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Abstract

The goal of this thesis is to begin to lay the foundations for a theory of enriched oco-
categories. We introduce a definition of such objects, based on a non-symmetric version of
Lurie’s theory of co-operads. Our first main result is a construction of the correct homo-
topy theory of enriched co-categories as a localization of an “algebraic” homotopy theory
defined using co-operads; this is joint work with David Gepner.

We then prove some comparison results: When a monoidal co-category arises from a
nice monoidal model category we show that the associated homotopy theory of enriched
co-categories is equivalent to the homotopy theory induced by the model category of en-
riched categories; when the monoidal structure is the Cartesian product we also show that
this is equivalent to the homotopy theory of enriched Segal categories. Moreover, we prove
that the homotopy theory of (oo, n)-categories enriched in spaces, obtained by iterating our
enrichment procedure, is equivalent to that of n-fold complete Segal spaces.

We also introduce notions of natural transformations and correspondences in the set-
ting of enriched co-categories, and use these to construct (o, 2)-categories of enriched oo-
categories, functors, and natural transformations, and double co-categories of enriched
co-categories, functors, and correspondences.

Finally, we briefly discuss a non-iterative definition of enriched (oo, )-categories, based
on a version of co-operads over Joyal’s categories @), and define what should be the correct
oco-category of these.
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Chapter 1

Introduction

The language of category theory has played an important role in many areas of math-
ematics for the past half-century. In recent years, however, taking seriously the higher-
categorical nature of many structures has turned out to be a very fruitful idea. In particu-
lar, the theory of co-categories has had many applications in algebraic topology and other
areas of mathematics. Roughly speaking, the notion of co-category (or (oo, 1)-category) is a
generalization of the notion of category where in addition to objects and morphisms we
also have homotopies between morphisms, homotopies between homotopies, and so on.
One way to think of an co-category is as a category where the morphisms between two
objects form a space rather than just a set — such topological categories, or equivalently sim-
plicial categories (where the morphisms form a simplicial set), give the simplest model of
co-categories. However, topological and simplicial categories are very rigid, which makes
it hard to understand the homotopically correct functors between them, and in general
make homotopy-invariant constructions (such as homotopy limits and colimits); more-
over, many naturally occurring composition laws are not strictly associative, but only as-
sociative up to coherent homotopy. It is therefore usually more convenient to work with a
notion of co-category where composition of morphisms is associative up to coherent homo-
topy. There are several ways to make this idea precise, including Segal categories, complete
Segal spaces, and quasicategories.

In some cases, the morphisms between objects in an co-category have more structure
than just forming a space; in algebraic topology, for example, we often come across co-
categories where the morphisms naturally form a spectrum. It is possible to think of these
objects as spectral categories, i.e. categories enriched in a model category of spectra (such
as symmetric spectra), and more generally we can consider categories enriched in nice
monoidal model categories. However, these suffer from the same problems as simplicial
categories do when considered as a model for co-categories. This suggests that a weaker
notion of enrichment, where composition is only associative up to coherent homotopy,
should be useful. The goal of this thesis is to begin to lay the foundations for a theory
of such enriched co-categories; specifically, we will define and study co-categories enriched
in monoidal co-categories, which are co-categories equipped with a tensor product that is
associative and unital up to coherent homotopy.

From an algebro-topological perspective, the most interesting monoidal oo—categoryﬂ
is the oo-category of spectra equipped with the smash product, and I expect that the the-

1 Apart from the co-category of spaces, with the Cartesian product, but enriching in this just gives ordinary
co-categories.
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ory developed in this thesis will have interesting applications in the context of spectral
co-categories, i.e. co-categories enriched in spectra. For instance, many naturally occurring
structures that “ought to be” spectral categories can be very difficult to define, because the
natural composition maps are only associative up to homotopy; I hope that in many cases
these structures can be more easily described as spectral co-categories.

As a specific example, it has long been expected that the spectral category of genuine
G-spectra for a finite group G “ought to be” the spectral category of spectral presheaves
on a small spectral category BS; if B is the 2-category of finite G-sets, spans of finite
G-sets, and isomorphisms of spans, then B¢ ought to be constructed by applying group
completion to the mapping groupoids of B¢. However, in the setting of ordinary cate-
gories group completion is only a multiplicative functor when restricted to permutative cat-
egories (i.e monoidal categories where the tensor product is strictly associative); Guillou
and May have recently constructed a version of B¢ by replacing B® by a category enriched
in permutative categories, and using this they can show that spectral presheaves on this
spectral category does indeed give genuine G-spectra [GM11b, GM11a,|(GM12]. However,
their construction is quite complicated — by contrast, in the setting of co-categories it is
straightforward to see that group completion is a lax monoidal functor, and since our the-
ory of enriched co-categories is functorial with respect to lax monoidal functors it is trivial
to construct Bﬁ as a spectral co-category. Moreover, it is equally easy to construct spectral
oco-categories by applying other lax monoidal functors, such as topological Hochschild ho-
mology or topological cyclic homology; for example, this gives a rigorous construction of
Morava’s category of TC-motives [Mor11].

We will set up our theory of enriched co-categories entirely within the context of co-
categories (rather than working with model categories, say); apart from greater generality,
working in this setting has several advantages:

e Weak or homotopy-coherent enrichment is the only natural notion of enrichment,
which allows us to define our enriched co-categories as certain “algebraic” objects in
the co-categorical sense.

o It is easy to consider enriched categories with spaces of objects rather than just sets,
which turns out to make the resulting homotopy theory nicer and easier to set up,
analogously to the way complete Segal spaces are better-behaved than Segal cate-
gories or simplicial categories.

e We automatically get naturality properties that would be difficult even to define in a
model-categorical framework — for example, our co-categories are natural in func-
tors between monoidal co-categories that are lax monoidal in the appropriate co-
categorical sense.

e Beyond just constructing a homotopy theory, our theory gives a good setting to de-
velop co-categorical analogues of many concepts from enriched category theory. In
this thesis we will discuss analogues of natural transformations and correspondences,
and we hope to study analogues of other concepts, such as weighted colimits, in fu-
ture work.

Part of this thesis is joint work with David Gepner — specifically, the results of §3.3land
§4.114.3| are taken from our article [GH], as are many of the results scattered in

12



1.1 From Enriched Categories to Enriched co-Categories

To orient the reader, we now attempt to motivate our approach to enriched co-categories
by describing how it relates to ordinary enriched categories.

1.1.1 Multicategories and Enrichment

Let’s begin with the usual definition of an enriched category: if V is a monoidal category,
a V-enriched category (or V-category) C consists of:

e aset ob C of objects,

e for all pairs x,y € ob C an object C(x,y) in 'V,
e composition maps C(x,y) ® C(y,z) — C(x,z),
e unitsid,: I — C(x, x).

The composition must be associative (this involves the associator isomorphism for V) and
unital. When formulated in this way, it is very hard to see how this notion ought to be
generalized in the setting of co-categories. We should therefore look for alternative ways
of defining enriched categories that have more obvious generalization; we first consider a
definition in terms of multicategories.

A multicategory (or non-symmetric coloured operad) is roughly speaking a category where
a morphism has a list of objects as its source. More precisely, a multicategory M consists of a
set of objects and for objects x1, ..., x,, y aset M((x1, ..., x,),y) of “multimorphisms” from
(x1,...,xn) to y; these have an associative composition, in the sense that we can compose
multimorphisms

(z1,--zi) =2y, (Zi+1s--02Zi) = Y2, ooor (Zip 410 Ziy) = Yn

with a multimorphism (y1,...,y,) — x to get a multimorphism (z3,...,z;,) — x. A
multicategory with a single object is precisely a non-symmetric operad
If V is a monoidal category, we can view it as a multicategory by defining

V((x1,.-,%0),y) = V(X1 Q- @ xp, ).

An algebra for a multicategory M in a monoidal category V is then just a functor of multi-
categories from M to V viewed as a multicategory.

Given a set X, there is a simple multicategory Ox such that Ox-algebras in a monoidal
category V are precisely V-categories: the objects of Ox are X x X, and the multimorphism
sets are defined by

*, ifyi:xi,izo,...,n,
@, otherwise.

Ox(((xo,y1), (x1,¥2), -+ -, (Xn—1,Yn)), (Yo, X)) = {

Thus an Ox-algebra C in V assigns an object C(x,y) to each pair (x,y) of elements of
X, with a unit I — C(x,x) from the unique map () — ((x,x)), and a composition map

ZBelow, we will refer to (non-symmetric) coloured operads as just (non-symmetric) operads, for consis-
tency with the terminology used by Lurie [Lurll]] and Barwick [Barl3]; here we stick to the more common
terminology.
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C(x,y) ® C(y,z) — C(x, z) from the unique multimorphism ((x,v), (y,z)) — (x,z). Look-
ing at triples of pairs we see that this composition is associative, and it is also clearly unital,
so C is precisely a V-category.

If we had an oco-categorical generalization of the theory of multicategories (which in-
cluded a theory of monoidal co-categories as a special case), it would therefore make sense
to define an co-category enriched in a monoidal co-category V with set of objects X to be an
Ox-algebra in V. To generalize multicategories to the co-categorical setting we could use
simplicial multicategories, i.e. multicategories enriched in simplicial sets. However, these
suffer from the same technical problems as simplicial categories considered as a model
for co-categories. Just as for co-categories, there are several better-behaved models for co-
categorical (symmetric) multicategories, namely the dendroidal sets (and related construc-
tions such as Segal operads and dendroidal Segal spaces) studied by Moerdijk together with
Berger, Cisinski, and Weiss, and the co-operads of Lurie. In this thesis we will primarily use
a non-symmetric variant of Lurie’s theory.

We can regard the multicategories Ox as non-symmetric co-operads, and considering
algebras for these in a monoidal co-category V does indeed give the right objects — for
example, if X is a one-element set then Ox-algebras are precisely A-algebras in V, which
is what we expect. Moreover, the machinery of co-operads gives co-categories Algq, (V) of
Ox-algebras in a fixed monoidal co-category V, and we can combine these to form an co-
category Alg_..(V), which has objects V-co-categories and 1-morphisms V-functors in the
appropriate sense. However, a morphism f: ¢ — D in Alg_ (V) is an equivalence if and
only if it is fully faithful, i.e. C(x,y) — D(fx, fy) is an equivalence for all objects x, y of C,
and a bijection on objects. These are clearly not the correct equivalences of V-co-categories
— these ought to be the fully faithful and essentially surjective functors. To get the right
oco-category of V-co-categories we must therefore localize Alg_, (V) to invert these.

For the localized co-category to be well-behaved we need this to be an accessible local-
ization (the co-categorical analogue of left Bousfield localization of model categories) —
this means that the localized co-category is a full subcategory of the original co-category
consisting of local objects. However, this is not possible for Alg_ (V) as we've defined it
here: For example, if V is the category of sets, then Alg_..(Set) is just the ordinary category
of categories and functors; the correct localization, on the other hand, is the (2, 1)-category
of categories, functors, and natural isomorphisms, which clearly can’t be a full subcategory
of the 1-category Alg_,,(Set).

It turns out that we can avoid this problem if we allow V-co-categories to have spaces
of objects, rather than just sets, which is also very natural from the co-categorical point of
view. We would thus like to define non-symmetric co-operads analogous to Ox with X a
space; one way to do this is to define simplicial multicategories, taking as input simplicial
categories whose nerves are Kan complexeﬂ but this generalization is much easier and
more natural if we start from a slightly different approach to enriched categories.

1.1.2 Virtual Double Categories and Enrichment

Virtual double categorief] are a common generalization of double categories and multicate-
gories. Roughly speaking, a virtual double category has objects and vertical and horizontal

3We will in fact define and make brief but crucial use of these in 3 below.
4 Also known as fc-multicategories; we will later call them generalized (non-symmetric) operads, for consis-
tency with Lurie’s terminology.

14



morphisms between them, but in addition to a collection of “squares” there are cells with
a list of vertical arrows as source; we refer the reader to [[CS10] or [Lei04] for more details.

We will instead consider virtual double categories from another perspective, by gen-
eralizing the category of operators of a multicategory: if M is a multicategory, its category
of operators M® is a category with objects lists (xo, ..., x,) of objects x; € M, and a mor-
phism (xo,...,xx) = (Yo,--.,Ym) given by a morphism ¢: [m] — [n] in A and, for each
i=0,...,m, amultimorphism (x(p(i),xq,(i)ﬂ, ... ,x¢(i+1)_1) — y; in M. We can characterize
the categories E over A°P that are categories of operators for multicategories — in particu-
lar, Ef,) must be equivalent to E[Xl]” via the maps {i,i + 1} < [n]. If we relax this to a more
general “Segal condition”, Ej,;; ~ Ejyj Xg - - - Xg, Ej1), we obtain precisely the analogous
“categories of operators” for virtual double categories.

Given a set X, we can define a virtual double category Dx with objects X where the ver-
tical morphisms are trivial, and there is a unique horizontal morphism between any two
elements of X. Then a functor of virtual double categories from Dx to a monoidal category
V is precisely a V-category with objects X. In terms of categories of operators, this virtual
double category corresponds to the category A whose objects are non-empty sequences
(x0,...,x,) of elements x; € X, and a unique morphism (xo, ..., x,) — (x¢(0), .. .,x¢(m))
for each ¢: [m] — [n] in A. If V is a monoidal category, and V® is its category of op-
erators, a functor Dx — V corresponds to a functor C: A;p — V@ over A° such that
C(xo,...,xn) = (C(x0,x1),...,C(xy_1,%x,)); it is easy to see that this is precisely a V-
category.

An oco-categorical version of the theory of virtual double categories is provided by
Lurie’s generalized oo-operads. This is the setting in which we will mainly develop our the-
ory of enriched co-categories; the advantage of working with these rather than only with
oo-operads is that there is an easy and natural co-categorical definition of co-categories Ay}
where X is a space. If V is a monoidal co-category we will define an co-category enriched in
V with space of objects X to be a map of generalized co-operads from AY to V.

1.1.3 Lax Functors and Enrichment

A third approach to enriched categories is to consider them as certain lax functors. Recall
that if C and D are 2-categories, a lax functor F from C to D assigns

e to each object X € C an object F(X) in D,
e to each I-morphism f: X — Y in C a 1-morphism F(f): F(X) — F(Y) in D,
e to each 2-morphism a: f — ¢ in C a 2-morphism F(«): F(f) — F(g) in D,

e to each composable pair of 1-morphisms f: X — Y, g: Y — Z, a 2-morphism F(g) o
F(f) — F(go f), satisfying associativity in the obvious sense for sequences of 3 com-
posable 1-morphisms,

e to each object X € C, a2-morphism idpx) — F(idx), which must be compatible with
the 2-morphisms for composable pairs of 1-morphisms.

A monoidal category V corresponds to a 2-category XV with one object, and if V.and W are
monoidal categories, a lax functor 2V — X W is precisely a lax monoidal functor V.— W.

If X is a set, let EX denote the “codiscrete” category with objects X, and a unique
morphism between any two objects. Then a V-category with objects X, for some monoidal
category V, is the same thing as a lax functor EX — X V.
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This definition is related to the definition using virtual double categories as follows: we
can regard 2-categories as double categories with no non-trivial vertical morphisms, and
thus as a special kind of virtual double categories. Under this identification, a lax functor
between 2-categories is precisely a morphism of virtual double categories. Moreover, the
virtual double category associated to 2V is precisely the one we obtain by regarding V as a
multicategory. Similarly, the virtual double category associated to EX is the one we denote
Dx above — thus a lax functor EX — XV corresponds to a morphism of virtual double
categories from Dx to V, which was the definition of enriched category we considered
above.

In the co-categorical context, we can similarly regard generalized (non-symmetric) oco-
operads as a natural setting for studying lax functors between (oo, 2)-categories.

1.2 Overview

The next two chapters mainly comprise background material. In Chapter [2| we review
some basic definitions and results on co-categories and other higher-categorical structures,
and also prove some technical results we will need later on. Chapter 3| reviews Barwick’s
theory of operator categories and describes how to generalize Lurie’s co-operads to this set-
ting; we also prove some results about co-categories of algebras over operads.

Chapter [ is the heart of this thesis — here we introduce and study our theory of en-
riched co-categories. In §4.1]we use the machinery of co-operads from Chapter [3to set up
an “algebraic” co-category of enriched co-category, then in we construct the correct
co-category of enriched co-categories by localizing this at the fully faithful and essentially
surjective functors — the key result is that this localization is given by restricting to “com-
plete” enriched co-categories, which is proved analogously to the main theorem of [Rez01].
After briefly describing some simple applications of this construction in we compare
our homotopy theory to homotopy theories of categories enriched in model categories, en-
riched Segal categories, and iterated Segal spaces in Then we discuss natural transfor-
mations and construct the (oo, 2)-category of enriched co-categories, functors, and natural
transformations in We extend this to a double co-category of enriched co-categories,
functors, and correspondences (or profunctors) in

Finally, in Chapter[5|we begin to study the generalization of our construction to a (non-
iterative) theory of enriched (oo, n)-categories. Unfortunately we are not able to accomplish
very much in this setting, primarily because we have not yet been able to prove some key
results about the appropriate theory of co-operads. We do, however, set up the correct
co-category of (oo, n)-categories enriched in a given [E,-monoidal co-category.

1.3 Notation and Terminology

We generally recycle the notation and terminology used by Lurie in [Lur09a,Lurll]]. Here
are some exceptions and reminders:

e Generic categories are generally denoted by single capital bold-face letters (e.g. V)
and generic co-categories by single caligraphic letters (e.g. V). Specific categories and
co-categories both get names in the normal text font: thus the category of small V-
catevgories is denoted Cat¥ and the oco-category of small V-co-categories is denoted
Catg,.
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We make use of the elegant theory of Grothendieck universes to avoid set-theoretical
problems; specifically, we fix three nested universes, and refer to sets contained in
them as small, large and very large. When C is an co-category of small objects of a
certain type, we generally refer to the corresponding co-category of large objects as
€. For example, Cat, is the (large) co-category of small co-categories, and Cat,, is the
(very large) co-category of large co-categories.

As far as possible we argue using the “high-level” language of co-categories, without
referring to their specific implementation as quasicategories. Following this philos-
ophy we have generally not distinguished notationally between categories and their
nerves, since categories are a special kind of co-category. However, we do indicate the
nerve (using N) when we think of the nerve of a category as being a specific simplicial
set; by the same principle we always indicate the nerves of simplicial categories. This
should hopefully not cause any confusion.

We will refer to the notion dual to that of Grothendieck fibration as coGrothendieck
fibration, by analogy with the terminology of Cartesian and coCartesian fibrations in
the co-categorical case.
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Chapter 2

Background on Higher Categories

This chapter contains some background material for the main part of this thesis: in §2.Tjwe
briefly review oo-categories and prove some technical results, and in §2.2 we review some
other higher-categorical structures we will encounter.

2.1 Preliminaries on co-Categories

In this thesis we will work throughout in the setting of co-categories. Specifically, we will
make use of the theory of quasicategories, as due to the work of Joyal and Lurie it is cur-
rently by far the best-developed theory of co-categories. In this section we briefly review
some of the main definitions and results from [Lur09al|Lurll] that we will make use of.
Along the way, we also prove a number of fairly technical results that we will need later
on.

2.1.1 Quasicategories

Quasicategories are a class of simplicial sets. Roughly speaking, the idea is that just as a
category has a nerve in simplicial sets, an co-category, however we define these, should
also have a nerve. The definition of quasicategory then characterizes those simplicial sets
that “ought to be” nerves of co-categories.

Definition 2.1.1.1. Let A denote the simplicial indexing category, i.e. the category whose
objects are the ordered sets [n] := {0,...,n} forn =0, 1,..., and whose morphisms are the
order-preserving maps between these. Equivalently, we may also regard A as the category
of non-empty finite ordered sets. A simplicial set is a presheaf of sets on A, i.e. a functor
A°P — Set. We write Sety for the category Fun(A°P, Set) of simplicial sets.

Definition 2.1.1.2. The n-simplex A" is the simplicial set corepresented by the object [n] €
A. The ith horn Al of A" is the simplicial subset obtained by removing the face opposite
the ith vertex from A". The horn A is inner if 0 < i < n.

If C is a category, its nerve is the simplicial set NC with NC; := Hom([k], C) where
[k] is the category associated to the ordered set {0,1,...,n}. We can characterize those
simplicial sets that are isomorphic to nerves of categories in terms of certain horn-filling
conditions: a simplicial set X is the nerve of a category precisely when every map from an
inner horn A} — X extends to a unique n-simplex A" — X. For example, in the smallest
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case of a map A? — X this says that any pair of composable morphisms has a unigue
composite.

For an co-category we do not want such composites to be unique. Instead, a 2-simplex
should describe the data of two composable morphisms and a homotopy from their com-
posite to a third morphism; alternatively, since there is no preferred choice of composite,
we can say that a 2-simplex exhibits this third morphism as a composite. Generalizing this
idea to higher dimensions, we get the definition of a quasicategory:

Definition 2.1.1.3. A quasicategory is a simplicial set that satisfies the right lifting property
with respect to the inner horn inclusions A < A". In other words, a simplicial set X is a
quasicategory if and only if every inner horn A7 — X, 0 < i < n, can be extended to an
n-simplex, but the extension need not be unique.

Following Lurie, we will generally refer to quasicategories as co-categories. If X is an
oco-category, we will often refer to its vertices as objects and its edges as morphisms.

Definition 2.1.1.4. An inner fibration is a morphism of simplicial sets that has the right
lifting property with respect to the inner horn inclusions A} < A", 0 <i < n.

Definition 2.1.1.5. If X is an co-category, the interior or underlying space 1X of X is the largest
subspace of X that is a Kan complex. A morphism of X is an equivalence if it is contained
inX.

There is a left proper combinatorial model structure on Set,, originally constructed by
Joyal, whose cofibrations are monomorphisms and whose fibrant objects are co-categories
(cf. [Lur09a, Theorem 2.2.5.1]). We refer to the weak equivalences in this model structure
as categorical equivalences.

The Joyal model structure is Cartesian closed. If € is an co-category an K is any simpli-
cial set then we will denote the usual internal hom of simplicial sets by Fun(K, €); this is
an oo-category (cf. [Lur09a) Proposition 1.2.7.3]).

There is also a related model structure on marked simplicial sets:

Definition 2.1.1.6. A marked simplicial set (X, S) consists of a simplicial set X together with
aset S C Xj of edges of X that includes all the degenerate edges. We write Set; for the
category of marked simplicial sets. If X is a simplicial set, we write X’ for X equipped with
the minimal marking (X, soXp) and X* for X equipped with the maximal marking (X, X7).
If X is an co-category we write X’ for X marked by the set of equivalences.

There is a model structure on Setgr whose cofibrations are the monomorphisms and
whose fibrant objects are of the form X" where X is an co-category (cf. [Lur09a, Proposition
3.1.3.7]). The forgetful functor Setir — Setp is a right Quillen equivalence (cf. [Lur(09a)
Theorem 3.1.5.1]).

2.1.2 Simplicial Categories and Simplicial Groupoids

A simplicial category is a category enriched in simplicial sets. We write Caty for the category
of simplicial categories.

Definition 2.1.2.1. A functor of simplicial categories F: C — D is weakly fully faithful if for
all x,y € C the map C(x,y) — D(Fx, Fy) is a weak equivalence of simplicial sets.
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Definition 2.1.2.2. The functor 7ry: Sety — Set is strong monoidal, and so induces a func-
tor mmg: Caty — Cat. We say a functor F: C — D of simplicial categories is essentially
surjective up to homotopy if the functor 71oF of ordinary categories is essentially surjective.

Definition 2.1.2.3. A functor of simplicial categories F: C — D is a local fibration if for all
x,y € C the map C(x,y) — D(Fx, Fy) is a Kan fibration of simplicial sets.

Definition 2.1.2.4. A functor F: C — D of ordinary categories is an isofibration if, given
¢ € C and an isomorphism f: Fc — d there is an isomorphism f: ¢ — ¢’ in C such that

F(f) = f.

Theorem 2.1.2.5 (Bergner [Ber07]). There is a model structure on Cat, such that a functor
F:C—Dis

(W) a weak equivalence if and only if F is weakly fully faithful and essentially surjective
up to homotopy,

(F) afibration if and only if F is a local fibration and 7o F is an isofibration.

Definition 2.1.2.6. If i < j are positive integers, let P;; be the partially ordered set of subsets
of {i,i+1,...j} containing i and j, regarded as a category; if i > jlet P;; = @. Let €(A") de-
note the simplicial category with objects 0,...,n and €(A")(i, j) = NP;;, with composition
defined by taking unions in the obvious way. Taking colimits, this extends to a functor

¢: Setp — Catp
with right adjoint N: Caty — Seta given by
NC,, = Hom(¢(A"),C).

Theorem 2.1.2.7 (Joyal, Lurie [Lur09a, Theorem 2.2.5.1]). The adjunction ¢ 4 N is a Quillen
equivalence between the Joyal model structure on Sety and the Bergner model structure
on Caty.

Thus if C is a simplicial category whose mapping objects are all Kan complexes, the
simplicial set NC is an co-category; this is an important way of constructing co-categories.
For example, if M is a simplicial model category, and M° denotes the full simplicial sub-
category of fibrant-cofibrant objects, then NM° is an co-category.

Example 2.1.2.8. The co-category of spaces 8§ can be defined as the nerve NSet, of the full
subcategory Sety of Setp spanned by the Kan complexes. Similarly, the co-category of co-
categories Cats, can be defined as N(Set]A)o, where SetTA denotes Setp equipped with the
Joyal model structure.

A simplicial category can be viewed as a simplicial object in categories whose simplicial
set of objects is constant. This suggests the following definition of a simplicial groupoid:

Definition 2.1.2.9. A simplicial groupoid is a simplicial object in groupoids with constant set
of objects.

There is a model structure on simplicial groupoids where the weak equivalences are
the weakly fully faithful and essentially surjective functors [DK84, Theorem 2.5], and the
simplicial nerve functor restricts to a right Quillen equivalence from this to the usual model
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structure on simplicial sets [DK84, Theorem 3.3]. In particular, it follows that every space is
modelled by a fibrant object in simplicial groupoids, which is a simplicial groupoid whose
mapping spaces are Kan complexes.

Remark 2.1.2.10. Since a simplicial category can be viewed as a simplicial object in cate-
gories with constant set of objects, a simplicial groupoid € can be regarded as a simplicial
category with an involution i: € — C°P such that i°P o i = ide, which sends a morphism to
its inverse.

2.1.3 Limits and Colimits

We now recall the definition of limits and colimits in an co-category; this requires first
reviewing some notation:

Definition 2.1.3.1. Let x: A x A — A denote concatenation of finite ordered sets, i.e. if I
and | are finite ordered sets then I | is the set I Il ] ordered so that every element of | is
greater than every element of I. Thus [n] * [m] = [n +m + 1].

Remark 2.1.3.2. This is the restriction to A of a monoidal structure on the category A of
all finite ordered sets (including ©).

Definition 2.1.3.3. Suppose K and L are simplicial sets. Their join K * L is the left Kan
extension of K x L: A% x A% — Set along *: AP x AP — A°P. Concretely, we have

(K*L)n :KnHLnH L[ Kl‘ X L]
i+j=n—1

Remark 2.1.3.4. This can be regarded as the Day convolution product on presheaves on
A4 with the monoidal structure given by *.

Definition 2.1.3.5. Let K be a simplicial set. The left cone K on K is the join A x K, and the
right cone K* on K is the join K x A°. We will often denote the “cone point”, i.e. the vertex
coming from AY, by —c0 € K?and o € K".

Definition 2.1.3.6. Let p: K — S be a map of simplicial sets. The simplicial set S, is
defined by the universal property

Hom(X,S,,) = Hom,(X *K,S),

where the right-hand side denotes the set of morphisms X * K — S that restrict to p on K.
Similarly, the simplicial set S, is defined by the universal property

Hom(X,S,,) = Hom,(K x X, S).

If € is an co-category, for any map p: K — C the simplicial sets C,, and C,, are also
oco-categories (cf. [Lur09a, Proposition 1.2.9.3]).

Definition 2.1.3.7. Let C be an co-category. An object X € C is a final object if the projec-
tion C,x — C is a categorical equivalence. Similarly, X is an inital object if Cx, — Cis a
categorical equivalence.

Equivalently, X is a final object if and only if for every object Y € € the mapping space
Map, (Y, X) is contractible (cf. [Lur09a, Corollary 1.2.12.5]).
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Definition 2.1.3.8. Let C be an co-category and p: K — € a map of simplicial sets. A colimit
of p is a final object of C;,/, and a limit of p is an initial object of €.

Remark 2.1.3.9. A colimit of p can thus be regarded as a diagram p: K* — C that restricts
to p on K. From the definition of final objects it follows immediately that an arbitrary such
diagram p is a colimit precisely when

e},—, / — Gp /
is a categorical equivalence.
We now recall the definition of relative colimits, from [Lur09al, §4.3.1]:

Definition 2.1.3.10. Let f: € — D be an inner fibration of simplicial sets, and let p: K — €
be a diagram. A diagram p: K — € extending p is an f-colimit of p if the map

Gﬁ/ — Gp/ X@fp/ Dfﬁ/

is a categorical equivalence.

2.1.4 Left and Right Fibrations

Here we briefly discuss left and right fibrations, which correspond to (covariant and con-
travariant) functors to the co-category 8 of spaces.

Definition 2.1.4.1. A morphism of simplicial sets is a left fibration if it has the right lifting
property with respect to all horn inclusions A} — A" with 0 < i < n, and a right fibration
if it has the right lifting property with respect to A < A" with 0 <i < n.

If S is a simplicial set, there are model structures on (Setyp),s, the covariant and con-
travariant model structures, whose fibrant objects are, respectively, left and right fibrations
with target S (cf. [Lur09a, Proposition 2.1.4.7]).

