sense that a map f : a → b in F(x) is a (trivial) fibration if and only if
F(gα)( f ) is a (trivial) fibration in F(i(α)) for all α ∈ I, where gα is the canonical morphism
i(α)→ x. We say a right Quillen presheaf F on an accessible category C is accessible if there
exists a cardinal κ such that C and F are κ-accessible.

Proposition 4.4.1.23. Suppose C is a complete and cocomplete category and F is a right
Quillen presheaf on C. Let π : E → C be the Grothendieck fibration corresponding to
F. Then there exists a model structure on E such that a morphism φ : x → y with image
f : a→ b in C is

(W) a weak equivalence if and only if f is an isomorphism in C and the morphism f!x → y
is a weak equivalence in F(b).

(F) a fibration if and only if x → f ∗y is a fibration in F(a).
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(C) a cofibration if and only if f!x → y is a cofibration in F(b).

Moreover, if C is a presentable category and F is an accessible and combinatorial right
Quillen presheaf, then this model structure on E is combinatorial.

Remark 4.4.1.24. If f : a→ b is an isomorphism in C, then f ∗ = F( f ) is an isomorphism of
model categories with inverse f!. Thus if φ : x → y is a morphism in E such that f = π(φ)
is an isomorphism in C, then f!x → y is a weak equivalence in Eb if and only if x → f ∗y is
a weak equivalence in Ea.

Remark 4.4.1.25. This model category structure is a particular case of that constructed by
Roig [Roi94] (though he does not consider the combinatorial case), but we include a proof
for completeness.

Proof. Limits in E are computed by first taking Cartesian pullbacks to the fibre over the
limit of the projection of the diagram to C, and then taking the limit in that fibre. Since all
the fibres Ex have limits, it is therefore clear that E has limits. Similarly, since each functor
φ∗ for φ in C has a left adjoint, and each of the fibres Ex has all colimits, it is clear that E
has colimits.

To show that E is a model category we must now prove that the weak equivalences
satisfy the 2-out-of-3 property, and the cofibrations and trivial fibrations, as well as the
trivial cofibrations and fibrations, form weak factorization systems. We check the 2-out-
of-3 property first: Suppose we have morphisms f̄ : x → y and ḡ : y → z in E lying over
f : a→ b and g : b→ c in C. If two out of the three morphisms f̄ , ḡ and ḡ f̄ are weak equiv-
alences, it is clear that f and g must be isomorphisms. Thus g! is an isomorphism of model
categories, and g! f!x → g!y is a weak equivalence in Ec if and only if f!x → y is a weak
equivalence in Eb. Combining this with the 2-out-of-3 property for weak equivalences in
Ec gives the 2-out-of-3 property for E.

We now prove that the cofibrations and trivial fibrations form a weak factorization
system:

(1) Any morphism has a factorization as a cofibration followed by a trivial fibration:
Given f̄ : x → y in E lying over f : a → b in C, choose a factorization f!x → z → y of
f!x → y as a cofibration followed by a trivial fibration in Eb. Then by definition x → z
is a cofibration and z→ y is a trivial fibration in E.

(2) A morphism that has the left lifting property with respect to all trivial fibrations is a
cofibration: Suppose f̄ : x → y, lying over f : a → b in C, has the left lifting prop-
erty with respect to all trivial fibrations. Then in particular there exists a lift in all
diagrams

x x′

y y′

where x′ → y′ is a trivial fibration in Eb. By the universal property of coCartesian
morphisms, this clearly implies that f!x → y has the left lifting property with respect
to trivial fibrations in Eb, and so is a cofibration in Eb. Thus f̄ is a cofibration.
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(3) Cofibrations have the left lifting property with respect to trivial fibrations: Suppose
f̄ : x → y, lying over f : a → b in C, is a cofibration, and ḡ : x′ → y′, lying over
g : a′ → b′, is a trivial fibration. Given a commutative diagram

x x′

y y′

ᾱ

f̄ ḡ

β̄

lying over

a a′

b b′

α

f g

β

we must show there exists a lift y → x′. Since ḡ is a trivial fibration, g is an isomor-
phism. Pulling back along g−1 and pushing forward along gα = β f and β gives a
diagram

x β! f!x (g−1)∗x′ x′

y β!y y′ y′

Here β! f!x → β!y is a cofibration in Eb′ since f!x → y is a cofibration in Eb and β! is
a left Quillen functor, and (g−1)∗x′ → (g−1)∗g∗y = y is a trivial fibration in Eb′ since
x → g∗y is a trivial fibration in Ea′ and (g−1)∗ is a right Quillen functor. Thus there
exists a lift β!y→ (g−1)∗x′ which gives the desired lift y→ x′.

(4) A morphism that has the right lifting property with respect to all cofibrations is a
trivial fibration: Suppose ḡ : x′ → y′, lying over g : a′ → b′ in C, has the right lifting
property with respect to all cofibrations. Then in particular there exists a lift in all
diagrams

x x′

y y′

where x → y is a cofibration in Ea′ . By the universal property of Cartesian mor-
phisms, this clearly implies that x′ → g∗y′ has the right lifting property with respect
to cofibrations in Ea′ , and so is a trivial fibration in Ea′ . On the other hand, there exists
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a lift in the diagram

x′ x′

g!x′ y′,

and projecting this down to C we see that g must be an isomorphism. Thus ḡ is a
trivial fibration in E.

The proof that trivial cofibrations and fibrations form a weak factorization system is dual
to that for cofibrations and trivial fibrations, so we omit the details.

This completes the proof that E is a model category. Now suppose the right Quillen
presheaf F is combinatorial and accessible. It follows from [MP89, Theorem 5.3.4] that the
category E is accessible, and the functor π is accessible, thus E is a presentable category
since we already proved that it has small colimits.

Let κ be a cardinal such that C is κ-accessible and Ex is κ-accessible for each κ-compact
object x in C. For x ∈ C, let Ix and Jx be sets of generating cofibrations and trivial cofibra-
tions for Ex. Let I and J be the unions of Ix and Jx, respectively, over all κ-compact objects
x ∈ C; then I and J are sets.

Suppose a morphism f̄ : x → y, lying over f : a→ b in C, has the right lifting property
with respect to the morphisms in J; then x → f ∗y is a fibration in Ea: To see this let K→ C,
α 7→ aα, be a κ-filtered diagram of κ-compact objects with colimit a, and let γα : aα → a be
the canonical morphism. Then γ∗αx → γ∗α f ∗y has the right lifting property with respect to
a set of generating trivial cofibrations in Eaα , and hence this is a fibration in Eaα . Since the
right Quillen presheaf F is κ-accessible, this implies that x → f ∗y is a fibration in Ea. This
means f̄ is a fibration in E, so J is a set of generating trivial cofibrations.

Similarly, if f̄ has the right lifting property with respect to the morphisms in I, then
x → f ∗y is a trivial fibration in Ea. To find a set of generating cofibrations we consider
also the set I′ of morphisms ∅∅ → ∅c and ∅cqc → ∅c where c is a κ-compact object of
C and ∅c denotes the initial object of Ec. We claim that if f̄ : x → y in E, with image
f : a → b in C, has the right lifting property with respect to the morphisms in I′, then f
is an isomorphism in C. To prove this it suffices to show that for every object c ∈ C the
map f∗ : HomC(c, a′) → HomC(c, b′) induced by composition with f is a bijection; since
C is κ-presentable it is enough to prove this for c a κ-compact object. Since f̄ has the right
lifting property with respect to ∅∅ → ∅c and every morphism c→ b induces a morphism
∅c → y, there exists a lift in the diagram

∅ a

c b

f

for every map c → b; this shows that f∗ is surjective. Moreover, given two morphisms
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c→ a such that the composites c→ b are equal, we get a lift in the diagram

cq c a

c b

f

since f̄ has the right lifting property with respect to ∅cqc → ∅c; thus the two morphisms
c → a must be equal and so f∗ is injective. It follows that if a morphism in E has the right
lifting property with respect to the union I q I′ then it is a trivial fibration, so I q I′ is a set
of generating cofibrations for E. Hence E is a combinatorial model category.

Remark 4.4.1.26. Let F be a right Quillen presheaf on a category C, and let E → C be a
coGrothendieck fibration associated to the underlying functor to categories. Write G for
the associated “left Quillen presheaf” obtained by passing to left adjoints, and let Gc : C→
RelCat be the functor to relative categories obtained by restricting to cofibrant objects.
Then the full subcategory Ecof of cofibrant objects in E, with the model structure defined
above, is the total space of the coGrothendieck fibration associated to Gcof, and the weak
equivalences in Ecof are precisely those considered above.

4.4.2 Rectifying Associative Algebras

In [Lur11, §4.1.4] Lurie proves a rectification result for associative algebras: if V is a nice
symmetric monoidal model category, then the ∞-category of ∞-categorical associative al-
gebras in V∞, i.e. the ∞-category of algebras for the non-symmetric ∞-operad �op, is
equivalent to that associated to the model category of (strictly) associative algebras in V
(constructed by Schwede and Shipley [SS00]). This is proved by showing that both are
equivalent to the ∞-category of algebras for the free associative algebra monad on V∞. We
would like to use the same idea to show that the ∞-category associated to the model cat-
egory CatX(V) of V-categories with a fixed set X of objects is equivalent to Alg

�
op
X
(V∞);

to do this we need a generalization of Schwede and Shipley’s results to the case of non-
symmetric monoidal model categories. Luckily this generalization has been carried out by
Muro [Mur11] as part of his work on model structures for algebras over non-symmetric
operads. We will now review this case of Muro’s work, and then observe that they allow
the technical parts of Lurie’s proof to work exactly as in [Lur11].

First we recall an observation of Schwede and Shipley on model structures for algebras
over monads:

Definition 4.4.2.1. Let T be a monad on a model category C. We say that T is an admissible
monad if there exists a model structure on the category Alg(T) of T-algebras where a
morphism is a weak equivalence or fibration if and only if the underlying morphism in C
is a weak equivalence or fibration.

Write FT : C � Alg(T) : UT for the associated adjunction. If C is a combinatorial model
category with sets I and J of generating cofibrations and trivial cofibrations, we say that T
is combinatorially admissible if it is admissible and the model structure on Alg(T) is combi-
natorial with FT(I) and FT(J) as sets of generating cofibrations and trivial cofibrations.
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Lemma 4.4.2.2 (Schwede-Shipley, [SS00, Lemma 2.3]). Suppose C is a combinatorial model
category and T is a filtered-colimit-preserving monad on C, and let J be a set of generating
trivial cofibrations for C. If every morphism in the weakly saturated class generated by
FT(J) is a weak equivalence in C then T is combinatorially admissible.

Remark 4.4.2.3. Since weak equivalences in C are closed under retracts and transfinite
composites, the weakly saturated class generated by FT(J) will be contained in the weak
equivalences provided the pushout of any morphism in FT(J) along any morphism in
Alg(T) is a weak equivalence.

Definition 4.4.2.4. Let C be a biclosed monoidal category. If f : A→ B and g : A′ → B′ are
morphisms in C, let f�g be the induced morphism

A⊗ B′ qA⊗A′ B⊗ A′ → B⊗ B′.

Definition 4.4.2.5. Let C be a model category equipped with a biclosed monoidal structure.
We say that C is a monoidal model category if f�g is a cofibration whenever f and g are both
cofibrations, and a trivial cofibration if either f or g is also a weak equivalence.

Definition 4.4.2.6. Suppose C is a monoidal model category. Let U be the set of morphisms
in C of the form f1� · · ·� fn where each fi is either a trivial cofibration or of the form
∅ → Xi for some Xi ∈ C, with at least one fi being a trivial cofibration. We say that C
satisfies the monoid axiom if the weakly saturated class Ū generated by U is contained in
the weak equivalences in C.

Remark 4.4.2.7. If C is symmetric monoidal, then this is equivalent to the corresponding
statement where U consists of morphisms of the form f ⊗ idX with f a trivial cofibration.
This is the original form of the monoid axiom, due to Schwede and Shipley.

We can now state the special case of Muro’s results on algebras over non-symmetric
operads that we will make use of:

Theorem 4.4.2.8 (Muro [Mur11, Theorem 8.6]). Suppose C is a combinatorial biclosed
monoidal model category satisfying the monoid axiom. Write Alg(C) for the category
of associative algebra objects of C and F : C � Alg(C) : U for the free algebra functor and
forgetful functor. Let f : X → Y be a morphism in C and g : F(X) → A be a morphism in
Alg(C). If

F(X) F(Y)

A B

f

g g′

f ′

is a pushout diagram in Alg(C), then there is a sequence of morphisms in C

A = B0
φ1−→ B1

φ2−→ B2 · · ·

such that B = colimt Bt and φt is a pushout of

ä
n≥1

ä
S⊆{1,...,n}
|S|=t

kS
1� · · ·�kS

n
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where

kS
i =

{
f , i ∈ S
∅→ A, i /∈ S.

Corollary 4.4.2.9. Suppose C is a combinatorial biclosed monoidal model category satis-
fying the monoid axiom. Then the free associative algebra monad on C is combinatorially
admissible.

Proof. By Remark 4.4.2.3 it suffices to show that if f : X → Y is a trivial cofibration in C
and g : F(X)→ A a morphism in Alg(C), and

F(X) F(Y)

A B

f

g g′

f ′

is a pushout diagram in Alg(C), then f ′ is a weak equivalence in C. By Theorem 4.4.2.8,
the morphism f ′ is a transfinite composite of pushouts of morphisms φt that are clearly
contained in the class U from Definition 4.4.2.6, so f ′ is contained in the weakly saturated
closure Ū. Since C satisfies the monoid axiom, this implies that f ′ is a weak equivalence in
C.

This allows us to generalize the key technical result [Lur11, Lemma 4.1.4.13] to non-
symmetric monoidal categories:

Definition 4.4.2.10. A model category is tractable if it is combinatorial and there exists a set
of generating cofibrations that consists of morphisms between cofibrant objects.

Lemma 4.4.2.11. Suppose C is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom and I is a small category such that NI is sifted. Then the
forgetful functor U∞ : Alg(C)∞ → C∞ preserves NI-indexed colimits.

The proof is almost the same as that of [Lur11, Lemma 4.1.4.13], but we include it for
completeness:

Proof. By [Lur11, Proposition 1.3.3.11, Proposition 1.3.3.12] it suffices to show that the
forgetful functor U preserves homotopy colimits indexed by I. Regard the categories
Fun(I, AlgM(C)) and Fun(I, C) as model categories equipped with the projective model
structures, let C : Fun(I, C) → C and CAlg : Fun(I, Alg(C)) → Alg(C) be colimit func-
tors, and let UI : Fun(I, Alg(C)) → Fun(I, C) be given by composition with U. Since NI
is sifted, there is a canonical isomorphism of functors α : C ◦ UI ∼−→ U ◦ CAlg. We need
to prove that this isomorphism persists after deriving all the relevant functors. Let LC
and LCAlg be left derived functors of C and CAlg; then α induces a natural transforma-
tion ᾱ : LC ◦UI → U ◦LCAlg; we wish to prove that ᾱ is a natural weak equivalence. Let
A : I→ Alg(C) be a projectively cofibrant functor; we must show that the natural map

LCUI(A)→ U(LCAlg(A)) ∼= U(CAlg(A)) ∼= C(UI A)

is a weak equivalence in C.
Let’s call an object X ∈ Fun(I, C) good if
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(i) the object X(i) is cofibrant in C for all i ∈ I,

(ii) the colimit C(X) is cofibrant in C,

(iii) the natural map LC(X) → C(X) is a weak equivalence in C, i.e. the colimit of X is
also a homotopy colimit.

To complete the proof it suffices to show that UI A is good whenever A is a projectively
cofibrant object of Fun(I, Alg(C)).

Let’s say a morphism f : X → Y in Fun(I, C) is good if

(i) the objects X and Y are good,

(ii) the map X(i)→ Y(i) is a cofibration for all i ∈ I,

(iii) the map C( f ) : C(X)→ C(Y) is a cofibration in C.

We now make the following observations:

(1) Good morphisms are stable under transfinite composition: Given an ordinal α and
a direct system of objects {Xβ}β<α of Fun(I, C) such that for every 0 < β < α the
map colim{Xγ}γ<β → Xβ is good, then the induced map X0 → X := colim{Xβ}β<α

is good. The only non-obvious point is to show that the object X is good. For this
we observe that X is a homotopy colimit of the system {Xβ} by (ii) and C(X) is a
homotopy colimit of {C(Xβ)} by (iii), and recall that homotopy colimit diagrams are
stable under homotopy colimits.

(2) Suppose

X Y

X′ Y′

f

f ′

is a pushout diagram in Fun(I, C) such that f is good and the object X′ is good. Then
f ′ is also good: Again the only non-obvious point is to show the object Y′ is good.
The hypotheses imply that the diagram is a homotopy pushout square, and similarly
C(Y′) is a homotopy pushout of C(Y) with C(X′) over C(X), so it follows that Y′ is
good since homotopy colimit diagrams are stable under homotopy colimits.

(3) Let G : I → C be a constant functor whose value is a cofibrant object of C. Then
G is good, since NI is weakly contractible, using [Lur11, Proposition 1.3.3.11] and
[Lur09a, Proposition 5.5.8.7].

(4) Every projectively cofibrant object of Fun(I, C) is good, and every projective cofibra-
tion between projectively cofibrant objects is good.

(5) If X and Y are good, then so is X ⊗ Y: The cofibrant objects of C are closed under
tensor products, and because NI is sifted, [Lur11, Proposition 1.3.3.11] gives a chain
of isomorphisms in hC

LC(X⊗Y) ∼= LC(X)⊗LC(Y) ∼= C(X)⊗ C(Y) ∼= C(X⊗Y).
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(6) Let f : X → X′ be a good morphism, and let Y be a good object. Then f ⊗ idY is good:
Condition (i) follows from (5), condition (ii) follows because tensoring with each Y(c)
preserves cofibrations, since Y(c) is cofibrant, and condition (iii) holds by the same
argument applied to C(Y), since C commutes with tensor products.

(7) Let f : X → X′ and g : Y → Y′ be good morphisms. Then f�g is good. Condition
(ii) holds since C is a monoidal model category, as does (iii) since C commutes with
pushouts and tensor products. Then (i) holds by combining (5), (6), and (2).

(8) Every retract of a good object is good: this follows since cofibrations and weak equiv-
alences are closed under retracts.

By assumption the model category C is left proper and tractable, which implies that the
projective model structure on Fun(I, C) is also tractable. Using the small object argument
this implies that for every projectively cofibrant object A ∈ Fun(I, Alg(C)) there exists a
transfinite sequence {Aβ}β≤α such that

(a) A0 is an initial object,

(b) A is a retract of Aα,

(c) if λ ≤ α is a limit ordinal, then Aλ ∼= colim{Aβ}β<λ,

(d) for each β < α there is a pushout diagram

F(X′) F(X)

Aβ Aβ+1

F( f )

where f is a projective cofibration between projectively cofibrant objects of Fun(I, C).

By (b) and (8) to prove that UI(A) is good it suffices to prove that UI(Aα) is good. We will
show by transfinite induction that for each γ ≤ β ≤ α the induced morphism

uγ,β : UI(Aγ)→ UI(Aβ)

is good. If β = 0 this holds since UI(A0) is good by (a) and (3). If β is a non-zero limit
ordinal, this follows from (c) and (1). It therefore suffices to consider the case where β =
β′ + 1 is a successor ordinal. Moreover, we may suppose γ = β′: if γ < β′ then uγ,β =
uβ′,β ◦ uγ,β′ and composites of good morphisms are good by (1), while if γ > β′ then we
must have γ = β and we are reduced to proving that UI(Aβ) is good, which will follow
from uβ′,β being good. Invoking (d) we thus need to prove that if

F(X′) F(X)

B′ B

F( f )

v
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is a pushout diagram where f : X′ → X is a projective cofibration between projectively
cofibrant objects of Fun(I, C) and UIB′ is good, then UI(v) is good. By Theorem 4.4.2.8 the
morphism UI(v) can be identified with a transfinite composite of morphisms φt : Bt−1 →
Bt; by (1) it suffices to show that each φt is good. But φt is a pushout of

ψt := ä
n≥1

ä
S⊆{1,...,n}
|S|=t

kS
1� · · ·�kS

n,

and since B0 = U(B′) is good applying (2) inductively it suffices to prove that ψt is good.
It is clear that an arbitrary coproduct of good morphisms is good, so by (7) to see this it
suffices to show that each morphism kS

i is good, which is true since this is either f , which
is good by (4), or ∅→ B′, which is good since B′ is good.

Remark 4.4.2.12. Applying the more general version of Theorem 4.4.2.8 actually proved
in [Mur11], the same proof clearly implies, for example, that if C is a left proper tractable
simplicial biclosed monoidal model category satisfying the monoid axiom, O is a small
simplicial non-symmetric operad, and I is a small category such that NI is sifted, then the
forgetful functor AlgM(C)∞ → C∞ preserves NI-indexed colimits.

Proposition 4.4.2.13. Suppose C is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom. Then the natural map

Alg(C)∞ → AlgO
�op(C⊗∞)

is an equivalence.

Proof. We apply [Lur11, Corollary 6.2.2.14] as in the proof of [Lur11, Theorem 4.1.4.4]: We
have a commutative diagram

Alg(C)∞ AlgO
�op(C⊗∞)

C∞.

U∞ U′

Then we observe:

(a) The ∞-category Alg(C)∞ is presentable by [Lur11, Proposition 1.3.3.9], and the ∞-
category AlgO

�op(C⊗∞) is presentable by Corollary 3.3.5.5 since C∞ is presentable by
[Lur11, Proposition 1.3.3.9] and the induced tensor product on C∞ preserves colimits
in each variable by [Lur11, Lemma 4.1.4.8].

(b) The functor U′ admits a left adjoint F′ by Theorem 3.3.4.6, and U∞ admits a left adjoint
F∞ since it arises from a right Quillen functor.

(c) The functor U′ is conservative by Lemma 3.3.5.3 and preserves sifted colimits by
Proposition 3.3.5.2.

(d) The functor U∞ is conservative by the definition of the weak equivalences in Alg(C),
and preserves sifted colimits by Lemma 4.4.2.11.
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(e) The canonical map U′ ◦ F′ → U∞ ◦ F∞ is an equivalence since both induce, on the
level of homotopy categories, the free associative algebra functor A 7→ än≥0 C⊗n by
Proposition 3.3.4.9.

The hypotheses of [Lur11, Corollary 6.2.2.14] thus hold, which implies that the morphism
in question is an equivalence.

4.4.3 Comparison with Enriched Categories

Our goal in this subsection is to show that the homotopy theory of categories enriched in
a nice monoidal model category V is equivalent to the homotopy theory of ∞-categories
enriched in the monoidal ∞-category associated to V. More precisely, we will prove that
the ∞-category obtained from the category Cat(V) of small V-categories by inverting the
homotopically appropriate version of fully faithful and essentially surjective functors is
equivalent to the ∞-category CatV∞

∞ of small V∞-∞-categories. We will do this in three
steps: first we apply the results of §4.4.2 to get an equivalence between the ∞-category
associated to a model structure on the category CatX(V) of V-categories with a fixed set of
objects X and the ∞-category AlgO

�
op
X
(V∞) of�op

X -algebras. Next, using the results of §4.4.1,
we see that this induces an equivalence between the ∞-category associated to a certain
model structure on Cat(V) and the ∞-category AlgO

cat(V
⊗
∞)Set of categorical algebras in

V∞ whose spaces of objects are sets. Finally, we complete the comparison by showing that
inverting the fully faithful and essentially surjective functors in AlgO

cat(V
⊗
∞)Set is equivalent

to inverting them in AlgO
cat(V

⊗
∞).

If V is a biclosed monoidal category and X is a set then it is well-known that there is a
monoidal structure on Fun(X× X, V), given by

(F⊗ G)(x, y) = ä
z∈X

F(x, z)⊗ G(z, y),

such that an associative algebra object in Fun(X × X, V) is precisely a V-category with
objects X. This monoidal structure is well-behaved:

Proposition 4.4.3.1 (Muro [Mur11, Proposition 10.3]). If V is a monoidal model category
satisfying the monoid axiom, then so is Fun(X× X, V) for all sets X.

We can thus get a model structure on the category CatX(V) of V-categories with fixed
set of objects X:

Corollary 4.4.3.2. If V is a left proper tractable biclosed monoidal model category satis-
fying the monoid axiom, then there is a combinatorial model category structure on the
category CatX(V) such that a morphism is a fibration or weak equivalence if and only if
its image in Fun(X× X, V) is. Moreover, if I is a small category such that NI is sifted then
the forgetful functor CatX(V)∞ → Fun(X× X, V)∞ preserves NI-indexed colimits.

Proof. Apply Corollary 4.4.2.9 and Lemma 4.4.2.11 to Fun(X × X, V) equipped with the
monoidal structure described above, so that associative algebras are V-categories with set
of objects X.

The ∞-category associated to this model category is equivalent to the ∞-category of
�

op
X -algebras in V∞:
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Proposition 4.4.3.3. Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom, and let X be a set. The natural map ηX : CatX(V)∞ →
AlgO

�
op
X
(V⊗∞) is an equivalence.

Proof. This follows by exactly the same argument as that in the proof of Proposition 4.4.2.13,
since the free associative algebra monad on Fun(X × X, V) is the same as the free �op

X -
algebra monad by Proposition 3.3.4.9.

Using Proposition 4.4.1.23 we can combine these fibrewise model structures to get a
model structure on the category Cat(V) of small V-categories:

Proposition 4.4.3.4. Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. Then there is a model structure on the category Cat(V) of
small V-categories such that a morphism F : C → D is a weak equivalence if and only
if F is a bijection on objects and the induced morphism C(x, y) → D(Fx, Fy) is a weak
equivalence in V for all x, y ∈ ob C, and a fibration if and only if C(x, y) → D(Fx, Fy) is a
fibration in V for all x, y ∈ ob C.

We say that a functor F : C → D of V-categories is weakly fully faithful if for all objects
x, y ∈ C the morphism C(x, y)→ D(Fx, Fy) is a weak equivalence in C; the weak equiva-
lences in this model structure on Cat(V) are thus the weakly fully faithful functors that are
bijective on objects. We therefore write Cat(V)FFB for Cat(V) equipped with this model
structure.

The map ηX : CatX(V)∞ → AlgO

�
op
X
(V⊗∞) is natural in X, so it induces a natural trans-

formation of functors Set → Set+∆ . Applying Corollary 4.4.1.20 we get the following com-
parison of “algebraic” homotopy theories:

Theorem 4.4.3.5. The natural transformation η induces a functor

Cat(V)FFB
∞ → AlgO

cat(V
⊗
∞)Set

and this is an equivalence.

The weakly fully faithful functors that are bijective on objects are clearly not the right
weak equivalences between V-categories — just as for ordinary categories the equiva-
lences are the functors that are fully faithful and essentially surjective, here they should
be the functors that are weakly fully faithful and essentially surjective up to homotopy, in
the following sense:

Definition 4.4.3.6. Let V be a monoidal model category. Then the projection V → hV to
the homotopy category is a monoidal functor; this therefore induces a functor Cat(V) →
Cat(hV). We say a functor of V-categories is homotopically essentially surjective if its image
in Cat(hV) is essentially surjective.

Weakly fully faithful and homotopically essentially surjective functors are often called
DK-equivalences; they can also be described as the functors of V-categories that induce
equivalences of hV-categories.

Our next goal is to show that the ∞-category obtained by inverting the weakly fully
faithful and homotopically essentially surjective functors in Cat(V), which we will denote
by Cat(V)[FFES−1], is equivalent to the ∞-category CatV∞

∞ of V∞-enriched ∞-categories.
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Remark 4.4.3.7. In many cases there is a model structure on Cat(V) where the weak equiv-
alences are the weakly fully faithful and homotopically essentially surjective functors; see
[Lur09a, BM12, Sta12] for general results on such model structures (and see [BM12, §1] for
a historical discussion). If this model structure exists, then Cat(V)[FFES−1] is equivalent
to the ∞-category associated to this model category.

The weakly fully faithful and homotopically essentially surjective functors in Cat(V)

clearly correspond to the fully faithful and essentially surjective functors in AlgO
cat(V

⊗
∞)Set.

Theorem 4.4.3.5 therefore implies the following:

Proposition 4.4.3.8. Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom. Then Cat(V)[FFES−1] is equivalent to the localization
AlgO

cat(V
⊗
∞)Set[FFES−1] of AlgO

cat(V
⊗
∞)Set with respect to the fully faithful and essentially

surjective functors.

To prove our desired comparison result it therefore suffices to show that inverting the
fully faithful and essentially surjective functors in AlgO

cat(V
⊗
∞)Set is equivalent to inverting

them in the ∞-category AlgO
cat(V

⊗
∞) of all categorical algebras. This is true for all monoidal

∞-categories:

Proposition 4.4.3.9. Suppose V⊗ is a monoidal ∞-category. The inclusion

i : AlgO
cat(V

⊗)Set → AlgO
cat(V

⊗)

induces an equivalence AlgO
cat(V

⊗)Set[FFES−1]
∼−→ CatV∞ after inverting the fully faithful

and essentially surjective functors.

Proof. Considering S as the ∞-category associated to the usual model structure on sim-
plicial sets, we get a functor j : Set∆ → S that exhibits S as the localization of Set∆ with
respect to the weak equivalences. Let AlgO

cat(V
⊗)∆ be the ∞-category defined by the pull-

back square

AlgO
cat(V

⊗)∆ AlgO
cat(V

⊗)

Set∆ S.

j′

j

Then AlgO
cat(V

⊗)Set is the pullback of AlgO
cat(V

⊗)∆ along the inclusion Set → Set∆ of the
constant simplicial sets. This has a right adjoint (–)0 : Set∆ → Set that sends a simplicial set
to its set of 0-simplices. The inclusion i′ : AlgO

cat(V
⊗)Set ↪→ AlgO

cat(V
⊗)∆ therefore has a right

adjoint s : AlgO
cat(V

⊗)∆ → AlgO
cat(V

⊗)Set that sends an object (X ∈ Set∆,C ∈ AlgO
cat(V

⊗)) to
the pullback of C along the morphism X0 → X → ι0C. It is clear that i′ preserves fully
faithful and essentially surjective functors, as does s by the 2-out-of-3 property. Moreover,
si ' id and the counit is : C→ C is fully faithful and essentially surjective for all C. It then
follows from Lemma 2.1.8.4 that i′ induces an equivalence

AlgO
cat(V

⊗)Set[FFES−1]
∼−→ AlgO

cat(V
⊗)∆[FFES−1]

after inverting the fully faithful and essentially surjective functors. Moreover, AlgO
cat(V) is

the localization of AlgO
cat(V)∆ with respect to the morphisms that induce weak equivalences
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in Set∆ and project to equivalences in AlgO
cat(V). These are obviously among the fully

faithful and essentially surjective functors, and so j′ induces an equivalence

AlgO
cat(V

⊗)∆[FFES−1]
∼−→ CatV∞.

Composing these two equivalences gives the result.

Corollary 4.4.3.10. Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. The functor η : Cat(V)∞ → AlgO

cat(V
⊗
∞)Set induces an equiv-

alence Cat(V)[FFES−1]
∼−→ CatV∞

∞ .

4.4.4 Comparison with Segal Categories

Segal categories are a model for the theory of (∞, 1)-categories where composition is only
associative up to coherent homotopy, inspired by Segal’s model of A∞-spaces. They were
introduced by Hirschowitz and Simpson [HS98]. A generalization to Segal categories en-
riched in a monoidal model category where the tensor product is the Cartesian product
was first given by Lurie [Lur09b], and later extensively studied by Simpson [Sim12].

Our goal in this subsection is to show that the homotopy theory of Segal categories
enriched in V is equivalent to that of ∞-categories enriched in V∞. Segal categories are
usually regarded as fibrant objects in a certain model structure on precategories; we first re-
view the definitions of Segal categories and precategories, and show that for our purposes
we may equivalently consider Segal categories as objects in a larger category of functors.
Then we prove the comparison result, using the same strategy as for the comparison with
enriched categories.