Theorem 2.1.4.2 (Lurie [Lur(9a, Theorem 2.2.1.2]). Let S be a simplicial set. There is a
Quillen equivalence
(Setp) ;s = Fun(€(S)P, Seta)

where (Sety) /s is equipped with the contravariant model structure and Fun(€(S)°P, Set, )
with the projective model structure for the usual model structure on Setx.

Corollary 2.1.4.3. Suppose C is an co-category. Let LFib(C) denote the co-category of left
fibrations over € (for example obtained from the covariant model structure on (Sety) /e.

There is an equivalence
LFib(€) ~ Fun(C, 8).

Proposition 2.1.4.4. Suppose given functors f,g: X — 8 and a natural transformation 7%
from fto g. Let p: F = X and q: G — X be left fibrations associated to f and g, and let
e: F — G be a functor over X associated to #. Then e is equivalent to a left fibration.

Proof. We may regard f and g as functors €[X] — Set,; without loss of generality we may
assume f and g correspond to fibrant objects and # to a fibration in the projective model
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structure on Fun(€[X], Sety). Since unstraightening is a right Quillen functor, we obtain a

commutative diagram
— G
X

where p and g are left fibrations associated to f and g, and e is a fibration in the covariant
model structure associated to 7. By [Lur(09a, Proposition 2.1.4.9] the map e is then a left
fibration. ]

F

2.1.5 Cartesian and coCartesian Fibrations

Definition 2.1.5.1. Suppose p: X — S is an inner fibration of simplicial sets. We say an
edge f: x — yin X is p-Cartesian if the map

X1§ = Xy X5 S1p(s)
is a categorical equivalence. Similarly, f is p-coCartesian if

Xes = X/ X800, Spt5)/
is a categorical equivalence.

Definition 2.1.5.2. Suppose p: X — S is an inner fibration of simplicial sets. An edge
f: x — yin X is a locally p-(co)Cartesian if it is a p’-(co)Cartesian edge of X x s Al, where p’
is the pullback of p along p(f): A — S.

Proposition 2.1.5.3 (Lurie [Lur09a, Proposition 2.4.4.3]). Suppose p: € — D is an inner
fibration of co-categories. A morphism f: y — z in Cis p-Cartesian if and only if for every
x € € composition with f gives a homotopy Cartesian square

Mapg(x,y) Mapg(x, z)

Map,, (p(x), p(y)) —— Mapy (p(x), p(2)).

Definition 2.1.5.4. A map p: X — S of simplicial sets is a Cartesian fibration if p is an inner
fibration and for every object x € X and every morphism f: s — p(x) in S there exists a
p-Cartesian morphism f: f*x — x with p(f) = f. Similarly, p is a coCartesian fibration if
p°P is a Cartesian fibration, i.e. if p is an inner fibration and for every object x € X and
every morphism f: p(x) — sin S there exists a p-Cartesian morphism f: x — fix with

p(f) = f.

Definition 2.1.5.5. A map p: X — S is a locally (co)Cartesian fibration if p is an inner fibra-
tion and for every edge o: Al — S the pullback X x5 Al — Al is a (co)Cartesian fibration.
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Corollary 2.1.5.6. Suppose given a commutative triangle

A

where p and g are Cartesian fibrations and f is an inner fibration that takes p-Cartesian
edges to g-Cartesian edges. If for each ¢ € C the pullback f.: A — B, is a Cartesian
fibration, and the functor A» — A, induced by a morphism ¢ — ¢’ in € takes f-Cartesian
edges to f.-Cartesian edges, then f is also a Cartesian fibration.

A

Proof. We must show that for every 2 € A and every morphism $: b — f(a) in B there
exists an f-Cartesian morphism B*a — a over ¢. Write y: q(b) — p(a) for the image of 8
in C. Since p is a Cartesian fibration, there exists a p-Cartesian morphism «: y*a — ain A
over 7, and by assumption f(«) is g-Cartesian. Since ¢ is a Cartesian fibration, it follows
that § factors as

b L f(via) 2% f(a),

where g lies over id, ). Now as f, ) Ay — Byp) is a Cartesian fibration, there exists

an f,)-Cartesian edge B"*vy*a — v*a. It is easy to check using the criterion of Proposi-
tion [2.1.5.3|that the composite f"*y*a — y*a — a is f-Cartesian. O

If S is a simplicial set, there are model structures on (SetX) /s, the Cartesian and coCarte-
sian model structures, whose fibrant objects are, respectively, Cartesian and coCartesian
fibrations with target S, with their (co)Cartesian edges marked (cf. [Lur09a, Proposition
3.1.3.7]).

Theorem 2.1.5.7 (Lurie [Lur09a, Theorem 3.2.0.1]). Let S be a simplicial set. There is a
Quillen equivalence
(Set}),s = Fun(€(S)°P, Set;)

where (Set}),s is equipped with the Cartesian model structure and Fun(€(S)°P,Set} )
with the projective model structure with respect to the model structure on Set, that models
oo-categories.

Corollary 2.1.5.8. Let € be an oo-category, and write Cart(€) and CoCart(C) for the oco-
categories of Cartesian and coCartesian fibrations to C, respectively, i.e. the co-categories
associated to the Cartesian and coCartesan model structures on (Set} ) je. Then there are
equivalences

Cart(€) ~ Fun(C°, Cat), CoCart(€) ~ Fun(C, Catc).

Definition 2.1.5.9. A morphism of co-categories ¢: € — D is an essentially coCartesian fibra-
tion if there exists a factorization

cse s
such that € is a categorical equivalence and ¢’ is a coCartesian fibration.

We can describe colimits in the total space of a coCartesian fibration:
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Lemma 2.1.5.10. Suppose 7: &€ — B is a coCartesian fibration such that both B and the
fibres &; for all b € B admit small colimits, and the functors f;: £, — € preserve colimits
for all morphisms f: b — b’ in B. Then & admits small colimits.

Proof. The coCartesian fibration 7t satisfies the conditions of [Lur09a, Corollary 4.3.1.11]
for all small simplicial sets K, and so in every diagram

K" ¢

’
s

KD%’B
q

there exists a lift p that is a 77-colimit of p. Given a diagram p: K — € we can apply this
with 7 a colimit of 7 o p to get a colimit p: K> — € of p. O

It is easy to see that colimits of coCartesian edges are coCartesian:

Lemma 2.1.5.11. Suppose p: X — S is a coCartesian fibration, and let 7: K> — Fun(A!, X)
be a colimit diagram such that for every i € K the edge 7(i,0) — 7(i,1) is coCartesian.
Then the edge 7(c0,0) — 7(oo, 1) is also coCartesian.

Proof. Since colimits in functor categories are pointwise, we must show that for all x € X
the diagram

Map (colim; 7(i, 1), x) Map (colim; 7(i,0), x)

Map(colim; p7(i, 1), p(x)) —— Mapg/(colim; p7(i,0), p(x))

is Cartesian, which is clear since limits commute. O

In good cases it is also true that the colimit of Cartesian edges is Cartesian:

Proposition 2.1.5.12. Suppose 7t: & — B is a Cartesian and coCartesian fibration, where
B is an oco-category with all colimits. Let p: 7 — & be a colimit diagram; then 7t o p is
a colimit diagram in B. Suppose the associated contravariant functor B — Cat., takes
7t o p to a limit diagram of co-categories, and that p takes each edge of J to a 77-Cartesian
morphism in €. Then p takes every edge of J” to a rr-Cartesian morphism.

Proof. Write b for 71(p(c0)) and p for p|k. Then the fibre &, is the limit of €, for i in J.
This limit is given by the co-category of Cartesian sections J — € of 7 o p. Since p takes
every edge of J to a Cartesian edge in €, the diagram p = p|g corresponds to an object x of
Ep.
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Write ¢; for the canonical map i — co. Then for y in €, we have

Map,, (x,y) =~ limMapgw(i) (p(i), ¢7y)
~ lim Mapy, (i, p(i), y)
~ Map,, (colim ¢;1p(i),y)
~ Map, (p(e0),y).

Thus x ~ p(c0). In particular ¢; p(c0) ~ p(i), or in other words the morphism p(i) — p(c0)
is Cartesian. ]

In the setting of ordinary categories, the total space of a coGrothendieck fibration is
the lax colimit of the associated functor. An co-categorical theory of lax colimits has not
yet been developed, but we will now prove that the total space of a coCartesian fibration
satisfies a version of the expected universal property:

Proposition 2.1.5.13. Suppose D: O — Cats is a functor, Op — O is the associated co-
Cartesian fibration, and € is a locally small co-category. Let & — O be the Cartesian
fibration associated to the functor Fun(D, €) that sends x € O to Fun(D(x),C). Then
Fun(Op, €) is equivalent to the co-category of sections Fung (0, €).

Proof. We first consider the case where € is an co-category P(D) of presheaves on an oo-
category D. Then we have equivalences

Fun(Op, €) ~ Fun(Op x D, 8) ~ LFib(Op x DP)
Composition with the coCartesian fibration Op x D°P — O x D°P — O gives a functor
LFib(Op x D) — CoCart(0O) /0, xnop

since any functor between left fibrations over Op x D°P gives a coCartesian-morphism-
preserving functor — indeed, this shows that this functor is fully faithful. We claim that
under the equivalence CoCart(O) ~ Fun(0O, Cat) this full subcategory corresponds to the
full subcategory X of Fun(0, Catw ) /pxper spanned by those natural transformations that
are pointwise left fibrations.

It is clear that LFib(Op x D°P) lands in the full subcategory X, since left fibrations are
closed under pullback. It thus suffices to show that any object of X corresponds to a right
fibration over Op x D. The functor to Op x DP is a coCartesian fibration by (the dual
of) Corollary and its fibres are spaces since the pullbacks to D(x) x DP are right
fibrations for all x € O, thus this is true.

Write £ for the full subcategory of Fun(A!, Cats) spanned by the left fibrations. Since
left fibrations are closed under pullback, the functor £ — Cat, given by evaluation at
1 € Al is a Cartesian fibration. Let £’ — O be the pullback of £ along D x DP: O —
Cate. This is the Cartesian fibration associated to the functor O°? — Cat. that sends x
to LFib(D(x) x D°) ~ Fun(D(x) x D°P,8) ~ Fun(D(x),C), i.e. L' — O is equivalent
to the Cartesian fibration € — O. A section of £ — O clearly corresponds to a functor
¢: O x A! — Cato, such that ¢(x,0) — ¢(x,1) is a left fibration for all x € O and Ploxqy is
D x D°P. In other words, Fung (0O, £) ~ X. This completes the proof when € ~ P(D).

Now suppose € is a full subcategory of P(D) for some co-category D. Then we can
identify Fun(Op,€) with a full subcategory of Fun(Op,P(D)), and € with a full sub-

27



category of L', and it is clear that under these equivalences Fun(Op, €) corresponds to
Fung (0, &) under the equivalence Fun(Op, P(D)) ~ Funy (0, £L’) constructed above. Since
every locally small co-category € can be identified with a full subcategory of P(C) via the
Yoneda embedding, this completes the proof. O
2.1.6 Adjunctions

Definition 2.1.6.1. Suppose C and D are co-categories. An adjunction between € and D
is a map p: M — Al that is both a Cartesian and a coCartesian fibration, together with
equivalences C = Mpand D — My. If f: € — D and g: D — € are functors associated to
the adjunction M we say that f is left adjoint to g and g is right adjoint to f.

Definition 2.1.6.2. Suppose given a pair of functors
f:e=D:g

between co-categories. A unit transformation for f, g is a natural transformation u: ide —
go fsuchthatforallc € C, d € D, the composite

Mapy,(f(c),d) — Mape(gf(c), g(d)) — Mape(c, g(d))

is an equivalence of spaces.
Proposition 2.1.6.3 ([Lur09a, Proposition 5.2.2.8]). Suppose given a pair of functors
f:e=D:g

between co-categories. Then f is left adjoint to g if and only if there exists a unit transfor-
mation u: ide — go f.

Lemma 2.1.6.4. Let € and B be co-categories and p: £ — B a functor. Suppose
(1) € has finite limits and p preserves these,
(2) phasarightadjointr: B — € such that por ~ idg.

Then p is a Cartesian fibration.

Proof. Given x € £ and a morphism f: b — p(x), we must show there exists a Cartesian
arrow in € lying over f with target x. Define f: y — x by the pullback diagram

r(b) = rp(x)

Since p preserves pullbacks, the morphism p( f) is equivalent to f. Moreover, for any z € £
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we have a pullback diagram

Mapy (z,y) Map; (z, x)

| |

Mapy (z,7(b)) — Mapg(z,7p(x)).

Under the adjunction this corresponds to the commutative diagram

Map; (z,y) Mapy (2, x)

| |

Map (p(z),b) —— Map,(p(z), p(x))

induced by the functor p. But then f is Cartesian by Proposition[2.1.5.3 O

Proposition 2.1.6.5. Suppose p: &€ — B is a functor between co-categories such that € has
pullbacks, these are preserved by p, and for all b € B the co-category € /;, has a final object,
which lies in the fibre over b of p. Then p is a Cartesian fibration.

Proof. By Lemma it suffices to show that p has a right adjoint r: B — & thatis a
section of p. Let Q — B be a coCartesian fibration associated to the functor b — € ;; by
the dual of [Lur09a, Proposition 2.4.4.9] this fibration has an (essentially unique) section
B — Q that sends b € B to a final object in €,;,. Combining this with the natural map
Q — & associated to the forgetful functors €,, — € we get a section 7: B — & that sends
b € B to a final object *;, of € . Then r is a right adjoint of p: by definition all fibres of the
map Map, (x, *,) — Map,(px, b) are contractible, so this map is an equivalence. d

2.1.7 Accessible and Presentable co-Categories

Definition 2.1.7.1. Suppose « is a regular cardinal. A simplicial set K is x-small if all the
sets K;, are x-small. A x-small (co)limit is a (co)limit indexed by a x-small simplicial set.

Definition 2.1.7.2. Suppose « is a regular cardinal. An co-category J is x-filtered if the col-
imit functor Fun(J, 8) — 8 preserves x-small limits.

Proposition 2.1.7.3 ([Lur09a, Proposition 5.3.3.3]). An co-category J is k-filtered if and only
if for every x-small simplicial set K and every map f: K — J there exists a map f: K> — J
extending f.

Definition 2.1.7.4. Suppose « is a regular cardinal. An object c in an co-category C is «-
compact if the representable functor Map,(c,—) preserves x-filtered colimits. We denote the
full subcategory of € spanned by the x-compact objects by C*.

Definition 2.1.7.5. Suppose « is a regular cardinal. If C is an co-category, we let Ind, C
denote the full subcategory of P(€) := Fun(C°P, §) spanned by the the functors f: CP — §
that classify right fibrations &€ — € such that € is x-filtered.
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Definition 2.1.7.6. Suppose « is a regular cardinal. An co-category C is x-accessible if there
exists a small co-category Gy and an equivalence Ind, Gy — C.

Proposition 2.1.7.7 ([Lur09a, Proposition 5.4.2.2]). Suppose « is a regular cardinal. An co-
category C is k-accessible if and only if € has x-filtered colimits and contains an essentially
small full subcategory €’ that consists of k-compact objects and generates € under x-filtered
colimits.

Definition 2.1.7.8. We say an co-category is accessible if it is x-accessible for some «. If C is
an accessible co-category, we say a functor f: € — D is accessible if it preserves x-filtered
colimits for some «.

Definition 2.1.7.9. Suppose « is a regular cardinal. An co-category is k-presentable if it
is x-accessible and admits small colimits. We say an oco-category is presentable if it is -
presentable for some «.

Theorem 2.1.7.10 (Adjoint Functor Theorem, [Lur09a, Corollary 5.5.2.9]). Suppose F: C —
D is a functor between presentable co-categories. Then F has a right adjoint if and only if it
preserves small colimits, and a left adjoint if and only if it is accessible and preserves small
limits.

Lemma 2.1.7.11. Suppose F: € == D : U is an adjunction such that the right adjoint U
preserves k-filtered colimits. Then F preserves x-compact objects.

Proof. Suppose X € Cis a k-compact object, and p: K* — D is a k-filtered colimit diagram.
Then we have

Map, (F(X), colim p) ~ Map, (X, G(colim p)) ~ Map, (X, colim G o p)
~ colim Map,(X, G o p) ~ colim Map,,(F(X), p).
Thus Map., (F(X),—) preserves k-filtered colimits, i.e. the object F(X) is xk-compact. O

Definition 2.1.7.12. Let Pr* be the co-category of presentable co-categories and colimit-
preserving functors.

2.1.8 Localizations

Definition 2.1.8.1. Suppose C is an co-category and W is a subcategory of C that contains
all the equivalences. The localization C)W~1] of € with respect to W is the co-category with
the universal property that for any co-category &, a functor C(W~!] — € is the same thing
as a functor ¢ — & that sends morphisms in W to equivalences in €. More precisely, we
have for every € a pullback square

Map(€[W™1], &) —— Map(W, i€)

Map(€, &)

Map (W, €).

Definition 2.1.8.2. The inclusion 8§ — Cats has left and right adjoints. The right adjoint,
t: Cat, — 8, sends an co-category € to its maximal Kan complex, i.e. its subcategory of
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equivalences. The left adjoint x: Cate, — & sends an co-category € to a Kan complex xC
such that € — xC is a weak equivalence of spaces.

Remark 2.1.8.3. It follows that, in the situation above, the co-category €[W~!] is given by
the pushout square in Cats,

W—— W

|

e —— CW].
Using this we can prove the following basic fact about localizations of co-categories
(generalizing [DK80b, Corollary 3.6]):

Lemma 2.1.8.4. Suppose € and D are co-categoriesand V C Cand W C D are subcategories
containing all the equivalences. Let C[V~!] and D[W~!] be localizations with respect to V
and W. Suppose

F:C=D:G

is an adjunction such that

(1) F(V) W,

2) G(W) <V,

(3) the unit morphism #.: ¢ — GFcisin Vforallc € €,

(4) the counit morphism v;: FGd — disin W foralld € D.
Then F and G induce an equivalence ¢[V~!] ~ D[W~1].

Proof. Let ¥V and kW be Kan complexes that are fibrant replacements for V and W in the
usual model structure on simplicial sets. Then the co-categories €[V ~!] and D[W~!] can be
described as the homotopy pushouts

V——«V W — W
C— (‘3[\7‘1], D—— D[W_l]

in the Joyal model structure. Then from (1) and (2) it is clear that F and G induce functors
F': eV — DW1 and G': D[W~!] — €[V~1], and the natural transformations 7 and
v induce natural transformations %: id — G'F’ and 9': F'G’ — id. The objects of €[V ~1]
and D[W~!] are the same as those of € and D, so by (3) and (4) the morphisms 7, and 7/, are
equivalences for all ¢ € C[V~!] and d € D[W~!]. Thus 5’ and 7/ are natural equivalences
and F’ and G’ are hence equivalences of co-categories. O

Unfortunately, pushouts in Cat, are in general difficult to describe. However, in good
cases the functor ¢ — C[W~1] has a fully faithful right adjoint, i.e. we can find the localized
co-category as a full subcategory of C. In fact, all functors of this kind are localizations:

31



Definition 2.1.8.5. A functor f: € — D is a localization if f has a fully faithful right adjoint.

Proposition 2.1.8.6 ([Lur09a, Proposition 5.2.7.12]). Suppose F: C — D is a localization
functor, and let W be the subcategory of € with morphisms the morphisms f: ¢ — ¢’ in €
such that F(f) is an equivalence. Then the induced functor €[W~1] — D is an equivalence.

We now recall how to describe localizations in the presentable case:

Definition 2.1.8.7. Let C be an co-category and suppose S is a collection of morphisms in
C. An object z € Cis S-local if for every s: x — y in S, composition with S induces an
equivalence

Map,(y,z) — Map,(x,z).

A morphism f: x — y is an S-equivalence if for every S-local object z, composition with f
induces an equivalence
Mape(y,z) — Mapg(x, z).

Definition 2.1.8.8. We say a class of morphisms in an co-category satisfies the 2-out-of-3

property if for any 2-simplex
x
y— %

in G, if any two out of f, g, h is in the class, so is the third.

Definition 2.1.8.9. Let C be an co-category with small colimits and let S be a collection of
morphisms in C. We say S is strongly saturated if it satisfies the following conditions:

(1) Sis closed under pushouts along arbitrary morphisms in C.
(2) The full subcategory of Fun(A!, ) spanned by § is stable under small colimits.
(3) S satisfies the 2-out-of-3 property.

Proposition 2.1.8.10 ([Lur09a) Proposition 5.5.4.15]). Let C be a presentable co-category
and suppose S is a set of morphisms of C. Let S denote the strongly saturated class of
morphisms generated by S, and let D denote the full subcategory of € spanned by the
S-local objects. Then

(i) The inclusion D < € has a left adjoint L.
(ii) The co-category D is presentable.
(iii) For every morphism f in C, the following are equivalent:

(a) fisan S-equivalence.
(b) f belongs to S.

(c) Lf is an equivalence.

We end with a few results about fibrewise localizations of coCartesian fibrations:
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Lemma 2.1.8.11. Suppose & — Al is a coCartesian fibration, and &' is a full subcategory of
& such that the inclusion &| — €&; admits a left adjoint L: & — €&/. Then the restriction
&' — Alis also a coCartesian fibration.

Proof. We must show that for each x € 86 there exists a coCartesian arrow with source x
over 0 — 1in Al. Suppose ¢: x — v is such a coCartesian arrow in &, and let y — Ly

be the unit of the adjunction. Then any composite x LN y — Ly is a coCartesian arrow in
&’: by Proposition it suffices to show that for all z € &} the map Map,,(Ly,z) —
Map,, (x,z) is an equivalence, which is clear since Map,,(Ly,z) ~ Map,(y,z) as z € &,
Map. (x,z) ~ Map,(x,z) as & is a full subcategory of €, and x — y is a coCartesian
morphism in €. O

Lemma 2.1.8.12. Let & — B be a locally coCartesian fibration and €° a full subcategory
of € such that for each b € B the induced map on fibres Sg — &, admits a left adjoint
Ly: & — 82. Assume these localization functors are compatible in the sense that the
following condition is satisfied:

(x) Suppose f: b — b’ is a morphism in B and e is an object of &,. Lete — ¢ and
Lye — €” be locally coCartesian arrows lying over f, and let Lye’ — Lye” be the
unique morphism such that the diagram

e e Lye

]

Lbe — e — the//

commutes. Then the morphism Lye’ — Lye” is an equivalence.
Then
(i) the composite map €% — B is also a locally coCartesian fibration,
(ii) the inclusion £ < & admits a left adjoint L: & — €° relative to B.

Proof. (i) is immediate from the previous lemma, and then (ii) follows from [Lur11} Propo-
sition 7.3.2.11] — condition (2) of this result is satisfied since, in the notation of condition
(*), a locally coCartesian arrow in € over f with source Lye is given by the composite
Lye — ¢’ — Lye". O

Proposition 2.1.8.13. Let &€ — B be a coCartesian fibration and € a full subcategory of
€. Suppose that for each b € B the induced map on fibres £) < &, admits a left adjoint
Ly: & — 82 and that the functors ¢r: €, — & corresponding to edges ¢: b — b’ in B
preserve the fibrewise local equivalences. Then

(i) the composite map £° — B is a coCartesian fibration,

(i) the inclusion &% < & admits a left adjoint L: &€ — €Y over B, and L preserves co-
Cartesian arrows.
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Proof. Lemma implies (ii) and also that € — & — B is a locally coCartesian fi-
bration, since for a coCartesian fibration condition () says precisely that fibrewise local
equivalences are preserved by the functors ¢;. It remains to show that locally coCartesian
morphisms are closed under composition. Suppose f: b — b’ and g: b’ — b” are mor-
phisms in B, and thate € 88. Lete — ¢’ be a coCartesian arrow in € over f, and lete’ — ¢f
and Lye’ — ¢ be coCartesian arrows in € over g. Then a locally coCartesian arrow over
fin €°is given by ¢ — ¢ — Lye’ and a locally coCartesian arrow over g is given by
Lye' — e — Lyrel. We have a commutative diagram

/ /! /!
e e ey Lyre]

AN

Lb/e’ — 6,2/ — Lbﬂelzl

Here the composite along the top row is a locally coCartesian arrow for gf, and the com-
posite along the bottom is the composite of locally coCartesian arrows for g and f. By
condition () the rightmost edge is an equivalence, hence the composite map e — Lye} is
locally coCartesian. O

2.1.9 Monads

Here we briefly review the theory of monads in the co-categorical setting; for this we as-
sume the reader is familiar with the notions of monoidal co-categories, associative algebra
objects, and modules from [Lurl1].

Definition 2.1.9.1. Suppose C is an co-category. The co-category Fun(C, €) has a monoidal
structure given by composition. A monad in C is an algebra object in this monoidal co-
category. The monoidal co-category Fun(C, €)° acts on the co-category C; if T is a monad
on C, a T-algebra is a left module object for T in €. We write Alg,(€) for the co-category of
T-algebras.

Proposition 2.1.9.2 ([Lurl1, Proposition 6.2.2.3]). Suppose F: € — D is a functor between
co-categories that has a right adjoint G. Then G o F extends canonically to a monad on C
such that G is a left module for this monad in Fun(C, D).

Definition 2.1.9.3. Suppose F: € — D is a functor between co-categories that has a right
adjoint G. Let T be the monad associated to G o F. Then G factors canonically as

D & Alg.(€) > ¢,

through the forgetful functor Alg,(€) — €. We say the adjunction F - G is monadic if the
functor G’ is an equivalence.

Definition 2.1.9.4. Let A_, be the category with objects [n], n > —1, and with mor-
phisms [m] — [n] given by non-decreasing maps a: [m] U {—co} — [n] U {—oo} such
that a(—o0) = —oo (and —oo is regarded as less than the other elements of [m], [n]). If C is
an co-category, we say an augmented simplicial object U, : AP — € is split if it extends to
a functor A" — €, and we say a simplicial object is split if it extends to a split augmented
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simplicial object. Given a functor G: D — € we say a simplicial object U, of D is G-split if
G(U,) is a split simplicial object of C.

Theorem 2.1.9.5 (Barr-Beck Theorem for co-Categories, [Lurll, Theorem 6.2.2.5]). Suppose
F: € — D is a functor between oco-categories that has a right adjoint G. The adjunction
F - G is monadic if and only if G satisfies the following conditions:

(1) G is conservative, i.e. a morphism f in D is an equivalence if and only if G(f) is an
equivalence in €.

(2) G preserves colimits of G-split simplicial objects in D, and all G-split simplicial objects
have colimits.

Now we make some simple observations about monadic adjunctions:

Lemma 2.1.9.6. Suppose F: € =2 D : U is a monadic adjunction such that € has all small
colimits, D has sifted colimits, and U preserves sifted colimits. Then D has all small colim-
its.

Proof. Since D by assumption has all sifted colimits, it suffices to prove that D has finite
coproducts. Since € has coproducts and F preserves colimits, the co-category D has co-
products for objects in the essential image of F.

Let Al, ..., A" be a finite collection of objects in D. By [Lurll, Proposition 6.2.2.12],
there exist simplicial objects A} in D such that each A! is in the essential image of F and
|A,| ~ A’. Since coproducts of elements in the essential image of F exist, we can form a
simplicial diagram [ [; A’. By [Lur09a, Lemma 5.5.2.3], the geometric realization | ] ; A}| is
a coproduct of the A”s. O

Proposition 2.1.9.7. Suppose F: € =2 D : U is a monadic adjunction such that € is -
presentable, D has small colimits, and the right adjoint U preserves x-filtered colimits.
Then D is k-presentable.

Proof. Since C is k-presentable, every object of € is a colimit of k-compact objects. Since U
preserves k-filtered colimits, F preserves k-compact objects by Lemma Therefore
every object in the essential image of F is a colimit of x-compact objects. But by [Lurll,
Proposition 6.2.2.12], every object of D is a colimit of objects in the essential image of F,
so every object of D is a colimit of x-compact objects. Since by assumption D has all small
colimits, this implies that D is x-presentable. O

2.1.10 Groupoid Objects

Definition 2.1.10.1. Suppose C is an co-category. A groupoid object U of C is a simplicial
object U: A°P — C such that for every n > 0 and every partition [n] = SU S’ such that
SN S’ consists of a single element s, the diagram

U([n]) u(s)

]

U(s') —— U({s})
is a pullback square in C.
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Definition 2.1.10.2. Suppose C is an co-category. An augmented simplicial object
. AP
u:A>" —¢C

is a Cech nerve if U|aop is a groupoid object, and the diagram

LI1 4’110

|

Uy —— U4
is a pullback square. In this case, the augmented simplicial object U is determined up to

equivalence by the map u: Uy — U_1, and we say that U is the Cech nerve of u.

Definition 2.1.10.3. Suppose C is an oco-category and U is a groupoid object in €. We say
that U is effective if it can be extended to a colimit diagram AT’ — € and this is a Cech
nerve, i.e. if U is the restriction to A of the Cech nerve of Uy — |U,|.

Lemma 2.1.10.4. Suppose U, is an effective groupoid object in an co-category €. The fol-
lowing are equivalent:

(i) The map Uy — |U,| is an equivalence.
(ii) The map so: Uy — Uj is an equivalence.

(iii) The simplicial object U, is constant, i.e. for every map ¢: [n] — [m] in AP the in-
duced map 1,€ — 1,C is an equivalence.

Proof. We first show that (i) implies (ii): Since UL, is effective, it is equivalent to the Cech
nerve of the map Uy — |U,|. Thus we have a pullback diagram

do
U1 —— LIO

d

UO — ‘U.|,

so the maps dy, d; are equivalences. From the 2-out-of-3 property it follows that sy is also
an equivalence.

To show that (ii) implies (iii) first observe that if so: Uy — Uj is an equivalence, then
by the 2-out-of-3 property do, d;: Uy — Up are also equivalences. Since U, is a groupoid
object we have pullback diagrams

d;
un - un—l

|

U] Uy

di
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(corresponding to the decomposition {0, ...,n} = {0,...,i—1,i+1,...,n} U {i —1,i}),
and so the face maps d;: U, — U,_; are equivalences for all i and n. By the 2-out-of-3
property the degeneracies s;: U,_1 — U, are also equivalences, hence ¢: U, — U, must
be an equivalence for all ¢: [n] — [m] in A°P.

Finally (iii) implies (i) since the simplicial set A°P is weakly contractible. O

Dually, we have the notion of a cogroupoid object:

Definition 2.1.10.5. A cosimplicial object X: A — € in an co-category C is a cogroupoid
object if for every partition [n] = SU S’ such that SN S’ consists of a single element, the
diagram

X(Sn§s) — X(S)

l l

X(8") — X([n])

is a pushout square.

Remark 2.1.10.6. We could of course have used the dual version of any of the conditions
of [Lur09a, Proposition 6.1.2.6] to define a cogroupoid object.

Lemma 2.1.10.7. If X: A — € is a cogroupoid object in an co-category C, then for every
object Y € C the simplicial space Map,(X,Y) is a groupoid object in spaces.

Proof. Given a partition [n] = SU S’ such that SN S’ consists of a single element, the
diagram

Map(X([n]),Y) ——— Map¢(X(S),Y)

Mapy(X(S'),Y) —— Mape(X(SN §'), Y)

is a pullback square, by the definition of a cogroupoid object. Thus Map,(X,Y) satisfies
condition (4”) of [Lur09a, Proposition 6.1.2.6]. O

2.1.11 The Makkai-Paré Accessibility Theorem

An accessible fibration is a Cartesian fibration & — B such that B is accessible and the asso-
ciated functor from BP to Cat., factors through the co-category of accessible co-categories,
and preserves x-filtered limits for x sufficiently large. In [MP89, Theorem 5.3.4] Makkai
and Paré prove that the total space of an accessible fibration of ordinary categories is ac-
cessible. The co-categorical analogue of this result is surely also true; however, the proof of
Makkai and Paré unfortunately does not seem to have a direct analogue for co-categories
using current technology. In this subsection we will instead prove the easiest special case
of this theorem, which luckily will suffice for our needs:

Theorem 2.1.11.1. Let B be a presentable co-category, and let p: € — 8 be a Cartesian fi-
bration associated to the functor 8°° — Cats sending X to Fun(X, B). Then € is accessible,
and p is an accessible functor.
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The key step in the proof is identifying the total space €, which we do in the following
preliminary result:

Proposition 2.1.11.2. Suppose C is a small co-category. Let s: * — € be the inclusion of
the cone point, and let s*: P(€?) — 8 be the functor induced by composition with s. Then:

(i) s* is a Cartesian fibration.

(i) The fibre of s* at X € § is naturally equivalent to Fun(X, P(€)), and under these
equivalences the contravariant functor associated to s* is Fun(—, P(C)).

(iii) Suppose € admits x-small colimits, and let € be the full subcategory of P(C?) spanned
by functors F: (€°P)” — § that take diagrams §°P: K — (€°P)" to limit diagrams
in 8, where §: (K°P)” — Cis a colimit diagram in € and K is a x-small simplicial set.
Then the restricted functor p: € — § is a Cartesian fibration.

(iv) The fibre Ex is naturally equivalent to Fun(X, Ind, ©), and the contravariant functor
associated to p preserves limits.

(v) The contravariant functor associated to p is the unique limit-preserving functor §°° —
Cat, sending * to Ind(C).

Proof. (i) follows from Proposition The fibre P(CY)x is the full subcategory of
presheaves (C?)°P — § that send —oo to X. By the definition of overcategories, this is
naturally equivalent to Fun(C°P, 8 ,x). It is also clear that the functor f*: Fun(C°P,§,x) —
Fun(C°P,8,y) induced by a map f: Y — X corresponds to composition with pullback
along f. Now there are natural isomorphisms §,x ~ Fun(X,S8), under which pullback
along f correspond to composition with f, and this induces natural equivalences

P(€Y)x ~ Fun(C°,8,x) ~ Fun(C? x X,8) ~ Fun(X, P(€)).

This gives a natural equivalence between the functor associated to s* and Fun(-, P(C)),
which proves (ii).

To prove (iii) it suffices to show thatif F € € and g: X — s*F is a morphism in 8, then
¢*F is also in €. Identify F with a functor F': C°? — §,x and suppose §: K¢ — C°P is a
-small limit diagram. Then it is clear that the composite F’ o j is a limit diagram in 8, x if
and only if the composite

k=L ey Ls

is a limit diagram in 8. The former condition is clearly preserved under composition with
3" 8,¢+r = §,/x,and so g*Fis alsoin €.

Since € has x-small colimits, by [Lur09al Corollary 5.3.5.4] we can identify Ind, € with
the full subcategory of P(C) consisting of presheaves that preserve x-small limits. As we
observed above, the fibre £x can be identified with the full subcategory of Fun(C°, 8 ,x)
spanned by functors that preserve x-small limits. Since limits in functor categories are
computed pointwise, under the equivalence

Fun(C°,8,x) ~ Fun(C°,Fun(X,§)) ~ Fun(C? x X, 8)

this corresponds to the full subcategory spanned by functors C°P x X — § such that for
each x € X the restriction to C°P x {x} preserves x-small limits. Under the equivalence
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Fun(C° x X,8) ~ Fun(X, P(C)) this clearly corresponds to the full subcategory of func-
tors X — P(C) such that the value at each x € X is a presheaf on € that preserves x-small
limits, i.e. a functor from X to the full subcategory Ind, C of these presheaves. (iv) now
follows in the same way as (ii), and (v) is immediate from (iv). O

Lemma 2.1.11.3. Suppose C is a small co-category, and let S = {f,: K — €} be a small
set of diagrams in €. Then the full subcategory of P(C) spanned by presheaves that take
the diagrams in S to limit diagrams in 8 is accessible.

Proof. Letj: C — P(€) denote the Yoneda embedding. A presheaf F: C°P — § takes p," to
a limit diagram if and only if it is local with respect to the map of presheaves

colim(j o plk,) = j(e0),

where oo denotes the cone point. Thus if §’ is the set of these morphisms for p, € S,
the subcategory in question is precisely the full subcategory of S’-local objects. Since S,
and hence ', is by assumption a small set, it follows that this subcategory is an accessible
localization of P(C), so in particular it is itself accessible. O

Proof of Theorem [2.1.11.1} Choose «x such that B is x-presentable; then B ~ Ind.(B"*). By
Proposition|2.1.11.2} the co-category € is equivalent to a full subcategory of P(B*“) spanned
by presheaves F that preserve certain limit diagrams. It suffices to take a set of such dia-

grams (for example, we can restrict ourselves to x-small coproduct diagrams and pushout
diagrams in B*), and thus € is accessible by Lemma[2.1.11.3 O

Remark 2.1.11.4. It is not necessary to assume that € admits x-small colimits in Propo-
sition (cf. [MP89, §5.3.2] for the 1-categorical version), but this is the only case
we’re interested in and making this assumption considerably simplifies the proof. Thus
Theorem 2.1.11.1]remains true if B is merely accessible instead of presentable.

2.1.12 Categorical Patterns

In this section we review Lurie’s categorical patterns and the associated model structures.

Definition 2.1.12.1. A categorical pattern B = (X, M, S, {pa: K§ — X) consists of a simpli-
cial set X equipped with a marking M (i.e. a subset M C X containing all the degenerate
1-simplices), a scaling T (i.e. a subset S C X, containing all the degenerate 2-simplices)
and a collection of diagrams p, : K; — X such that p, takes every edge in K} to an element
of M and every 2-simplex of K to an element of S.

Definition 2.1.12.2. Let P = (X, M, S, {pn: K§ — X}) be a categorical pattern. A marked
simplicial set (Y, T) over (X, M) is B-fibrant if the following conditions are satisfied:

(1) The underlying map of simplicial sets f: Y — X is an inner fibration.
(2) For each edge A' — X in M, the pullback Y x x A! — Al is a coCartesian fibration.

(3) Anedge e of Y belongs to M if and only if f(e) is in M and e is locally f-coCartesian.
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(4)

(5)

(6)

Given a commutative diagram
A{Orl} ;) Y
A2 X

withe € M and ¢ € S, then e determines a coCartesian edge of the pullback Y xx

A2 — A2,

For every a, the coCartesian fibration f,: Y xx Ky — K is classified by a limit dia-
gram K; — Cate.

For every a, every coCartesian section s of f, is an f-limit diagram in Y.

Remark 2.1.12.3. In all the examples of categorical patterns we will consider in this thesis,
the scaling S will simply consist of all 2-simplices in X whose edges are in M. However,
to avoid confusion with Lurie’s terminology we have chosen to describe the more general
case in this review.

Examples 2.1.12.4.

(i)

(ii)

(iii)

If € is an co-category, let &Bg’cart be the categorical pattern (C, €1, C2,@). Then (€, T) —
C%is ‘Bceocart-fibrant if and only if 7r: € — € is a coCartesian fibration, and T is the set
of rr-coCartesian edges in €.

If € is an co-category, let ‘ng be the categorical pattern (C, €y, 1C2, D). Then (€, T) —
€% is P, -fibrant if and only if € is an co-category, the map 7: € — C is a categorical
fibration, and T is the set of equivalences in €. (This follows from the description of
categorical fibrations to co-categories in [Lur09a, Corollary 2.4.6.5].)

If € is an co-category and D is a subcategory if C, let ‘B%‘/’%art be the categorical pat-
tern (€, Dy, Dy, @D). Then (€, T) — (C,Dy) is ‘,B‘é?%art—fibrant if and only if € is an
oo-category, the map 71: € — Cis an inner fibration, and € has a 7r-coCartesian edge
over every morphism in D.

We will see more examples of categorical patterns in the next chapter.

Definition 2.1.12.5. Let C be a category with small colimits. A class S of morphisms in C
is weakly saturated if it has the following properties:

1)
()

©)

S is closed under pushouts along arbitrary morphisms in C.

S is closed under transfinite composition. More precisely, suppose « is an ordinal and
{Dg}p<q is a system of objects of Cc, indexed by a. For B < a we let D_g be a colimit
of {D,},<pin Cc,. If for all B < « the map D.g — Dpg belongs to S, then the induced
map C — D, belongs to S.

S is closed under retracts.
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Definition 2.1.12.6. Let P = (X, M, S, {p.: K{ — X}) be a categorical pattern. A mor-
phism of marked simplicial sets over (X, M) is P-anodyne if it is contained in the smallest
weakly saturated class of morphisms containing all morphisms of the following types:

(@) ADETT, oy (A2)? < (A2 ¢ for every map A2 — X in S that takes every edge into M,
1 (A2) y map yedg

(2) @ < Qf where Q = A II A{02) A3 TT A{L3) A for any map Q — X that carries every
edge of Q into M and every 2-simplex of Q into S,

(3) {0}f < (A1)* for every edge in M,

(4) Ki < (K2)! for every a, where KZ maps to X via p,,

(5) (A} I Aoy (ATOINE s (AT)P I aonyy (AT for every n > 1 and every map
A" — X such that A{0L1} belongs to S,

(6) (A’ < (A"), forall 0 < i < n and all maps A" — X,

(7) for every map f: A" x K, = X extending p,: {n} x K, — X, the inclusion
y map gpP

(0A" 5 Ka) T 1k, ({1} 5 Ko)* = (A" 5 Ka)” T (i, ({71} 5 Ka) .

Proposition 2.1.12.7 ([Lurl1| Proposition B.1.6]). Let P = (X, M, S, {p.}) be a categorical
pattern. Then a marked simplicial set (Y, T) over (X, M) is ‘B-fibrant if and only if it has
the right lifting property with respect to ‘B-anodyne maps.

Definition 2.1.12.8. LetP = (X, M, S, {p. }) be a categorical pattern. A morphism f: Y —
Z of marked simplicial sets is a B-equivalence if for every B-fibrant object W over X =
(X, M) the induced map

Mapg(z, W) — Mapgz(Y, )
is a weak equivalence of Kan complexes.

Theorem 2.1.12.9 ([Lurl1, Theorem B.0.19]). LetP = (X, M, S, {p«}) be a categorical pat-
tern. Then there exists a left proper combinatorial simplicial model structure on the cate-
gory (Sety ) /(x,m) such that:

(C) The cofibrations are the morphisms whose underlying morphisms of simplicial sets
are monomorphisms.

(W) The weak equivalences are the J3-equivalences.
(F) The fibrant objects are the -fibrant objects.
We write (Sety )q for (Sety ) ;(x,m) equipped with this model structure.

Remark 2.1.12.10. Moreover, this model structure is enriched in the model category of
marked simplicial sets — this follows from [Lurll, Remark B.2.5] (taking 3’ to be the
trivial categorical pattern on A).

Remark 2.1.12.11. Suppose P = (X, M, S, {p.}) is a categorical pattern, and let B~ be
the categorical pattern (X, M, S, ). It follows from the proof of [Lurll, Theorem B.0.19]
that the model category (Sety )y is the left Bousfield localization of the model category
(Sety )qu- with respect to the generating P3-anodyne maps of type (4) and (7).

41



Examples 2.1.12.12.

$%0Cart
ture on (Sety) ;. Thus the associated co-category is the oco-category CoCart(C) of

coCartesian fibration over €, which is equivalent to Fun(€, Cat).

(i) If Cis an co-category, the model category (Set,) is the coCartesian model struc-

+
B
ture on (Set ) /¢: from the model structure on Set; . The associated co-category is thus

the over-category (Cate) /¢-

(ii) If Cis an co-category, the model category (Seta) e is the over-category model struc-
c

(iif) If C is an co-category and D is a subcategory of €, the model category (SetX)mc@o%arf

gives an oo-category of functors & — € that have coCartesian morphisms over the
morphisms in D; we write CoCart(C, D) for this co-category.

Definition 2.1.12.13. Let f = (X, M,S,{pa}) and Q = (Y,N,T,{qp}) be categorical
patterns. A morphism of categorical patterns f: P — Q is a morphism of simplicial sets
f: X — Ysuchthat f(M) C N, f(S) C T, and for every a the composite

isin {g4}.

Proposition 2.1.12.14 ([Lur11} Proposition B.2.9]). Let f: P — Q be a map of categorical
patterns. Then composition with f induces a left Quillen functor

fi: (Setf)y — (Set})a.
The right adjoint f* is given by pullback along f.

Example 2.1.12.15. If P = (X, M, S, D) is any categorical pattern with no limit diagrams,
the map X — AY gives a map of categorical patterns P — Py := &BZ% and so a colimit-
preserving forgetful functor from the co-category associated to (Set} )y to Cate.

Remark 2.1.12.16. Under certain rather complicated conditions, the functor f* is also a left
Quillen functor, i.e. it has a right adjoint f, that is a right Quillen functor — see [Lurll,
Proposition B.4.1].

2.1.13 Some Technical Results

Here we collect a small number of results that do not fit anywhere else in our discussion.
First we prove a characterization of certain colimits in relative functor categories; I thank
Jacob Lurie for explaining the proof of this result to me.

Theorem 2.1.13.1. Let K be a weakly contractible simplicial set. Suppose p: X — Sisa
coCartesian fibration such that for all s € S the fibre X; admits K-indexed colimits, and for
all edges f: s — tin S the functor fi: X; — X; preserves K-indexed colimits. Then for any
mapg: T — S,

(i) the oo-category Fung(T, X) admits K-indexed colimits,

42



(ii) amap K — Fung(T, X) is a colimit diagram if and only if for all t € T the composite
K" — Funs(T, X) — Xg(t)

is a colimit diagram,

(iii) if E is a set of edges of T, the full subcategory of Fung(T, X) spanned by functors that
take the edges in E to coCartesian edges of X is closed under K-indexed colimits in
Fung(T, X).

Proof. The oo-category Fung(T, X) is a fibre of the functor p.: Fun(T, X) — Fun(T,S) in-
duced by composition with p. The functor p. is a coCartesian fibration by [Lur(09a, Propo-
sition 3.1.2.1]. Since the functors f, preserve K-indexed colimits, by [Lur09a, Proposition
4.3.1.10] a diagram §: K> — Fung(T, X) is a colimit diagram if and only if the composite
g': K» — Fung(T, X) — Fun(T, X) is a p.-colimit diagram. By [Lur09a, Corollary 4.3.1.11],
K-indexed p.-colimits exist in Fun(T, X), which proves (i).

Moreover, a diagram in Fun(T, X) is a colimit diagram if and only if it is a p.-colimit
diagram and its image in Fun(T, S) is a colimit diagram. Since 4’ lands in one of the fibres
of p, the projection to Fun(T, S) is constant, which means it is a colimit as K is weakly con-
tractible. Thus ¢’ is a p.-colimit diagram if and only if it is a colimit diagram in Fun(T, X).
By [Lur09a, Corollary 5.1.2.3] this means that §' is a colimit diagram if and only if for all
t € T the induced maps K> — X are colimit diagrams. A diagram in X is a colimit if and
only if it is a p-colimit and the projection to S is a colimit. Since K is weakly contractible,
applying [Lur09a, Proposition 4.3.1.10] we see that this is true if and only if the induced
map K” — X,y is a colimit diagram in X(;). This proves (ii).

Suppose e: t — t' is an edge of T and q: K — Fung(T, X) is a diagram such that for
all vertices k € K the functor gq(k): T — X takes e to a p-coCartesian edge of X. Let
g: K» — Fung(T, X) be a colimit diagram extending g. To prove (iii) we must show that
the functor §(oo) also takes e to a coCartesian edge of X. From our description of colimits
in Fung(T, X) it follows that this is equivalent to showing that coCartesian edges of X are
closed under colimits, which is true by Lemma O

Proposition 2.1.13.2. Let J be a category and p: J — Cate a functor. Let D be an co-
category and 77: J x Al — Cat a natural transformation from p to the constant functor
at D. Let X — J be a coCartesian fibration associated to p; the natural transformation 7
induces a map q: X — D x J — D. Suppose each of the diagrams 7,: p(a) — D has a
colimit; by [Lur09a]] there exists an (essentially unique) map 44 : X, — D, where

K=K x Ay 1y 7,

that restricts to ¢ on X and to a colimit of 7, on p(a)® ~ K4 x5 {a}. Then the maps
D4/ < Dy, s — Dy, |,, are trivial fibrations.

In particular, we have equivalences colim g =~ colim 4 |5 >~ colimey colim,, () #7a-

Proof. It follows from [Lur09a, Lemma 4.2.3.5] that the inclusion J — X is right anodyne,
hence D;,, — D,,|,/ is a trivial fibration. On the other hand, D, , — D;, is a trivial
fibration since g is clearly a left Kan extension of g along KX — X . O
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2.2 Other Higher-Categorical Structures

In this section we review some other higher-categorical structures that we will encounter,
namely Segal spaces, double co-categories, (o0, 2)-categories, and @,-spaces. We will think
of all of these as being constructed within an ambient theory of co-categories (rather than
describing them as model categories, say).

2.21 Segal Spaces

Segual spaces are an alternative definition of (oo, 1)-categories, introduced by Rezk [Rez01].

Definition 2.2.1.1. Suppose C is an co-category with finite limits. A category object in C is a
simplicial object F: A°° — C such that for each n the map

F,— F XFO"'XFOFl

induced by the inclusions {i,i + 1} < [n] and {i} < [n] is an equivalence. A Segal space
is a category object in the co-category § of spaces.

Let J,, denote the simplicial space obtained from the simplicial set A" by composing
with the inclusion Set — 8. A simplicial space is then a Segal space if and only if it is local
with respect to the map

seg,, 0y — 01 H50 ce H50 0.
Definition 2.2.1.2. Let Seg(8) denote the full subcategory of Fun(A°P,8) spanned by the
Segal spaces; this is the localization of Fun(A°P, §) with respect to the maps seg, .

Remark 2.2.1.3. Similarly, if C is a k-presentable co-category, the co-category Cat(C) of
category objects is the localization of Fun(A°P, C) with respect to the morphisms seg, ® c,
where c is a k-compact object of C.

Definition 2.2.1.4. The inclusion Gpd(8) — Seg(8) admits a right adjoint ¢: Seg(8) —
Gpd(8). We say a Segal space F is complete if the groupoid object (F is constant.

Remark 2.2.1.5. By Lemma [2.1.10.4] a Segal space F is complete if and only if the map
LF(s%): «F[0] — (F[1] is an equivalence.

Definition 2.2.1.6. Let j denote the inclusion {[0]} — A°P. Composition with j gives a
functor Fun(A°P,8) — 8, which has a right adjoint j,, given by right Kan extension. It is
clear that j, X is a Segal space for all X € 8. We write E" for the Segal space j.{0,...,n}.

Proposition 2.2.1.7 (Rezk [Rez01, Proposition 6.4]). A Segal space is complete if and only
if it is local with respect to the morphism E! — E°.

Definition 2.2.1.8. Let CSS(8) denote the full subcategory of Seg(8) spanned by the com-
plete Segal spaces; by Proposition [2.2.1.7| this is the localization of Seg(8) with respect to
the morphism E! — E.

Theorem 2.2.1.9 (Joyal-Tierney [JT07]). The co-category CSS(8) is equivalent to Cateo.
Lemma 2.2.1.10. Suppose X, is a Segal space. Then the following are equivalent:

(i) The functor X, is constant.

(ii) The map sp: Xg — Xj is an equivalence.

Proof. This follows by induction using the Segal condition and the simplicial identitites.
O
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2.2.2 Double co-Categories and (oo, 2)-Categories

Just as a double category is an internal category in the category of categories, so a double
co-category should be an internal category in the co-category of co-categories:

Definition 2.2.2.1. A double co-category is a category object in Cats,. We write Cat(Cate)
for the full subcategory of Fun(A°P, Cat,, ) spanned by the double co-categories.

Remark 2.2.2.2. Using the equivalence Fun(A°P,Cat,) ~ CoCart(A°P), we can equiva-
lently define a double co-category to be a coCartesian fibration & — A°P, such that the
functors

= &y Xeg
induced by the morphisms {i,i + 1} — [n] and {i} < [n] are equivalences.

Definition 2.2.2.3. A double Segal space is a category object in Seg(8), i.e. a bisimplicial
space A% x A% — § all of whose rows and columns are Segal spaces. We write Cat?(8)
for the co-category of double Segal spaces.

Using the equivalence Cat,, ~ CSS(8), we can also regard a double co-category as a
category object in complete Segal spaces, i.e. a double Segal space all of whose rows are
complete Segal spaces.

Definition 2.2.2.4. A double Segal space is complete if all its rows and columns are complete
Segal spaces.

Lemma 2.2.2.5. The following are equivalent for a double co-category C,:

(i) C. corresponds to a complete double Segal space under the equivalence Cat(Cats) ~
Cat(CSS).

(ii) Map(A", C,) is a complete Segal space for all n.
(iii) C. is local with respect to E! x A" — A" for all n.

If C, satisfies these equivalent conditions, we say that C, is a complete double co-category.
Write CDbl,, for the full subcategory of Cat(Cats) spanned by the complete double co-
categories; this is an accessible localization of Cat(Cat ). We claim that CDbl, is the “cor-
rect” co-category of double co-categories, but will not justify this further here.

Lemma 2.2.2.6. Suppose C, is a double co-category. Then C, is complete if and only if
Map (A", C,) is a complete Segal space for n =0, 1.

Proof. Write C5" for the Segal space Map(A”,C,). Suppose we know C2" is a complete
Segal space, where n > 1. Then the pushout diagram of co-categories

Al — Alnntl}

|

A" An—i—l
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induces a pullback diagram of Segal spaces

An+1 Al
€ —C

|

ey —— e,
This means that in the diagram

APt A" Al
60 GO X A0 GO

T

X Map(E1,e2°)

Map(E!, €&""") —— Map(E!, €2") Map(El,(‘fél)

the horizontal maps are equivalences. But the right vertical map is also an equivalence,
since €2 is by assumption complete for k = 0,1, n. Thus A" is also complete. By induc-
tion, C2" is therefore complete for all k, i.e. C, is a complete double co-category. O

Just as we can think of 2-categories as a special kind of double category, we can think
of (o0,2)-categories as a special kind of double co-category — this gives Barwick’s notion
of a 2-fold Segal space:

Definition 2.2.2.7. A double Segal space X is a 2-fold Segal space if the Oth row X is con-
stant. Write Seg?(8) for the full subcategory of Cat*(8) spanned by the 2-fold Segal spaces.

Definition 2.2.2.8. A 2-fold Segal space X is complete if all its rows X; are complete Segal
spaces and the Oth column X, is a complete Segal space. We write CSS*(8) for the full
subcategory of Seg?(8) spanned by the complete 2-fold Segal spaces.

The co-category CSS?(8) is the “correct” co-category of (co,2)-categories. Under the
equivalence Cat(Cats) ~ Cat(CSS(8)) it is clear that complete 2-fold Segal spaces corre-
spond to double co-categories C, such that Cy is a space and e is a complete Segal space.
We write Cat ) for the full subcategory of Cat(Catw) spanned by these objects.

Lemma 2.2.2.9. Let X,, be a double Segal space. Suppose x,y € Xop and ¢ € Xj; satisfies
dip ~ s3x € Xyo and d"¢ ~ sy (where the superscripts h and v refer to the horizontal
and vertical simplicial structure maps, respectively). Then ¢ is an equivalence in the Segal
space Xi, if and only if ¢ is an equivalence in X,1 and dY¢ is an equivalence in X, for
i=0,1.

Proof. Write f = di¢ and g = do¢. Suppose ¢ is an equivalence in X;, and let i be an
inverse. It is clear that f~! = diy and ¢! = doy are inverses of f and g, respectively.
Consider the object of X»3 represented by the diagram
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Let & be a composite of the bottom row. If we compose the diagram horizontally and then
vertically it is clear that we get the vertical composite of ¢ and a. On the other hand, if we
compose first vertically and then horizontally we get the horizontal composite of ¢ and
¢, which is the identity. Since these give equivalent objects of X;; we see that the vertical
composite of ¢ and « is idy. Similarly, considering the object represented by

id; | ¢ [idg
¢ [id,: |id,

we see that the vertical composite of « and ¢ is id,. Thus & is an inverse for ¢ with respect
to vertical composition, i.e. ¢ is an equivalence in Xj,.

Now suppose ¢ is an equivalence in X,1 such that f and g are equivalences. Let ¢ be a
(vertical) inverse for ¢ and choose inverses f ' and ¢! of f and g. Considering the objects

¢ [id, + [id, [id, id, 1 [ p [id, 1 |idy
idg [idg 1 | ¥ |idss idg 1 | idy [id, 1 | ¢

of X»4 we see that the horizontal composite id-1 0 ¢ 0id,-1 is a horizontal inverse of . [

Lemma 2.2.2.10. Suppose C, is a double co-category such that €y is a space and e is
complete. Then a morphism ¢ in €; is an equivalence in A if and only if d;¢,i = 0,1, are
equivalences in (‘,’90 and ¢ is an equivalence in C;.

Proposition 2.2.2.11. Cat () is a full subcategory of CDbls, i.e. if C, is a double oco-

category such that €y is a space and e is complete, then C, is a complete double co-
category.

Proof. By Lemma [2.2.2.6it suffices to prove that e isa complete Segal space. Thus we
need to show that the morphism (GlAl )1 — GOAI, where ((‘31Al )¢d denotes the subspace of Gfi

consisting of the components corresponding to equivalences in the Segal space €A, is an

equivalence of spaces. Consider the commutative square

Map(Al, Cy) —— Map(Al, Cq)%

| |

Map(AO, Cy) — Map(AO, C1)ed

Here the left vertical map is an equivalence since €y is a space and the bottom horizontal
map is an equivalence since e is complete. To prove that the top horizontal map is an
equivalence it therefore suffices to show that the right vertical map is an equivalence.
Observe that Map(A!, (Gle)eq) is a full subcategory of Map(A!, €;), asis Map(A?, €1)d.
By Lemma these subcategories have the same objects, so we get an equivalence
Map(Al,€1)%d = Map(A!, (Gle)eq). Since (Gfo)eq is a space, it follows that Map(A!, €{7) ~
(€A")q, which completes the proof. O

The automorphism of double Segal spaces that swaps the two simplicial directions
corresponds to an automorphism of CDbl,. Under this automorphism, the double co-
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categories corresponding to complete 2-fold Segal spaces get taken to complete double
co-categories C, such that 2" is constant. Thus, these give yet another model for (oo, 2)-

categories. We will now prove a criterion for a double co-category to be an (oo, 2)-category
of this kind:

Proposition 2.2.2.12. Suppose C, is a double co-category such that sp: o — €; is essen-
tially surjective (hence an isomorphism on 77y by the simplicial identities) and €A is com-
plete. Let €} be the subcategory of €; whose morphisms are those that are equivalences
in Map(A!, €,). Then sp: €y — €% is an equivalence of co-categories.

Proof. Since sy is essentially surjective by assumption, it suffices to prove that it is fully
faithful, i.e. that for all x,y € € the induced map Co(x,y) — €}%(x,y) is an equivalence.
We can identify €}%(x, y) with the fibre Map(A!, €)%, of the projection

(ephyea — (e)")*2

at (sox,s0y), where (€)% denotes the subspace of C4" whose components correspond
to the equivalences in @A, Now since €2' is a complete Segal space, the map sy induces
an equivalence G@l = (GlAl)eq. Passing to fibres over (x,y) € (6360)X2 this shows that s
indeed induces an equivalence Co(x,y) = C{1(x,y). O

Corollary 2.2.2.13. Suppose C, is a double co-category such that so: Cp — € is essentially
surjective and e s complete. Then the Segal space 2" is constant.