We begin by recalling the definition of enriched Segal categories:

Definition 4.4.4.1. A model category is Cartesian if it is a monoidal model category with
respect to the Cartesian product. If V is a Cartesian model category, a V-enriched Segal
category (or Segal V-category) with set of objects S is a functor C : �op

S → V such that
C(x, y) is fibrant for all x, y ∈ S and for every object (x0, . . . , xn) of �op

S the Segal morphism
C(x0, . . . , xn) → C(x0, x1) × · · ·C(xn−1, xn) induced by the projections (x0, . . . , xn) →
(xi, xi+1) is a weak equivalence.

Remark 4.4.4.2. We can regard (fibrant) V-categories as the Segal categories where the
Segal morphisms are isomorphisms, rather than just weak equivalences.

Now we construct a model category whose fibrant objects are Segal categories with a
fixed set S of objects; for this we first need some notation:

Definition 4.4.4.3. If X is an object of �op
S , let iX : ∗ → �

op
X denote the functor with im-

age X, write i∗X : Fun(�op
S , V) → V for the functor given by composition with iX, and let

iX,! : V → Fun(�op
S , V) be its left adjoint, given by left Kan extension along iX. Then iX,! is

a left Quillen functor with respect to the projective model structure on Fun(�op
S , V).

Observe that if V is a left proper combinatorial simplicial Cartesian model category,
then a functor C : �op

S → V is a Segal category if and only if it is projectively fibrant
and local with respect to the morphisms i(x0,x1),! A ä · · ·ä i(xn−1,xn),! A → i(x0,...,xn),! A for all
(x0, . . . , xn) in S and all A in a set of objects that generates V under colimits. Thus we
can define a model structure whose fibrant objects are Segal categories as a left Bousfield
localization of the projective model structure:
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Definition 4.4.4.4. The Segal category model structure on functors is the left Bousfield local-
ization of the projective model structure on Fun(�op

S , V) with respect to these morphisms.
We write Fun(�op

S , V)Seg for the category Fun(�op
S , V) equipped with this model structure.

Enriched Segal categories are more commonly considered as objects in a category of
precategories:

Definition 4.4.4.5. A V-precategory with set of objects S is a functor C : �op
S → V such

that C(x, . . . , x) is a final object for all constant sequences (x, . . . , x) with x ∈ S. Write
PrecatS(V) for the full subcategory of Fun(�op

S , V) spanned by the V-precategories, and
u∗ : PrecatS(V) → Fun(�op

S , V) for the inclusion. Then u∗ has a left adjoint, which we
denote u!.

There is a model structure on PrecatS(V) analogous to that for Fun(�op
S , V) we de-

scribed above:

Proposition 4.4.4.6 (Simpson [Sim12, Propostion 13.4.3]). There exists a model structure
on PrecatS(V) where a morphism is a weak equivalence or fibration if it levelwise is one
in V. The functor u∗ : PrecatS(V)→ Fun(�op

S , V) is a right Quillen functor.

Definition 4.4.4.7. The Segal category model structure on precategories is the left Bousfield lo-
calization of the projective model structure on PrecatS(V) with respect to the morphisms
u!(i(x0,x1),! A ä · · ·ä i(xn−1,xn),!A)→ u!i(x0,...,xn),! A for all (x0, . . . , xn) in S and all A in a set of
objects that generates V under colimits. We write PrecatS(V)Seg for the category PrecatS(V)
equipped with this model structure.

We now prove that these two model categories in the fixed-object case are equivalent:

Proposition 4.4.4.8. The adjunction u! a u∗ gives a Quillen equivalence

Fun(�op
S , V)Seg � PrecatS(V)Seg.

Proof. Since u∗ is fully faithful, the counit u!u∗F → F is an isomorphism in PrecatS(V) for
all F. It thus remains to show that if X is a cofibrant object of Fun(�op

S , V)Seg and X′ is a
fibrant replacement for u!X in PrecatS(V)Seg, then the composite X → u∗u!X → u∗X′ is a
weak equivalence in Fun(�op

S , V)Seg.
By [Sim12, Lemma 14.2.1] the functor u! only changes the values of a functor at the

constant sequences (x, . . . , x) for x ∈ S, and so preserves fibrant objects. Moreover, if F
is a fibrant object of Fun(�op

S , V)Seg, and so in particular F(x, . . . , x) is weakly equivalent
to the final object, then the unit map F → u∗u!F is a levelwise weak equivalence. Thus if
X is a cofibrant object in Fun(�op

S , V)Seg and X → F is a fibrant-cofibrant replacement for
X, then u!X → u!F is a weak equivalence and u!F is fibrant in PrecatS(V)Seg, i.e. u!F is a
fibrant replacement for u!X. Since X → F and F → u∗u!F are weak equivalences, it follows
that the composite X → u∗u!F is also a weak equivalence, as required.

Using Proposition 4.4.1.23 we can combine these model structures as the set S varies:

Definition 4.4.4.9. Let SegFun(V) denote the total space of the right Quillen presheaf given
by S 7→ Fun(�op

S , V)Seg and let Precat(V) denote the total space of the right Quillen
presheaf given by S 7→ PrecatS(V)Seg. The adjunction u! a u∗ is natural and so gives a
natural transformation between these right Quillen presheaves.
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Proposition 4.4.4.10. Let V be a left proper combinatorial simplicial Cartesian model cate-
gory. There exist combinatorial model structures on the categories SegFun(V) and Precat(V)
where a morphism F : C → D is a weak equivalence if and only if the induced morphism
f on objects is a bijection and C → f ∗D is a weak equivalence in Fun(�op

ob C, V)Seg or
Precatob C(V)Seg and a fibration if and only if C → f ∗D is a fibration in Fun(�op

ob C, V)Seg
or Precatob C(V)Seg. The adjunction

u! : SegFun(V) � Precat(V) : u∗

induced by the natural transformations u! and u∗ is a Quillen equivalence.

Our goal is now to prove that inverting an appropriate collection of weak equivalences
in SegFun(V) give an ∞-category equivalent to CatV∞

∞ . As in the case of enriched categories
we begin by considering the fixed-object case, i.e. comparing the ∞-category associated to
Fun(�op

X , V)Seg to AlgO

�
op
X
(V×∞).

We know the ∞-category associated to the projective model structure on Fun(�op
X , V)

is equivalent to the ∞-categorical functor category Fun(�op
X , V∞). The Bousfield-localized

model category Fun(�op
X , V)Seg can therefore be identified with the full subcategory of

Fun(�op
X , V∞) spanned by the objects that are local with respect to certain maps. We can

identify this with the ∞-category of �op
X -monoids:

Definition 4.4.4.11. Suppose V is a presentable ∞-category and M is a generalized non-
symmetric ∞-operad. For m ∈ M, write im : ∗ → M for the inclusion of this object, and
let im,! denote left Kan extension along im. Then for any functor F : M → V and X ∈ V

we have Map(im,!cX, F) ' Map(cX, i∗mF) ' MapV(X, F(m)), where cX is the functor ∗ → V

with image X.

Lemma 4.4.4.12. Suppose V is a presentable ∞-category such that the Cartesian product
preserves colimits separately in each variable, and M is a small generalized non-symmetric
∞-operad. Then the ∞-category MndO

M(V) is the localization of Fun(M,V) with respect to
the morphisms im1,!X q · · · q imn,!X → im,!X for all m ∈ M with X ranging over a set of
objects that generates V under colimits.

Proof. A functor F : M → V is a monoid if and only if it is local with respect to these
morphisms.

Since MndO
M(V) is equivalent to AlgO

M(V×), we have proved the following

Proposition 4.4.4.13. Suppose V is a left proper simplicial combinatorial Cartesian model
category. Then the natural map αX : (Fun(�op

X , V)Seg)∞ → AlgO

�
op
X
(V×∞) is an equivalence.

The map αX : (Fun(�op
X , V)Seg)∞ → AlgO

�
op
X
(V×∞) is natural in X, so applying Corol-

lary 4.4.1.20 and Proposition 4.4.1.23 we get the following comparison of “algebraic” ho-
motopy theories:

Theorem 4.4.4.14. Suppose V is a left proper simplicial combinatorial Cartesian model
category. The natural transformation α induces a functor SegFun(V)∞ → AlgO

cat(V
⊗
∞)Set

and this is an equivalence.
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The weak equivalences in SegFun(V) are difficult to describe in general; however, a
morphism f : C → D between fibrant objects, i.e. Segal categories, is a weak equivalence
if and only if it is bijective on objects and a levelwise weak equivalence — given the Segal
conditions, it suffices for f to give a weak equivalence C(x, y) → D( f x, f y) for all ob-
jects x, y in C. To obtain the correct homotopy theory we clearly also need to invert the
morphisms that are fully faithful and essentially surjective in the appropriate sense:

Definition 4.4.4.15. Composition with the projection V→ hV induces a functor

SegFun(V)→ SegFun(hV).

This takes Segal categories to categories enriched in hV. We say a morphism between
Segal categories in SegFun(V) is weakly fully faithful and homotopically essentially surjective if
its image in SegFun(hV) corresponds to a fully faithful and essentially surjective functor of
hV-categories.

This definition extends to give a notion of weak equivalence in SegFun(V), and it is
possible to construct a model structure with these weak equivalences, cf. [Lur09b, Sim12].
For our purposes, however, it suffices to regard the ∞-category SegFun(V)∞ as obtained
by inverting the weak equivalences in the full subcategory of fibrant objects (i.e. Segal
categories). Then we can construct an ∞-category SegFun(V)[FFES−1] by further inverting
the weakly fully faithful and homotopically essentially surjective functors between Segal
categories; this is equivalent to the ∞-category associated to the above-mentioned model
categories.

The weakly fully faithful and homotopically essentially surjective functors between
Segal categories clearly correspond to the fully faithful and essentially surjective functors
between categorical algebras, so we get the following:

Proposition 4.4.4.16. Suppose V is a left proper simplicial combinatorial Cartesian model
category. There is an equivalence

SegFun(V)[FFES−1]
∼−→ AlgO

cat(V
⊗
∞)Set[FFES−1].

Combining this with Proposition 4.4.3.9 gives our comparison result:

Corollary 4.4.4.17. Suppose V is a left proper simplicial combinatorial Cartesian model
category. There is an equivalence

SegFun(V)[FFES−1]
∼−→ CatV∞

∞ .

4.4.5 Comparison with Iterated Segal Spaces

It follows from the results of the previous subsection that the ∞-category CatS(∞,n) of S-
(∞, n)-categories, obtained by iterated enrichment in spaces, is equivalent to that associ-
ated to the model category of iterated Segal categories. Our goal in this subsection is to
directly compare CatS(∞,n) to another established model of (∞, n)-categories, namely the
iterated Segal spaces of Barwick. We will deduce this comparison from a slightly more
general result: we will prove that if X is an absolute distributor, in the sense of [Lur09b],
then categorical algebras in X are equivalent to Segal spaces in X, and complete categori-
cal algebras are equivalent to complete Segal spaces. We begin with a brief review of the
notion of distributor:
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Definition 4.4.5.1. A distributor consists of an ∞-category X together with a full subcate-
gory Y such that:

(1) The ∞-categories X and Y are presentable.

(2) The full subcategory Y is closed under small limits and colimits in X.

(3) If X → Y is a morphism in X such that Y ∈ Y, then the pullback functor Y/Y → X/X
preserves colimits.

(4) Let O denote the full subcategory of Fun(∆1,X) spanned by those morphisms f : X →
Y such that Y ∈ Y, and let π : O → Y be the functor given by evaluation at 1 ∈ ∆1.
Since X admits pullbacks, the evaluation-at-1 functor Fun(∆1,X) → X is a Cartesian
fibration, hence so is π. Let χ : Y → Ĉat

op
∞ be a functor that classifies π. Then χ

preserves small limits.

Definition 4.4.5.2. An absolute distributor is a presentable ∞-category X such that the unique
colimit-preserving functor S→ X that sends ∗ to the final object is fully faithful, and S ⊆ X

is a distributor.

Proposition 4.4.5.3 ([Lur09b, Corollary 1.2.5]). Suppose Y ⊆ X is a distributor. Let K be
a small simplicial set, and let ᾱ : p̄ → q̄ be a natural transformation between functors
p̄, q̄ : K. → X. If q̄ is a colimit diagram in Y and α = ᾱ|K is Cartesian, then ᾱ is Cartesian if
and only if p̄ is a colimit diagram.

Lemma 4.4.5.4. Suppose X is an absolute distributor. Then for every space X ∈ S, the map
γX : Fun(X,X) → X/X that sends a functor F : X → X to its colimit is an equivalence of
∞-categories.

Proof. Let ξ : X → X be the constant functor at the final object ∗ ∈ S ⊆ X. Since X is a
space, a functor F : X → X sends every morphism in X to an equivalence in X, and so the
unique natural transformation F → ξ is Cartesian.

Write ξ̄ : X. → X for a colimit diagram extending ξ. Then γX factors as

Fun(X,X) ' Fun(X,X)/ξ
φ1−→ Fun(X.,X)/ξ̄

φ2−→ X/X,

where φ2 is given by evaluation at the cone point. The functor φ1 gives an equivalence
between Fun(X,X)/ξ and the full subcategory E1 of Fun(X.,X)/ξ̄ spanned by the colimit
diagrams. On the other hand, the restriction of φ2 to the full subcategory E2 spanned by the
Cartesian natural transformations to ξ̄ is also clearly an equivalence. By Proposition 4.4.5.3
E1 = E2, and so the composite γX is indeed an equivalence.

Proposition 4.4.5.5. Let O be an ∞-category, and let F : O→ S be a functor; write π : OF →
O for the left fibration associated to F. Suppose X is an absolute distributor. Then left Kan
extension along π gives an equivalence Fun(OF,X) ∼−→ Fun(O,X)/F.

Proof. By Proposition 2.1.5.13 the ∞-category Fun(OF,X) is equivalent to the ∞-category
of sections of the Cartesian fibration E → O whose fibre at x ∈ O is Fun(F(x),X). Since X

is an absolute distributor, by Lemma 4.4.5.4 the ∞-category E is equivalent over O to the
total space E′ of the Cartesian fibration associated to the functor sending x to X/F(x). Then
E′ is the pullback along F of the Cartesian fibration Fun(∆1,X) → X given by evaluation
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at 1, so we have an equivalence between the ∞-category FunO(O,E′) of sections and the
fibre of Fun(O× ∆1,X) ' Fun(∆1, Fun(O,X))→ Fun(O,X) at F. This is clearly equivalent
to Fun(O,X)/F, which completes the proof.

Remark 4.4.5.6. In the cases we are most interested in, where X is the distributor of n-
fold iterated complete Segal spaces in S, we can also prove this without using Proposi-
tion 2.1.5.13, by instead rewriting everything in terms of left fibrations over products of
�

op.

Definition 4.4.5.7. Let X be an absolute distributor. A Segal space in X is a category object
F : �op → X such that F([0]) is in S ⊆ X.

Proposition 4.4.5.8. Under the equivalence π! : Fun(�op
X ,X) ∼−→ Fun(�op,X)/j∗X, the full

subcategory MndO

�
op
X
(X) of�op

X -monoids corresponds to Seg(X)X, the ∞-category of Segal
spaces with 0th space X.

Proof. It is clear that π! takes MonO

�
op
X
(X) into the ∞-category of functors �op → X that

sends [0] to X. Since Seg(X)X is a full subcategory of this, it suffices to show that F : �op
X →

X is a �op
X -monoid if and only if π!F is a Segal space in X.

We must show that the Segal morphism

π!F([n])→ π!F([1])×X · · · ×X π!F([1]) =: (π!F)
Seg
[n]

is an equivalence for all n if and only if F is a �op
X -monoid. Since π is a coCartesian fibra-

tion, π!F([n]) ' colimξ∈X×(n+1) F(ξ). It thus suffices to show that (π!F)
Seg
[n] is also a colimit

of this diagram if and only if F is a �op
X -monoid. Using Proposition 4.4.5.3 we see that this

condition is equivalent to the natural transformation of functors (X×(n+1)). → X given by

F(ξ) (π!F)
Seg
[n]

{ξ} X×(n+1)

being Cartesian. Since X is a space, it suffices to check that this square is a pullback. In
other words, we must show that the fibre of (π!F)

Seg
[n] → X×(n+1) at ξ = (x0, . . . , xn) is F(ξ)

if and only if F is a �op
X -monoid. Since limits commute, it is clear that this fibre is the fibre

product
(π!F[1])(x0,x1) ×(π! F[0])(x1)

· · · ×(π! F[0])(xn−1)
(π!F[1])(xn−1,xn).