Proof. By Lemma|2.2.1.10}it suffices to show that G@O — €'1AO is an equivalence of spaces. By
Lemma [2.2.2.9|the inclusion G?fo — € factors through €%, hence we have an equivalence

eA 2 (@A7)ed. But the composite €4 — (€4)%d is an equivalence by Proposition [2.2.2.12
hence by the 2-out-of-3 property so is the map COAO — GlAO. O

Suppose X is a complete double Segal space. Then we can extract two complete 2-fold
Segal spaces from X, by restricting to the subobject lying over the constant part of the Oth
row or column. In other words, we can extract a vertical and a horizontal (oo, 2)-category
from a double co-category.

Definition 2.2.2.14. Let Vert, Hor: CDble, — Cat(s,2) be the corresponding functors on
complete double co-categories.

There are many other models for (o, 2)-categories in the literature. In this thesis we
will also make use of marked simplicial categories, i.e. categories enriched in the model cat-
egory Seti of marked simplicial sets; see [Lur09b] for a comparison of these with com-
plete 2-fold Segal spaces and other models, and [BSP11] for axioms characterizing the co-
category of (oo, 2)-categories.

2.2.3 Oy,-Spaces

We now briefly review the theory of @,-spaces, which give a model for (oo, n)-categories.
These were introduced by Rezk [Rez10] (but our discussion is also based on the summary
given in [BSP11]). We first review the definition of the categories ®, — these were origi-
nally introduced by Joyal, but we use the inductive definition due to Berger [Ber07]:
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Definition 2.2.3.1. Let @y = *, and for n > 0 define the category @, inductively as follows:
e objects of @, are of the form [n](X3, ..., X,), where [n] € Aand X; € ©,_1;

e a morphism [n](Xy,..., X,) — [m](Y1,...,Ym) consists of a morphism ¢: [n] — [m]
in A and morphisms ¢;;: X; — Y; where 0 <i <mand ¢(i — 1) < j < ¢(i).

Composition is defined in the obvious way.

The category @, can also be regarded as a full subcategory of the category of strict
n-categories spanned by certain free strict n-categories (cf. [Ber07, §3]).

Definition 2.2.3.2. We define the following important functors between ©,’s:

(i) The functor j,: @,_1 — ©, corresponds to the inclusion of (n — 1)-categories into n-
categories; we define it inductively by letting j;: * = @y — @ = A be the inclusion
of the object [0] and defining

Jn([m)(Xa, ..o, X)) = [m](jn-1X1, -, jn—1Xm)
forn > 1.

(ii) The functor o, : @,_1 — @, corresponds to “suspending” an (n — 1)-category to an n-
category with two objects and that (n — 1)-category as the morphisms between them.
More precisely,

(Notice that 0,,j,—1 = jn0u—1.)

(iii) The functor p,: ®, — ©,_1 corresponds to “collapsing” the n-morphisms in an n-
category to produce an (n — 1)-category. More precisely, we define p1: AP = @1 —
@p = * to be the unique functor to the final object, and set

pu([m](X1, ..., X)) = [m](pPn-1X1, ..., Pn-1Xm)
forn > 1.

Definition 2.2.3.3. The k-cell C} (or just Cy) in @, (k = 0,...,n) is defined by C; = j,,C;
fork < nand C, = 0,C,,_1 (with C8 being the unique object of @p). Equivalently we have
Cp = j"*g*CJ. The k-cell Cy corresponds to the “free k-morphism”.

Definition 2.2.3.4. Recall that a morphism ¢: [n] — [m] in A is inert if it is the inclusion of
a subinterval of [m], i.e. if ¢(i) = ¢(0) + i for all i. By induction, we define a morphism
(¢, ¢ii): [n](Xq,..., Xu) — [m](Y1,...,Yw) in O to be inert if ¢: [n] — [m] is inert, and
Vig(iy: Xi — Y¢(Z-) is inert for each i = 1,...,n. Let G, denote the subcategory of ©,
with objects the cells Cy, ..., C;; and morphisms the inert morphisms between these. For
X € ©,, we write (G,) /x for the full subcategory of G, xg, (8,)x, spanned by the inert
morphisms C, — X.

Definition 2.2.3.5. Let y: @, — Fun(®;",8) denote the Yoneda embedding. For X in @,,
the Segal morphism segy, in Fun(@,, 8) is the obvious morphism

li Cy) = y(X).
ckf&%l)/xy( ) — y(X)
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We say a presheaf 5 € Fun(®,F,8) is a @,-space if it is local with respect to the Segal
morphisms segy, for all X € Oy, i.e. if the natural map

F(X) — li F(C
( ) Ckﬁxler{};n)/x ( k)

is an equivalence for all X € @,,. We write Seg, (8) for the full subcategory of Fun(®,F,8)

spanned by the ©,-spaces; this is an accessible localization of Fun(@ZP,S) and so is a
presentable co-category.

Remark 2.2.3.6. If n = 1, a ©1-space is precisely a Segal space.
Definition 2.2.3.7. Composition with j: @,_; — ©, gives a functor
j: Segg, (S) = Segg, ,(8);

this corresponds to taking the underlying (oo, n — 1)-category of an (oo, 1)-category. The
functor j* has left and right adjoints j, and j,, given by left and right Kan extension, respec-
tively (it is easy to see that this preserves the Segal conditions). The functor j, freely adds
n-morphisms between all parallel (n — 1)-morphisms, while the functor j, gives the inclu-
sion of (oo, n — 1)-categories into (oo, n)-categories. Similarly, the functor p: @, — O,
induces p*: Segg  (8) — Segg, (8) with left adjoint p;. Since poj = ide, , we have
jp* ~id.

Definition 2.2.3.8. If X € O,, let X* denote the ©,_1-space defined by
X*(Y) = Homg, (jY, X).

We write EX for the @y-space j. X*, and if J is a ©,-space we write (J: O,F — 8 for the
functor 1xJ := Map(EX, F), and we define (F := pj1.J.

Lemma 2.2.3.9. E/X ~ yjX for X € ®,_1. Thus j*1F ~ j*J for any O,-space J.

Conjecture 2.2.3.10. The functor EC): @, — Segg, (8) is a co-Oy,-Segal object, i.e.

colim E% — EX
Ck*)XE(Gn)/X

is an equivalence for all X. Moreover, the cosimplicial object E" ' Oisa cogroupoid object.
Corollary 2.2.3.11. If J is a @,-space, then so is 1, .
Definition 2.2.3.12. A ©;-space X is complete if the natural map

J'X > " 16X = [ p prie X ~ prie X = 1X

is an equivalence, and the ©,,_1-space j* X is complete. (We define all @y-spaces to be com-
plete.) We write CSSg, (8) for the full subcategory of Segg, (8) spanned by the complete
Oy-spaces.

Definition 2.2.3.13. The free k-equivalence Eq, € Segg (8) (k = 1,...,n) is defined by
Eq, := j«(Cy)* and Eq, := jiEq, for k < n.
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Lemma 2.2.3.14. Eq, ~ 01Eq,_, for k > 1. In particular, Eq, ~ jI" *c}Eq;.
Definition 2.2.3.15. Define morphisms €;: Eq, — yCy_1 by letting

€n: ]>c<(cn)>k — j*(cn—l)* = nd—l

be induced by the unique map C, — C,_1, and € := jiex_1 for k < n. Equivalently, let €;
be the unique morphism from Eq; to the final object Cy and let ¢ := 01,1 = (7_1"161 for
k> 1.

Proposition 2.2.3.16. A ©,-space is complete if and only if it is local with respect to the
morphisms €, k =1,...,n.

Sketch Proof. Let us first show that a @,-space J is local with respect to €, if and only
if the morphism j*F — 1J is an equivalence. From the Segal conditions it is easy to see
that a morphism of @,,_j-spaces ¢: § — H is an equivalence if and only if ¢(Cy): G(Cy) —
H(Cy) is an equivalence of spaces fork = 0,...,n — 1. Observe that for any @,-space F, for
k < n —1 the space 1F(Cy) = pieF(Cy) is equivalent to 1o F(Cy) ~ 10, F ~ F(Cy) since Cy
is a final object of @, X @, , (@4—1),c, (for k = n — 1 this is not the case, since e.g. C, gives
two non-equivalent objects of this category). Thus the map j*F — 1JF is an equivalence if
and only if F(Cy—1) — (1F)(Cy—1) = colim(x ,x ¢, ,) F(X) is an equivalence.

Now consider 0"~ !: A = @1 — @,; this gives a cofinal map A — @, X@, , (On_1)/c,-
Thus it suffices to show that

F(Cao1) = [1eF (0" [o])] = [Map(E"1*], )]

is an equivalence if and only if J is local with respect to €,. But E" ') is a cogroupoid
object, so by Lemma this morphism is an equivalence if and only if F(C,—1) ~
Map(yC,_1,F) — Map(E”" [, F) ~ Map(Eq,, F) is an equivalence, i.e. if and only if F
is local with respect to €.

For k < n observe that j*J is local with respect to € if and only if F is local with respect
to jiex = €, so by induction we conclude the J is complete if and only if it is local with
respecttoegfork=1,...,n. O

Definition 2.2.3.17. If ¥ is a @,-space and x,y € F(C,_1), write F(x,y) for the fibre of
F(Cp) at (x,y) € F(Cy—1) X F(Cy—1). A morphism of @,-spaces ¢: F — § is fully faithful
if for all x,y € F(C,_1) the morphism F(x,y) — G(¢(x),¢(y)) is an equivalence. We
say that ¢ is fully faithful and essentially surjective if ¢ is fully faithful and the morphism of
Oy_1-spaces 1p: 1T — 1§ is fully faithful and essentially surjective. (We say a morphism of
Oo-spaces is fully faithful and essentially surjective if and only if it is an equivalence.)

Lemma 2.2.3.18. A morphism of complete ©,-spaces is fully faithful and essentially sur-
jective if and only if it is an equivalence.

Proof. Observe that a morphism ¢: I — G of @,-spaces is an equivalence if and only if it is
fully faithful and j*¢: j*F — j*G is an equivalence of ®,,_1-spaces. If F and G are complete
it follows that ¢ is an equivalence if and only if ¢ is fully faithful and ¢ is an equivalence.
Since (J and (G are by assumption also complete, by induction we conclude that ¢ is an
equivalence if and only if it is fully faithful and essentially surjective. O

Conjecture 2.2.3.19. The fully faithful and essentially surjective morphisms between ©,,-
spaces are precisely the morphisms in the saturated class generated by €y, ..., €,.
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Chapter 3

co-Operads over Operator Categories

In this chapter we indicate how to generalize Lurie’s theory of co-operads to the setting
of Barwick’s operator categories. These are categories that can be used to parametrize
multiplicative structures; apart from symmetric and non-symmetric co-operads, we are
particularly interested in the interpolating co-operads with [E,-symmetry, which we will
use to define enriched (oo, n)-categories in Chapter

In §3.T]we review the theory of operator categories and the 1-categorical notions of op-
erads, monoids, and monoidal categories over an operator category. Then in §3.2we define
co-operads and monoidal co-categories over operator categories, and in we describe
some results for non-symmetric co-operads that we unfortunately do not yet know how to
generalize to more general co-operads.

3.1 Review of Operator Categories

In this section we summarize part of Clark Barwick’s theory of operator categories. Much
of this material has now appeared in [Bar13||; the remainder (possibly excepting the rather
trivial material in §3.1.7/and §3.1.8) is based either on earlier preprints or on conversations
with Barwick and Chris Schommer-Pries. Since much of this section is only intended to
motivate our definitions in of co-categorical generalizations of the concepts we discuss
here, we have often omitted proofs and even details of some definitions.

3.1.1 Basic Definitions and Examples

An operator category is a category that can be thought of as parametrizing a type of multi-
plicative structure. The definition is simple:

Definition 3.1.1.1. An operator category is a small category ® that

(i) is locally finite, i.e. for all I, ] € ® the set Homg (I, ]) is finite,

(ii) has a terminal object *,

53



(iii) has fibres J; for every morphism | — I at all pointsi: * — I, i.e. the pullbacks

Ji— ]

Lo

* — |
1

exist.

Examples 3.1.1.2. The following are all operator categories:
(1) The trivial one-object category 0; this parametrizes trivial multiplicative structures.

(2) The category O of finite ordered sets (possibly empty). This parametrizes associative
monoids, monoidal categories, and non-symmetric operads.

(3) The category F of finite sets. This parametrizes commutative monoids, symmetric
monoidal categories, and symmetric operads.

The basic notion of a morphism between operator categories is an admissible functor:

Definition 3.1.1.3. If ® and Y are operator categories, an admissible functor F: ® — ¥ is a
functor that preserves the terminal object and all fibres.

However, for many purposes it is better to consider a more restricted class of mor-
phisms, the operator morphisms:

Definition 3.1.1.4. Suppose @ is an operator category. If I is an object of ®, we write |I|
for the set Homg (*, I). We say an admissible functor F: ® — ¥ is an operator morphism if
the map |I| — |F(I)| is a bijection for all I € ®.

Remark 3.1.1.5. Any admissible functor F: ® — ¥ such that |I| — |F(I)| is surjective for
all I € @ is necessarily an operator morphism (cf. [Bar13, Proposition 1.8]).

Example 3.1.1.6. For any operator category &, the functor || gives an operator morphism

® — F. This is the unique operator morphism from ® to IF, and we will also denote it by
®

u”: ® —F

Remark 3.1.1.7. Below, in §3.1.8, we will see that certain subcategories of operator categories
also play an interesting role, despite the inclusions not being admissible functors.
3.1.2 Wreath Products

The wreath product of operator categories gives a monoidal structure on the category of
operator categories and operator morphisms.

Definition 3.1.2.1. Let ¥ be an operator category, and let ny : IF°P — Cat be the functor that
sends a finite set S to Fun(S, ¥) = ¥ *I5|. If ® is another operator category, composing with
the unique operator morphism u® = |-|: ® — T gives a functor ®°P — Cat. We define
the wreath product ¥ ¢ ® — & to be a Grothendieck fibration associated to this functor.
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Remark 3.1.2.2. Thus, an object of ¥ ! ® is determined by an object I € ® and, for each i €
1], an object J; € ¥. We write I(];)c|y for this object. A morphism I(])ic;j — I'(Ji)ke|r|
consists of a morphism f: I — I' in ® and, for each i € |I|, a morphism J; — [, in Y.

Remark 3.1.2.3. The wreath product of operator categories has a universal property: a
Y ! ®-algebra is, roughly speaking, a Y-algebra in ®-algebras; we will give several more
precise statements along these lines below.

Remark 3.1.2.4. The wreath product ¥ ® is functorial with respect to all admissible func-
tors in the first variable, but only with respect to operator morphisms in the second vari-
able.

Proposition 3.1.2.5 ([Bar13, Proposition 3.9]). The operation ? gives a monoidal structure
on the category of operator categories and operator morphisms.

Remark 3.1.2.6. The unit for the wreath product is the trivial operator category 0. This is
also the initial operator category (and the zero object with respect to admissible functors)
so given operator categories ® and ¥ there are canonical maps

ip: @~ 01D — ¥ 2D, I ()i,
jr: ¥ =¥0 =D, [ x(]),

po: 1P = 0D~ @, I(fi)iey — L

The functors ig and jy are operator morphisms, whereas pg is merely an admissible func-
tor.

The wreath product allows us to define the key examples of operator categories we will
be interested in in this thesis:

Example 3.1.2.7. We write O(n) for the n-fold wreath power O of the operator category
O of finite ordered sets. In the setting of ordinary categories O(2) parametrizes braided
monoidal categories and braided operads, while O(n) parametrizes symmetric monoidal
categories and symmetric operads for n > 2. When working with co-categories, however,
O(n) gives [E,-monoidal co-categories, as we will see below.

3.1.3 Monoidal Categories and Operads

We will now justify the claim that operator categories parameterize multiplicative struc-
tures by defining ®-monoidal categories and ®-operads, where ® is an operator category.

Definition 3.1.3.1. A ®-monoidal category is a category C equipped with:
(i) Foreach I € ® a functor ®;: C*1l 5 C, such that ®, = id.
(ii) For each morphism f: | — I in ®, a natural isomorphism

- @;@)o(@)iém.

I Ji
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These isomorphisms must be functorial, i.e. af,, = ayonag and ajq, = idg,. If Cand D
are $-monoidal categories, a lax ®-monoidal functor from C to D is a functor F: C — D
together with natural transformations @; oF — F o );, compatible with the natural iso-
morphisms ay for f in @. A strong ®-monoidal functor is a lax @-monoidal functor such that
these natural transformations are natural isomorphisms. We write Mon? for the category
of ®-monoidal categories and strong ®-monoidal functors, and Mon®!® for the category
of ®-monoidal categories and lax ®-monoidal functors.

Examples 3.1.3.2.
(1) A 0-monoidal category is a category.
(2) An O-monoidal category is a monoidal category.
(3) An O(2)-monoidal category is a braided monoidal category.

(4) An F-monoidal category is a symmetric monoidal category, as is an O(n)-monoidal
category for n > 2.

More generally, we can consider ®-operads; here we will restrict ourselves to ®-operads
in sets:

Definition 3.1.3.3. A ®-operad M consists of a set ob M of objects and, given I € ®, a
collection (x;);c || of objects indexed by the points of I, and an object y, a set

M;((x:),y)

of multimorphisms from (x;) to y. Given a morphism | — I in ® we have a composition
operation

TTM () e vi) X Mi((Wi)ieqn 2) = My((x))jepy),2)-

ie|l|
This must be associative in the obvious sense, and there is also an identity morphism id, €
M. (x, x) for all objects x.

Remark 3.1.3.4. For consistency with Lurie’s terminology for co-categories we have cho-
sen to use the term ®-operad instead of ®-multicategory or coloured ®-operad for this
concept.

Remark 3.1.3.5. An obvious variant of this definition gives a notion of ®-operads enriched
in, for example, a symmetric monoidal category. In the next section we will make use of
simplicial ®-operads, which are ®-operads enriched in the category of simplicial sets.

Definition 3.1.3.6. A functor of ®-operads F: M — N consists of a function obM — ob N
and a function M;((x;),y) — Ni((F(x;));, F(y) for each I € ® and x;,y € obM; these
must preserve identities and be compatible with composition in the obvious sense. We
write Opd® for the category of ®-operads and functors.

Definition 3.1.3.7. If F,G: M — N are functors of ®-operads, a natural transformation
: F — G consists of, for each x € M a morphism 77, € N, (Fx, Gx), compatible with com-
positions in the obvious way. We write OPD? for the 2-category of ®-operads, functors,
and natural transformations.
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Example 3.1.3.8. We can consider a ®-monoidal category C as a ®-operad by defining
C:((xi),y) to be the set of morphisms C(®;(x;),y), with composition defined using the
natural isomorphisms a ¢ and ordinary composition in C. Then Mon® is the full subcat-

egory of Opd® spanned by ®-operads of this form.
Examples 3.1.3.9.
(1) A 0-operad is a category.
(2) An O-operad is a multicategory or (coloured) non-symmetric operad.
(3) An O(2)-operad is a braided multicategory or (coloured) braided operad.

(4) An F-operad is a symmetric multicategory or (coloured) symmetric operad, as is an
O(n)-operad for n > 2.

Remark 3.1.3.10. A ®-operad O with a single object can equivalently be described by sets
O(I) for I € ® and composition morphisms

o(I) x [To(i) — O(J)

i€l
for each morphism | — I in ®.

Definition 3.1.3.11. If C is a ®-monoidal category (or more generally a $-operad), and O
is a ®-operad, an O-algebra in C is a functor of ®-operads A: O — C. We write Algg(C)
for the category of O-algebras in C, i.e. the mapping category OPD®(0O, C).

Remark 3.1.3.12. Suppose f: ® — ¥ is an operator morphism. Then f allows us to regard
a ¥-operad as a ® operad, giving a functor f*: Opd® — Opd®: if M is a ¥-operad, then
f*M has the same objects as M, and

S Mi((xi),y) 7= My (%), y)-

This functor has a left adjoint fi: Opd® — Opd*, which forms the “free” ¥-operad on
a ®-operad. For example, u: Opd® — Opd" gives the usual way of regarding a non-
symmetric operad as a symmetric operad.

Remark 3.1.3.13. If ® is an operator category, we let U(®P) denote the F-operad u{?*. For
example, U(O) is the usual associative (symmetric) operad. The functor u®: Opd® —
OpdlfU (@) is often an equivalence, for example if P is O.

The wreath product of operator categories can be extended to a wreath product of
operads: If O is a ®-operad and Q is a Y-operad, both with a single object, then QO is a
Y ! ®-operad, also with a single object, with

(QUO)(I(J)iejr) = O(1) x [T QUH)-

iell|

The general definition is somewhat more complicated:
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Definition 3.1.3.14. Suppose M is a ®-operad an N is a Y-operad. Then N:Misa ¥ { ®-
operad with objects ob M x ob N and multimorphism sets defined by

(MON) () ((m iy, i fy), (m',m")) = My ((m), m'") < HI Ny ((n;),n"),
€|l

if m(;;) is equal to m; for all j € J;, and @ otherwise, with composition defined in the
obvious way.

Remark 3.1.3.15. The wreath product of operads has a universal property, which we can
roughly describe as follows: suppose M is a ®-operad, N is a Y-operad, and X is a ¥ ®-
operad. Then the category Algg';I (j&X) has a natural ¥-operad structure, and there is an
equivalence

AlgQ (X) =~ Alg (Algy (j5X))-

3.1.4 Perfect Operator Categories and Monoids

We will now introduce the most important class of operator categories, namely the so-
called perfect operator categories, which includes all the examples we are interested in
here.

Definition 3.1.4.1. A point classifier for an operator category @ is an object (T,t: + — T) €
®, , such that for any object (V,v: x — V) € ®, there exists a unique morphism V — T
in ® such that

is a pullback square.

Definition 3.1.4.2. An operator category @ is perfect if it has a point classifier (T,¢) and the
functor (-);: ®,7 — P that takes the fibre at t has a right adjoint T,.: ® — ®,1. We refer
to t as the special point of T and its other points as generic points. We write T: & — @ for
the composite of T, with the forgetful functor to ®.

Example 3.1.4.3. The operator categories O and F are perfect, with point classifiers {1} —
{0,1,2} and {1} — {0, 1}, respectively.

Proposition 3.1.4.4 ([Bar13, Proposition 5.11]). If ® and ¥ are perfect operator categories,
with point classifiers t — T and ¢’ — T’, respectively, then ¥ ® is also perfect, with point
classifier T(I;) where I; = T' and [; = * for i # t.

Example 3.1.4.5. The operator categories O(n) are perfect for all n.

Theorem 3.1.4.6 ([Bar13, Theorem 6.9]). If ® is a perfect operator category, then the functor
T is a monad on .

Definition 3.1.4.7. Suppose ® is a perfect operator category. The Leinster category £ of ®
is the Kleisli category of the monad T. In other words, the objects of £ are the same as
those of ®, but morphisms are given by

HOI‘I‘IL@(I, ]) = HOH\CD(I/ TI)/
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with composition defined using the monadic structure of T. We will generally denote a
map from I to | in the Leinster category with a barred arrow, I + J.

Example 3.1.4.8. Suppose P is a perfect operator category. A pointi: * — I corresponds
to a unique morphism I — T such that 7 is the pullback of t: * — T, and so to a morphism
iV 1 -+ *in L2,

Proposition 3.1.4.9. Let ¥ be an operator category, and let ny: I = (L¥)°P — Cat be the
functor sending a pointed finite set S to the category Fun. (S, £L¥) of functors that take the
base point of S to * € £Y, i.e. (L¥)*ISI71. If ® is another operator category, composing
with the functor £® — £¥ induced by the unique operator morphism u® = |-|: ® — F
gives a functor (£®)°P — Cat. The Leinster category L®'? is equivalent to the total space
of the Grothendieck fibration associated to this functor.

Proof. This is a special case of [Bar13, Proposition 7.7]. O

Examples 3.1.4.10.
(i) The Leinster category £ is just 0.

(ii) The Leinster category £© is the opposite category AP of the simplicial indexing cat-
egory A (cf. [Bar13, Example 7.6]).

(iii) The Leinster category £F is the category I'°P of finite pointed sets (cf. [Bar13, Example
7.5]).

(iv) The Leinster category £O" is the opposite category @;F of Joyal’s category @, (cf.
[Bar13, Example 7.8]).

Using the Leinster category we can define ®-monoids when ® is a perfect operator
category:

Definition 3.1.4.11. Let ® be a perfect operator category, and suppose C is a category with
finite products. A ®-monoid M in Cis a functor M: £L® — C such that for every object I, the
morphism M(I) — Tie|;) M(*) induced by the morphisms i : [ + * is an isomorphism.
We write Mndg (C) for the obvious category of ®-monoids in C.

Examples 3.1.4.12.
(i) A 0-monoid is just an object.
(i) An O-monoid is an associative monoid.

(iii) An F-monoid is a commutative monoid, as is an O(n)-monoid for n > 1.

Remark 3.1.4.13. The wreath product of operator categories also has a universal property
in terms of monoids: Let ® and Y be perfect operator categories, and suppose C is a
category with finite products. Then there is an equivalence of categories

Mndgy (C) ~ Mnde (Mndy (C)),

i.e. a @ 'Y-monoid in C is equivalent to a ®-monoid in ¥-monoids in C.

Remark 3.1.4.14. Let f: ® — ¥ be an operator morphism. Then composition with £f
takes ¥-monoids to ®-monoids and so induces a functor f*: Mndy(C) — Mnde(C). If C
is a presentable category where the Cartesian product preserves colimits in each variable
then f* has a left adjoint f;: Mnde(C) — Mndy(C).
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3.1.5 The Inert-Active Factorization System

If ® is a perfect operator category, there is an important factorization system on the Lein-
ster category £%:

Definition 3.1.5.1. Let ® be a perfect operator category. If ¢: I + | is a morphism in £?,
consider the pullback square

F— 7]

I——TJ.
ey

We say that ¢ is active if the morphism F — I is an isomorphism, and inert if the morphim
F — ] is an isomorphism.

Remark 3.1.5.2. A morphism ¢: I + ] is active if and only if it is in the image of ®, i.e. it
is of the form

1L,

where f is a morphism in ®. It is clear from the definition that every active morphism is
of this form, and the converse holds because the diagram

J
§

uy T]

id

—_—

id

—~—

is a pullback square in ® for all J.
Examples 3.1.5.3.

(i) A morphism f: [n] — [m] in A corresponds to an active morphism in £O ~ A°P if
and only if f(0) = 0 and f(n) = m, and an inert morphism if and only if f is the
inclusion of a subinterval, i.e. f(j) = f(0)+jforj=0,...,n.

(ii) A morphism f: (n) — (m) in [°P ~ L¥ is active if and only if f~1(x) = {*}, and
inert if and only if | f~1(i)| = 1 for i # x.

Proposition 3.1.5.4 ([Bar13|, Lemma 8.3]). If ® is a perfect operator category, then the inert
and active morphisms form a factorization system on £®.

Proof. We first show that any morphism ¢: I -+ | has a factorization as an inert morphism
followed by an active morphism. We may regard I — T] as a morphism in ®,7 via the
map T(] — *), i.e. a morphism from [ = (I — T) to T,(J). This is adjoint to a morphism
a: I — ], giving a factorization



The fibre I is the fibre product F in the pullback square

in ®, so we have factored ¢ as a composite

A )G
i.e. as a composite (#ja) o B in L. The morphism uj« is obviously active. Here F is also
the fibre of the composite I — T] — T at the special point ¢, i.e. Fis (I — T);. Since the
diagram

F—>]

uFJ Jll]

TF — T]

is a pullback, it is clear that j is inert.

This also shows that any inert morphism ¢: I + ] factors as the counit I — T(I)
followed by an isomorphism. Since this counit does not change when we compose with an
active map, it follows that the inert-active factorization is unique up to isomorphism. [I

Remark 3.1.5.5. This factorization system is probably a particular case of that described
by Weber [Web04] on the Kleisli categories of certain monads; this observation is due to
David Gepner. However, the “generic morphisms”, which are the equivalent of our inert
morphisms, do not have as nice a description in this more general setting.

Definition 3.1.5.6. We write £L, and £2, for the subcategories of £L® where the morphisms

are the inert and active morphisms in £, respectively.

Definition 3.1.5.7. An object A of ® is an atom if there exists an inert morphism * + A in
L%, ie. Ais the fibre at t: * — T of some other point * — T. The globular category G® is
then the full subcategory of £, spanned by the atoms. If I is an object of ®, we write 9‘11’/

for 9(1) XL% (L$t>1/'
Example 3.1.5.8. Suppose ® and ¥ are perfect operator categories. Then the atoms of ¥ ! @
are *(A), where A is an atom of ¥, and A() where A is an atom of ® other than * (which
must necessarily have no points).
Examples 3.1.5.9.

(i) The unique object of 0 is an atom, and §° is just 0.

(ii) The atoms of FF are @ and *, and GF is

* — Q.
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(iii) The atoms of O are @ and *, and G© is
* = Q.

(iv) The atoms of O(n) are C,?(”), k =0,...,n, which we can inductively define by CBD M) _
o) _
©,C;V = x,and

com _ [+, k=1,
¢ ®/ k = 0

The category GO is
o = ==,
i.e. G,F. In terms of the description of the objects of @, as certain strict n-categories,

the object CE(") corresponds to the k-cell or free k-morphism.

Definition 3.1.5.10. Let ® be a perfect operator category, and let C be a category with finite
limits. A ®-category object M in C is a functor M: £L® — C such that M| e is aright Kan

extension of M|ge. In particular, for I € @ the object M(I) is the limit of M| g0 -

Example 3.1.5.11. An O(n)-category object in sets is a strict n-category.

Definition 3.1.5.12. A perfect operator category ® is self-categorical if the functor
I* := Homo (I,-): £L® — Set
is a ®-category object for all I € .

Examples 3.1.5.13. The operator categories O(n) are self-categorical for all n, whereas F is
not.

3.1.6 The May-Thomason Category of a ®-Operad

For a perfect operator category @ we can give an alternative definition of ®-operads as
certain functors to L%, by considering the May-Thomason category of a ®-operad. This is
the definition we will generalize to define co-operads in the next section.

Definition 3.1.6.1. Let ® be a perfect operator category. If M is a ®-operad, the May-
Thomason category M* of M has objects pairs (I, (x;);c|;|) where I € ® and x; € M, and a

morphism (I, (x;)) — (J, (yj)) is given by a morphism I + ] in £® and for each j € |J| a
morphism in My, ((x;);e|r, ¥j), where I; is the fibre of I — T] at

o1 W
x = ] —=TJ].

There is an obvious projection M® — £?.

Remark 3.1.6.2. If M is a ®-operad enriched in a symmetric monoidal category C that
has coproducts and whose tensor product commutes with these, then the same definition
applied to M gives a C-category M®.

Proposition 3.1.6.3. A functor 77: C — £ is equivalent to the May-Thomason category of
a $-operad if and only if the following conditions hold:
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(i) If ¢: I + ] is an inert morphism in £® and x € C; then there exists a 77-coCartesian
morphism x — ¢ix.

(ii) For every I € ® the functor C; — [];¢ ;) C« induced by the coCartesian arrows over
iV for i € || is an equivalence of categories.

(iii) Given a morphism ¢: I + | in L®andy € C J, the coCartesian morphisms y — y;
induced by the inert morphisms j¥: | -+ x give an isomorphism

C(P(x’y) :> H Cj0¢(x/yj)/
Jel|

where Cy(x,y) denotes the subset of C(x, y) of morphisms that map to ¢ in £®.

Moreover, a functor F: C — D over £ between such categories corresponds to a func-
tor of ®-operads if and only if it preserves coCartesian morphisms over inert morphisms in
L®. We can thus equivalently define a ®-operad to be a functor C — £® satisfying (i)—(iii).

Remark 3.1.6.4. A functor 7: C — £® is equivalent to the May-Thomason category of
a ®-monoidal category if and only if it satisfies conditions (i)-(iii) above, and is also a
coGrothendieck fibration, i.e. for any morphism ¢: [ + [ in £L® and any x € C; there
exists a 7t-coCartesian morphism x — ¢x. A functor F: C — D between such categories
over £L® corresponds to a strong monoidal functor of @-monoidal categories if and only if
it preserves all coCartesian arrows.

3.1.7 Generalized Operads and Multiple Categories

Replacing the Segal conditions for monoids with those for category objects in the char-
acterization of May-Thomason categories above gives a generalization of the notion of
d-operad:

Definition 3.1.7.1. Let ® be a perfect operator category. A generalized ®-operad is a functor
7: C — L% such that the following conditions hold:

(i) If ¢: I + ] is an inert morphism in £® and x € C; then there exists a 7t-coCartesian
morphism x — ¢x.

(ii) For every I € @ the functor C; — lim;_, ,. 59, C,4 induced by the coCartesian arrows
over I + A is an equivalence of categories.

(iii) Given a morphism ¢: I + ] in £® and y € Cj, the coCartesian morphisms y — ¥,
induced by the inert morphisms a: | + A in 9‘]1’/ give an isomorphism

Cy(x,y) = lim Caop (X, Yu)-

Example 3.1.7.2. A generalized O-operad is the same as a virtual double category as defined
by Cruttwell and Shulman [CS10], or fc-multicategory as defined by Leinster [Lei04]. Gen-
eralized O(n)-operads for a general n may be regarded as the most general objects for
which we can define a notion of “lax functor” extending that for n-categories.
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Remark 3.1.7.3. A generalized ®-operad C — £? is (equivalent to the May-Thomason
category of) a ®-operad precisely when the fibre C4 is equivalent to * when A € ® is an
atom other than .

Definition 3.1.7.4. If C and D are generalized ®-operads, a functor of generalized ®-operads
F: C — D is a functor over £? that preserves coCartesian arrows lying over inert mor-
phisms in £®. A natural transformation of functors between generalized ®-operads is just
an ordinary natural transformation of such functors. We write Opd®#®" for the category
of generalized ®-operads and functors, and OPD®#" for the 2-category of ®-operads,
functors, and natural transformations.

Definition 3.1.7.5. A ®-multiple category is a generalized ®-operad C — L® that is also a
coGrothendieck fibration.

Example 3.1.7.6. An O-multiple category is a double category.

Definition 3.1.7.7. A lax monoidal functor between ®-multiple categories is just a functor
of generalized ®-operads; we write Mult®!® for the full subcategory of Opd®&" spanned
by the ®-multiple categories. A strong monoidal functor between ®-multiple categories is a
functor over £ that preserves all coCartesian morphisms; we write Mult® for the category
of ®-multiple categories and strong monoidal functors.

Remark 3.1.7.8. An operator morphism does not generally induce a pullback functor on
generalized operads or multiple categories.

3.1.8 Subcategories of Operator Categories

We will now observe that subcategories of perfect operator categories determined by atoms
are often themselves operator categories:

Lemma 3.1.8.1. Let ® be a perfect operator category. If A is an atom of ® then A is a
subobject of *. In particular, the forgetful functor ®,, — P is fully faithful.

Proof. We have a pullback diagram
A—— %

‘t

* ——— T

where t is the special point. Thus a morphism X — A corresponds to a commutative
diagram

Since * is the final object of ® we see that such a diagram is unique if it exists. In other
words, an object of ® admits at most one morphism to A. O
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Lemma 3.1.8.2. Let ® be a perfect operator category and A an atom of ® such that ® has
A-fibres, i.e. pullbacks along morphisms from A. Then ®, 4 is a perfect operator category
with respect to the restriction of T.

Proof. Ttis clear that ®, 4 is an operator category if A-fibres exist in ®. We have a pullback
diagram

A2 TA

* —— T.

Given a morphism Y — TA the pullback along A — TA is therefore Y; — A. In the
diagram

Hom(Y;, X) —— Homy(Y, TX)

|

Hom(Y;, A) —— Homr(Y, TA)

the horizontal morphisms are isomorphisms since (-); is left adjoint to T. Taking fibres at
Y; — A we get a natural isomorphism

Hom 4 (Y, X) = Hompa (Y, TX)

hence pullback along A — TA is left adjoint to T: ®,4 — ®,74. In particular, TA is a
point classifier for @ 4. O

Remark 3.1.8.3. In this case the induced functor £L¥/4 — L® clearly preserves the inert-
active factorization system.

Restricting a ®-operad or ®-monoidal category to ®,, always gives a trivial ®, 4-
operad. However, in good cases we can restrict generalized ®-operads to ®, 4:

Definition 3.1.8.4. Let ® be a perfect operator category. We say an atom A of ® is clean if
(i) @ has A-fibres.

(ii) If Iisin ®, 4, then 9?/ 4= 9?’/ is an equivalence.

Lemma 3.1.8.5. Let ® be a perfect operator category, and suppose A is a clean atom in ®.
Then pullback along the inclusion £®/4 < £® induced by the inclusion j4: ®,4, < ®
gives functors

]-A,* . OpddD,gen N Opdé/A,gen/

i Mult® — Mult®/4,
Remark 3.1.8.6. These functors have left adjoints j{* and right adjoints jZ.

Example 3.1.8.7. The atoms C,?(”) in O(n) are all clean. The subcategory O(#),c, can
be identified with O(k), so we have inclusions ji': O(k) — O(n). The corresponding
inclusion @, < @, is the obvious inclusion of the basic k-categories as n-categories with
no non-trivial i-morphisms for i > k, i.e. j”_k in the notation of E
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3.2 oo-Operads

In this section we indicate how to extend parts of Lurie’s theory of (symmetric) co-operads
to the setting of operator categories. Given the material in this is mostly a straightfor-
ward generalization of definitions and results from [Lurl1] — the exception is the discus-
sion of wreath products in which is based on results of Barwick from [Bar13].

3.2.1 Basic Definitions

Let ® be a perfect operator category. We will now define the basic objects we will study in
this section, as well as the appropriate morphisms between them:

Definition 3.2.1.1. A ®-co-operad is an inner fibration p: 0¥ — £ such that:

(i) For each inert map ¢: I - Jin £ and every X € OF, there exists a p-coCartesian
edge X — ¢ X over ¢.

(ii) For every I in £®, the map
of —» JJof
ie|l

induced by the inert maps i¥: I + * is an equivalence.

(iii) Given C € 0} and coCartesian morphisms i\’ : C — C; for each inert map i": [ + x,
the object C is a p-limit of the C;’s.

Remark 3.2.1.2. If O% is a ®-c0-operad we will sometimes denote the fibre O at x € £
by O.

Definition 3.2.1.3. A ®-monoidal co-category is a P-co-operad that is also a coCartesian fi-
bration.

Definition 3.2.1.4. A generalized ®-co-operad is an inner fibration p: M — £? such that:

(i) For each inert map ¢: I -+ ] in £® and every X € M, there exists a p-coCartesian
edge X — ¢ X over ¢.

(ii) For every I in £®, the map
M; — Iim M A
I+ Aegy,
induced by the inert morphisms I + A is an equivalence.
(iii) Every coCartesian section (§7,) — M is a p-limit diagram.
Remark 3.2.1.5. Condition (iii) in the definition says, roughly speaking, that given C € Mj,
D € M, and ¢: | + I, the map

Mapf/[(D,C) — Clirr}) Mapi‘f(D, ¢&C)

€91/
is an equivalence, where the superscripts denote the obvious fibres over maps in £?.

Definition 3.2.1.6. A ®-multiple co-category is a generalized ®-co-operad that is also a co-
Cartesian fibration.
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Definition 3.2.1.7. We refer to O-co-operads as non-symmetric co-operads, generalized O-
oo-operads as generalized non-symmetric co-operads, O-monoidal co-categories as monoidal
oco-categories, and O-multiple co-categories as double co-categories. Similarly, we refer to [F-
oo-operads as symmetric oo-operads, generalized [F-co-operads as generalized symmetric oco-
operads, and IF-monoidal co-categories as symmetric monoidal co-categories.

Definition 3.2.1.8. Let 7: M — L£® be a generalized ®-c0-operad. We say a morphism f
in M is inert if it is coCartesian and 7z(f) is an inert morphism in £®, and active if 7(f) is
an active morphism in £?.

Lemma 3.2.1.9. The active and inert morphisms form a factorization system on any gener-
alized P-oo-operad.

Proof. This is a special case of [Lurll, Proposition 2.1.2.5]. O

Definition 3.2.1.10. Let M, N — L® be (generalized) ®-co-operads. A morphism of (gen-
eralized) ®-co-operads from M to N is a commutative diagram

\/

such that F takes inert morphisms in M to inert morphisms in N. A morphism of (gen-
eralized) ®-co-operads is a fibration of (generalized) ®-co-operads if it is also a categorical
fibration, and a coCartesian fibration of (generalized) ®-co-operads if it is also a coCartesian
fibration.

M N

Definition 3.2.1.11. If M and N are generalized ®-co-operads, then an M-algebra in N is
just a morphism of generalized ®-co-operads M — N. We write Alg%t(N) for the full
subcategory of Fun o (M, N) spanned by the M-algebras. Similarly, if M and N are gener-
alized ®-co-operads over a generalized ®-co-operad Q, then we write Alg;s[ /0(N) for the
full subcategory of Fung (M, N) spanned by the functors that preserve inert morphisms.

Remark 3.2.1.12. We will also refer to a morphism of (generalized) ®-co-operads between
®-monoidal co-categories, or more generally ®-multiple co-categories, as a lax monoidal
functor.

Definition 3.2.1.13. A strong monoidal functor between ®-multiple co-categories is a lax
monoidal functor that preserves all coCartesian morphisms. If M and N are ®-multiple
oo-categories, we write Fun® (M, N) for the full subcategory of Fun (M, N) spanned by
the strong monoidal functors.

Definition 3.2.1.14. If M is a generalized ®-co-operad, then an M-multiple co-category N is
a coCartesian fibration of generalized ®-co-operads N' — M. Similarly, an M-monoidal co-
category is an M-multiple co-category €¥ — M such that ¥ is a ®-co-operad. A strong
monoidal functor between M-multiple co-categories is a morphism of generalized ®-co-
operads over M that preserves all coCartesian morphisms.

One source of ®-co-operads is simplicial ®-operads:
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Definition 3.2.1.15. A simplicial ®-operad O is fibrant if all the simplicial sets O;((x;);c|1, ¥)
where x;,y € ob O are Kan complexes.

Lemma 3.2.1.16. Suppose O is a fibrant simplicial ®-operad, and let O denote the simpli-
cially enriched version of the May-Thomason category. Then the projection NO® — £® is
a ®-co-operad.

Proof. As [Lurll, Proposition 2.1.1.27]. O

3.2.2 Model Categories of co-Operads

Using Lurie’s theory of categorical patterns, we now construct co-categories and (oo, 2)-
categories of the objects defined above.

Definition 3.2.2.1. Let ® be a perfect operator category. Write Iy for the set of inert mor-
phisms in £®, Mg, for the set of 2-simplices in N£? all of whose edges are inert morphisms,
and for I € @ let K; be the set of inert morphisms I + * in £L®. Then we define O¢ to be
the categorical pattern

(NL®, Ip, Mo, {K; — L£LP}).

Lemma 3.2.2.2. A map (X,S) — (L%, Ip) is Oo-fibred if and only if the underlying map
X — L% is a ®-co-operad and S is the set of inert morphisms in X.

Definition 3.2.2.3. Let O% " be the categorical pattern
(NL?, Ip, Mo, {(ST))" — £}).

Lemma 3.2.2.4. Amap (X, S) — (£%, Ip) is D% -fibred if and only if the underlying map
X — £? is a generalized ®-co-operad and S is the set of inert morphisms in X.

Definition 3.2.2.5. Let ® be a perfect operator category. The categorical patterns O¢ and
O™ induce two model structures on (Set}) /(£ 1y)- We call these the ®-oo-operad model
structure and the generalized ®-co-operad model structure, respectively.

Definition 3.2.2.6. The co-categories Opd® and Opd®8°" of ®-co-operads and generalized
®-o0-operads are the co-categories associated to the simplicial model categories (Sety ) o,
and (Sety) BN, respectively. Since these model categories are enriched in marked simpli-

cial sets by Remark 2.1.12.10} they also define (oo, 2)-categories OPDZ and OPDo&™",

Remark 3.2.2.7. If M and N are generalized ®-co-operads, then the co-category Alg?;[(N)
D, gen

of M-algebras in N is the mapping co-category in the (o0, 2)-category OPDq,
Definition 3.2.2.8. Let ® be a perfect operator category. Define Mg to be the categorical
pattern

(NL®, (NLP)1, (NLP)o, {K} — LP}).

Lemma 3.2.2.9. A map (X,S) — L%* is Mg-fibred if and only if the underlying map
X — £? is a ®-monoidal co-category and S is the set of coCartesian morphisms in X.

Definition 3.2.2.10. Let ® be a perfect operator category. Define M5 to be the categorical
pattern
(NLP, (N£LP)1, (NLP)2, {(GF)) = £7}).
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Lemma 3.2.2.11. A map (X,S) — £®# is M, "-fibred if and only if the underlying map
X — £? is a ®-multiple co-category and S is the set of coCartesian morphisms in X.

Definition 3.2.2.12. Let ® be a perfect operator category. The categorical patterns Mg and
ME™ induce two model structures on (Set} ) , so:. We call these the ®-monoidal co-category
model structure and the ®-multiple co-category model structure, respectively.

Definition 3.2.2.13. The co-categories Mon® and Multsof ®-monoidal co-categories and
®-multiple co-categories, and strong monoidal functors, are the co-categories associated to
the simplicial model categories (Set )ox, and (SetZ)fmggn, respectively. Since these model
categories are enriched in marked simplicial sets by Remark they also define
(c0,2)-categories MONZ and MULTE.

Definition 3.2.2.14. If M is a generalized ®-co-operad, we write MonZ™" for the full sub-
category of CoCart(M) spanned by the M-monoidal co-categories, and Mult®™" for the full
subcategory spanned by the M-multiple co-categories.

Proposition 3.2.2.15. The identity is a right (marked simplicially enriched) Quillen functor
(Sety)o, — (Set}) pten and (Sety )om, — (SetX)mgn.

Proof. As [Lurll, Corollary 2.3.2.6]. O

Corollary 3.2.2.16. The inclusions Opd> — Opd®#" and Mon® — Mult> have left ad-
joints Opd®8" — Opd?® and Multy — MonZ.

Remark 3.2.2.17. There are obvious maps of categorical patterns D¢ — Mg and O —
ME™. These induce adjunctions
Opd? = Mon2,

Opd®8e" = Multy.

Definition 3.2.2.18. We write Mon®!™ and Mult®!®* for the full subcategories of Opd®
and Opd®8°" spanned by the ®-monoidal co-categories and ®-multiple co-categories, re-
spectively.

Definition 3.2.2.19. Let ® and ¥ be perfect operator categories, and let f: ® — ¥ be an
operator morphism. Then f induces a map of categorical patterns O¢ — Oy, and so an

adjunction
fi: Opd® = Opd? : f*.

Example 3.2.2.20. If ® is a perfect operator category, the operator morphism u® induces a
functor u®: Opd? — OpdL. We write U$ for the symmetric co-operad u? £®.
Remark 3.2.2.21. An operator morphism does not in general induce functors between oco-

categories of generalized co-operads.

Definition 3.2.2.22. Let ® be a perfect operator category, and let A be a clean atom in .
Then the inclusion j4: ®,, — ® induces a map of categorical patterns Déei — D%, and

so an adjunction
j!A: Opdz/ ABEN _y Opdz’gen: jA'*.

Conjecture 3.2.2.23. The functor j4* induced by a clean atom A in a perfect operator cat-
egory @ also has a right adjoint j4: Opd®&": Opd%/48e",
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Definition 3.2.2.24. By [Lur11, Proposition 6.3.1.14] the co-category Pr" of presentable co-
categories and colimit-preserving functors has a symmetric monoidal structure (Pr")®
such that a colimit-preserving functor € ® D — £ is equivalent to a functor € x D — € that

is colimit-preserving in each variable. If & is a perfect operator category, we write Mon™

for the co-category Alggs (u®*(Prl)®). We will refer to objects of MonZ™ as presentably
®-monoidal co-categories. These are ®-monoidal co-categories €® — L® such that C is a
presentable co-category and the operations ¢: €%/l ~ €? — € induced by active mor-
phisms ¢: I — * preserve colimits in each variable. Morphisms in Mon&* correspond to

strong monoidal functors F¥: €¥ — D¥ such that F: € — D preserves colimits.

3.2.3 Trivial Generalized co-Operads

Definition 3.2.3.1. Let M be a generalized ®-co-operad. Define the generalized ®-co-
operad My by the pullback diagram

™™
Myiy —— M

|

@ @
Lig — 4

This is the trivial generalized ®-oo-operad over M.

Definition 3.2.3.2. Let O%" denote the categorical pattern

(NL2

ints

(NLio)1, (NLR)2, {(S7)) = Line})-

is thus O&V-fibrant if X — £ is a co-

Remark 3.2.3.3. An object (X, S) of (Set}) e
int
Cartesian fibration, S is the set of coCartesian edges, and the Segal morphisms X; —

lim; A)eg?) X 4 are equivalences.

Under the equivalence between coCartesian fibrations and functors the co-category as-
sociated to the model category (Set; ) ouiv therefore corresponds to the full subcategory of
Fun(£2,, Cat) spanned by the functors that are right Kan extensions along the inclusion

v®: G® — LP . Thus we have proved the following:

Lemma 3.2.3.4. The co-category associated to the model category (Set} ) ouiv is equivalent
to Fun(G®, Caty).

The obvious map of categorical patterns O — O%™ then induces an adjoint pair of
functors
2 : Fun(9®, Caty,) = Opd&sen: 4P~

int
fibrant objects, the left adjoint > sends a functor §® — Cate, to its right Kan extension to
LE — Cate, then to the composite & — L2, — L£P, where & — LP, is the associated co-
Cartesian fibration. In particular, if M is a generalized ®-co-operad, then My is 'yfb’y;“DM,
and the natural map My, — M is the adjunction morphism.
Taking the (oo, 2)-categories associated to the categorical patterns into account, we get

the following:

Since composition with the inclusion £, — £ takes O%V-fibrant objects to D% -
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Proposition 3.2.3.5. Let F: §® — Cats be a functor, and let ¥ — G? be the associated
coCartesian fibration. If M is a generalized ®-co-operad let Mg, denote the pullback

of M along G® — £?. Then there is a natural equivalence between Algfpr(M) and the

coCart

full subcategory Fungo" (F, Mgjob) of Funge (I, Mgep) spanned by functors that preserve
coCartesian arrows. In particular, if O is a ®-co-operad, then

Alg%F(O®) ~ Fun(F(x),0).

Corollary 3.2.3.6. Let F: §® — Cat be a functor, and let ¥ — G® be the associated co-
Cartesian fibration. Given a morphism of generalized ®-co-operads M — N there is a
natural equivalence between A].g$!q> £/n(M) and the full subcategory Fung\?;irt(? , Mgiop ) of
Funy,, (&, Mgop) spanned by functors that preserve coCartesian arrows. In particular, if

0% — P¥ is a morphism of ®-co-operads, then
Alg%F/?@ (0%®) ~ Fungp(F(x*),0).

Proof. Apply Proposition 3.2.3.5to identify the fibre in the pullback square

Alg%)F/N(M) - Algff’lf (M)

|

Algj’?F(N).

*

3.2.4 Monoids and Category Objects

Definition 3.2.4.1. Let ® be a perfect operator category. Suppose M is a small generalized
P-co-operad and C an co-category with small limits. An M-monoid object in € is a functor
F: M — Csuch that its restriction F|y,, is a right Kan extension of F|y, along the inclusion
M, < Myiy. Write Mnd3y; () for the full subcategory of Fun(M, €) spanned by the M-
monoid objects. When M is £? we refer to £®-monoids as just ®-monoids and write
Mnd®(€) for Mnd%s (€).

Definition 3.2.4.2. Let ® be a perfect operator category. Suppose M is a small generalized
P-oo-operad and C is an co-category with small limits. An M-category object in € is a functor
F: M — € such that its restriction F|y,, is a right Kan extension of Fly,,, along the
inclusion Mgigp, < Myiy. Write Cat(C) for the full subcategory of Fun(M, €) spanned by

the M-category objects. When M is £L® we refer to £®-category objects as just ®-category
objects and write Cat®(€) for Cat(s (C).

Definition 3.2.4.3. Let ® be a perfect operator category. A Segal ®-space is a P-category
object in the co-category 8 of spaces. We write Seg® for the co-category Catfcp (8) of Segal
P-spaces.

Example 3.2.4.4. Segal O(n)-spaces are precisely O,-spaces as defined in
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Proposition 3.2.4.5. Suppose C is an co-category with small limits, and denote the pullback
of the Cartesian symmetric monoidal structure on C to a ®-monoidal structure by €* —
L%, Then for any generalized ®-co-operad M we have Algy (€*) ~ Mndy(€).

Proof. As [Lurl1) Proposition 2.4.2.5]. O

Proposition 3.2.4.6. Let M be a ®-multiple co-category. We have equivalences MonZ™" ~
Mnd$ (Cato,) and Mult®™ ~ Cat$ (Cate, ).

Proof. We can identify Mon®™ with the full subcategory of the co-category of coCartesian
fibrations over M spanned by the M-monoidal co-categories. Under the equivalence be-
tween coCartesian fibrations over M and functors M — Cat,, these correspond precisely
to those functors satisfying the condition for a monoid object. Similarly, the double co-
categories correspond to the category objects. O

Proposition 3.2.4.7. Let ® be a perfect operator category and suppose M is a generalized

(]
®-co-operad. Pullback along M — uPM gives an equivalence Mong™M ~ Mong ™. In

. . Ful
particular, we have an equivalence Mon2 ~ Mone, ©.

Proof. Using Proposition 3.2.4.6|we have a sequence of equivalences

Mon%™ = Mndjy(Cateo) =~ Algy (Catyy) =~ Alg, e, (Cat;)

D,uPM
o~ Mnd]iq)M(Catoo) ~ Mon," .

3.2.5 Filtered Colimits of co-Operads

Colimits of (generalized) ®-co-operads are in general difficult to describe explicitly. How-
ever, we will now show that filtered colimits can be computed in Cate.:

Lemma 3.2.5.1. Let g be a diagram in Opd® or Opd®8®", and let Q be a colimit of g com-
posed with the forgetful functor to Cate; there is a canonical map Q — £L®. IfQ — L®isa
(generalized) ®-co-operad, then this is the colimit of 4.

Proof. By Example the object @ — L% is the colimit of the diagram obtained
by composing g with the inclusion to CoCart(£®, £2)). But by Remark the oco-
categories Opd> and Opd28*" are localizations of CoCart(£®,£2,), so the colimit of g
is obtained by localizing the colimit in CoCart(£®, £L,). Thus if this colimit is already
a (generalized) ®-oco-operad, it is also the colimit in the full subcategory of (generalized)

P-co-operads. ]
Lemma 3.2.5.2. The forgetful functors Opd®, Opd®8" — Cat,, preserve filtered colimits.

Proof. Let p be a filtered diagram in Opd® or Opd#®", and let P be a colimit of the di-
agram obtained by composing p with the forgetful functor to Cat,. By Lemma to
prove that P — £L® is the colimit of the diagram p it suffices to show that P — £% is a
(generalized) ®-co-operad.

In other words, we must show that P, considered as an object of CoCart(L‘D,Li‘ﬁt), is
local with respect to the generating J3-anodyne maps, where 8 is the categorical pattern
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Do or OF". Compact objects in CoCart(£®, L) are detected in Cats (since the right
adjoint to the forgetful functor, which sends an co-category € to C x £L®? — L®, clearly
preserves colimits). It is therefore clear from Definition[2.1.12.6|that for each generating -
anodyne map f: A — Bboth A and B are compact objects in CoCart(£?®, £2)). It follows

int
that in the commutative diagram

Map(B, P) —— colim, Map(B, p(«))

Map(A, P) —— colim, Map(A, p(«))

the horizontal maps are equivalences, since p is a filtered diagram. The right vertical map
is also an equivalence, since p(«) is a (generalized) ®-co-operad for all a. Thus the left
vertical morphism must also be an equivalence, and so P is local with respect to f. In other
words, P is a (generalized) ®-co-operad, as required. ]

3.2.6 Wreath Products

Definition 3.2.6.1. Suppose ® and Y are perfect operator categories. Let W: £¥ x £® —
L@ be the functor that sends (], I) to I((])e)) and a morphism (¢: | -+ J',¢: I - I')
to the morphism I((])e|y)) = I'((J')ie|r) corresponding to the morphism I((])icj;) —
T(I'((])iejr)) = TI'((K;)) (where K; = T]"if i € [I'| C |TI'| and  otherwise) determined
by ¢: I — I'"and J; — Kg(;) being either ¢ or the unique morphism to *, according to
whether ¢(i) € |I'| or not.

Definition 3.2.6.2. Suppose ® and Y are perfect operator categories, and suppose X €
(Seti)o, and Y € (Set))o,. Then we define Y X € (Set}) to be the product Y x X,

regarded as a marked simplicial set over £ via

Oy

Yx X — oY x @ pre
Theorem 3.2.6.3 (Barwick, [Bar13, Theorem 9.6]). The functor
L (SetX)D‘Y X (SetX)ch — (SetX)D‘Y@

is a left Quillen functor in each variable.

Remark 3.2.6.4. Theorem is proved by applying [Lurll} Proposition B.2.9], since
W gives a morphism of categorical patterns Oy X O¢ — Ow,p. This is not the case if we
consider generalized co-operads however, and so this result does not obviously generalize
to this setting.

Consequently, ¢ induces a functor of co-categories
1: Opd} x Opd® — Opd}®®,

with right adjoints
Alg" 1 (Opd? )P x Opd}*® — Opd?,
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Alg®¥®: (Opd3)°P x Opd'® — Opdy,
with respect to the two variables. In other words, if 0% is a ®-co-operad, P¥ is a ¥-oco-
operad, and Q0% isa ¥ d-co-operad, then we have canonical equivalences

Alg‘gﬁgfo@(g@) Algd. (Alg;."'?(29)),

Algy i (97) = Algy. (Algg:"(97)).
Lemma 3.2.6.5. The underlying co-category of the ¥-co-operad Algq) Q%) can be iden-
tified with Alg. (i52%), and the underlying co-category of the ®-co-operad Alg‘Y 1P ()
with Algw (759%).

Proof. Considering * = £% — L£® as an object of (Set} )o,, (wWhose fibrant replacement is
given by £2) we see that
%1 0% = ig, 0%

as functors (Set} )o, — (Sety) If € is the underlying co-category of Algggg“yqu(Q@), we

thus have equivalences

Oy

¢~ Alg’ (AlgW?‘D(Q@)):Algﬁg(Q% Alg“’?q’( 9) = Algd. (i5%0%).

Similarly P ¢ % = jyP%, which gives the underlying co-category of AIgY F®(Q9) in the
same way. O

Theorem(3.2.6.3|thus gives a “universal property” for the wreath product of co-operads.

Proposition 3.2.6.6 (Barwick, [Bar13, Proposition 9.3]). Suppose F: & — ®and G: ¥/ —
¥ are operator morphisms, O is a ®’-co-operad and P? is a ¥'-c0-operad. There is a

natural equivalence
(G { F>1(0® Zj)®) ~ G!O® ! F!j)®.

Definition 3.2.6.7. If O® and P® are F-co-operads, we write 0% @ P for uy " (O 2 P).

This is the Boardman-Vogt tensor product of [F-co-operads; it is proved in [Lurll, §2.2.5]
that this extends to a symmetric monoidal structure on Opd®.