But by Proposition 4.4.5.3 again, the natural maps F(x, y)→ (π!F[1])(x,y) and ∗ = F(x)→
(π!F[0])x are equivalences. Thus the map F(ξ) → (π!F[n])ξ is equivalent to the natural
map

F(ξ)→ F(x0, x1)× · · · × F(xn−1, xn),

which is an equivalence if and only if F is a �op
X -monoid.

Corollary 4.4.5.9. Suppose X is an absolute distributor. The map AlgO
cat(X

×) → Seg(X)
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given by left Kan extension of the corresponding monoids along the maps �op
X → �

op is
an equivalence.

Proof. The projection j∗ : Seg(X)→ S given by composition with j : {[0]} → �
op has a right

adjoint j∗ given by right Kan extension. It follows from Lemma 2.1.6.4 that j∗ is a Cartesian
fibration. The functor AlgO

cat(X
×) → Seg(X) clearly preserves Cartesian morphisms, so it

suffices to show that this functor induces an equivalence fibrewise, which we proved in
Proposition 4.4.5.8.

Definition 4.4.5.10. Let X be an absolute distributor, and let Λ : X → S denote the right
adjoint to the inclusion S ↪→ X. The inclusion Gpd(S) ↪→ Seg(S) ↪→ Seg(X) admits a right
adjoint ι : Seg(X) → Gpd(S), which is the composite of the functor Λ : Seg(X) → Seg(S)
induced by Λ, and ι : Seg(S) → Gpd(S). We say a Segal space F : �op → X is complete if
the groupoid object ιF is constant.

Remark 4.4.5.11. By Lemma 2.1.10.4, a Segal space F is complete if and only if the map
ιF(s0) : ιF[0]→ ιF[1] is an equivalence.

Definition 4.4.5.12. Let En denote the Segal space j∗{0, . . . , n}. If X is an absolute distrib-
utor we also write En for En regarded as a Segal space in X via the inclusion S ↪→ X.

Proposition 4.4.5.13. Suppose X is an absolute distributor. Then a Segal space F in X is
complete if and only if it is local with respect to the morphism E1 → E0.

Proof. It is clear that F is local with respect to E1 → E0, considered as a morphism in
Seg(X), if and only if the Segal space ΛF in S is local with respect to E1 → E0, considered
as a morphism in Seg(S). On the other hand, F is complete if and only if ΛF is complete,
so it suffices to prove this for Segal spaces in S. This case is part of [Rez01, Proposition
6.4].

Definition 4.4.5.14. Let CSS(X) denote the full subcategory of Seg(X) spanned by the com-
plete Segal spaces; by Proposition 4.4.5.13 this is the localization of Seg(X) with respect to
the morphism E1 → E0.

Corollary 4.4.5.15. Let X be an absolute distributor. The equivalence AlgO
cat(X

×)
∼−→ Seg(X)

induces an equivalence CatX∞
∼−→ CSS(X).

Proof. It is clear that En
X ∈ AlgO

cat(X
×) corresponds to En ∈ Seg(X) under this equivalence.

Both sides are therefore the localization with respect to E1 → E0.

Definition 4.4.5.16. By [Lur09b, Corollary 1.3.4], if X is an absolute distributor, then CSS(X)
is also an absolute distributor. We therefore have absolute distributors CSSn(X) of n-fold
iterated complete Segal spaces in X.

Applying Corollary 4.4.5.15 inductively, we get:

Corollary 4.4.5.17. Let X be an absolute distributor. Then CatX(∞,n) ' CSSn(X).

In particular, taking X to be the ∞-category S of spaces, we obtain the desired compar-
ison with iterated Segal spaces:

Corollary 4.4.5.18. There is an equivalence CatS(∞,n) ' CSSn(S).
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4.5 Natural Transformations and Functor Categories

In this section we consider two approaches to defining natural transformations in an en-
riched ∞-category: In §4.5.1 we consider an internal definition; this is probably the clearer
definition, and leads to a functor ∞-category that is easily seen to be an ∞-category. Then
in §4.5.2 we consider an external definition, and show the resulting functor ∞-category
is equivalent to the internal one; in §4.5.3 we use this definition to construct an (∞, 2)-
category of enriched ∞-categories, functors, and natural transformations.

4.5.1 Internal Natural Transformations

In this subsection we introduce an internal definition of natural transformations between
functors between enriched ∞-categories. We then use this to construct ∞-categories of
functors between enriched ∞-categories and show that this is the underlying ∞-category
of the internal hom when this exists.

Definition 4.5.1.1. Let Gn denote the S-graph with objects {0, . . . , n} and

Gn(i, j) =

{
∗, i < j
∅, j ≥ i.

We write [n]S for the free S-∞-category on the graph Gn. If V⊗ is a presentably monoidal
∞-category, we write [n]V for E0

V ⊗ [n]S.

Remark 4.5.1.2. Let [1]× denote the full subcategory of S× on ∅ and ∗. Then the graph Gn
is obviously defined over [1]×, and the V-∞-category [n]V exists provided V has an initial
object ∅ and x⊗∅ ' ∅ for all x ∈ V.

Remark 4.5.1.3. The inclusion Set ↪→ S induces an inclusion Set∆ → Fun(�op, S). Let δ[n]
denote the simplicial space associated to the nerve N[n] under this functor. This is a Segal
space, and using our description of free enriched ∞-categories it is easy to see that under
the equivalence AlgO

cat(S
×) ' SegO

∞ the S-∞-category [n]S is equivalent to the Segal space
δ[n].

Definition 4.5.1.4. Let V⊗ be a presentably monoidal ∞-category, and suppose F0 and F1
are functors C → D of V-∞-categories. A natural transformation from F1 to F0 is a functor
φ : C⊗ [1]V → D such that φ ◦ (idC ⊗ di) ' Fi.

Proposition 4.5.1.5. Let V⊗ be a presentably monoidal ∞-category. The simplicial V-∞-
category [•]V is a coSegal object in AlgO

cat(V
⊗).

Proof. We must show that the natural maps [1]Vq[0]V · · · q[0]V [1]V → [n]V are equivalences.
Since –⊗ E0

V preserves colimits, it suffices to prove this in S. By definition, [n]S is the free
S-∞-category on the graph Gn, and it is obvious that the map G1 qG0 · · · qG0 G1 → Gn is
an equivalence. Since the formation of free S-∞-categories preserves colimits, this implies
that [•]S is a coSegal object.

Definition 4.5.1.6. Let V⊗ be a presentably monoidal ∞-category, and suppose C and D

are V-∞-categories. The (internal) functor ∞-category FunV(C,D) is the simplicial space
MapAlgO

cat(V
⊗)(C⊗ [•]S,D).
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Corollary 4.5.1.7. Let V⊗ be a presentably monoidal ∞-category, and suppose C and D are
V-∞-categories. Then FunV(C,D) is a Segal space.

Remark 4.5.1.8. Using the results of Joyal and Tierney [JT07] we can describe the quasicat-
egory associated to this Segal space as the simplicial set Hom(C⊗ [•]V,D).

Proposition 4.5.1.9. Let V⊗ be a presentably monoidal ∞-category, and suppose C and D

are V-∞-categories. For any Segal space X we have an equivalence

MapSegO
∞
(X, FunV(C,D)) ' MapAlgO

cat(V
⊗)(C⊗ X,D),

where on the right we regard X as an S-∞-category.

Proof. Every Segal space can be canonically written as a colimit of a diagram of the objects
δ[n]. Specifically, the Segal space X is the coend of

X̄ : �×�op → SegO
∞, ([n], [m]) 7→ colim

Xm
δ[n].

Since Map(δ[n], FunV(C,D)) ' Map(C⊗ [n]S,D) we then have

Map(X, FunV(C,D)) ' Map(coend X̄, FunV(C,D))

' end Map(X̄, FunV(C,D))

' end Map(C⊗ X̄,D)

' Map(C⊗ X,D).

Corollary 4.5.1.10. Let V⊗ be a presentably monoidal ∞-category, and suppose C and D

are V-∞-categories. The underlying space ιFunV(C,D) of the Segal space FunV(C,D) is
|Map(C⊗ E•V,D)|. In particular, if D is a complete V-∞-category then ιFunV(C,D) is equiv-
alent to MapCatV∞

(C,D), so the Segal space FunV(C,D) is complete.

Proof. The underlying groupoid object of a Segal space X is Map(E•, X). By Proposi-
tion 4.5.1.9, the underlying groupoid object of FunV(C,D) is therefore Map(C ⊗ E•,D),
and the underlying space is the colimit of this simplicial space. By Corollary 4.2.4.10 it
follows that if D is complete then ιFunV(C,D) ' Map(C,D).

Now suppose V⊗ is a presentably symmetric monoidal ∞-category. Then AlgO
cat(V

⊗)

and CatV∞ are also symmetric monoidal, and the induced tensor products preserve colimits
in each variable. This implies that AlgO

cat(V
⊗) and CatV∞ have internal hom objects; we

write DC for the internal hom object for maps C→ D in AlgO
cat(V

⊗).

Lemma 4.5.1.11. Let V be a presentably symmetric monoidal ∞-category, and suppose D is
a complete V-∞-category. Then DC is also a complete V-∞-category, for all V-∞-categories
C. Moreover, DC is also the internal hom in CatV∞.

Proof. We must show that Map(E0,DC) → Map(E1,DC) is an equivalence. Passing to left
adjoints this is Map(C,D) → Map(E1 ⊗ C,D), which is an equivalence since C⊗ E1 → C

is a local equivalence by Proposition 4.2.4.9.
Since DC is complete we have, for any complete V-∞-category A,

MapCatV∞
(A,DC) ' MapAlgO

cat(V
⊗)(A,DC) ' MapAlgO

cat(V
⊗)(A⊗ C,D)

' MapCatV∞
(A⊗ C,D),
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hence DC is also the internal hom in CatV∞.

Proposition 4.5.1.12. Let V⊗ be a presentably monoidal ∞-category. Write t : S → V for
the unique colimit-preserving strong monoidal functor sending ∗ to the unit I, and let
u : V→ S be its lax monoidal right adjoint, given by Map(I, –). Then if C is a V-∞-category
the Segal space corresponding to the S-∞-category u∗C is Map([•]V,C).

Proof. Since [n]S is the S-∞-category corresponding to δ[n], the Segal space corresponding
to u∗C is Map([n]S, u∗C) ' Map(t∗[n]S,C) ' Map([n]V,C).

Corollary 4.5.1.13. Let V be a presentably symmetric monoidal ∞-category, and suppose
C and D are V-∞-categories. The Segal space corresponding to the S-∞-category u∗DC is
FunV(C,D).

Proof. The Segal space associated to u∗CD is given by

Map([•]V,DC) ' Map(C⊗ [•]S,D).

4.5.2 External Natural Transformations

In this section we give an external definition of natural transformations, and prove that this
is equivalent to the internal definition. We first introduce some notation:

Definition 4.5.2.1. If X : �op → S is a Segal space, then the associated right fibration X→
�op is a double ∞-category. We write �op[n]→ �op for the double ∞-category associated
in this way to the nerve of the category [n], regarded as a Segal space via the inclusion
Set ↪→ S.

Remark 4.5.2.2. The ∞-category �op[n] can be identified with the category of simplices
Simp(N[n]) or Simp(∆n) of the nerve of [n]. Its objects can be described as sequences
(i0, . . . , im), where 0 ≤ ij ≤ ij+1 ≤ n, and for every φ : [k] → [m] in � there is a unique
morphism (i0, . . . , im)→ (iφ(0), . . . , iφ(k)).

Definition 4.5.2.3. For X a space, let�op
X [n] denote the double ∞-category�op

X ×�op �op[n].

Remark 4.5.2.4. Objects of�op
X [n] can be described as lists ((x0, i0), . . . , (xk, ik)) where xi ∈

X and 0 ≤ i0 ≤ · · · ≤ ik ≤ n.

Definition 4.5.2.5. Let V⊗ be a monoidal ∞-category, and suppose C and D are V-∞-
categories. If F0 and F1 are functors C → D, an (external) natural transformation from F0
to F1 is a morphism of �op

ι0C
[1]-algebras η : s0,∗C → φ∗s0,∗D, where φ : �op

ι0C
[1] → �

op
ι0D

[1]
is the morphism induced by (ι0F0, ι0F1) : ι0C× [1] → ι0D, such that η restricts to Fi when
restricted to �op

X ×�op �
op
{i}.

Remark 4.5.2.6. The natural transformation η thus determines morphisms

C(x, y)→ D(F0x, F1y)

in V for all x, y ∈ C. These are compatible with composition, which implies that, as ex-
pected, they are determined by the images I → D(F0x, F1x) of the identity morphisms
I → C(x, x) for x ∈ C.
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Definition 4.5.2.7. Let V⊗ be a monoidal ∞-category. The objects �op[n] clearly form a
cosimplicial object in generalized non-symmetric ∞-operads, hence they determine a nat-
ural transformation of simplicial ∞-categories AlgO

/�op[n](V
⊗)→ (OpdO,gen

∞ )/�op[n] (cf. Re-
mark 3.2.8.2 for this notation). If C is a V-∞-category, the �op

ι0C
[n]-algebras π∗nC, where

πn : �op
ι0C
[n]→ �

op
ι0C

denotes the map of generalized non-symmetric ∞-operads induced by
the unique morphism πn : [n]→ [0] in�, determine a section. Given V-∞-categories C and
D we therefore get a simplicial space FunV

ext(C,D) with

FunV
ext(C,D)n := MapAlgO

/�op [n](V
⊗)(π

∗
nC, π∗nD).

This is the (external) functor ∞-category from C to D.

Lemma 4.5.2.8. Let V⊗ be a presentably monoidal ∞-category, and suppose C is a V-∞-
category. Write In for the inclusion �op

ι0C
[n] → �

op
ι0C×[n]. Then the functor C ⊗ [n] → C

determines an equivalence I∗n(C⊗ [n]) ∼−→ π∗nC.

Proof. It suffices to observe that for i ≤ j and any x, y ∈ C the morphism

(C⊗ [n])((x, i), (y, j))→ C(x, y)

is an equivalence.

Proposition 4.5.2.9. Let V⊗ be a presentably monoidal ∞-category, and suppose C is a V-
∞-category. The morphism In,!(π

∗
nC)→ C⊗ [n] adjunct to the inverse equivalence π∗nC

∼−→
I∗n(C⊗ [n]) is an equivalence.

Proof. This is immediate from the description of free algebras in terms of operadic colimits.

Corollary 4.5.2.10. Let V⊗ be a presentably monoidal ∞-category, and suppose C and D

are V-∞-categories. Using Lemma 4.5.2.8, the inclusions In : �op
ι0C
[n] → �

op
ι0C×[n] induce a

natural transformation

ηn : MapAlgO

/�
op
[n]
(V⊗)(C⊗ [n], p∗nD)→ MapAlgO

/�op [n](V
⊗)(π

∗
nC, π∗nD),

where pn denotes the morphism induced by the projection�op
[n] → �op, i.e. a morphism of

simplicial spaces
FunV(C,D)→ FunV

ext(C,D).

This is an equivalence.

Proof. To show that ηn is an equivalence, it suffices to show that it gives an equivalence on
the fibres over each map φ : ι0C× [n]→ ι0D. This can be identified with

MapAlgO

�
op
ι0C×[n]

(V⊗)(C⊗ [n], φ∗p∗nD)→ MapAlgO

�
op
ι0C

[n]
(V⊗)(π

∗
nC, I∗nφ∗p∗nD).

This is an equivalence, since C⊗ [n] is In,!π
∗
nC by Proposition 4.5.2.9.

Conjecture 4.5.2.11. Let V⊗ be a presentably symmetric monoidal ∞-category. A natural
transformation η : C ⊗ [1] → D is a natural equivalence (i.e. extends to a functor from
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C⊗ E1) if and only if for each c ∈ C the morphism [1] → D given by restricting to c is an
equivalence in D.

Sketch Proof. The “only if” direction is obvious. We may therefore assume given a natu-
ral transformation η : C⊗ [1] → D from F to G such that the induced maps [1] → D are
equivalences for all c ∈ C. To show that this extends to a natural equivalence, we will
show that the adjunct morphism [1]V → DC is an equivalence. Since [1]V is t∗[1]S, we may
equivalently show that the associated functor [1]S → u∗DC is an equivalence. By Proposi-
tion 4.2.1.16 it suffices to show that for any H ∈ DC the map u∗DC(H, F) → u∗DC(H, G)
given by composition with η is an equivalence.

By Corollary 4.5.2.10 and Corollary 4.5.1.13 we may identify u∗DC with the external
functor ∞-category FunV

ext(C,D). For fixed H : C → D, let φ : ι0C× [1] → D be the map
determined by (H, F). Then we can identify u∗DC(H, F) with the fibre of

MapAlgO

�
op
ι0C

[1]
(V⊗)(π

∗
1C, φ∗π∗1D)→ Map(C, H∗D)×Map(C, F∗D)

at (H, F). Now AlgO

�
op
ι0C

[1](V
⊗) is monadic over Fun(ι0C × ι0C × {(0, 0), (0, 1), (1, 1)},V).

This means we can describe the mapping space as the limit of a diagram of spaces whose
vertices are mapping spaces between the free �op

ι0C
[1]-algebra monad applied some num-

ber of times to the underlying functors for π∗1C and φ∗π∗1D in this functor category. After
taking the appropriate fibres, we see that this means the map u∗DC(H, F) → u∗DC(H, G)
given by composition with η is indeed an equivalence, since equivalences in functor cate-
gories are detected pointwise.

Remark 4.5.2.12. This result should clearly also be true without the assumption that V is
symmetric monoidal, but this proof seems to rely essentially on the existence of the internal
hom DC to reduce the construction of the inverse from V to S.

4.5.3 The (∞, 2)-Category of V-∞-Categories

In this section we use the external definition of natural transformations to define an (∞, 2)-
category of V-∞-categories, functors, and natural transformations.

It is clear that the full subcategory of (OpdO,gen
∞ )/�op[n] spanned by generalized non-

symmetric ∞-operads of the form�
op
X [n] for some space X is equivalent to the full subcat-

egory diagnS of S×n spanned by objects of the form (X, . . . , X).

Definition 4.5.3.1. Suppose V⊗ is a monoidal ∞-category. Write An for the pullback

An AlgO
/�op[n](V

⊗)

diagnS (OpdO,gen
∞ )/�op[n].

Then we define CatV∞[n] to be the full subcategory of An spanned by objects of the form π∗nC
where C is a complete V-∞-category. This gives a simplicial ∞-category CATV

∞ := CatV∞[•].
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Remark 4.5.3.2. We must restrict to complete V-∞-categories to get the right mapping
spaces: By Remark 4.2.5.6 if D is not complete then ιFunV(C,D) ' |Map(C⊗ E•,D)| is
not in general equivalent to the space of maps from C to D in CatV∞.

Proposition 4.5.3.3. Let V⊗ be a presentably monoidal ∞-category. The simplicial ∞-
category CATV

∞ is a double ∞-category.

Proof. We must show that for each n the Segal morphism

CatV∞[n]→ CatV∞[1]×CatV∞
· · · ×CatV∞

CatV∞[1]

is an equivalence. On both sides the objects are just complete V-∞-categories, so this func-
tor is clearly essentially surjective; it remains to show that it is fully faithful. Let C and D

be two complete V-∞-categories; we must show that the morphism

Map(π∗nC, π∗nD)→ Map(π∗1C, π∗1D)×Map(C,D) · · · ×Map(C,D) Map(π∗1C, π∗1D)

is an equivalence. Using Corollary 4.5.2.10 we can identify the left-hand side here as
Map(C⊗ [n],D) and the right-hand side as

Map(C⊗ [1],D)×Map(C,D) · · · ×Map(C,D) Map(C⊗ [1],D).

This map is therefore an equivalence by Corollary 4.5.1.7.

Lemma 4.5.3.4. Let V⊗ be a presentably monoidal ∞-category. Then the Segal space
Map(∆1, CatV∞[•]) is complete.

Sketch Proof. We must show that s0 : Map(∆1, CatV∞) → Map(E1, Map(∆1, CatV∞[•])) is an
equivalence. To see this it suffices to show that the map induces an equivalence on fibres
over all (C,D) in (CatV∞)×2. It follows from Proposition 4.5.1.9 that over (C,D) we get the
map

s0 : Map(C,D)→ Map(C⊗ E1,D),

and this is an equivalence since D is by assumption complete.

Proposition 4.5.3.5. Let V⊗ be a presentably monoidal ∞-category. Then the simplicial
space ιCatV∞[•] is constant.

Proof. This follows by combining Lemma 4.5.3.4 and Proposition 2.2.2.13 since it is obvious
from the definition that s0 : CatV∞[0]→ CatV∞[1] is essentially surjective.

The simplicial ∞-category CATV
∞ is thus a Segal object in ∞-categories whose underly-

ing simplicial space is constant. This means that we may consider it as an (∞, 2)-category
— the (∞, 2)-category of V-∞-categories, functors, and natural transformations. The ∞-
category of morphisms from C to D in CATV

∞ is precisely FunV(C,D), as it should be.

4.6 Correspondences

If V is a closed symmetric monoidal category and C and D are V-categories, a correspon-
dence or profunctor from C to D is a functor C ⊗ Dop → V, where V is V regarded as a
V-category via the internal hom. Our goal in this section is to introduce an ∞-categorical
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version of correspondences between enriched ∞-categories; our definition will be “exter-
nal”, using algebras for certain double ∞-categories, and is inspired by that given by Bac-
ard [Bac10] in the context of 2-categories.

4.6.1 Correspondences between V-∞-Categories

To give our definition of a correspondence, we first introduce some notation:

Definition 4.6.1.1. Given spaces X and Y, consider the functor FX,Y : {0, 1} → S that sends
0 to X and 1 to Y. Let j : {0, 1} ↪→ �

op[1] denote the inclusion of the fibre at [0]. The right
Kan extension j∗FX,Y is clearly a �op[1]-category object. We write �op

X<Y → �
op[1] for the

left fibration associated to j∗FX,Y. Then �op
X<Y is a double ∞-category.

Remark 4.6.1.2. If X = Y, then �op
X<X is precisely �op

X [1] as defined above.

Example 4.6.1.3. If X0, . . . , Xn are sets, we can represent objects of �op
X0,...,Xn

as sequences

(x1
0, . . . , xm0

0 |x1
1, . . . , xm1

1 | . . . |x1
n, . . . , xmn

n ) where xj
i ∈ Xi.

Remark 4.6.1.4. Pulling back �op
X<Y → �op[1] along the two inclusions d0, d1 : �op →

�op[1] clearly gives �op
X and �op

Y , respectively.

Definition 4.6.1.5. Let V⊗ be a monoidal ∞-category, and suppose C and D are V-∞-
categories. A correspondence from C to D is a �op

ι0C<ι0D
-algebra M : �op

ι0C<ι0D
→ V⊗ such

that the restrictions to �op
ι0C

and �op
ι0D

are C and D, respectively. We will use the notation
M : C 7→ D for a correspondence M from C to D.

Definition 4.6.1.6. Let V⊗ be a monoidal ∞-category, and suppose C and D are V-∞-
categories. The ∞-category of V-correspondences CorrV(C,D) from C to D is

{C} ×Alg
�

op
ι0C

(V⊗) Alg
�

op
ι0C<ι0D

(V⊗)×Alg
�

op
ι0D

(V⊗) {D}.

Remark 4.6.1.7. There should of course be an inclusion FunV(C,D) → CorrV(C,D), but
using our definitions it is not obvious how to construct this.

If the ∞-category V is presentably monoidal, then we can compose correspondences.
To see this, we first need some more notation:

Definition 4.6.1.8. Given spaces X0, . . . , Xn, consider the functor FX0,...,Xn : {0, . . . , n} → S

that sends i to Xi. Let j : {0, . . . , n} ↪→ �op[n] denote the inclusion of the fibre at [0]. The
right Kan extension j∗FX0,...,Xn is clearly a �op[n]-category object. We write �op

X0<···<Xn
→

�op[n] for the right fibration associated to j∗FX0,··· ,Xn . Then �
op
X0<···<Xn

is a double ∞-
category.

Definition 4.6.1.9. Given spaces X0, . . . , Xn, let�op,q
X0<···<Xn

denote the colimit of generalized
non-symmetric ∞-operads

�
op
X0<X1

q
�

op
X1
· · · q

�
op
Xn−1

�
op
Xn−1<Xn

.

Let κX0<...<Xn (or just κ) denote the inclusion �op,q
X0<···<Xn

→ �
op
X0<···<Xn

.
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Definition 4.6.1.10. Given spaces X0, . . . , Xn, we say a �op
X0<···<Xn

-algebra M in V⊗ is a

composite if it is the left operadic Kan extension of its restriction to �op,q
X0<···<Xn

, i.e. if the
adjunction morphism κ!κ

∗M→ M is an equivalence.

Definition 4.6.1.11. Given V-∞-categories C0, . . . ,Cn, let CorrV(C0, . . . ,Cn) denote the full
subcategory of

Alg
�

op
ι0C0<···<ι0Cn

(V⊗)×Alg
�

op
ι0C0

(V⊗)×···×Alg
�

op
ι0Cn

(V⊗) {(C0, . . . ,Cn)}

spanned by those �op
ι0C0<···<ι0Cn

-algebras that are composites.

Given V-∞-categories C, D, E, the projection

CorrV(C,D,E)→ CorrV(C,D)×CorrV(D,E),

given by restriction along the vertices (0, 1) and (1, 2) in �op[2] is an equivalence — this
will follow from Corollary 4.6.2.6. Since there is also a map CorrV(C,D,E) → CorrV(C,E)
coming from restriction to (0, 2), this means that given correspondences C 7→ D and D 7→ E

we can compose them to get a correspondence C 7→ E.
It is possible to define a Segal category using the ∞-categories CorrV(C0, . . . ,Cn), giv-

ing a model for the (∞, 2)-category of V-∞-categories and correspondences. In §4.6.3 we
will construct a different model for this (∞, 2)-category as the subcategory of horizontal
morphisms in a double ∞-category of V-∞-categories, functors, and correspondences.

4.6.2 The Double ∞-Categories �op,q
X0<···<Xn

In this subsection we will give an explicit model for the pushout of generalized non-
symmetric ∞-operads �op,q

X0<···<Xn
, which will allow us to better understand the functors

κ!.

Definition 4.6.2.1. Let �op[n] be the full subcategory of �op[n] spanned by those objects
(i0, . . . , in) such that |ik+1 − ik| ≤ 1 (i.e. the ij’s can jump by at most 1 at each step).

Definition 4.6.2.2. Given spaces X0, . . . , Xn, let �op
X0<···<Xn

be defined by the pullback

�
op
X0<···<Xn

�
op
X0<···<Xn

�op[n] �op[n].

Lemma 4.6.2.3. Given spaces X0, . . . , Xn, the projection �op
X0<···<Xn

→ �op is a generalized
non-symmetric ∞-operad

Proof. �op
X0<···<Xn

→ �op is the full subcategory on some of the objects in the fibre at [1].

Theorem 4.6.2.4. For spaces X0, . . . , Xn, let �op,q
X0<···<Xn

denote the colimit in simplicial sets

�
op
X0<X1

q
�

op
X1
· · · q

�
op
Xn−1

�
op
Xn−1<Xn

.
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Then the inclusion �op,q
X0<···<Xn

↪→ �
op
X0<···<Xn

is a trivial cofibration in the generalized non-
symmetric ∞-operad model structure.

Lemma 4.6.2.5. Suppose φ : M → N is a left fibration of generalized non-symmetric ∞-
operads and σ̄ : ∆n → N is a simplex lying over σ : ∆n → �

op. Let πσ̄ : ∆n ∗GO
[r]/ → N be an

inert extension of σ̄ (with [r] the final vertex of σ), and let π∂
σ̄ denote the restriction of πσ̄ to

∂∆n ∗ GO
[r]/. Let Mσ̄ and M∂

σ̄ denote the pullbacks of M along πσ̄ and π∂
σ̄, respectively. Then

the inclusion M∂
σ̄ ↪→Mσ̄ is a trivial cofibration of generalized non-symmetric ∞-operads.

Sketch Proof. Write X ⊆Mσ̄ for the subspace lying over GO
[r]/ ⊆ ∆n ∗GO

[r]/. Let {τb}b∈B be the
set of non-degenerate simplices τb : ∆p →Mσ̄ such that φτb is a degeneracy of σ̄. Choose a
well-ordering of B such that the dimension of τb is (non-strictly) increasing in b. For each
b ∈ B, define M≤b

σ̄ to be the subspace of Mσ̄ generated by M∂
σ̄ together with the simplices

τ : ∆p → Mσ̄ such that for some q ≤ p the restriction τ|∆{0,...,q} factors through τb′ for some
b′ ≤ b, the morphism τ(q) → τ(q′) is inert, and τ|∆q+1,...,p factors through X. Define M<b

σ̄

similarly. Since weak equivalences are closed under transfinite composition, it suffices to
prove that the inclusions M<b

σ̄ →M≤b
σ̄ are trivial cofibrations.

Now from [Lur11, Lemma 3.1.2.5] we conclude that there is a homotopy pushout dia-
gram

∂∆p ∗Xτb/ M<b
σ̄

∆p ∗Xτb/ M≤b
σ̄ ,

where Xτb/ denotes (M≤b
σ̄ )τb/ ×M≤b

σ̄
X, so it suffices to prove that the inclusion ∂∆p ∗Xτb/ →

∆p ∗ Xτb/ is a trivial cofibration. Now choose inert morphisms extending τb to a diagram
∆p ∗ GO

[s]/ → Mσ̄. Then the resulting map GO
[s]/ → Xτb/ is a categorical equivalence (since

an object of Xτb/ must be given by an inert map), hence in the diagram

∂∆p ∗ GO
[s]/ ∂∆p ∗Xτb/

∆p ∗ GO
[s]/ ∆p ∗Xτb/

the horizontal morphisms are weak equivalences, as is the left vertical morphism. By the
2-out-of-3 property, it follows that so is the right vertical morphism, which completes the
proof.

Proof of Theorem 4.6.2.4. To make the proof slightly easier to read, we will omit mention
of the markings of the simplicial sets involved. Observe that an n-simplex of �op[n] is
uniquely described by

• an n-simplex σ = ( f1, . . . , fn) of �op where each fi : [ri]→ [ri−1] is a morphism of �,

• an object J = (j0, j1, . . . jr0) of �op[n].
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Such an object lies in �op[n] if and only if J and all the objects Ji = f ∗i · · · f ∗1 J are in �op[n].
We’ll say that a simplex (σ, J) of �op[n] is

• old if (σ, J) is in �op
q [n], i.e. if J ∈ �op

q [n], and new otherwise,

• narrow if rn = 1 and wide if rn > 1.

We say a morphism φ in �op is neutral if it is neither active nor inert.
For an object J of �op[n] over [r], write πJ : GO

[r]/ → �
op[n] for the diagram of inert

morphisms from α.
More generally for (σ, J) an n-simplex of �op[n], write π(σ,J) : ∆n ∗ GO

[r]/ → �
op[n] for

the corresponding diagram, and π∂
(σ,J) for the restriction of π(σ,J) to ∂∆n ∗ GO

[r]/.
We now divide the non-degenerate new simplices of �op[n] into various groups:

• Let S1[n] be the set of nondegenerate wide new n-simplices (σ, J) such that f σ
n is inert.

• Let S′1[n] be the set of non-degenerate new (n + 1)-simplices (σ, J) such that rn+1 is
either 0 or 1 and f σ

n+1 and f σ
n are both inert.

• Let S′′1 [n] be the set of non-degenerate new (n + 2)-simplices (σ, J) such that rn+1 = 1,
rn+2 = 0, and f σ

n+1 and f σ
n are both inert.

• For 1 ≤ k < r ≤ n, let T1[n](k, r) be the set of nondegenerate narrow new n-simplices
(σ, J) such that f σ

k is inert, f σ
r is neutral, and f σ

i is active for k < i < r and i > r. Let
T1[n](k) be the union of T1[n](k, r) for all r > k.