Corollary 3.2.6.8. Suppose ® and Y are perfect operator categories. Then we have a natu-
ral equivalence Ug,q, ~ Uy ® Ug.

Proof. By definition U§ ® U =~ uy " (U 1 US). Now Proposition 3.2.6.6| gives an equiva-
lence
WG UG) = T L)y (67 1£9) = uF (L) = U =

Corollary 3.2.6.9 (Barwick, [Bar13, Proposition 11.5]). There are equivalences U (n) = ES.

Proof. Combining [Lurl1} Proposition 4.1.2.10] and [Lur11, Example 5.1.0.7] gives an equiv-
alence u‘% o~ IE?. Now Corollary 3.2.6.8/and [Lur11, Theorem 5.1.2.2] give equivalences

u@

o) = (U%)m ~ (]E?)@)” ~ IE;?. O
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Definition 3.2.6.10. An operator morphism f: ® — ¥ between perfect operator categories
is étale if the induced functor

fi: Opdg, — (OpdY) 1o

is an equivalence. We say a perfect operator category & is étale if the unique operator
morphism u®: ® — F is étale, i.e. induces an equivalence Opd® = (OpdE) Sz

Theorem 3.2.6.11 (Lurie). O is an étale operator category.
Proof. Combine [Lurl11| Proposition 4.1.2.10] and [Lurll, Theorem 6.1.1.10]. O
Conjecture 3.2.6.12. The operator categories O(n) are étale for all n.

In other words, the co-category Opdg(”) of O(n)-co-operads should be equivalent to
the co-category (OpdX,) spe of symmetric co-operads over Ej. This may well follow from
the results of [Lurll, §5.1.2], or variants thereof, but we will not consider this further here.

3.2.7 Colimits of Algebras

Ideally we would like to prove that colimits of algebras exist by generalizing Lurie’s theory
of operadic colimits and operadic Kan extensions from symmetric co-operads to general
oo-operads, but unfortunately it is not obvious how to carry out such a generalization. In
the next section we will summarize the construction for non-symmetric co-operads, where
trivial variants of Lurie’s proofs work. Here, we restrict ourselves to what we can deduce
from Lurie’s results using adjunctions.

We first consider the symmetric case, i.e. the existence of colimits in the co-category
Algp. o= (€¥) where € is an O®-monoidal co-category and P® is a symmetric co-operad
over the symmetric co-operad O%. For this we need slight generalizations of the results of
[Lurll) §3.2.3]. We first consider the case of sifted colimits:

Lemma 3.2.7.1 ([Lurl1, Lemma 3.2.3.7]). Suppose K is a sifted simplicial set and €® — 0%
is an O®-monoidal co-category that is compatible with K-indexed colimits. Then for every
morphism ¢: X — Y in O the associated functor ¢: € — C} preserves K-indexed
colimits.

Proposition 3.2.7.2. Suppose K is a sifted simplicial set and ¥ — 0% is an O®-monoidal
oco-category that is compatible with K-indexed colimits. Then for any morphism p: M —
0% of generalized symmetric co-operads, we have:

(i) The co-category Funge (M, €¥) admits K-indexed colimits.

(i) A map K* — Funge (M, %) is a colimit diagram if and only if for every X € M the
®

induced diagram K* — Gp (x) 182 colimit diagram.

(iti) The full subcategory Algh, /0= (C¥) of Fungs (M, €%) is stable under K-indexed colim-
its.

&

(iv) A map K> — Funge (M, €?) is a colimit diagram if and only if, for every X € O a1

d
) an
Y € My, the induced diagram K> — €% is a colimit diagram.
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(v) The restriction functor Algf/[ /02 (C¥) — Funo% (M, 6‘%)) detects K-indexed colim-
its.
Proof. Sifted simplicial sets are weakly contractible by [Lur09a, Proposition 5.5.8.7] so (i)-

(iii) follow from Theorem [2.1.13.1) (which is implicit in the proof of [Lurll, Proposition
3.2.3.1]). Then (iv) and (v) follow as in the proof [Lurl1} Proposition 3.2.3.1]. O

Lemma 3.2.7.3. Suppose C¥ is an O®-monoidal co-category and p: M — 0% is a morphism
of generalized symmetric co-operads. Then the forgetful functor

Tt Alghy 00 (€%) — Algy 0. (€9) o Funge (M), €)
is conservative.

Proof. The co-category Algh, /0= (C¥) is a full subcategory of Fung= (M, C®). Therefore a
map of algebras f: A — B is an equivalence in Alg% /0= (€?) if and only if it is an equiva-
lence in Fung= (M, C¥). Applying Proposition to AP-indexed colimits, we see that a
morphism f: A — B in Fungs (M, €¥) is an equivalence if and only if fx: A(X) — B(X)
is an equivalence in € for all X € M. Thus equivalences are detected after restricting to
Miriy- 0

Corollary 3.2.7.4. Suppose €% is an O“-monoidal co-category compatible with small col-
imits, and P — 0% is a morphism of symmetric co-operads. Then the adjunction

Tpe | Alg];gv 100 (CF) = Alghe 00 (€F): The
is monadic.

Proof. We showed that the functor 7;, is conservative in Lemma [3.2.7.3, and that it pre-
serves sifted colimits in Proposition3.2.7.2| The adjunction Tpe ; - 77, is therefore monadic

by Theorem O

Corollary 3.2.7.5. Suppose €% is an O®-monoidal co-category compatible with small col-
imits and P® — 0% is a morphism of symmetric co-operads. Then Alg}.. /02 (€C%) has all

small colimits. Moreover, if C is presentable, so is Alg]gl;—G /0% (€9).

Proof. Apply Lemma[2.1.9.6/and Proposition to the monadic adjunction Tpe | - 7.
t

Corollary 3.2.7.6. Let @ be a perfect operator category, and suppose C is a Ug-monoidal
co-category co £at1ble with small colimits. If M is a generalized ®-co- operad then the
0o- category Alg) (u®*€%) has small colimits. Moreover, if C is presentable, then so is

Algh (u®*e®).

Proof. Let M denote the image of M under the left adjoint of the inclusion Opd®
Opd®8°", Then the result follows from Corollary [3.2.7.5/since we have an equivalence

Algy (u®*e¥) ~ AlgfW e (€%),
where L denotes the localization functor Opd®8® — Opd?. O
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Of course, since we in general have no way of accessing u?M, this does not give us
any description of the colimits in Algy, (u®*C®). Although every ®-monoidal co-category
is of the form u®*€ for some Ug-monoidal co-category € by Proposition it is also
unsatisfying that we need a hypothesis on € that we do not know how to express in terms
of u®*C.

3.2.8 The Algebra Fibration

We now construct an co-category of algebras for all ®-co-operads in a given ®-monoidal co-
category, and then consider its properties as we vary this ®-monoidal co-category. Since
we do not have a theory of operadic colimits for ®-co-operads, for most of our results
we are forced to only consider d-monoidal co-categories that are pulled back from Ug-
monoidal co-categories compatible with small colimits.

Definition 3.2.8.1. Let O be a ®-co-operad. By Remark [2.1.12.10| (Set{ )o,, is a marked
simplicial model category, so we have a functor

(Setx )f{l, — Sety

represented by O%. This restricts to a functor between the fibrant objects in these marked
simplicial model categories; forgetting from the marked simplicial enrichment down to
enrichment in simplicial sets (by forgetting the unmarked 1-simplices) and taking nerves
we get a functor

(Opd®)°P — Caty,;

this sends a non-symmetric co-operad P® to Algg. (0%). We define
Alg®(0%) — Opd®

to be a Cartesian fibration corresponding to this functor. If V¥ is a Ug-monoidal co-
category we will abbreviate Alg® (u®*V?) to Alg® (V).

Remark 3.2.8.2. Similarly, if 0% is a ®-co-operad and P® is a P-co-operad over O, we can
define a relative algebra fibration Alg%@@(?@) — (Opd?®) 9e whose fibre at 9® — 0% is

Algg)%/o®(?®)-
Moreover, if p: M — L?is a generalized ®-co-operad and N is a generalized ®-co-
operad over M we can define Alg‘}’M(N) — (Opd®8&™) /5 with fibre Algg n(N) over Q —

M. If O¥ is a ®-o0-operad we abbreviate Algc/DM( p*O%) to Alg%v[(o®).
Definition 3.2.8.3. For O® a P-co-operad, let

Alg’(cI;iv (0%) — Opdi’;

be the pullback of Alg®(O%) along the functor YPy®* from Opd? to itself that sends P?

to P . The natural maps Tps : P&, — P¥ then induce a functor

™1 Alg®(0%) — Algy (09).
Remark 3.2.8.4. Similarly, if P® — 0% is a morphism of ®-co-operads, we can define

Algc/I)o@@/triV(O@) as the pullback of Alg%oE (0%) = (Opd?®) e along the functor that sends
Q¥ — 0% to Q% — 0%,

triv
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Lemma 3.2.8.5. Suppose V¥ is a U3 -monoidal co-category compatible with small colimits.
Then the projection Algq)(\?(@) — Opdz is both Cartesian and coCartesian.

Proof. By [Lur09a, Corollary 5.2.2.5] it suffices to prove that for each f: O — P% in
Opd2 the map f*: Algg. (V®) — Algf. (V®) has a left adjoint. This follows from [Lurl1,
Corollary 3.1.3.4] after passing to the equivalent co-categories of relative algebras for IF-co-
operads. O

Lemma 3.2.8.6. Suppose V¥ is a U3 -monoidal co-category compatible with small colimits.
Then the functor T* has a left adjoint

T Algp (VF) — Alg®(V¥)
relative to Opd?.

Proof. By [Lurll, Proposition 8.3.2.6] it suffices to prove that T* admits fibrewise left ad-
joints, which follows from [Lurll, Corollary 3.1.3.4] after passing to the equivalent co-
categories of relative algebras for [F-co-operads, and that T* preserves Cartesian arrows,
which is clear since it is the functor associated to a natural transformation between the
corresponding functors to Catc. O

Lemma 3.2.8.7. The functor Alg?i) (V®): (Opd2)°P — Cat,, takes colimits in Opd? to
limits.

Proof. For any categorical pattern I3, the product
Set{ x (Set)p — (Set{)p

is a left Quillen bifunctor by [Lurll, Remark B.2.5]. Thus the induced functor of co-
categories preserves colimits in each variable. In particular, the tensor functor

Cate x Opd® — Opd?

preserves colimits in each variable. Now Alg?i) (-) is defined as a right adjoint to this, so
for any co-category C we have

Mapc,, (€, Algg;lima oz (P9)) = Mapgy, g0 (€ X CO‘IXim 0y, P%)
~ Mapg, g (colim(€ x OF), P?)
o o
o~ liDrCnMapOpdg(G x 09, P9)
~ limMapc, (€, Algg. (P))
~ Mapc,,, (€, lim Algg: (P9)).

Thus Alg? . op (P¥) = lim, Algg;@ (P9). O

Proposition 3.2.8.8. Suppose V¥ is a Ug-monoidal co-category compatible with small col-
imits. Then Alg®(V?) admits small colimits.

78



Proof. By Lemma the fibration 77: Alg®(V®) — Opd? is coCartesian. Moreover, its
fibres have all colimits and the functors f; induced by morphisms f in Opd® preserve col-
imits, being left adjoints. Thus 7t satisfies the conditions of Lemma which implies
that Alg® (V®) has small colimits. O

Proposition 3.2.8.9. Let P® be a F-oo-operad and suppose V* is a P®-monoidal co-category
compatible with small colimits. Then the forgetful functor

T Alg]fgm (V®) — AlgIFZP@,triv (V®)

preserves filtered colimits.

Proof. Suppose ¢: J — Algp/FW (V¥) is a filtered diagram, sending & € J to
(02, Ay: OF — V¥).

Let O be the colimit of the non-symmetric co-operads Of and write f,: OF — O for the
canonical maps. Then the colimit A of ¢ in Alg .. (V¥) can be described as the colimit of

fa Ay In Algg@, /P (V¥). Since T4e preserves sifted colimits, we have

T"A ~ Coljim Too (fa)1Aa,

On the other hand, colim T* A, can be described as

; triv -
Colj1mfa,! Toz Aus

where &V denotes the map 0%, ., — 05, induced by f,.
To show that the natural map colim 7" A, — T*A is an equivalence, it suffices to show
that for each x € O the map

Coljim IV Aq(x) — co%im fa1An(x)

is an equivalence, where the colimits are now occurring in V. The functor £V is just a left
Kan extension, so the source of this map can be described as

li lim A
o o, AW

and from [Lurll, Proposition 3.1.1.16] and the definition of free algebras in terms of op-
eradic Kan extensions we know that the target can be described as

colim colim AZY(Y)
€l YE(OE)?}?

where we write AJ (Y) for the coCartesian pushforward of A,(Y) in V§ along the given
active map in P%.

We have functors J — Cate sending « to (04) /, and (07)3$, with natural transforma-
tions to the constant functor at V. Let J, X — J denote coCartesian fibrations associated
to these functors, then by Proposition the map we are interested in is the map on
colimits induced by the obvious functor § — X. It therefore suffices to prove that this
functor is cofinal.
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By [Lur(9a, Theorem 4.1.3.1] (“Quillen’s Theorem A” for co-categories) it suffices to
show that for each Y € X, the co-category Jy, is weakly contractible. We will show that this
co-category is in fact filtered. To see this we must prove that given a diagram p: K — gy,
where K is a finite simplicial set, there exists an extension 7: K> — Jy, of p.

Since J is filtered, the composite K — J,, extends to K> — J,,/; let B be the image of the
cone point co. Choosing a coCartesian lift along the maps to 8, we may therefore suppose
that p factors through p’: K — ((O?)act)g!(y) //x Where ¢: @ — B. On the other hand, the

composite K = Jy; = ((0%)act) f,v//x corresponds to a diagram K® — 03,. Since filtered

colimits of symmetric oo-operads are computed in Cat,, by Lemma[3.2.5.2} this map factors
through 07, for some 1, giving a map K — ((OF )act)y’//x- Since this co-category has a
final object, there is an obvious extension §: K — (O'Qy@,act)Y’ //x- Now observe that there
must exist some ¢ with maps y — J, B — J such that the pushforwards of j|x and p’ agree.
Then the pushforward of § induces the desired extension K* — Jy,. O

Corollary 3.2.8.10. Suppose V¥ is a Ug-monoidal co-category compatible with small col-
imits. Then the forgetful functor *: Alg® (V) — Alg?;v(\@) preserves filtered colimits.

Proof. We can identify Alg®(V®) with the pullback of Alg" N (V®) along u®: Opd® —

(OpdE) Jug, and similarly Alg? (V®) is the pullback of Alg", N iy (V?)- Since u? is colimit-
preserving, it is easy to see that this follows from Proposition|3.2.8.9 O

Next we observe that the co-category Alg®(0®) is functorial in O%:

Definition 3.2.8.11. Since the model category (Set} )o,, is enriched in marked simplicial
sets, the enriched Yoneda functor

9: (Sety)a x (Sety)o, — Sety

sending (0%, P®) to Alg. (P?) induces a functor of co-categories (Opd®)°P x Opd2 —
Cateo. Let AlgffJ — Opd® x (Opd®)°P be a Cartesian fibration corresponding to this func-
tor.

The fibre of Algfz) at 0% in the second component is Alg®(0%). Thus the composite
Alggf) — (Opd2)°P with projection to the second factor is a Cartesian fibration correspond-
ing to a functor Opd> — Cat., that sends 0% to Alg®(0®). Thus we see that Alg®(0%) is
functorial in O%.

Definition 3.2.8.12. Let Alg® — Opd® be a coCartesian fibration corresponding to the
functor 0% — Alg®(0®).

Now we show that the algebra fibration is compatible with products of ®-co-operads:

Proposition 3.2.8.13. Alg®(-) is lax monoidal with respect to the Cartesian product of
non-symmetric co-operads.

Proof. Observe that § is lax monoidal w1th re d?ect to the Cartesian product of marked
simplicial sets over £®. This induces an ((Opd% )P x Opd®)*-monoid in Cat, and so a

Cartesian fibration (Algzl';)X — (((Opd2)°P x Opd®)*)°P. Projecting to the second factor
gives a Cartesian fibration that corresponds to a monoid (Opd®)* — Catw, and so a lax

monoidal functor (Opd®)* — CatX. This shows that Alg®(-) is a lax monoidal functor.
O
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This construction gives an “external product”
X: Alg®(0%) x Alg®(P?) — Alg® (0% x o PP),
which sends an A®-algebra A in 0¥ and a B¥-algebra B in P to the fibre product

AX vq>B
A% XL<1>'B® —L 0% XL@afP@.

When 7V is Cartesian monoidal, we can equivalently work with the analogous monoid
fibration:

Definition 3.2.8.14. Suppose V is an co-category with finite products. Let Mon®(V) —
Opd? be the Cartesian fibration with fibre Mong. (V) at 0% € Opd?. This is equivalent to
Alg®(V*) over Opd?.

Proposition 3.2.8.15. Suppose V is an co-category with finite products. Then the natural
symmetric monoidal structure on Alg‘b(\?x) is Cartesian.

Proof. By [Lurll, Corollary 2.4.1.8] it suffices to prove that the unit for this monoidal struc-
ture is the final object, and for each pair of objects A, B the canonical maps

A~AR*x<+— ARB—>+*®B~B

exhibit A ® B as a product of A and B. The equivalence Alg®(V*) = Mon®(V) takes the
lax monoidal structure on Alg® (-) to the natural lax monoidal structure on Mon® (). Sup-
pose given ®-c0-operads 0¥, P¥, and Q¥ and monoids A € Mong’x(\?), B € Mong,’@ V),
and C € Mond. (V). If u: VxV — V is the Cartesian product functor, the natural
transformation from p to the projections on the two factors of V x V induce morphisms
BX C — B,C. We must prove that the induced map

Map(A, BX C) — Map(A, B) x Map(A,C)

is an equivalence. It suffices to show that it induces an equivalence on fibres over each
(f,g) € Map(0%,P% X ;0 Q¥) ~ Map(0%®, P¥) x Map(0%®,Q%), i.e. we must show

Map(A, (f,g)"(BKC) — Map(A, f*B) x Map(A, f*C)

is an equivalence. It is clear that (f,¢)*(BK C) ~ A*(f*BX ¢*C), where A: 0% — 0% X ;o
0% is the diagonal map. It follows that the map in question is an equivalence, since maps
of O®-monoids are just natural transformations, and A*(f*B X ¢*C) is the product of the
functors f*B and g*C: 0% — V. O

3.3 Non-Symmetric co-Operads
In this section we discuss versions of some results from [Lurll] for non-symmetric co-

operads that we do not know how to extend to more general co-operads. We then use
these to say a bit more about algebra fibrations in this context.
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3.3.1 Monoidal Envelopes

Definition 3.3.1.1. Let Act(AP) be the full subcategory of Fun(A!, A°) spanned by the
active morphisms. If M is a generalized non-symmetric co-operad, we define Env(M) to
be the fibre product

M X Fun({0},AP) AC’E(AOP).

Proposition 3.3.1.2. The map Env(M) — A°P induced by evaluation at 1 in Al is a double
oo-category.

Proof. As [Lurll, Proposition 2.2.4.4]. O

Proposition 3.3.1.3. Suppose M is a generalized non-symmetric co-operad and N is a dou-
ble co-category. The inclusion M — Env(M) induces an equivalence

Fun® (Env(M),N) — Algd (N).

Proof. As [Lurll, Proposition 2.2.4.9]. O

Corollary 3.3.1.4. Suppose 0¥ is a non-symmetric co-operad. Then Env(0®) is a monoidal
co-category, and if €% is a monoidal co-category then

Fun® (Env(0%), %) ~ Alg{. (%).

Proof. The only object of A that admits an active map from [0] is [0], hence for any general-
ized non-symmetric co-operad M we have Env (M) =~ Mg In particular Env(0% ) = *,

so the result follows from Proposition 3.3.1.2land Proposition3.3.1.3 O

Definition 3.3.1.5. If O is a non-symmetric co-operad, the monoidal co-category Env(0%)
is the monoidal envelope of 0. This gives a monoidal structure on the subcategory 0%, of

0% determined by the active morphisms. We denote this tensor product on 0%, by .

3.3.2 Operadic Colimits

Definition 3.3.2.1. Suppose g: 0¥ — AP is a non-symmetric co-operad. Given a diagram
p: K — 05 we write 055 1= 0 X o= (Oy)p/. A diagram p: K* — O3, is a weak operadic

. . . . . t t . . .
colimit diagram if the induced map 03, — 05y isa categorical equivalence

A diagram p: K> — 02, is an operadic colimit diagram if the composite functors

K — 0%, =% 02

act act
> ® X@—} ®
K" — Oact Oact

are weak operadic colimit diagrams for all X € 0%.

Remark 3.3.2.2. By [Lur09a, Proposition 2.1.2.1], the map 037 — 077 in the definition of
weak operadic colimits is always a left fibration, hence it is a categorical equivalence if and
only if it is a trivial Kan fibration.
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Proposition 3.3.2.3. Let O® be a non-symmetric co-operad, and suppose given finitely
many operadic colimit diagrams p;: K> — 0%, i = 0,...,n. Let K = [];K;, and let p
be the composite

act*

KD — 1—]:KD — HO% ~ EIIV O®)[n] —) O®
Then p is an operadic colimit diagram.

Proof. As [Lurll, Proposition 3.1.1.8]. O

Definition 3.3.2.4. Suppose V¥ — AP is a monoidal co-category. If K is a simplicial set,
we say that V® is compatible with K-indexed colimits if

(1) the co-category V[ 1] has K-indexed colimits (hence so does V® HV and ¢, pre-
serves them for any inert map ¢)

(2) for all (active) maps ¢: [n] — [m] in A°P, the map

o [TV =V = Vi,

[m]
preserves K-indexed colimits separately in each variable

Lemma 3.3.2.5. Suppose K is a sifted simplicial set, and V¥ — A°P is a monoidal oco-
category that is compatible with K-indexed colimits. Then ¢;: \7% — Vﬁl} preserves K-

indexed colimits for all ¢ in A°P.

Proof. As[Lurll, Lemma 3.2.3.7]. O

Proposition 3.3.2.6. Let V¥ be a monoidal co-category, and let j: K> — \7[8;1] be a diagram.

Then p is a weak operadic colimit diagram if and only if the composite

K> = Ve, =V

is a colimit diagram, where r is the unique active map [m] — [1].

Proof. This follows as in the proof of [Lurl1, Proposition 3.1.1.6]. O

Corollary 3.3.2.7. Let V¥ be a monoidal co-category, and let p: K* — Vﬁd be a diagram.

Then p is an operadic colimit diagram if and only if for every object Y € V® with image
[n] in A°P the composites

K> — \7% V[@ZW} e

® Y@ ® r
K>—>\7[ ] V[n+m]—>\7

are colimit diagrams in V, where r is the unique active map [n + m| — [1].

Proposition 3.3.2.8. Let q: 0¥ — A°P be a non-symmetric co-operad, and suppose given
amap ii: A x K> — OF; write h; := Iy ko, i = 0,1. Suppose that

act/

(a) For every vertex x of K”, the restriction /|1, {x} 1s a g-coCartesian edge of 0%,
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(b) The composite map
Al x {0} 5 Al x K* 25 0@ Ly pop
is an equivalence in A°P.

Then hy is a weak operadic colimit diagram if and only if ; is a weak operadic colimit
diagram. Moreover, if 0% is a monoidal co-category, then h is an operadic colimit diagram
if and only if hy is an operadic colimit diagram.

Proof. As [Lurll} Proposition 3.1.1.15] ]

Corollary 3.3.2.9. Let C® and D® be monoidal co-categories compatible with small colim-
its, and suppose F¥: €¥ — D is a strong monoidal functor such that F: € — D preserves
colimits. Then composition with F preserves operadic colimit diagrams.

Proof. Suppose p: K> — €% is an operadic colimit diagram. We wish to show that the
composite map K* — D is also an operadic colimit diagram. By Proposition [3.3.2.8 we
may assume that p lands in a fibre Gf?n]. We now apply Corollary 3.3.2.7|to conclude that it

suffices to show that the composites

K> —es -2 oo I

[m] [m] [n+m]

Y-
X% pe Iy

® ®
K" — ¢, — D .

[m] [m]
are colimit diagrams. Observe that the functors (- @ Y) and (Y & —) are equivalently
given by m(r(-) & Y) and m (Y & r1(-)), where m: [2] — [1] is the unique active map.
Since m, preserves colimits in each variable in both €% and D, it suffices to show that

L4

K> —= DY =D

[m]

is a colimit diagram. But we have a commutative diagram

i
C® D
[m] m]
4 "
¢ D
so this is true since K* — 6%31} — Cis a colimit diagram and F preserves colimits. O

Proposition 3.3.2.10. Let g: €¥ — A°P be a monoidal co-category compatible with K-
indexed colimits for some simplicial set K. Suppose given a diagram p: K> — €% that
sends the cone point co to an object in G%. Let §: K — C® be a coCartesian lift of p along
the active maps to [1]. Then p is an operadic colimit diagram if and only if 7 is a colimit
diagram. In particular, given a diagram p: K> — C&, there exists an operadic colimit

diagram p: K> — C2, extending p that sends oo to an object of Gﬁ].

Proof. As [Lurll, Proposition 3.1.1.20]. O

84



3.3.3 Operadic Kan Extensions

In this section we work in slightly more generality than for the corresponding results in
[Lurll] — the proof of Lurie’s existence result for operadic Kan extensions can also be used
to construct operadic Kan extensions along a restricted class of morphisms of generalized
non-symmetric co-operads that we will now define:

Definition 3.3.3.1. Let C be an co-category. A C-family of (generalized) non-symmetric oo-
operads is a categorical fibration 71: 0% — A°P x € such that:

(i) Forc € €, x € 0P, and a an inert morphism in A°P from the image of x, there exists a
coCartesian morphism x — y over «a in OY.

(i) Forx € O withimage [n] € AP let p,: Kiy — O be a coCartesian lift of K, — AP
(or consider a lift of 9‘[?1] , — AP for a generalized non-symmetric co-operad). Then

Py is a rt-limit diagram.
(iii) For each ¢ € €, the induced map OY — AP is a (generalized) non-symmetric co-

operad.

A Al-family will also be referred to as a correspondence of (generalized) non-symmetric co-
operads.

Definition 3.3.3.2. A Al-family of generalized non-symmetric co-operads M — A% x Al
has the Kan extension property if given B € M x o1 {1} and coCartesian morphisms B — B;
over the inert maps [n] — [1], the induced map (Mact X1 {0}) /8 — TTi(Mact X a1 {0}) /5,
is a categorical equivalence.

Lemma 3.3.3.3.
(i) Every Al-family of non-symmetric co-operads has the Kan extension property.

(ii) Suppose F: A — B is a morphism of generalized non-symmetric co-operads such
that A is a Kan complex and mpA g — 70Bg) is an injection. Then the associated
correspondence M — A°P x Al has the Kan extension property.

Proof. (i) is clear, so we suppose the hypothesis of (ii) holds. Given B € B, choose co-
Cartesian maps B — B; and B — Bj(;;1) along the inert maps [1] — [1] and [n] — [0].
These induce an equivalence

(Aact)/B =~ (-Aact)/Bm X (‘Aact)/Bl e X (‘Aact)/BrHl (‘AaCt) /B(1171)n N

But the only active map to [0] is the identity, so (Aact)/x is (Ajo))/x for X € B This is
contractible if Ay is a Kan complex and there’s only one component that hits X. O

Definition 3.3.3.4. Let M — A° x Al be a correspondence of generalized non-symmetric
oco-operads from A to B satisfying the Kan extension property, let O® be a non-symmetric
co-operad, and let F: M — O% be a map of generalized non-symmetric co-operads. The
map F is an operadic left Kan extension of F = F| if for every B € By the composite map

F
((Mact>/B XM\A)D — (J\/[/B)D — M = 0%
is an operadic colimit diagram.
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Theorem 3.3.3.5.

(i) Suppose given a Al-family of generalized non-symmetric co-operads M — AP x Al
satisfying the Kan extension property, a non-symmetric co-operad O® and a commu-
tative diagram of generalized non-symmetric co-operad family maps

My {0} —— 0%

-

M AP,

Then there exists an operadic left Kan extension f of f if and only if for every B in
M X a1 {1}, the diagram

(Mact) /5 % a1 {0} = M x 1 {0} 5 0%
can be extended to an operadic colimit diagram lifting

((Mact)/B XAl {0})l> - M — Aop.

(ii) Suppose given a A"-family of generalized non-symmetric co-operads M — A x A"
with n > 1 such that all sub-Al!-families have the Kan extension property, a non-
symmetric co-operad 0% and a commutative diagram of generalized non-symmetric
co-operad family maps

MxAnAch‘)@

|

M AP

such that the restriction of f to M x s A{%1} is an operadic left Kan extension of
flotx yu g0y Then there exists a morphism f: M — 0% extending f.