• For 1 ≤ k < r ≤ n, let T′1[n](k, r) be the set of nondegenerate narrow new (n + 1)-
simplices (σ, J) such that f σ

k is inert, f σ
r is inert, and f σ

i is active for k < i < r and
i > r. Let T′1[n](k) be the union of T′1[n](k, r) for all r > k.

• For 1 ≤ k < r ≤ n, let T̄′1[n](k, r) be the set of nondegenerate new (n + 1)-simplices
(σ, J) such that rn = 1, rn+1 = 0, f σ

k is inert, f σ
r is neutral, and f σ

i is active for k < i < r
and r < i < n + 1. Let T̄′1[n](k) be the union of T̄′1[n](k, r) for all r > k.

• For 1 ≤ k < r ≤ n, let T̄′′1 [n](k, r) be the set of nondegenerate new (n + 2)-simplices
(σ, J) such that rn+1 = 1, rn+2 = 0, f σ

k is inert, f σ
r is inert, and f σ

i is active for k < i < r
and r < i < n + 2. Let T̄′′1 [n](k) be the union of T̄′′1 [n](k, r) for all r > k.

• For 1 ≤ k < n let T2[n](k) be the set of nondegenerate wide new n-simplices (σ, J)
such that f σ

k is inert and f σ
i is active for i > k.

• For 1 ≤ k < n let T′2[n](k) be the set of nondegenerate new (n + 1)-simplices (σ, J)
such that rn+1 = 1 or 0, f σ

k and f σ
n+1 are inert and f σ

i is active for k < i < n + 1.

• For 1 ≤ k < n let T′′2 [n](k) be the set of nondegenerate new (n + 2)-simplices (σ, J)
such that rn+1 = 1, rn+2 = 0, f σ

k and f σ
n+1 are inert, and f σ

i is active for k < i < n + 1.

• Let S2[n](k) be the union of T1[n](k) and T2[n](k), let S′2[n](k) be the union of T′1[n](k),
T̄′1[n](k), and T′2[n](k), and let S′′2 [n](k) be the union of T̄′′1 [n](k) and T′′2 [n](k). Let
S2[n], S′2[n] and S′′2 [n] be the unions of S2[n](k), S′2[n](k), and S′′2 [n](k), respectively,
over all k.
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• For 1 ≤ k ≤ n let S3[n](k) be the set of nondegenerate narrow new n-simplices (σ, J)
such that f σ

k is neutral and f σ
i is active for i > k, and (σ, J) is not contained in T1(l)

for any l < k.

• For 1 ≤ k ≤ n let S′3[n](k) be the set of nondegenerate narrow new (n + 1)-simplices
(σ, J) such that f σ

k is inert and f σ
i is active for i > k, and (σ, X) is not contained in

T′1(l) for any l < k.

• For 1 ≤ k ≤ n let S̄′3[n](k) be the set of nondegenerate new (n + 1)-simplices (σ, J)
such that rn = 1, rn+1 = 0, f σ

k is neutral, and f σ
i is active for k < i < n + 1, and (σ, J)

is not contained in T̄′1(l) for any l < k.

• For 1 ≤ k ≤ n let S̄′′3 [n](k) be the set of nondegenerate new (n + 2)-simplices (σ, J)
such that rn+1 = 1, rn+2 = 0, f σ

k is inert and f σ
i is active for k < i < n + 2, and (σ, X)

is not contained in T̄′′1 (l) for any l < k.

• Let S3[n] be the union of S3[n](k) for all k, let S′3[n] be the union of S′3[n](k) and
S̄′3[n](k) for all k, and let S′′3 [n] be the union of S̄′′3 [n](k) for all k.

• Let S4[n] be the set of nondegenerate wide new n-simplices (σ, J) that are not con-
tained in S1[n] or S2[n].

• Let S′4[n] be the set of nondegenerate new (n + 1)-simplices (σ, J) such that rn+1 = 0
or 1 and f σ

n+1 is inert that are not contained in S′1[n] or S′2[n].

• Let S′′4 [n] be the set of nondegenerate new (n + 2)-simplices (σ, J) such that rn+1 = 1,
rn+2 = 0, and f σ

n+1 is inert that are not contained in S′′1 [n] or S′′2 [n].

Observe that if (σ, J) is an n-simplex such that all f σ
i are active and rn = 1 or 0, then (σ, J)

must be old.
Now let F(n) be the subset of �op[n] containing the old simplices together with the

non-degenerate new n-simplices, the (n + 1)-simplices in S′i [n] and the (n + 2)-simplices
in S′′i [n] for all i, and let F(n) be the subspace of �op

X0<···<Xn
over F(n). It then suffices to

prove that the inclusions�op,q
X0<···<Xn

= F(−1) ⊆ F(0) ⊆ F(1) ⊆ . . . are trivial cofibrations.
For k = 0, . . . , 3 define Fn,k ⊆ F(n) to be the subset containing the simplices in F(n− 1)

together with those in Si[n], S′i [n], and S′′i [n] for i ≤ k, and let Fn,k be the subspace of
�

op
X0<···<Xn

over Fn,k. Then it suffices to prove that the inclusions

F(n− 1) = Fn,0 ⊆ Fn,1 ⊆ Fn,2 ⊆ Fn,3 ⊆ Fn,4 = F(n)

are trivial cofibrations.
k = 1: For (σ, J) in S1[n], observe that since any narrow new n-simplex whose final map

is inert is contained in F(n− 1) = Fn,0, as is any new (n + 1)-simplex whose final map is
[1] → [0] and whose penultimate map is inert, the map π∂

(σ,J) factors through F(n − 1).
Thus we have a pushout diagram

ä(σ,J)∈S1[n] ∂∆n ∗ GO
[rσ

n ]/
ä(σ,J)∈S1[n] ∆n ∗ GO

[rσ
n ]/

Fn,0 Fn,1
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Since the upper horizontal map is Ogen
O

-anodyne, so is the lower horizontal map. Let M(σ,J)

be the subspace of�op
X0<···<Xn

over ∆n ∗GO
[rσ

n ]/
and let M∂

(σ,J) be the subspace over ∂∆n ∗GO
[rσ

n ]/
.

Then we have a pushout diagram

ä(σ,J)∈S1[n] M
∂
(σ,J) ä(σ,J)∈S1[n] M(σ,J)

Fn,0 Fn,1.

By Lemma 4.6.2.5 the inclusion M∂
(σ,J) ↪→ M(σ,J) is a trivial cofibration, hence so is Fn,0 →

Fn,1.
k = 2: First let Gn,k be the subset of Fn,2 containing the simplices in Fn,1 together with

those in S2[n](i), S′2[n](i), and S′′2 [n](i) for all i ≥ k, and let Gn,k denote the subspace of
�

op
X0<...<Xn

over Gn,k. Then it suffices to prove that the inclusions

Fn,1 = Gn,n ⊆ Gn,n−1 ⊆ · · · ⊆ Gn,1 = Fn,2

are trivial cofibrations. Next for i = 0, 1, 2 let Gi
n,k be the subset of Gn,k containing the

simplices in Gn,k+1 together with those in Tj[n](k), T′j [n](k), T̄′j [n](k), and T̄′′j [n](k) for j ≤
i, and let G

i
n,k be the subspace of �op

X0<...<Xn
over Gi

n,k. It then suffices to prove that the
inclusions

Gn,k+1 = G
0
n,k ⊆ G

1
n,k ⊆ G

2
n,k = Gn,k

are trivial cofibrations. We now consider these two inclusions in turn:

• i = 1: Let In,k,r be the subset of G1
n,k containing the simplices of Gn,k+1 together with

those in T1[n](k, s), T′1[n](k, s), T̄′1[n](k, s), and T̄′′1 [n](k, s) for s ≤ r, and let In,k,r denote
the subspace of �op

X0<...<Xn
over In,k,r. It then suffices to show that the inclusions

G
0
n,k = In,k,k ⊆ In,k,k+1 ⊆ · · · ⊆ In,k,n = G

1
n,k

are trivial cofibrations. Finally, let I′n,k,r be the subset of In,k,r containing the simplices

in In,k,r−1 together with those in T1[n](k, r) and T′1[n](k, r), and let I
′
n,k,r denote the

subspace of �op
X0<...<Xn

over I′n,k,r. We then wish to show that the inclusions In,k,r ↪→
I
′
n,k,r ↪→ In,k,r+1 are trivial cofibrations. Observe that for (σ, J) in T1[n](k, r) there exists

a unique simplex (τ, K) in T′1[n](k, r) such that (σ, J) = dr(τ, K). Moreover, for j 6= r
the face dj(τ, K) is contained in In,k,r−1:

– for i < k− 1 we have di in T′1[n− 1](k− 1, r− 1),

– we have dk−1 in S′3[n − 1](r − 1), or possibly in T′1[n − 1](k − 1, n − 1) (or in
S′3[n− 1](r− 1) if k = 1)

– we have dk in S′3[n− 1](r− 1),

– for k < i < r− 1 we have di in T′1[n− 1](k, r− 1),

– we have dr−1 in T1[n](k, r− 1) or T′1[n− 1](k, r− 1),

– for r < i < n + 1 we have di in T′1[n− 1](k, r),
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– we have dn+1 in T2[r].

Thus we get a pushout diagram

ä(τ,K)∈T′1[n](k,r) Λn+1
r ä(τ,K)∈T′1[n](k,r) ∆n+1

In,k,r−1 I′n,k,r.

This means we have a pushout diagram

ä(τ,K)∈T′1[n](k,r)�
op
X0<···<Xn

×�op[n] Λn+1
r ä(τ,K)∈T′1[n](k,r)�

op
X0<···<Xn

×�op[n] ∆n+1

In,k,r−1 I
′
n,k,r.

By [Lur11, Lemma 2.4.4.6] the upper horizontal map is a categorical equivalence,
and so a trivial cofibration, hence so is the lower horizontal map. Similarly, for
each (σ, J) in T̄′1[n](k, r) there exists a unique simplex (τ, K) in T̄′′1 [n](k, r) such that
(σ, J) = dr(τ, K) and for j 6= r the face dj(τ, K) is contained in I′n,k,r. We therefore have
another pushout diagram

ä(τ,K)∈T̄′′1 [n](k,r) Λn+2
r ä(τ,K)∈T̄′′1 [n](k,r) ∆n+2

I′n,k,r In,k,r.

By the same argument again, this implies that the map I
′
n,k,r → In,k,r is also a trivial

cofibration.

• i = 2: Observe that for (τ, K) in T′2[n](k) the faces di(τ, K) for i < n + 1 are in G1
n,k: for

i < n we have di in F(n− 1) since these faces are narrow with final map inert, and dn
is in T1[n](k, n) or F(n− 1). The same holds for (τ, K) ∈ T′′2 [n](k), thus for all (σ, J) in
T2[n](k) the map π∂

(σ,J) factors through G1
n,k. This means we have a pushout diagram

ä(σ,J)∈T2[n](k) ∂∆n ∗ GO
[rσ

n ]/
ä(σ,J)∈T2[n](k) ∆n ∗ GO

[rσ
n ]/

G1
n,k G2

n,k.

By the same argument as in the case k = 1, it follows that G
1
n,k → G

2
n,k is a trivial

cofibration.

k = 3: Let Hn,k be the subset of Fn,3 containing the simplices in Fn,2 together with those
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in S3[n](l), S′3[n](l), S̄′3[n](l), and S̄′′3 [n](l) for l ≤ k, and let Hn,k denote the subspace of
�

op
X0<···<Xn

over Hn,k. It then suffices to show that the inclusions

Fn,2 = Hn,0 ⊆ Hn,1 ⊆ · · · ⊆ Hn,n = Fn,3

are trivial cofibrations. Let H′n,k be the subset of Hn,k containing the simplices in Hn,k−1

together with those in S3[n](k) and S′3[n](k), and let H
′
n,k denote the subspace of �op

X0<···<Xn

over H′n,k. We then wish to show that the inclusions Hn,k−1 → H
′
n,k → Hn,k are trivial

cofibrations. Observe that for (σ, J) in S3[n](k) there exists a unique simplex (τ, K) in
S′3[n](k) such that (σ, J) = dk(τ, K). Moreover, for j 6= k the face dj(τ, K) is contained in
Hn,k−1:

• for j < k− 1 we have dj in S′3[n− 1](k− 1),

• we have dk−1 in S3[n](k − 1) or S′3[n − 1](k − 1), or in N if k = 1 (since all narrow
simplices all of whose maps are active are in �op

q [n])

• for k < j < n + 1 we have dj in S′3[n− 1](k),

• we have dn+1 in T2[n](k).

Thus we get a pushout diagram

ä(τ,K)∈S′3[n](k)
Λn+1

k ä(τ,K)∈S′3[n](k)
∆n+1

Hn,k−1 H′n,k.

Using [Lur11, Lemma 2.4.4.6] as above, this implies that Hn,k−1 → H
′
n,k is a trivial cofibra-

tion. Similarly, for (σ, J) in S̄′3[n](k) there exists a unique simplex (τ, K) in S̄′′3 [n](k) such
that (σ, J) = dk(τ, K). Moreover, for j 6= k the face dj(τ, K) is contained in H′n,k. This gives
another pushout diagram

ä(τ,K)∈S̄′′3 [n](k)
Λn+2

k ä(τ,K)∈S̄′′3 [n](k)
∆n+2

H′n,k Hn,k.

By the same argument it follows that H
′
n,k → Hn,k is a trivial cofibration.

k = 4: Observe that for (τ, K) in S′4[n] the faces di(τ, K) for i < n + 1 are in Fn,3, since
this contains all narrow n-simplices of�op[n]. Similarly for (τ, K) in S′′4 [n] the faces di(τ, K)
for i 6= n + 1 are in Fn,3. Thus for all (σ, J) in S4[n], the map π∂

(σ,J) factors through Fn,3, and
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so we have a pushout diagram

ä(σ,J)∈S4[n] ∂∆n ∗ GO
[rσ

n ]/
ä(σ,J)∈S4[n] ∆n ∗ GO

[rσ
n ]/

Fn,3 Fn,4.

By the same argument as in the case k = 1, it follows that Fn,3 → Fn,4 is a trivial cofibration.

Corollary 4.6.2.6. Suppose V⊗ is a presentably monoidal ∞-category. For any spaces
X0, . . . , Xn, and any �op,q

X0<···<Xn
-algebra A in V⊗, the adjunction morphism A → κ∗κ! A

is an equivalence.

Proof. By Theorem 4.6.2.4, we may regard κ as the inclusion �op
X0<···<Xn

→ �
op
X0<···<Xn

. It is
clear that this morphism has the Kan extension property, so we have a description of free
algebras in terms of operadic colimits. Using this it is easy to see that A(ξ)→ κ! A(ξ) is an
equivalence for ξ ∈ �op

X0<···<Xn
.

4.6.3 The Double ∞-Category of V-∞-Categories

We will now construct a double ∞-category CAT(V) whose objects are V-∞-categories and
whose vertical and horizontal morphisms are functors and correspondences, respectively.
From this we can extract an (∞, 2)-category CORRV

∞ whose mapping ∞-categories are the
∞-categories CorrV(C,D) defined above.

Definition 4.6.3.1. It is easy to see that the full subcategory of (OpdO,gen
∞ )/�op[n] spanned

by the objects �op
X0<...<Xn

is equivalent to S×(n+1). Define ALGO
cat(V

⊗)[n] by the pullback

ALGO
cat(V

⊗)[n] AlgO
/�op[n](V

⊗)

S×(n+1) (OpdO,gen
∞ )/�op[n].

This defines a simplicial ∞-category ALGO
cat(V

⊗).

Definition 4.6.3.2. Let CORR(V⊗)[n] be the full subcategory of ALGO
cat(V

⊗)[n] spanned by
those algebras that are composites and whose restrictions to AlgO

cat(V
⊗) are all complete

V-∞-categories. These are clearly closed under the functors induced by morphisms in�op

and so form a simplicial ∞-category CORR(V⊗).

Lemma 4.6.3.3. Suppose V⊗ is a presentably monoidal ∞-category. The simplicial ∞-
category CORR(V⊗) is a Segal object.

Proof. We must show that the Segal morphisms

CORR(V⊗)[n]→ CORR(V⊗)[1]×CORR(V⊗)[0] · · · ×CORR(V⊗)[0] CORR(V⊗)[1]
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are equivalences. Since this functor clearly preserves Cartesian arrows over S×(n+1) it suf-
fices to show that it induces an equivalence on fibres. Given spaces X0, . . . , Xn, we thus
have to show that we get an equivalence of ∞-categories

AlgO

�
op
X0<···<Xn /�op[n](V

⊗)comp κ∗−→ AlgO

�
op,q
X0<···<Xn /�op[n]

(V⊗),

where AlgO

�
op
X0<···<Xn /�op[n](V

⊗)comp denotes the full subcategory of AlgO

�
op
X0<···<Xn /�op[n](V

⊗)

spanned by the algebras that are composites, i.e. in the image of κ!. By Corollary 4.6.2.6,
every object A on the right-hand side is the image of κ! A, so this functor is essentially
surjective. To see that it is fully faithful, suppose A and B are two �op,q

X0<···<Xn
-algebras in

V⊗; then we must show that

Map(κ! A, κ!B)→ Map(κ∗κ! A, κ∗κ! A)

is an equivalence of spaces. Under the equivalence Map(κ! A, κ!B) ' Map(A, κ∗κ!B) given
by the adjunction this corresponds to composition with the unit A → κ∗κ! A. This is an
equivalence by Corollary 4.6.2.6, which completes the proof.

Definition 4.6.3.4. Write CORRV
∞ for the horizontal sub-(∞, 2)-category of CORR(V⊗),

given by restricting the 0th ∞-category CORR(V⊗)[0] ' CatV∞ to the space ιCatV∞. This
is an (∞, 2)-category of V-∞-categories and correspondences. We denote its underlying
∞-category by CorrV∞.

Lemma 4.6.3.5. The vertical sub-(∞, 2)-category of CORR(V⊗) is the (∞, 2)-category CATV
∞

of V-∞-categories and functors.

Proof. The vertical sub-(∞, 2)-category is obtained by taking the full subcategories of the
∞-categories CORR(V⊗)[n] spanned by the objects that are degeneracies of the objects in
CORR(V⊗)[0] ' CatV∞. But these degenerate objects are precisely the �op

X [n]-algebras π∗nC
where C is a complete �op

X -algebra in V⊗.

176



Chapter 5

Enriched (∞, n)-Categories

In this brief chapter we indicate how the theory of O(n)-∞-operads leads to a non-iterative
theory of enriched (∞, n)-categories. We do not, however, go very far in developing this
in this thesis.

5.1 n-Categorical Algebras

In this section we use the theory of generalized ∞-operads developed in Chapter 3 to
define n-categorical algebras in §5.1.1 and construct ∞-categories of these in §5.1.2. We show
that n-categorical algebras in spaces are equivalent to Segal O(n)-spaces (i.e. �n-spaces) in
§5.1.3. In §5.1.4 we introduce a notion of completeness for n-categorical algebras — we claim
complete n-categorical algebras give the correct notion of enriched (∞, n)-categories, but
do not make much progress towards proving this here.

5.1.1 The Φ-Multiple ∞-Categories LΦ
X

To define categorical algebras above, we used certain double ∞-categories �op
X , where X

is a space. Here we will generalize this as follows: given a perfect operator category Φ
and a clean atom A ∈ Φ, we will define analogous Φ-multiple ∞-categories LΦ

X , where
X is a Segal Φ/A-space. When Φ is O(n) and A is the (n− 1)-cell CO(n)

n−1 , this gives O(n)-
multiple ∞-categories �op

n,X where X is a Segal O(n− 1)-space; we will use these to define
n-categorical algebras in En-monoidal ∞-categories.

Lemma 5.1.1.1. Let Φ be a perfect operator category and A a clean atom of Φ, and suppose
C is an ∞-category with finite limits. Write jA for the inclusion LΦ/A ↪→ LΦ induced by the
inclusion Φ/A ↪→ Φ. Then right Kan extension along jA takes Φ/A-category objects in C to
Φ-category objects in C.

Remark 5.1.1.2. In the situation above, the functor jA,∗ : CatΦ(C)→ CatΦ/A(C) induced by
composition with jA clearly preserves limits, and so has a right adjoint. Since right Kan
extension jA

∗ along jA preserves category objects, it follows that this right adjoint is simply
given by jA

∗ .

Proof. We first introduce the notation in the following diagram for the obvious inclusions
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of categories:

GΦ LΦ
int LΦ

GΦ/A L
Φ/A
int LΦ/A

γ λ

γ̄ λ̄

g l jA

Let F : LΦ/A → C be a Φ/A-category object. We must show that jA
∗ F is a Φ-category object,

i.e. that jA
∗ F|LΦ

int
= λ∗ jA

∗ F is a right Kan extension of jA
∗ F|GΦ = γ∗λ∗ jA

∗ F along γ.

There is a natural transformation λ∗ jA
∗ F → l∗λ̄∗F whose adjunct jA

∗ F → λ∗l∗λ̄∗F '
jA
∗ λ̄∗λ̄∗F is jA

∗ applied to the unit for λ̄∗ a λ̄∗. On an object I ∈ LΦ this is the natural map
from the limit of F over LΦ/A

I/ to the limit over (LΦ/A
int )I/. But if I is not in LΦ/A then there

are no active maps from I to an object of LΦ/A , hence if f : I 7→ J is a morphism in LΦ

with J ∈ LΦ/A and I 7→ J′ → J is the inert-active factorization of f , then J′ is also in LΦ/A .
Thus (L

Φ/A
int )I/ → L

Φ/A
I/ is right cofinal and so λ∗ jA

∗ F ' l∗λ̄∗F since this is true pointwise
on objects.

Similarly γ∗λ∗ jA
∗ F ' g∗γ̄∗λ̄∗F. But since F is a category object, λ̄∗F is the right Kan

extension γ̄∗γ̄∗λ̄∗F, hence we get

λ∗ jA
∗ F ' l∗λ̄∗F ' l∗γ̄∗γ̄∗λ̄∗F ' γ∗g∗γ̄∗λ̄∗F ' γ∗γ

∗λ∗ jA
∗ F,

as required.

Definition 5.1.1.3. If C is a Φ/A-category object in Cat∞, we let LΦ
C → LΦ be a coCartesian

fibration associated to the Φ-category object jA
∗ C.

Example 5.1.1.4. If Φ is O and A is ∅ then LO
C is �op

C for C an ∞-category.

Notation 5.1.1.5. If Φ is O(n) and A is CO(n)
n−1 (so Φ/A is O(n− 1)), then we write �op

n,C for

L
O(n)
C , where C is an O(n− 1)-category object in Cat∞.

Lemma 5.1.1.6. Suppose C is a Φ/A-category object in Cat∞. Then the coCartesian fibration
LΦ
C → LΦ is a Φ-multiple ∞-category.

Proof. It follows from Lemma 5.1.1.1 that jA
∗ C is a Φ-category object. The corresponding

coCartesian fibration is therefore a Φ-multiple ∞-category.

Definition 5.1.1.7. Let V⊗ be an O(n)-monoidal ∞-category and let X be a Segal O(n− 1)-
space. An n-categorical algebra in V⊗ with underlying Segal O(n − 1)-space X is a �op

n,X-
algebra in V⊗.

Remark 5.1.1.8. This definition clearly does not require V⊗ to be an O(n)-monoidal ∞-
category — we can define n-categorical algebras in any generalized O(n)-∞-operad as
�

op
n,X-algebras. We will not consider this generalization here, however.

Proposition 5.1.1.9. The functor �op
n,(–) : SegO(n−1)

∞ → OpdO(n),gen
∞ preserves filtered colim-

its.
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Proof. Suppose we have a filtered diagram of ∞-categories p : I → SegO(n−1)
∞ with colimit

C. Since �op
n,C is a generalized O(n)-∞-operad, by Lemma 3.2.5.1 it suffices to show that

�
op
n,C is the colimit of �op

n,(–) in Cat∞. Now this composite functor

SegO(n−1)
∞

�
op
n,(–)−−−→ OpdO,gen

∞ → Cat∞

factors as
SegO(n−1)

∞
j∗−→ Fun(�op

n , Cat∞)
∼−→ CoCart(�op

n )
q−→ Cat∞,

where CoCart(�op
n ) is the ∞-category of coCartesian fibrations over�op

n and the rightmost
functor q is the forgetful functor that sends a fibration E→ �

op
n to the ∞-category E. By Ex-

ample 2.1.12.15 the functor q preserves colimits. It thus suffices to prove that j∗ preserves
filtered colimits. Colimits in functor categories are computed pointwise, so to see this it
suffices to show that for each I ∈ �op

n the composite functor SegO(n−1)
∞ → Cat∞ induced

by composing with evaluation at I preserves filtered colimits. It is easy to see that the in-
clusion SegO(n−1)

∞ → Fun(�op
n−1, S) preserves filtered colimits, since we are localizing with

respect to morphisms between compact objects, so it suffices to consider filtered colimits in
Fun(�op

n−1, S), which are computed pointwise. But j∗(–)(I) is the limit of a finite diagram,
and so commutes with filtered colimits in Cat∞ or S.

5.1.2 The ∞-Category of n-Categorical Algebras

In this subsection we use the algebra fibration

AlgO(n)(V⊗)→ OpdO(n)
∞

to define an ∞-category of n-categorical algebras, and then show that this has various
useful properties.

Definition 5.1.2.1. Suppose V⊗ is an En-monoidal ∞-category; to avoid clutter we will
also write V⊗ for the associated O(n)-monoidal ∞-category uO(n),∗V⊗. The ∞-category
AlgO(n)

cat (V⊗) is defined by the pullback square

AlgO(n)
cat (V⊗) AlgO(n)(V⊗)

SegO(n−1)
∞ OpdO(n)

∞ .
L�op

n,(–)

where the lower horizontal map sends a Segal O(n − 1)-space X to the O(n)-∞-operad
L�op

n,X associated to the generalized O(n)-∞-operad �op
n,X. The objects of AlgO(n)

cat (V⊗) are

thus n-categorical algebras in V⊗. We will refer to AlgO(n)
cat (V⊗) as the ∞-category of n-

categorical algebras in V⊗.

Remark 5.1.2.2. Since V⊗ is an O(n)-monoidal ∞-category, and so in particular an O(n)-
∞-operad, we could equivalently have defined AlgO(n)

cat (V⊗) using the analogue of the al-
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gebra fibration over the base OpdO(n),gen
∞ , since there is natural equivalence AlgO(n)

�
op
n,X

(V⊗) '

AlgO(n)
L�op

n,X
(V⊗).

Our next goal is to prove that the ∞-category AlgO(n)
cat (V⊗) is presentable if V⊗ is pre-

sentably En-monoidal; to do this we first introduce the ∞-category of n-graphs in V:

Definition 5.1.2.3. Let V⊗ be an En-monoidal ∞-category. The ∞-category Graphn,V
∞ of

V-n-graphs is defined by the pullback

Graphn,V
∞ AlgO(n)

triv (V⊗)

SegO(n−1)
∞ OpdO(n)

∞ .
L�op

n,(–)

Thus the fibre of Graphn,V
∞ at X ∈ S is equivalent to Fun((�op

n,X)Cn ,V).

Remark 5.1.2.4. If X is a Segal O(n− 1)-space, we can describe (�
op
n,X)Cn as the limit of the

diagram of spaces

X(Cn−1) X(Cn−2) · · · X(C0)

X(Cn−1) X(Cn−2) · · · X(C0).

Lemma 5.1.2.5. Suppose V is an accessible ∞-category. Then the ∞-category Graphn,V
∞ is

accessible.

Proof. Let F → S be the Cartesian fibration associated to the functor S → Cat∞ sending X
to Fun(X,V). Then there is a pullback square

Graphn,V
∞ F

SegO(n−1)
∞ S,

φ

where the lower horizontal map is the functor φ that sends X to (�
op
n,X)Cn .

The ∞-category F is accessible, and the projection F → S is an accessible functor, by
Theorem 2.1.11.1. Moreover, since filtered colimits in SegO(n−1)

∞ are computed pointwise,
and finite limits in S commute with filtered colimits, the functor φ preserves filtered col-
imits and so is accesible. The pullback Graphn,V

∞ is therefore accesible and the projection
Graphn,V

∞ → SegO(n−1)
∞ is an accessible functor, by [Lur09a, Proposition 5.4.6.6].
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Proposition 5.1.2.6. Suppose V⊗ is an En-monoidal ∞-category compatible with small col-
imits. Then AlgO(n)

cat (V⊗) has all small colimits. Moreover, if V is presentable then so is
AlgO(n)

cat (V⊗).

Proof. By Lemma 3.2.8.5, the fibration π : AlgO(n)(V⊗) → OpdO(n)
∞ is both Cartesian and

coCartesian, hence the same is true of its pullback p : AlgO(n)
cat (V⊗)→ SegO(n−1)

∞ . Moreover,
its fibres AlgO(n)

�
op
n,X

(V⊗) have all colimits by Corollary 3.2.7.6 and the functors f! induced

by morphisms f in SegO(n−1)
∞ preserve colimits, being left adjoints. Thus p satisfies the

conditions of Lemma 2.1.5.10, which implies that AlgO(n)
cat (V⊗) has small colimits.

Since the functor τ∗ : AlgO(n)(V⊗)→ AlgO(n)
triv (V⊗) preserves filtered colimits by Corol-

lary 3.2.8.10, it is clear that so does its pullback U : AlgO(n)
cat (V⊗) → Graphn,V

∞ . Moreover,
the pullback of the left adjoint τ! of τ∗ gives a functor F : Graphn,V

∞ → AlgO(n)
cat (V⊗) left

adjoint to U; this preserves compact objects by Lemma 2.1.7.11.
Every object of AlgO(n)(V⊗) is a (sifted) colimit of objects in the image of

τ! : AlgO(n)
triv (V⊗)→ AlgO(n)(V⊗),

hence every object of AlgO(n)
cat (V⊗) is a (sifted) colimit of objects in the image of F. The ∞-

category Graphn,V
∞ is accessible by Lemma 5.1.2.5; suppose it is generated under colimits

by κ-compact objects. Since F preserves colimits it follows that every object of AlgO(n)
cat (V⊗)

is the colimit of objects that are the images of κ-compact objects of Graphn,V
∞ under F. As

the functor F preserves κ-compact objects, this means there is a small subcategory of κ-
compact objects of AlgO(n)

cat (V⊗) — namely the images of κ-compact objects of Graphn,V
∞ —

such that every object of AlgO(n)
cat (V⊗) is a colimit of objects in this ∞-category. In other

words, the ∞-category AlgO(n)
cat (V⊗) is κ-accessible.

Now we show that AlgO(n)
cat (V⊗) is functorial in V⊗:

Definition 5.1.2.7. As in §3.2.8, let AlgO(n)
co → OpdO(n)

∞ × (Ôpd
O(n)
∞ )op be a Cartesian fibra-

tion classifying the functor AlgO(n)
(–) (–). Let AlgO(n)

cat,co be the pullback

AlgO(n)
cat,co AlgO(n)

co

SegO(n−1)
∞ × (M̂on

O(n),lax
∞ )op OpdO(n)

∞ × (Ôpd
O(n)
∞ )op.

Lemma 5.1.2.8. AlgO(n)
cat (V⊗) is functorial in V⊗ with respect to lax monoidal functors.

Proof. The composite AlgO(n)
cat,co → (M̂on

O(n),lax
∞ )op is a Cartesian fibration classifying a func-

tor V⊗ 7→ AlgO(n)
cat (V⊗).

Proposition 5.1.2.9. AlgO(n)
cat (–) is lax monoidal with respect to the Cartesian product of

O(n)-monoidal ∞-categories.
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Proof. The functor �op
n,(–) : SegO(n−1)

∞ → OpdO(n),gen
∞ preserves products, and if we define

AlgO(n)
cat (–) using the version of AlgO(n)(–) fibred over OpdO(n),gen

∞ we see by the same
proof as that of Proposition 3.2.8.13 that this functor is lax monoidal with respect to the
Cartesian product of generalized O(n)-∞-operads. Thus the pullback AlgO(n)

cat (–) is also
lax monoidal.

5.1.3 n-Categorical Algebras in Spaces

In this subsection we prove that the ∞-category AlgO(n)
cat (S×) of n-categorical algebras in

spaces is equivalent to the ∞-category SegO(n)
∞ of Segal O(n)-spaces.