Proof. As [Lurll, Theorem 3.1.2.3]. O

3.3.4 Free Algebras

Let A and B be generalized non-symmetric co-operads, let O be a non-symmetric oco-
operad, and let i: A — B be a map of generalized non-symmetric co-operads. Then i
induces by composition a functor i*: Algh(0%) — AlgD(0%). In this section we will
prove that when 0% is a monoidal co-category compatible with small colimits and i has
the Kan extension property, then this has a left adjoint i, given by forming free algebras:

Definition 3.3.4.1. Let A and B be generalized non-symmetric co-operads, let O% be a
non-symmetric co-operad, and let i: A — B be a map of generalized non-symmetric co-
operads with the Kan extension property. Suppose A € Alg9(0%), B € Algh(0%), and
¢: A — i*Bis a map of A-algebras in 0. For b € By, let (Aact) /6 := A X5 (Bact) /5. Then
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A and B induce maps &, B: (Aact)p — Oy and ¢ determines a natural transformation

i:« — B. The map B clearly extends to B: (Aact) /s — (Ose) /B(p)- Since the projection
(O5et) /Br) — Oy X A% (AGR) /() (Where b lies over [n] € AP) is a right fibration, we
can lift 77 to an essentially unique 7: & — B (over A°P). We say that ¢ exhibits B as a free
B-algebra generated by A if for every b € By the map & determines an operadic g-colimit
diagram (Aact)% — 9%,

Remark 3.3.4.2. The map ¢: A — i*B above determines a map
H: (A XA gy B — 0% x AL
Choose a factorization of H as
1 H/ H// ® 1
H(.AXA)HAX{l}‘B——)M—)O XA,

where H' is a categorical equivalence and M is an co-category. The composite map M —
AP x Al exhibits M as a correspondence of non-symmetric co-operads. Then the map ¢
exhibits B as a free B-algebra generated by A if and only if the composite M — 0% is an
operadic left Kan extension.

Proposition 3.3.4.3. Suppose ¢: A — i*B exhibits B as a free B-algebra in O generated
by A. Then for every B’ € Algg (0%) composition with ¢ induces a homotopy equivalence

Map, 49 (02 (B, B') = Map 0 (o) (A4, i°B).
Proof. As [Lurll} Proposition 3.1.3.2]. 0

Proposition 3.3.4.4. Suppose A € Alg2(0®). Then there exists a free B-algebra B gener-
ated by A if and only if for every b € B, the induced map

A
(‘Aact)/b — -Aact — O®
can be extended to an operadic colimit diagram lying over

(-Aact)ib — fBac’c — Aop

act*

Proof. As [Lurll, Proposition 3.1.3.3]. O

Corollary 3.3.4.5. Let O® be a non-symmetric co-operad, and suppose i: A — B is a map
of generalized non-symmetric co-operads with the Kan extension property. The functor
i*: Algh (0%) — AlgQ(0®) admits a left adjoint i, provided that for every A-algebra A in
0% and every b € B,, the diagram

A
(-Aact)/b — Aact — 0%
can be extended to an operadic colimit diagram lying over
(\Aact)ib — Bact — Agg'

Proof. As [Lurll, Corollary 3.1.3.4]. O
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Combining this with Proposition 3.3.2.10 gives the following;:

Theorem 3.3.4.6. Suppose C® is a monoidal co-category compatible with x-small colimits
for some uncountable regular cardinal x, and i: A — B is a map of generalized non-
symmetric co-operads satisfying the Kan extension property, with A and B essentially «-
small. Then the functor i*: Algs (€%?) — Alg9(€®) admits a left adjoint i.

Lemma 3.3.4.7. Suppose C% and D® are monoidal co-categories compatible with small
colimits, and let F¥: €% — D® be a strong monoidal functor such that F: € — D preserves
colimits. Then the induced functor

FP: Algn(€%) — Alg (D)

preserves free algebras, i.e. for all maps of generalized non-symmetric co-operads f: N —
M with the Kan extension property the natural map fiF® — F®f, (adjoint to F¥ —
F2f*fi ~ f*F?f)) is an equivalence.

Proof. This follows immediately from Corollary|3.3.2.9 O
Suppose M is a generalized non-symmetric co-operad such that the inclusion
Tyt Myiy = M

has the Kan extension property; by Lemmathis is true if Mg is a Kan complex. Then
we can give a more explicit description of the left adjoint (7). Recall that by Proposi-
tion if 0% is a non-symmetric co-operad then we have Alg,  (0%) ~ Fun(M, 0).
We can therefore regard (Ty): as a functor

Fun(Mp), 0) — AlgH(0%).

Definition 3.3.4.8. For [n] € A° and x € My, let PN be the full subcategory of My X
M, of morphisms y — x over the active map [n] — [1].

Suppose C¥ is a monoidal co-category and F: My — Gﬁ’] is a functor. Let F be the

associated Myiy-algebra in C¥. We have a canonical map h: (P%n x Al — M, a natural
transformation from 3335},1 — My — M to the constant functor at x. Since ¥ — A°P
is coCartesian, from F o h we get a coCartesian natural transformation h from a functor
g: PN — G% to the constant functor at F(x). We let Py . (F) denote a colimit of g, if it
exists.

Proposition 3.3.4.9. Suppose C¥ is a monoidal co-category compatible with x-small colim-
its, and M is a k-small generalized non-symmetric co-operad such that 7 satisfies the Kan
extension property. Suppose moreover that A is an M-algebra in € and F: Mj;; — (3‘[% is

a functor. Then a map F — (7y)*A is adjoint to an equivalence Ty,F — A if and only if
for every x € M) the maps Py . (F) — A(x) exhibit A(x) as a coproduct

[ Ph.(F) = A(x)
[n]eAop

Proof. As [Lurll, Proposition 3.1.3.11]. O
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3.3.5 Colimits of Algebras in Monoidal co-Categories

In this subsection we show that colimits exist in the co-categories Alg8® (€®) for all small
non-symmetric co-operads O when €% is a monoidal co-category compatible with small
colimits. We first consider the case of sifted colimits:

Lemma 3.3.5.1. Suppose K is a sifted simplicial set and €¢® — A°P is a monoidal oco-
category that is compatible with K-indexed colimits. Then for every ¢: [n] — [m] in AP
the associated functor ¢, : G% — G([?;Z] preserves K-indexed colimits.

Proof. As[Lurll, Lemma 3.2.3.7]. O

Proposition 3.3.5.2. Suppose K is a sifted simplicial set and €% — AP is a monoidal
co-category that is compatible with K-indexed colimits. Then for any generalized non-
symmetric co-operad p: M — A°P, we have:

(i) The co-category Funaer (M, €®) admits K-indexed colimits.

(i) A map K* — Funaer (M, %) is a colimit diagram if and only if for every X € M the
induced diagram K* — (3?( x)isa colimit diagram.

(iti) The full subcategory AlgS(€%) of Funaer (M, €%) is stable under K-indexed colimits.

(iv) A map K* — Funaer (M, %) is a colimit diagram if and only if, for every X € My,

the induced diagram K* — Cpisa colimit diagram.

(v) The restriction functor Alg%(@‘g) — Fun(My, 6%) detects K-indexed colimits.

Proof. Sifted simplicial sets are weakly contractible by [Lur(9a, Proposition 5.5.8.7] so (i)-
(iii) follow from Theorem [2.1.13.1| (which is implicit in the proof of [Lurll, Proposition
3.2.3.1]). Then (iv) and (v) follow as in the proof [Lur11, Proposition 3.2.3.1]. O

We now use this to that show the adjunction 7y, - 75, is monadic; we first check T}, is
conservative:

Lemma 3.3.5.3. Suppose M is a generalized non-symmetric co-operad and €% is a monoidal
co-category. Then the forgetful functor

The: AlgR(€F) — Algyy  (€%) ~ Fun(Mjy), €)
is conservative.

Proof. The co-category Alg%(C%) is a full subcategory of Funaer (M, €). Therefore a map
of algebras f: A — B is an equivalence in Al %((‘3‘@) if and only if it is an equivalence in
Funpaer (M, €¥). Applying Proposition to AY-indexed colimits, we see that a mor-
phism f: A — B in Funae (M, %) is an equivalence if and only if fx: A(X) — B(X) is
an equivalence in €% for all X € M. Thus equivalences are detected after restricting to
Miriy- O
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Corollary 3.3.5.4. Suppose C¥ is a monoidal co-category compatible with small colimits,
and M is a small generalized non-symmetric co-operad such that T satisfies the Kan ex-
tension property. Then the adjunction

(Ta0)r: Algly (CF) = AlgH(€%): (Ty)”

is monadic.

Proof. We showed that the functor 7}; is conservative in Lemma [3.3.5.3} and that it pre-
serves sifted colimits in Proposition(3.3.5.2} The adjunction (7y): 4 Ty is therefore monadic
by [Lurll, Theorem 6.2.2.5]. O

Corollary 3.3.5.5. Suppose €% is a monoidal co-category compatible with small colimits
and M is a small generalized non-symmetric co-operad such that T satisfies the Kan ex-
tension property. Then Algﬁ(@.@) has all small colimits. Moreover, if C is presentable, so
is AlgH (C®).

Proof. Apply Lemma [2.1.9.6/and Proposition to the monadic adjunction 7, 4 7.
O

Proposition 3.3.5.6. Let M be a generalized non-symmetric co-operad such that T satisfies
the Kan extension property, and let C* and D® be monoidal co-categories compatible with
small colimits. Suppose F¥: ¥ — D® is a strong monoidal functor such that F: ¢ — D
preserves colimits. Then the induced functor

FP: Algn(€7) — Alg (D)

preserves colimits.

Proof. Write F2™ for the induced functor Algg\)/[triv (€®) — Algg(\)/Etriv (D®). Under the equiv-
alences Algg?/[mv(G@) ~ Fun(Mp, €) and Algg[mv(®®) o~ Fun(Jv[m,@) this corresponds to
composition with F, and so preserves colimits. Clearly 7;;.F® ~ F,"V 7} . Since 7} detects

sifted colimits, it follows that F, preserves sifted colimits. To prove that it preserves all
colimits, it remains to prove F. also preserves finite coproducts.

Since F¥ is strong monoidal, by Lemma the functor FY preserves free algebras,
ie. Fomy ~ TM,IFf@’t“V. Therefore F, preseves colimits of free algebras. Let A and B
be objects of Algyy(€%) and let A, and B, be free resolutions of A and B. Then we have
natural equivalences

FP(AILB) ~ F®(|As 1 Ba|) = [F¥ (AL 11 B,)| = [F¥(Al) LLFZ (B,))|
~ |F7(Aa)[TTEZ (Ba)| = E2(|Aa|) ITEZ(|Ba]) = F2(A) ILES(B),

so F? does indeed preserve coproducts. O

Proposition 3.3.5.7. Let ¥ and D® be presentably monoidal co-categories and suppose
F?®: €® — D® is a strong monoidal functor such that the underlying functor F: ¢ — D
preserves colimits. Let G: D — € be a right adjoint of F. Then there exists a lax monoidal
functor G®: D® — ¥ extending G such that for any small non-symmetric co-operad 0%
we have an adjunction

FZ: Algg. (C¥) = Algd. (D) : GL.
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Proof. By Proposition 3.3.5.6/the functor FY is colimit-preserving, and by Corollary [3.3.5.5
these co-categories of O%-algebras are presentable. It follows by Theorem [2.1.7.10| that F¥
has a right adjoint

Ree: Algh. (D®) — Algh. ().

Moreover, since FY is natural in O so is R, by [Lur09a, Corollary 5.2.2.5]. Taking the
underlying spaces of the co-categories of algebras, we see that R_) induces a natural trans-
formation p: Map(-, D¥) — Map(—, €®) of functors (Opd2)°P — 8.

Since D is presentable, it is the union of its full subcategories D* of xk-compact objects,
and the co-categories D* are all small —i.e. D is the colimit of a (large) diagram of small
co-categories D" indexed by cardinals «. Similarly, if we write Dy’ for the full subcategory
of D¥ of objects X € Dfi] whose components X; € D,i = 1,...,n lie in D¥, then D¥ is the
union of the small co-categories DY. The co-categories Dy are non-symmetric co-operads,
though not necessarily monoidal co-categories.

Applying Rype to the inclusion Dy — D gives compatible maps G¢': DY — C%.
Combining these we get a map G¥: D® — €% from the colimit D®, which is clearly a lax
monoidal functor (since each inert map in D® lies in some DY).

Since every map 0¥ — D¥ where 0% is a small non-symmetric co-operad factors
through DY for some x, we see that p is given by composition with G¥. Moreover, the func-
tor R(_) must also be given by composition with G¥, since Algg® (D®) is the co-category
associated to the simplicial space Map(0® ® A®, D).

It remains to show that G® is indeed a lax monoidal extension of G. This follows
from taking 0% to be the trivial non-symmetric oo-operad A%: then Algggpt(e(@) ~ C

and Alggop(®®) ~ D and under these identifications F® corresponds to F and G¥ to
int

the functor G(Ef]. Thus G and G% are both right adjoint to F and so must be equivalent. [

Definition 3.3.5.8. Suppose V¥ is a monoidal co-category. A unit for V¥ is an initial object
of Alg®,, (V®).

Proposition 3.3.5.9. If V* is a monoidal co-category, then V¥ has a unit AP — V®.

Proof. As [Lurll, Proposition 3.2.1.8]. O

3.3.6 Approximations of co-Operads

In this subsection we use Lurie’s theory of approximations to give a criterion for a map
to be the operadic localization of a generalized non-symmetric co-operad. Here we write
L: OpdQ8™ — Opd? for the left adjoint to the inclusion OpdS < Opd 28",

Definition 3.3.6.1. Suppose M is a generalized non-symmetric co-operad, 0% is a non-
symmetric co-operad, and f: M — 0% is a fibration of generalized non-symmetric co-
operads. Then f is an approximation if for all C € M and a: X — f(C) active in O there
exists an f-Cartesian morphism &: X — C lifting &, and a weak approximation if given
CeManda: X — f(C) an arbitrary morphism in 0%, the full subcategory of

[
My %oz, Ox//5(c)
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corresponding to pairs (f: C' — C,y: X — f(C’)) with v inert is weakly contractible.
More generally, a map f: M — 0% is a (weak) approximation if it factors as a composition
mLow Lo

where f’ is an equivalence of generalized non-symmetric co-operads and f” is a categorical
tibration that is a (weak) approximation.

Proposition 3.3.6.2. An approximation is a weak approximation.

Proof. As[Lurll, Lemma 2.3.3.10]. O

Proposition 3.3.6.3. A fibration of generalized non-symmetric co-operads f: M — 0%,
where 0% is a non-symmetric co-operad, is a weak approximation if and only if for every
object C € M and every active morphism a: X — f(C) in 0%, the co-category

M,c x X

/¢ %oz, X}

is weakly contractible.

Proof. As [Lurll, Proposition 2.3.3.11]. O

Proposition 3.3.6.4. Let f: M — 0% be a fibration of generalized non-symmetric oco-
operads, where 0% is a non-symmetric co-operad. If Oﬁ] is a Kan complex, then f is a

weak approximation if and only if f is an approximation.
Proof. As [Lurl1, Corollary 2.3.3.17]. O

Theorem 3.3.6.5. Suppose f: M — 0% is a weak approximation such that fj;;: My — O%
is a categorical equivalence. Then for any non-symmetric co-operad P%, the induced map

fri Alggs (P7) — Algg(P%)
is an equivalence.

Proof. As [Lurll, Theorem 2.3.3.23]. O

Corollary 3.3.6.6. Suppose f: M — 0% is a weak approximation such that fj) is a cate-
gorical equivalence. Then the induced map of non-symmetric co-operads LM — 0% is an
equivalence.

Proposition 3.3.6.7. Suppose f: 0¥ — P® is a map of non-symmetric co-operads, and ‘J’ﬁ]

is a Kan complex. The commutative diagram

f*
AlgR. (8%) —— Algg. ()

Fun(fP® ,8) T Fun(O®

S 7 ay®)
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induces a natural transformation a: Tge ;o f["i] — f* o Tpe,. If @ induces an equivalence

Tos 1 f) A = f*Tps 1A where A is the constant functor 9’% — 8 with value *, then f is an

approximation.
Proof. As [Lurll} Proposition 2.3.4.8]. ]

Corollary 3.3.6.8. Let O® be a non-symmetric co-operad such that Oﬁ] is a Kan complex,

and let f: M — OF be a map of generalized non-symmetric co-operads such that the
functor fj): My — Oﬁ’] is an equivalence. Write A for the constant functor from M;) ~

O% to 8 with value *. If the natural map my 1A — f*T9=,A is an equivalence, then f
exhibits 0¥ as the operadic localization of M.

Proof. Applying Proposition 3.3.6.7| to the induced map f': LM — 0%, we see that this
map is an approximation and induces an equivalence LM} — O(ﬁ’]. By Theorem 3.3.6.5, it

follows that f’ is an equivalence.

Corollary 3.3.6.9. Let O® be a non-symmetric co-operad such that Oﬁ)] is a Kan complex,

and suppose f: M — 0% is a map of generalized non-symmetric co-operads such that
fo): Mpy — Oﬁ] is an equivalence. If the induced map (Mact) /x — (%) /» is cofinal for

all x € M) =~ Oy then f exhibits O as the operadic localization of M.

Proof. By Corollary [3.3.6.8]it suffices to show that the natural map of M-algebras Ty A —
f*Toe= 1A is an equivalence. Since Ty, detects equivalences by Lemma to see this it
suffices to show that for all x € Mj;; the map of spaces (T 1A)(x) — (To=,A)(x) is an
equivalence. Recalling the definition of an operadic Kan extension, we see that this is the
map

colim * — colim

(Mact) /x (Oit)/x

of colimits induced by (Mact)/x — (0%,)/x. If this map is cofinal, then the induced map

on colimits is an equivalence. O

Remark 3.3.6.10. The same argument shows that for any presentably monoidal co-category
V¥ the natural map Ty F — f*7ge,F is an equivalence for any functor F: My; — V. It
follows that Ty and Ty=, are given by the same monad on Fun(Mj;;, V), hence the oo-
categories of algebras Algl (V®) and Algd. (V) must be equivalent, since they are both
oco-categories of algebras for this monad. An alternative proof of Corollary (not
using the notion of approximation) results by embedding any small non-symmetric co-
operad P% in a presentably monoidal co-category P® and showing that Alg%(ﬂw) and
Algl, (P9) are the same subcategory of Algh (P?) ~ Alg. (P?).

3.3.7 More on the Algebra Fibration

Here we use the results of this section to say a bit more about algebra fibrations in the non-
symmetric case. First we observe that colimit-preserving strong monoidal functors induce
colimit-preserving functors on algebra fibrations:

Proposition 3.3.7.1. Let C® and D® be monoidal co-categories compatible with small col-
imits, and suppose F®: C¥ — DY is a strong monoidal functor such that F: ¢ — D pre-
serves colimits. Then F2: Alg®(€®) — Alg®(D®) preserves colimits.
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Proof. Since €® and D® are compatible with small colimits, the projections
Alg®(e®), Alg®(D®) — Opd?

are coCartesian fibrations by Lemma Thus a diagram in Alg®(D?®) is a colimit
diagram if and only if it is a relative colimit diagram whose projection to Opd? is a colimit
diagram.

It therefore suffices to prove that F, preserves coCartesian arrows and preserves colim-
its fibrewise. The former follows from Lemma and the latter we proved in Propo-
sition O

Our next goal is to prove that for algebras in monoidal co-categories the external prod-
uct X preserves colimits in each variable:

Lemma 3.3.7.2. Suppose €% and D¥ are monoidal co-categories compatible with small
colimits. Then the external product X preserves free algebras, i.e. given non-symmetric co-
operads O® and P?, algebras A € Alg. (C®) andB € AlgD. (D), and morphisms of non-
symmetric co-operads f: 0¥ — Q¥ and g: P® — R®, wehave AR ¢gB ~ (f x ¢)i(AXB)
in AlgD. 2o (€2 X pop DOP).

AP

Proof. This follows from considering operadic colimits in €% x pop D®. O

Proposition 3.3.7.3. Suppose €% and D® are monoidal co-categories compatible with small
colimits, and let O° and P® be non-symmetric co-operads and A € Alg. (€%) an O%-
algebra. Then

A IZ (—) : A].gé]?@a(g@) _> Alggxxﬁopﬂ)@(e(@ X&OP ®®)

preserves colimits.

Proof. First we consider the case of trival non-symmetric co-operads. Suppose A’ is an
O, -algebra. Then

AR -: Algd. (DY) — AlgQs

triv triv

® (G® X A0P ®®)

X AoP :Ptriv

clearly preserves colimits, since it is equivalent to the the functor

A,|o[§] X = Fun(fP%,@) — Fun((‘)ﬁ’] X fP[%,C‘Z x D).

Since we have 75, (AKX B) ~ 1 AKX 7B and 73, 4, detects sifted colimits, it follows that
A X - preserves sifted colimits.
Next we consider the case where A is a free algebra 1¢; A’ where A’ is an 0%

triv
in €. By Lemma 3.3.7.2lwe have
Te/!A/ X T@,[BI ~ T@X@,I(A/ X BI),

-algebra

so the functor 1¢ A X — preserves colimits of free algebras. Thus it must preserve all col-
imits, by monadicity.

Finally, suppose A, is a free resolution of A, and « — B, is any diagram. Then since X
preserves sifted colimits we have

A colim B, ~ |A.| X colim B, =~ | A4 X colim B, |.
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From the case of free algebras we then see that this is equivalent to
| colim(As X By)| =~ colim | A, X B, |.
But since X preserves sifted colimits in each variable, this is
colim(|As| X By) =~ colim(A X By ). O

Remark 3.3.7.4. The Cartesian product of non-symmetric co-operads does not preserve
colimits, so it is not possible for the external product A X (-) to preserve colimits as a
functor Alg®(D?) — Alg®(C® x pop D).

3.3.8 Modules

Here we briefly introduce a definition of modules over associative algebras, to motivate
our definition of correspondences between enriched co-categories. Our definition is a little
different from that used by Lurie, but we will not bother to compare them here.

Definition 3.3.8.1. For [n] in A°P the functor Homaer ([1],—) : A°P — Set satisfies the Segal
conditions. Let A°P[n] — A°P be an associated coGrothendieck fibration — then A°P[n] is
a double co-category. If ¢: [m] — [n] is a morphism in A°P, then there is clearly an induced
functor ¢: A°P[m]| — A°P[n].

Remark 3.3.8.2. The objects of A°P[n] can be described as sequences (i, ..., i) where 0 <
ip < i < --- < i < n. There is a unique morphism (i, ..., i) — (i4,(0),...,i4,(m)) over
every map ¢: [m| — [k] in A.

Definition 3.3.8.3. Let M be a generalized non-symmetric co-operad. A bimodule in M is a
A°P[1]-algebra in M. We write Bimod(M) := Alggopm (M) for the co-category of bimod-
ules in M. If M is a bimodule in M then A = diM and B = d;M are associative algebras in
M, and we say that M is an A-B-bimodule.

Remark 3.3.8.4. Let M: A°P[1] — M be a bimodule; then we see that M is determined by
an object M(0,1) € M with compatible actions of associative algebras M(0,0) on the left
and M(1,1) on the right.

Lemma 3.3.8.5. The projection (d},d3): Bimod (M) — AlgS,, (M) x AlgS., (M) is a Carte-
sian fibration.

Definition 3.3.8.6. If A, B are associative algebra objects in a generalized non-symmetric
co-operad M, we write Bimod 4 g(M) for the fibre of Bimod (M) at (A, B).

Definition 3.3.8.7. For [n] € AP, the inert maps [n| — [1], [0] determine a map of general-
ized non-symmetric co-operads «,,: A [n] := AP[1] Laep - - - aep A%P[1] — A°P[n]. We
say a A°P[n]-algebra X in a generalized non-symmetric co-operad M is a tensor product if X
is a left operadic Kan extension of its restriction «,, X, i.e. the natural map x,x,X — X is
an equivalence.

Remark 3.3.8.8. A A°P[2]-algebra X is a tensor product if and only if the map

colim ,,X(0,1,...,1,2) — X(0,2),

1] € AP
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where 1, is the unique active map [n] — [1], is an equivalence (because this copy of AP
is cofinal in the category of active maps to (0,2)). If M is a monoidal co-category this says
that X(0,2) is given by the bar construction |X(0,1) ® X(1,1)®* ® X(1,2)|, which is the
usual definition of the (derived) tensor product of modules.

Definition 3.3.8.9. Let BIMOD,, (M) be the full subcategory of AlgS,, i) (M) spanned by the
A°P[n]-algebras that are tensor products. Then BIMOD, (M) is a simplicial co-category.

Proposition 3.3.8.10. Suppose V¥ is a presentably monoidal co-category. Then for any
A(F [n]-algebra X in V¥ the adjunction morphism X — x}x,, X is an equivalence.

Proof. This is a special case of Corollary4.6.2.6} as the proof is rather complicated (although
slightly simpler than the general case), we will not prove this case separately. O

Corollary 3.3.8.11. Suppose V® is a presentably monoidal co-category. Then BIMOD, (V?)
is a double co-category — the double co-category of bimodules.

Remark 3.3.8.12. Given associative algebras A, B, C in V¥, looking at fibres the functor
d1: BIMOD,(V®) — BIMOD; (V¥) gives a tensor product functor

®p: Bimod4 5(V¥) x Bimodp c(V¥) — Bimod 4 c(V?).

The remaining structure of the double co-category BIMOD, (V®) shows that these relative
tensor products are coherently associative.

Definition 3.3.8.13. Suppose V¥ is a presentably monoidal co-category, and let A be an
associative algebra object in V®. Let Bimod 4 (V¥)® be the full subcategory of BIMOD, (V¥)
of objects over A € Alggop(\?@) ~ BIMODy(V?). This is a monoidal co-category — the
monoidal co-category of A-bimodules.

Definition 3.3.8.14. Let LM be the full subcategory of A°P[1] spanned by objects (0,...,0,1)
and (0,...,0). This is a double co-category. A left module in a generalized non-symmetric
co-operad M is an LM-algebra in M; we write LMod(M) := Alg?M(M) for the co-category
of left modules in M. The inclusion I: A°?P — LM that sends [n] to (1,...,1) is a morphism
of generalized non-symmetric co-operads. If M is a left module in M and A = [*M, then
we say that M is a left A-module.

Lemma 3.3.8.15. Let M be a generalized non-symmetric co-operad. The functor
I*: LMod (M) — Alg®., (M)

is a Cartesian fibration. We write LMod 4 (M) for the fibre of I* at A € AlgQ., (M) — this is
the co-category of left A-modules in M.

Definition 3.3.8.16. Let RM be the full subcategory of A°P[1] spanned by objects (0,1,...,1)
and (1,...,1). This is a double co-category. A right module in a generalized non-symmetric
co-operad M is an RM-algebra in M; we write RMod(M) := AlggM(M) for the co-category
of right modules in M. The inclusion r: A’ — RM that sends [n] to (0,...,0) is a
morphism of generalized non-symmetric co-operads. If M is a right module in M and
A = r*M, then we say that M is a right A-module.
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Lemma 3.3.8.17. Let M be a generalized non-symmetric co-operad. The functor
r*: RMod(M) — Alg®., (M)

is a Cartesian fibration. We write RMod 4 (M) for the fibre of r* at A € AlggOp (M) — this
is the co-category of right A-modules in M.
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Chapter 4

Enriched co-Categories

In this, the main chapter of this thesis, we introduce our theory of enriched co-categories.
In §4.Tjwe define these objects as algebras for certain non-symmetric co-operads and con-
struct an “algebraic” co-category of co-categories enriched in a fixed monoidal co-category
V using the oo-categories of algebras for these co-operads. Then in we construct the
correct co-category of V-co-categories by localizing this at the fully faithful and essentially
surjective functors; our main result here is that this is an accessible localization, given by
restricting to certain “complete” objects. contains some simple applications of our
setup. We next compare our co-categories of enriched co-categories to those coming from
model categories of enriched categories and Segal categories in where we also show
that iterated enrichment in spaces gives an co-category equivalent to that of complete n-
fold Segal spaces. In we study natural transformations and functor categories, and
construct an (oo, 2)-category of V-co-categories, and in we introduce correspondences
between V-co-categories.

4.1 Categorical Algebras

In this section we use the theory of generalized co-operads developed in Chapter 3| to
define categorical algebras and construct co-categories of these.

In we construct double co-categories Ay, where € is an co-category; we then de-
fine co-categories enriched in a monoidal co-category V to be Ay -algebras in V when X is a
space. Next, in we identify the non-symmetric co-operad associated to AY with that
arising from a certain simplicial multicategory. Then in §4.1.3|we use the algebra fibration
from §3.3.7|to construct “algebraic” co-categories of enriched co-categories. Finally in
we prove that co-categories enriched in spaces are equivalent to Segal spaces.

411 The Double co-Categories Agp

Here we introduce double co-categories Ag¥, observe some of their basic properties, and
define enriched co-categories to be algebras for these when C is a space.

Definition 4.1.1.1. Let i denote the inclusion {[0]} — A°P. Taking right Kan extensions
along i gives a functor i, : Cate — Fun(A°P, Cats). If € is an co-category we write Ay —
AP for a coCartesian fibration corresponding to the functor 7..C.
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Remark 4.1.1.2. If C is an co-category, then i,.C is the simplicial co-category with nth space
>+l face maps given by the appropriate projections, and degeneracies by the appropri-
ate diagonal maps.

Lemma 4.1.1.3. Let € be an co-category. The coCartesian fibration Ay’ — AP is a double
oo-category.

Proof. 1t is clear that i.C is a category object, hence A’ is a double co-category by Proposi-
tion[3.2.4.6 O

Definition 4.1.1.4. Let V® be a monoidal co-category. A categorical algebra in V¥, or V-
enriched oco-category, or V-co-category, with underlying space of objects X, is a A -algebra in
Ve,

Remark 4.1.1.5. This definition clearly does not require V¥ to be a monoidal co-category
— we can define co-categories with space of objects X enriched in any generalized non-
symmetric co-operad as AY -algebras. This gives an oo-categorical version of Leinster’s
notion of enrichment in an fe-multicategory [Lei02]. However, as there are technical ob-
stacles in the theory of co-operads to extending most of our results below beyond the case
of monoidal co-categories we will not consider this generalization here.