If V is a Cartesian monoidal ∞-category, we can construct a Cartesian fibration

MndO(n)
cat (V)→ SegO(n−1)

∞

with fibre at X the ∞-category MndO(n)
�

op
n,X

(V) of �op
n,X-monoids in V, in the same way as

we defined AlgO(n)
cat (V×) above. This has a natural equivalence over SegO(n−1)

∞ with the
∞-category AlgO(n)

cat (V×).
We can also define a Cartesian fibration MonO(n),cat

∞ → SegO(n−1)
∞ whose fibre at X is the

∞-category Mon
O(n),�op

n,X
∞ of �op

n,X-monoidal ∞-categories. Using the equivalence between

functors to S and left fibrations, we can identify MndO(n)
cat (S) with the full subcategory

LMonO(n),cat
∞ of MonO(n),cat

∞ spanned by those �op
n,X-monoidal ∞-categories that are left fi-

brations.
Similarly, we can identify the ∞-category SegO(n)

∞ of Segal O(n)-spaces with the full
subcategory LMultO(n)

∞ of MultO(n)
∞ spanned by the O(n)-multiple ∞-categories that are

left fibrations.
There is an obvious functor p : LMonO(n),cat

∞ → LMultO(n)
∞ given by composing a �op

n,X-
monoidal ∞-category C→ �

op
n,X that is a left fibration with the map �op

n,X → �
op
n , which is

also a left fibration and an O(n)-multiple ∞-category.

Proposition 5.1.3.1. This functor p : LMonO(n),cat
∞ → LMultO(n)

∞ is an equivalence.

Proof. Let j denote the usual inclusion �op
n−1 ↪→ �

op
n . Then there is an adjunction

j∗ : SegO(n)
∞ � SegO(n−1)

∞ : j∗,

and�op
n,X is the object of LMultO(n)

∞ corresponding to j∗X. Moreover, j∗ is a Cartesian fibra-
tion by Lemma 2.1.6.4; if A ∈ SegO(n)

∞ , a Cartesian arrow with target A over X → j∗A is
given by taking the pullback of A→ j∗ j∗A along j∗X → j∗ j∗A.

To prove that p is an equivalence, we must show that it is fully faithful and essentially
surjective. We thus have to prove that the map

Map
LMonO(n),cat

∞
(A, B)→ Map

LMultO(n)
∞

(p(A), p(B))

is an equivalence. Since it is clear that the functor p preserves Cartesian morphisms over
SegO(n−1)

∞ , it suffices to show that the induced maps on fibres over f : j∗p(A) → j∗p(B)
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are equivalences. But this is clear: on both sides the fibre at f can be identified with the
space of those maps over �op

n,j∗A from A to the pullback of B along �op
n, f that preserve inert

morphisms.
It remains to prove that p is essentially surjective. Suppose α : A → �

op
n is an object of

LMultO(n)
∞ . The adjunction j∗ a j∗ induces a map h : A→ �

op
n,j∗A; this is equivalent to a left

fibration by Proposition 2.1.4.4 and so α is in the essential image of p.

Corollary 5.1.3.2. The composite functor AlgO(n)
cat (S×)→ SegO(n)

∞ is an equivalence.

5.1.4 Complete n-Categorical Algebras

In this subsection we define complete n-categorical algebras — the full subcategory CatVO(n)

of AlgO(n)
cat (V⊗) spanned by the complete n-categorical algebras should be the “correct” ∞-

category of V-(∞, n)-categories. However, we will unfortunately not be able to show that
CatVO(n) is a localization of AlgO(n)

cat (V⊗), let alone the localization with respect to an ap-
propriate notion of “fully faithful and essentially surjective” morphisms. I hope to return
to this question, as well as the related problem of comparing CatVO(n) to the ∞-category
CatV(∞,n) obtained by iterated enrichment, after more of the machinery of O(n)-∞-operads
has been developed.

Definition 5.1.4.1. Suppose V⊗ → �
op
n is an O(n)-monoidal ∞-category and X is a Segal

O(n− 1)-space. The trivial n-categorical algebra EV
X with underlying Segal O(n− 1)-space

X is defined as the composite

�
op
n,X → �

op
n

I−→ V⊗,

where I is the unit of V⊗. This gives a functor EV
(–) : SegO(n−1)

∞ → AlgO(n)
cat (V⊗).

Remark 5.1.4.2. The n-categorical algebra ES
X can be described as the (∞, n)-category con-

structed from the (∞, n− 1)-category X by adjoining a unique n-morphism between any
two parallel (n− 1)-morphisms in X. In particular, all parallel (n− 1)-morphisms in X are
equivalent in ES

X.

The identity map �op
n → �

op
n is the unique O(n)-monoidal structure on the point ∗.

This is the unit for the Cartesian product of O(n)-monoidal ∞-categories, and so for every
O(n)-monoidal ∞-category V⊗ the ∞-category AlgO(n)

cat (V⊗) is tensored over AlgO(n)
cat (�

op
n ),

since AlgO(n)
cat (–) is lax monoidal by Proposition 4.1.3.9. Clearly the only ∗-∞-categories are

of the form E∗X for Segal O(n− 1)-spaces X; we can identify the V-∞-category EV
X with the

tensor E∗X ⊗ IV:

Lemma 5.1.4.3. For any O(n)-monoidal ∞-category V⊗ and Segal O(n − 1)-space X, we
have EV

X ' E∗X ⊗ IV. Moreover, if V⊗ is presentably monoidal (so AlgO(n)
cat (V⊗) is tensored

over AlgO(n)
cat (S×)), then EV

X ' ES
X ⊗ IV.

Proof. Considering the construction of the external product in AlgO(n), we see that E∗X ⊗ IV
is given by

E∗X ×�op
n

IV : �op
n,X ×�op

n
�

op
n → �

op
n ×�op

n
V⊗ ' V⊗.
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We can factor this as

�
op
n,X ×�op

n
�

op
n

E∗X×�op
n

id
−−−−−→ �

op
n ×�op

n
�

op
n

id×
�

op
n

IV
−−−−−→ �

op
n ×�op

n
V⊗,

which is clearly the same as EV
X.

In the presentable case, we have

ES
X ⊗ IV ' (E∗X ⊗ IS)⊗ IV ' E∗X ⊗ (IS ⊗ IV) ' E∗X ⊗ IV ' EV

X,

since it is easy to see that the tensorings with AlgO(n)
cat (�

op
n ) and AlgO(n)

cat (S×) are compati-
ble.

Recall that for A ∈ �op
n we have a Segal O(n− 1)-space A∗ given by

A∗(B) := Hom
�

op
n
(A, B),

giving a functor (–)∗ : �n → SegO(n−1)
∞ . We write EA := EA∗ , thus E(–) is a functor �n →

AlgO(n)
cat (V⊗).

Remark 5.1.4.4. When V is S, it is easy to see that EA as defined here corresponds to EA as
defined in §2.2.3 under the equivalence of §5.1.3.

Definition 5.1.4.5. Suppose V⊗ is an O(n)-monoidal ∞-category and C is an n-categorical
algebra in V⊗. An n-equivalence in C is a morphism ECn → C.

Definition 5.1.4.6. Given an n-categorical algebra C in V, we write ι•C for the functor
�

op
n → S given by Map(E(–),C).

Lemma 5.1.4.7. Let C be an n-categorical algebra in V with underlying Segal O(n − 1)-
space X, and let A be an object of �op

n−1 ⊆ �
op
n . Then the map

ιAC := Map(EA,C)→ Map(A∗, X) ' X(A)

is an equivalence.

Proof. It suffices to check that the homotopy fibres of this map are contractible. By [Lur09a,
Proposition 2.4.4.2] the homotopy fibre at p : A∗ → X is

Map
AlgO(n)

�
op
n,A∗

(EA, p∗C).

Since A is in�op
n−1, there are no parallel (n− 1)-morphism in the (∞, n)-category EA, which

means that EA is equivalent to the initial �op
n,A∗-algebra. Thus the fibre at p is indeed con-

tractible.

The restriction of ι•C to�op
n−1 is thus equivalent to the underlying Segal O(n− 1)-space

of C.

Definition 5.1.4.8. Let C be an n-categorical algebra in an O(n)-monoidal ∞-category V.
The classifying Segal O(n− 1)-space of n-equivalences ιC of C is the left Kan extension p!ι•C
of the Segal O(n)-space ι•C along p : �op

n → �
op
n−1.
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Definition 5.1.4.9. Let C be a�op
n,X-algebra in an O(n)-monoidal ∞-category V. We say C is

n-complete if the natural map X ' ι•C|�op
n−1
→ ιC is an equivalence.

Conjecture 5.1.4.10. An n-categorical algebra is n-complete if and only if it is local with
respect to the map ECn → ECn−1 .

Remark 5.1.4.11. We would like to deduce this from the case where V is S, i.e. Proposi-
tion 2.2.3.16. In §4.2.1 we were able to carry out such a reduction because we knew that
if V⊗ is presentably monoidal then AlgO

cat(V
⊗) is tensored over AlgO

cat(S
×) in a colimit-

preserving way — to see this we needed to know that composition with a strong monoidal
functor gives a colimit-preserving functor on algebras, and that the functor L�op

(–) pre-
serves products. However, we do not yet know how to prove the analogues of these two
statements in the setting of O(n)-∞-operads, and so we are currently unable to prove Con-
jecture 5.1.4.10.

Definition 5.1.4.12. If C is an n-categorical algebra in an O(n)-monoidal ∞-category V⊗, we
say that C is complete if C is n-complete and the�n−1-space ιC is complete. We write CatVO(n)

for the full subcategory of AlgO(n)
cat (V⊗) spanned by the complete n-categorical algebras.

Remark 5.1.4.13. If V is the ∞-category S of spaces, then the complete n-categorical alge-
bras correspond to the complete �n-spaces under the equivalence of §5.1.3.

Conjecture 5.1.4.14. Suppose V⊗ is a presentably En-monoidal ∞-category, so there is a
(strong) monoidal functor t : S→ V, which induces a functor

t∗ : AlgO(n)
cat (S×)→ AlgO(n)

cat (V⊗).

Let εk denote the morphism of n-categorical algebras in S corresponding to the morphism
εk of �n-spaces of Definition 2.2.3.15 under the equivalence of §5.1.3. Then CatVO(n) is the

localization of AlgO(n)
cat (V⊗) with respect to t∗εk for k = 1, . . . , n. In particular, CatVO(n) is an

accessible localization of AlgO(n)
cat (V⊗) and so is a presentable ∞-category.

Definition 5.1.4.15. A morphism φ : C → D of n-categorical algebras in an En-monoidal
∞-category V⊗ is fully faithful and essentially surjective if φ is Cartesian with respect to the
projection AlgO(n)

cat (V⊗)→ SegO(n−1)
∞ and the morphism ιφ of Segal O(n− 1)-spaces is fully

faithful and essentially surjective in the sense of Definition 2.2.3.17.

Conjecture 5.1.4.16. Suppose V⊗ is a presentably En-monoidal ∞-category. The fully faith-
ful and essentially surjective morphisms in AlgO(n)

cat (V⊗) constitute precisely the saturated
class of morphisms generated by t∗εk, k = 1, . . . , n. In particular CatVO(n) is the localization

of AlgO(n)
cat (V⊗) with respect to the fully faithful and essentially surjective morphisms.

5.2 n-Correspondences

In this section we will briefly discuss the analogue of correspondences for n-categorical
algebras.
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5.2.1 The Φ-Multiple ∞-Categories LΦ[I, {Xα}]
Here we define the Φ-multiple ∞-categories we will use below, in the case Φ = O(n), to
define correspondences between n-categorical algebras:

Definition 5.2.1.1. Suppose Φ is a self-categorical perfect operator category. Let hI : LΦ →
Set be the representable functor HomLΦ(I, –), and let LΦ[I] → LΦ be a coGrotendieck
fibration associated to ĥI ; then LΦ[I] is a Φ-multiple ∞-category.

Example 5.2.1.2. If Φ is O then LO[n] is �op[n].

Definition 5.2.1.3. Suppose Φ is a self-categorical perfect operator category that has an
initial object ∅, and let A be a clean atom of Φ. Given a morphism α : I 7→ ∅ in LΦ there is
a functor LΦ → LΦ[I] that sends J to the composite I 7→ ∅ 7→ J. Restricting to LΦ/A ⊆ LΦ

we get a functor γ : äα L
Φ/A → LΦ[I]. Given Segal Φ/A-spaces Xα for α : I 7→ ∅ consider

their disjoint union F(Xα) : äα L
Φ/A → S. The right Kan extension j∗F(Xα) is clearly a Segal

Φ-space. We write LΦ[I, {Xα}] → LΦ[I] for the left fibration associated to j∗F(Xα); this is a
Φ-multiple ∞-category.

Example 5.2.1.4. If Φ = O then LO[n, (X0, . . . , Xn)] is �op
X0<···<Xn

.

Definition 5.2.1.5. If Φ = O(n), we write �op
n [I, (Xα)] for LO(n)[I, (Xα)].

5.2.2 Correspondences

We now use the generalized ∞-operads introduced above to define correspondences be-
tween n-categorical algebras:

Definition 5.2.2.1. Let V⊗ be an O(n)-monoidal ∞-category. A k-correspondence (1 ≤ k ≤ n)
between two n-categorical algebras C and D in V⊗ is a �op

n [Ck, (X, Y)]-algebra M in V⊗,
where X and Y are the underlying Segal O(n − 1)-spaces of C and D, respectively, such
that M restricts to C and D when pulled back along the two maps Ck 7→ C0.

Definition 5.2.2.2. For I ∈ �op
n , let �op

n [I, (Xα)]q denote the colimit of generalized O(n)-
∞-operads

colim
p : I 7→A∈GO(n)

I/

�
op
n [A, (Xp

i )]

where Xp
i denotes Xα when α is p composed with a map A 7→ ∅. Let κ : �op

n [I, (Xα)]q →
�

op
n [I, (Xα)] denote the obvious inclusion. We say a �op

n [I, (Xα)]-algebra M in an O(n)-
monoidal ∞-category V⊗ is a composite if it is the left operadic Kan extension of its restric-
tion to �op

n [I, (Xα)]q, i.e. the adjunction morphism κ!κ
∗M→M is an equivalence.

Definition 5.2.2.3. It is easy to see that that the full subcategory of (OpdO(n),gen
∞ )/�op

n [I]

spanned by the objects �op
n [I, (Xα)] is equivalent to (SegO(n−1)

∞ )×k, where k is the number
of morphisms I 7→ ∅. Define ALGO(n)

cat (V⊗)[I] by the pullback

ALGO(n)
cat (V⊗)[I] AlgO(n)

/�op
n [I]

(V⊗)

(SegO(n−1)
∞ )×k (OpdO(n),gen

∞ )/�op
n [I].
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This defines a functor �op
n → Cat∞.

Definition 5.2.2.4. Suppose V⊗ is an O(n)-monoidal ∞-category. For I ∈ �op
n , we write

CORRO(n)(V⊗)[I] for the full subcategory of ALGO(n)
cat (V⊗)[I] spanned by those algebras

that are composites and whose restrictions to AlgO(n)
cat (V⊗) are complete n-categorical alge-

bras.

Conjecture 5.2.2.5. For any I ∈ �op
n and any�op

n [I, (Xα)]q-algebra M in an O(n)-monoidal
∞-category V⊗, the adjunction morphism M→ κ∗κ!M is an equivalence.

Remark 5.2.2.6. This would follow from an O(n)-analogue of Theorem 4.6.2.4, which can
probably be proved by essentially the same proof as that result, but we will not attempt to
carry out such an argument here.

Assuming this we can show the following, by the same argument as in the proof of
Lemma 4.6.3.3:

Lemma 5.2.2.7. The functor CORRO(n)(V⊗)[•] : �op
n → Cat∞ is an O(n)-category object.

Remark 5.2.2.8. By looking at the subcategory of �op
n [I, (Xα)]-algebras of the form π∗I C

where πI is the projection �
op
n [I] → �

op
n , we can extract from the O(n)-multiple ∞-

category CORRO(n)(V⊗) an (∞, n + 1)-category of V-∞-categories, functors, natural trans-
formations, etc.
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