Definition 4.1.1.6. If C and D are V-co-categories with spaces of objects X and Y, a V-functor
F from C to D consists of a map of spaces f: X — Y and a map of A -algebras from € to
(A;p)*D, i.e. a natural transformation € — Do A;p of functors A;p — Ve,

Remark 4.1.1.7. The functor

AP : Caty, — Opd2&
(-) o0

is a right adjoint to the functor Opd2#™ — Cat,, that sends a generalized non-symmetric
oo-operad M to its fibre Mg at [0]: it is a composite of the right Kan extension func-
tor i,: Catee — Dbls, which is right adjoint to the fibre-at-[0] functor, and the inclusion

Dbl — Opdg’gen, right adjoint to the monoidal envelope functor, which preserves fibres

at [0] (cf. §3.3.1).

Proposition 4.1.1.8. The functor A(()f)) : Cato, — Opd2&™" preserves sifted colimits.

Proof. Suppose we have a sifted diagram of co-categories p: J — Cate with colimit €.
Since A’ is a generalized non-symmetric co-operad, by Lemma 3.2.5.1|it suffices to show
that A" is the colimit of A(;l(o_) in Cate. Now this composite functor
AP
Catoo — 2 Opd28e" —s Caty,

factors as .
Cats, - Fun(A°P, Cats) —» CoCart(A%P) L Cat.,,

where the rightmost functor g is the forgetful functor that sends a fibration &€ — AP to the

co-category &. Since the co-category CoCart(A°P) is the co-category associated to the model

category (Set—A‘r);BcoC}grt, it follows from Example 2.1.12.15| that g preserves colimits. It thus
AO

remains to prove that i, preserves sifted colimits. Colimits in functor categories are com-
puted pointwise, so to see this it suffices to show that for each [n] the composite functor
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Cato — Cato induced by composing with evaluation at [n] preserves sifted colimits. This
functor sends D to the product D*("+1), and so preserves sifted colimits by [Lur09a, Propo-
sition 5.5.8.6], since the Cartesian product of co-categories preserves colimits separately in
each variable. O

4.1.2 The co-Operad Associated to A‘;{p

By Corollary 3.2.2.16| there is aouniversal non-symmetric co-operad LA;}) receiving a map
from the double co-category AY . In this subsection we describe a concrete model for LAY
as a simplicial multicategory; this will allow us to conclude that the functor that sends X
to LAY preserves products.

Remark 4.1.2.1. Although it is obvious that the functor A(()f) preserves products, since it’s

a right adjoint by Remark it is not clear that the localization functor L: Opd2&™ —
Opd® preserves products (and this may well be false in general).

First we define simplicial categories D(€) that model AL, when € is a simplicial cate-
gory:
Definition 4.1.2.2. Given a simplicial category €, the simplicial category D(C) has objects
finite sequences (co, . .., ¢, ) of objects of C; morphisms are given by

m

D(e)(<00/---rcn)/ (dO/---/dm)) = []T[ [ ]l—ge(c(p(i)rdi)/
¢: (m|—(n| 1=

with the obvious composition maps induced by those in C.
Proposition 4.1.2.3. Suppose C is a fibrant simplicial category. Then:
(i) The projection ND(C) — NA®P is a coCartesian fibration.
(ii) The fibre ND(C)(o) is equivalent to NC.
(iii) There is a natural map ND(€) — Agk..
(iv) This map is an equivalence of co-categories.
Proof.

(i) It is clear that D(C) — A°P is a fibration in the model structure on simplicial cate-
gories; since N is a right Quillen functor, it follows that ND(€) — NACP is a categor-
ical fibration. It therefore suffices to check that ND(€) has coCartesian morphisms.
Given an object C = (co,...,¢,) in D(C) and a map ¢: [m] — [n] in A, let ¢, de-
note the obvious map C — C" = (cy(0), - - -, Cp(m)) in D(C). We apply the criterion of
[Lurll, Proposition 2.4.1.10] to see that ¢, is coCartesian in ND(€); thus we need to
show that for every X € D(C) over [k] € A°P the commutative diagram




is a homotopy Cartesian square of simplicial sets. Since the simplicial category € is
fibrant, so is D(€), hence the vertical maps are Kan fibrations. It therefore suffices
to show that the induced maps on fibres are equivalences, which is clear from the
definition of D(C).

(ii) We have a pullback diagram of simplicial categories

e D(C)

|

{0} —— A,

Since the simplicial nerve is a right adjoint, it follows that NC is the fibre of the map
of simplicial sets ND(€) — AP at [0]. Since this map is a coCartesian fibration, by
[Lur09a, Corollary 3.3.1.4] NC is also the homotopy fibre in the Joyal model structure.

(ili) By definition AL, corresponds to the right Kan extension i.NC of NC along the inclu-
sioni: {[0]} < A°P. The functor i, is right adjoint to the fibre-at-[0] functor i*, and
from (ii) we know that i*D(€) ~ NC. The adjunction i* - i, then gives the required
map D(€C) — A

(iv) By [Lur09a, Corollary 2.4.4.4] it suffices to show that for each [n] in A° the induced
map on fibres
O
(Nﬁ(e))[n] - (ANPG)[n}

is a categorical equivalence. As in (ii) we can identify the fibre (ND(€)), with N€*",
via the Segal maps, so by naturality we have a commutative diagram

(ND(C))p) — (A )

|

NGXH

Nexn ,
where all but the top horizontal map are known to be categorical equivalences. Hence
this must also be a categorical equivalence, by the 2-out-of-3 property. O

Definition 4.1.2.4. Let C be a simplicial category. The simplicial multicategory O¢ has
objects ob € x ob € and multimorphism spaces defined by

Oc((x0,y1), -+, (Xn—1,Yn); (Yo, xn)) =
C(yo,x0) X C(y1,x1) X -+ X C(Yu—-1,Xn-1) X C(Yn, Xn).

Composition is defined in the obvious way, using composition in €. Write Og for the
associated simplicial May-Thomason category over A°P, defined as in Remark(3.1.6.2

If C is a fibrant simplicial category, then O¢ is a fibrant simplicial multicategory in the

sense of Definition[3.2.1.15, and so NO§ is a non-symmetric co-operad by Lemma3.2.1.16
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The simplicial multicategory O is only a model for Ay, when NC is a space, but is
easier to define than the version that works more generally. Indeed there is not even a
natural map from D(€) to O¢ in general; however, we can construct one if € is a simplicial
groupoid. By Remark we may regard a simplicial groupoid € as a simplicial cat-
egory equipped with an involution i that sends a morphism to its inverse. Using this we
can define a functor D(€) — OF:

Definition 4.1.2.5. Suppose C is a simplicial groupoid. Let ®: D¢ — OF be the functor
sending an object (co, . ..,cu) of D(C) to ((co, 1), (¢1,¢2),...,(cn—1,¢n)) and given on mor-
phisms by applying i on the first factor and inserting identities into the factors that are
missing in D(C€) in the obvious way.

Theorem 4.1.2.6. Let C be a fibrant simplicial groupoid. Then the map
N®: ND(€) — NOg
exhibits NO§ as the operadic localization of ND(€).

Proof. By Corollary it suffices to show that for all (x,y) € € x € the induced map
g (ND(Clact) /(xy) — (N(Og)act) /(xy) i cofinal. We will prove that g is a categorical
equivalence; to see this we show that g is essentially surjective and induces equivalences
on mapping spaces.

We first observe that g is essentially surjective: an active morphism to (x,y) in Of is
determined by an object T = ((fo,51), (t1,52),. .., (tn—1,52)) and morphisms a: x — fo,
Bi:s1t = t1, ..., Puo1: Su—1 — ty—1, 7: Sy — y in C. Such a morphism is in the image of g
if and only if the B;’s are all identities. Since € is by assumption a simplicial groupoid all
morphisms in € are equivalences, and so the morphism

((to,s1),(s1,82), -+, (Sn—1,52)) — ((to,51), (t1,82), -, (tn—1,5n))

given by (id,id, B1,id, B2, . .., id) is an equivalence from an object in the image of g to T.
It remains to show that g is fully faithful. Given objects Z = (zo,...,z,) and Z' =
(zy, ..., z),) in D(C) we must show that for each active map ¢: [m]| — [n] in A°P the map

¢ / ¢ /
Mapype), ,, (2:Z') = Map(yps,  (8(2),8(2))
is an equivalence, where the superscripts denote the fibres over ¢ in A°P. Let a be the
unique active map [1] — [n] in A; then we can identify this as a map of homotopy fibres
from the commutative square

(0¢)?(8(2),8(2')) —— (0¢)*(8(2), (x,y)),

where the superscripts again denote the fibres of these spaces over maps in A°. To see
that our map of homotopy fibres is an equivalence it suffices to show that this diagram is
homotopy Cartesian.
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We have equivalences
D(G)‘P(Z,Z’) ~ HG(Z(P(Z) Z/
=0
D(C)(Z, (x,y)) ~ C’( x) X C(zn,y),
(08)7(8(2),8(Z")) = €(20, 2p(0)) X €(Zp(0) 41, Zp(0)+1) X == X C(Zg(1)—1,Zg(1)—1)
X 6(24,(1),21) X G(zﬁ,ch(l)) X X G(Z¢( )s me)
(O?)“(g(Z), (x,y)) = e(x/ZO) X 6(21/21) Xoeee X e(zﬂfllznfl) (Zﬂ/y)~

Under these equivalences our commutative square is the product of the squares

X ——— %

|

e(Z]',Z]') — G(Z]',Z]')
for j not in the image of ¢,

C(z0,2() X C(zn,z;,) — C(z0,x) X C(zpn,y)

(i,id) h h (i,id)

C(z(, z0) x C(zn,zp,) — €(x,20) X C(zp,Y),

and

G(Z(p(i),Z;) ES
(id,l-)‘ ‘
Clzp(),21) * (21, 2p()) — Clzp(i), Z9())
fori=1,...,m—1.
The first squares are obviously homotopy Cartesian, the second is homotopy Carte-

sian since the maps induced by the involution i are equivalences, and the last squares are
homotopy Cartesian since € is a simplicial groupoid. O

Corollary 4.1.2.7. Let X be a space and X a fibrant simplicial groupoid such that the Kan
complex NX is equivalent to X. Then the composite map A ~ ND(X) — NOY induces

an equivalence of non-symmetric co-operads LAY = NOY.
Corollary 4.1.2.8. L(A?f)) : 8 — Opd? preserves products.

Proof. Given spaces X and Y, there exist fibrant simplicial groupoids X and Y such that
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NX ~ X and NY ~ Y. Then by Corollary we have a commutative diagram

O (8] O
LAY, —— LAT X pop LAY

NO%?Xy —_— N(Og? X pop Of?)

where the vertical maps are equivalences. It is clear from the definition that Oy .y ~ Ox x
Oy, so the natural map O%Xy — Og? X A 0P Of? is a weak equivalence of fibrant simplicial
categories. By the 2-out-of-3 property the top horizontal map in the commutative square
is therefore an equivalence of co-categories. ]

4.1.3 The co-Category of Categorical Algebras
In this subsection we use the algebra fibration
Alg®(V®) — 0pd?

from §3.2.8| to define an co-category of categorical algebras, and then show that this has
various good properties.

Definition 4.1.3.1. Suppose V® is a monoidal co-category. The co-category Alggt(\?@) is
defined by the pullback square

AlgQ,(V9) —— Alg® (V)

T

8 Opd?,

Loy
where the lower horizontal map sends a space X to the non-symmetric co-operad LAY

associated to the generalized non-symmetric co-operad A . The objects of Alggt(V®) are
thus categorical algebras in V® and its 1-morphisms are V-functors as defined above. We
will refer to Alggt(\?‘@) as the co-category of categorical algebras.

Remark 4.1.3.2. Since V¥ is a monoidal co-category, and so in particular a non-symmetric

oo-operad, we could equivalently have defined Alggt(\?) using the analogue of the al-

gebra fibration over the base OpdQ8®", since there is natural equivalence Alggop (V¥) ~
X

Alg?&;p (V® ) .

Our next goal is to prove that the co-category Alggt(\?‘@) is presentable if V¥ is pre-
sentably monoidal; to do this we first introduce the co-category of graphs in V:

Definition 4.1.3.3. Let V® be a monoidal co-category. The co-category Graph}fo of V-graphs
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is defined by the pullback

Graph,, —— Algg, (V%)

|

S

Opd?.
LA Pleo

Thus the fibre of Graph!, at X € 8 is Fun(X x X, V).

Lemma 4.1.3.4. Suppose V is an accessible co-category. Then the co-category Graphfo is
accessible.

Proof. Let 5 — 8 be the Cartesian fibration associated to the functor § — Cat., sending X
to Fun(X, V). Then there is a pullback square

Graph! —— F

|

§ — 8

7

where the lower horizontal map is the diagonal functor, sending X to X x X.

The oco-category J is accessible, and the projection § — 8 is an accessible functor, by
Theorem Moreover, the functor A clearly preserves sifted colimits, and so is ac-
cesible. The pullback Graph!, is therefore accesible and the projection Graph), — 8 is an
accessible functor, by [Lur09a, Proposition 5.4.6.6]. O

Proposition 4.1.3.5. Suppose V¥ is a monoidal co-category compatible with small colimits.
Then Alggt(\?®) has all small colimits. Moreover, if V is presentable then so is Alg?at(\?@).

Proof. By Lemma [3.2.8.5, the fibration 7r: Alg®(V®) — Opd? is both Cartesian and co-
Cartesian, hence the same is true of its pullback p: Alggt(\?@) — 8. Moreover, the fibres

Algg(;(p(\?@) have all colimits by Corollary 3.3.5.5| and the functors f; induced by mor-
phisms f in 8 preserve colimits, being left adjoints. Thus p satisfies the conditions of
Lemma 2.1.5.10, which implies that Alg® (V¥) has small colimits.

Since the functor T*: Alg®(V®) — AlgD. (V®) preserves filtered colimits by Corol-
lary it is clear that so does its pullback U: Alggt(\?®) — Graph.. Moreover, the
pullback of the left adjoint 7y of T* gives a functor F: Graph!, — Alggt(V®) left adjoint to
U; this preserves compact objects by Lemma

Every object of Alg® (V¥) is a (sifted) colimit of objects in the image of 7i: AlgD. (V®) —
Alg®(V¥), hence every object of Alg® (V®) is a (sifted) colimit of objects in the image of
F. The oo-category Graph_ is accessible by Lemma suppose it is generated un-
der colimits by x-compact objects. Since F preserves colimits it follows that every object
of Alggt(\?®) is the colimit of objects that are the images of k-compact objects of Graph,
under F. As the functor F preserves x-compact objects, this means there is a small sub-

category of x-compact objects of Alggt(\?®) — namely the images of x-compact objects of
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Graphfo — such that every object of Alggt(\?®) is a colimit of objects in this co-category. In
other words, the co-category Alg® (V¥) is x-accessible. O

Now we show that Alg? (V®) is functorial in V¥

Definition 4.1.3.6. As in §3.2.8) let Alg0 — Opd x (O/p\d?o)Op be a Cartesian fibration
classifying the functor Alg?_ )(=)- Let Alggt, <, be the pullback

(8} O
Algcat,co Algco

—=_0,lax

8 x (Mon,, ) —— Opd2 x (Opd,,)°P.

Lemma 4.1.3.7. Alggt(\?®) is functorial in V*® with respect to lax monoidal functors.

/\O,l
Proof. The composite Alg?at’CO — (Mon,, aX)OP is a Cartesian fibration classifying a functor
(0]
0% — Alg_,(0%). O
Proposition 4.1.3.8. The restriction of Alggt(—) to the co-category MonQ™ of presentably
monoidal co-categories factors through the co-category Pr" of presentable co-categories and
colimit-preserving functors.

Proof. If V® is presentably monoidal, then Alg?at (V¥) is presentable by Proposition
Moreover, it follows by the same proof as that of Proposition|3.3.7.1|that a strong monoidal

functor F®: V¥ — W® such that P[% preserves colimits induces a colimit-preserving func-

tor Alg2 (V®) — Alg? (W?). O

Proposition 4.1.3.9. Alggt (-) is lax monoidal with respect to the Cartesian product of
monoidal co-categories.

Proof. The functor LAY is strong monoidal with respect to the Cartesian products of
) g p P

spaces and non-symmetric co-operads, by Corollary The result therefore follows
by the same proof as that of Proposition |3.2.8.13] ]

Proposition 4.1.3.10. Suppose V is an co-category with finite products. Then the natural
symmetric monoidal structure on Alggt(\?x) is Cartesian.

Proof. This follows from Proposition|3.2.8.15| since Alggt(\?x) is a full monoidal subcate-
gory of Alg®(VX). O

Proposition 4.1.3.11. Let V¥ be a monoidal co-category, and suppose that € is a categorical
algebra in V®. Then € X —: AlgQ, (W?) — Alg? (V¥ x no» W?) preserves colimits.

Proof. Since the Cartesian product of spaces preserves colimits in each variable, it suffices
to prove that C[X (-) preserves colimits fibrewise, and preserves coCartesian arrows. This

follows from Lemma 3.3.7.2and Proposition(3.3.7.3 O
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Remark 4.1.3.12. This is where we need to know that LA(()S preserves products, since the
Cartesian product of non-symmetric co-operads doesn’t preserve colimits in each variable.

Corollary 4.1.3.13. The functor Alggt(—) : MonQ™™ — Prl is lax monoidal with respect to
the tensor product of presentable co-categories.

0O,lax

Proof. We have constructed a lax monoidal functor Alggt(—): (1\//[0\nm' )< — Cat,.. By

———0,lax

Proposition 4.1.3.11/and Propositon [4.1.3.8, the composite (MonQ'™)® — (Mon,,  )* —
Cat,, factors through (Pr")®. O

Corollary 4.1.3.14. If V¥ is presentably monoidal, then Alggt(\?®) is tensored and coten-
sored over Alggt(S ).

Definition 4.1.3.15. If V¥ is a presentably monoidal co-category, C is a V-co-category, and X
is an §-co-category, then we denote their tensor and cotensor by X ® € and €%, respectively.

4.1.4 Categorical Algebras in Spaces

In this subsection we prove that the co-category AlggIt (8*) of categorical algebras in spaces
is equivalent to the co-category Seg® of Segal spaces.

Definition 4.1.4.1. Suppose V is an co-category with finite products. The Cartesian fibra-
tion MndQ, (V) — 8 is defined by pulling back Mnd® (V) — Opd? along L&(()f).

Remark 4.1.4.2. There is a natural equivalence over 8 between MndS, (V) and Alggt(vX )

cat

We can also define a Cartesian fibration Mon2 — 8 whose fibre at X is the oco-

category Mong’&;p of AYY-monoidal co-categories. Using the equivalence between func-
tors to § and left fibrations, we can identify Mnd%,(8) with the full subcategory LMon&!
of MonZQ* spanned by those A} -monoidal co-categories that are left fibrations.

Similarly, we can identify the co-category Seg® of Segal spaces with the full subcategory
LDbls, of Dbl spanned by the double co-categories that are left fibrations.

There is an obvious functor
p: LMonQ* — LDbl,,

given by composing a A -monoidal co-category C — A that is a left fibration with the
map AY — A°P, which is also a left fibration and a double co-category.

Proposition 4.1.4.3. This functor p: LMon2® — LDbl,, is an equivalence.
Proof. Let i denote the inclusion {[0]} < A°P. Then there is an adjunction
i*: Seg® = 8: iy,

and A is the object of LDbls, corresponding to i, X. Moreover, i* is a Cartesian fibration
by Lemma[2.1.6.4; if A € Seg?, a Cartesian arrow with target A over X — i*A is given by
taking the pullback of A — i,i* A along i, X — i,i*A.
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To prove that p is an equivalence, we must show that it is fully faithful and essentially
surjective. We thus have to prove that the map

Map \1on0cat (A,B) — Map; p,, _(p(A), p(B))

is an equivalence. Since the functor p clearly preserves Cartesian morphisms over §, it
suffices to show that the induced maps on fibres over f: i*p(A) — i*p(B) are equivalences.
But this is clear: on both sides the fibre at f can be identified with the space of those maps

over AP, from A to the pullback of B along A?p that preserve inert morphisms.

It remains to prove that p is essentially surjective. Suppose a: A — A°P is an object
of LDbl. The adjunction i* - i, induces a map h: A — &%[’O] ; this is equivalent to a left

fibration by Proposition 2.1.4.4{and so « is in the essential image of p. O

Corollary 4.1.4.4. The composite functor Alggt(S ) — Seg? is an equivalence.

Remark 4.1.4.5. It is easy to see that the Segal space corresponding to an 8-co-category C is
Map 4,0 (s+) ([e],©), cf. the more general discussion in i

4.2 The co-Category of Enriched co-Categories

Our goal in this section is to prove the first main result of this thesis: we can always lo-
calize the co-category of categorical algebras at the fully faithful and essentially surjective
functors by restricting to the full subcategory of complete objects.

In we define equivalences in enriched co-categories and study the classifying
space for equivalences in an enriched co-category; the complete enriched co-categories are
those whose classifying space of equivalences is equivalent to their underlying space of ob-
jects. Next we study three types of equivalences of V-co-categories: in we introduce
fully faithful and essentially surjective functors, in we consider the local equivalences
(those in the saturated class of a certain map) and finally in we introduce categorical
equivalences (those with an inverse up to natural equivalence). In we prove that for
co-categories enriched in a presentably monoidal co-category the fully faithful and essen-
tially surjective functors are the same as the local equivalences, hence the full subcategory
of complete objects gives the localization. In we extend this result to co-categories
enriched in a general large monoidal co- category by embedding this in a presentable co-
category in a larger universe. Finally in § we prove that the localized co-category
inherits the good functoriality properties of Alg

cat

4.2.1 Equivalences in Enriched co-Categories

In this subsection we study equivalences in enriched co-categories. In order to define these
we must first introduce trivial enriched co-categories:

Definition 4.2.1.1. Suppose V¥ is a monoidal co-category. By Proposition 3.3.5.9 V® has
a unit, i.e. an initial associative algebra object Iy: A — V. For any space X, the trivial
V-oo-category EY with objects X is given by the composite

AP — AP T PP,
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We will generally drop the V from the notation and just write Ex when the monoidal co-
category in question is obvious from the context. The V-co-categories Ex are functorial in
X. We abbreviate E" := Eyq__,; restricting to order-preserving maps between the sets
{0,...,n} (n=0,1,...) we then have a cosimplicial V-co-category E°.

The identity map AP — AP is the unique monoidal structure on the point *. This
is the unit for the Cartesian product of monoidal co-categories, and so for every monoidal
co-category V the co-category Alg® (V%) is tensored over Alg® (A), since Alg® (-) is
lax monoidal by Proposition[#.1.3.9] Clearly the only *-co-categories are of the form E} for
spaces X; we can identify the V-co-category EY, with the tensor E% ® Iy:

Lemma 4.2.1.2. For any monoidal co-category V¥ and space X, we have E} ~ E% ® Iy.
Moreover, if V¥ is presentably monoidal (so Alggt(\?®) is tensored over Alggt(sX ), then
E} ~ E3 ® Iy.

Proof. Considering the construction of the external product in Algo, we see that E5; ® Iy is
given by

E}’} X pop Iy: A(;(p X pop AP — AP X qop VE ~ VY,
We can factor this as

E;( XAopid idXAop Iy
S T

&())(p X AP A°P A°P X Aop A°P A°P x A\OP \7®,

which is clearly the same as EY,.
In the presentable case, we have

ES @Iy~ (Ex®I) @Iy ~Ex® (Is®Iy) ~ Ex ® Iy ~ EY,

since it is easy to see that the tensorings with Alg® (A°P) and Alg® (8*) are compatible.
U

Definition 4.2.1.3. Suppose € is a V-co-category. An equivalence in C is a V-functor E! — C.

Definition 4.2.1.4. Let C be a V-co-category. We write 1,€ := Map(E",C). Thus 1€ :=
Map(E!, C) is the space of equivalences in C.

Lemma 4.2.1.5. Let C: A’ — V¥ be a V-co-category. Then the map

1pC = MapA]ggt(W)(EO' €) — Mapg(*, X) ~ X

induced by the Cartesian fibration Alg®,(V®) — § is an equivalence.

Proof. It suffices to check that the homotopy fibres of this map are contractible. By [Lur09a,
Proposition 2.4.4.2] the homotopy fibre at a point p: * — X is

Ma g0, o) (7€),
which is contractible since the unit Iy is the initial associative algebra object of V. O

Definition 4.2.1.6. Let C be a V-co-category. The classifying space of equivalences 1C of C is
the geometric realization |1, C| of the simplicial space ,C := Map(E*, €).
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We regard (C as the “correct” space of objects of C, and by analogy with Rezk’s notion
of complete Segal space we say that an enriched co-category is complete if its underlying
space is the correct one:

Definition 4.2.1.7. A V-co-category C is complete if the natural map 1€ — (C is an equiva-
lence.

Our next goal is to prove that the simplicial space 1,C is always a groupoid object; we
prove this by showing that the cosimplicial object E*® satisfies the dual condition of being
a cogroupoid object:

Theorem 4.2.1.8. Let V¥ be a presentably monoidal co-category. Then the cosimplicial
object E® is a cogroupoid object.

Proof. We will show that EN I1g w E(NNy1y = EN*! is an equivalence; as the ordering of
the objects is arbitrary, by induction this will imply that E® is a cogroupoid object. Since
V¥ is presentably monoidal, Alg®, (V®) is tensored over Alg® (8%), and the tensoring is
colimit-preserving in each variable; if therefore suffices to prove this when V¢ is 8.

Under the equivalence Alggt(SX) ~ Seg9, the $-co-category EX clearly corresponds
to the Segal space i.X. If S is a set it follows that in the model category structure on
bisimplicial sets modelling Segal spaces, E° corresponds to 77* NJs where J is the ordinary
category with objects S and a unique morphism between any pair of objects, and 7r: A°P X
A°P — A°P is the projection onto the first factor.
is a Segal equivalence,/ 50 (since 77" is a left adjoint and thus preserves colimits) it suffices
to prove that Gy Il o GinnN+1) <> GN+1 is an inner anodyne morphism of simplicial sets.
To prove this we consider a series of nested filtrations of the simplices of Gx1. First we
must introduce some notation:

An n-simplex 0 of Gy1 can be described by a list ag - - - a, of elements a; € {0,..., N +
1}; it is non-degenerate if a; # a;,; for all i. If ¢ is a non-degenerate simplex, let () be
the number of times the sequence jumps between {0,..., N} and {N,N +1}.

Also let T(0) be the position of the first N 4 1 where the sequence jumps from {N, N +
1} to {0,..., N}; if there is no such jump let 7(0) = oo and let 7/(¢c) denote the position of
the first jump from {0, ..., N} to {N, N + 1}. Then define

o If t # oo, let S be the set of non-degenerate n-simplices ¢ in Gy such that f(c) = b,

T(0) = t,and a;41 # N. Let SL1 be the set of non-degenerate n-simplices in Gy.1
such that (c) =1, 7(0) = o0, T/(¢) = t,and a;_1 # N.

o If t # oo, let sz”t be the set of non-degenerate (n + 1)-simplices ¢ in Gy41 such that
B(c) = b, t(¢) = tand a;y; = N. Let Ty be the set of non-degenerate (1 + 1)-
simplices ¢ in Gy41 such that B(0) =1, 7(0) =00, T'(0) =t+1,and a; = N.

Define a filtration
Gy gy, Giunt1y =2 F0 € F1 S -+ € G

by letting F, be the subspace of Gn41 whose non-degenerate simplices are those of JFy
together with all the non-degenerate i-simplices for i < n and the (n + 1)-simplices in TS
and Ty for all b, t. Then Gn41 = U,, F» so to prove that Gy Ilg, Giv N1y <= GN1 s
inner anodyne it suffices to prove that the inclusions F,,_1 < J,, are inner anodyne.
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Next define a filtration

Sjnilzggg?ig...cg/gil:?n

by setting 3"2 to be the subspace of J), containing F,,_; together with the simplices in Si{t
and T foralli < b together with Skt and Tt for all t. To prove that the inclusions
F,-1 < F, are inner anodyne it suffces to prove that the inclusions F%~1 < F? are all
inner anodyne.

Finally define a filtration

gjzfl — g:'Z,I’l+1 g H:'ZJ’I C C 3:170 ‘r}'b

by settmg Fo! to be the subspace of F containing F%~! together with the simplices in S, b
and T}/ (as well as Sy and Ty if b = 1) for all j > t. To prove that the inclusions

Fo-1 < J? are inner anodyne it suffices to prove that the inclusions For=1 s gt are all
inner anodyne.

Now observe that (for b > 1) if o € TY then d;o € S and dio € Fot1 for i #t,and o
is uniquely determined by d;c. Thus we get a pushout diagram

n+1 n+1
U, eqge AT —— 11,0 &

g;rbl,t—l g’z,t

where we always have 0 < t < n 4 1. Thus the bottom horizontal map is inner anodyne.
The proof is similar when b = 1, expect that we must also consider the simplices in 55,
so we conclude that Gy Ll ™) GinN+1} — GN+1 is indeed inner anodyne. O

Remark 4.2.1.9. We can generalize this to the case of an arbitrary large monoidal oco-
category V¥ as follows: by [Lurll, Remark 6.3.1.8] there exists a presentably monoidal
structure on the (very large) presentable co-category P(V) of presheaves of large spaces on
V, such that the Yoneda embedding V — P(V) is strong monoidal. This induces a fully

faithful embedding Alg®, (V®) — Alggt( P(V)®); moreover, if X a small space then E?;(V)
is clearly the image of EY,. Thus if a diagram of E},’s is a colimit diagram in Kl\ggt(fﬁ(\?)@)
it must also be a colimit diagram in Alggt(V®) — in particular E3, is a cogroupoid object
in Alg2, (V%).

Corollary 4.2.1.10. The simplicial space (,C is a groupoid object in spaces for all V-co-
categories C.

Corollary 4.2.1.11. Let C be a V-co-category. The following are equivalent:
(i) Ciscomplete.
(ii) The natural map sp: 1€ — 11C is an equivalence.
(iii) The simplicial space 1, C is constant (i.e. for every map ¢: [n] — [m] in AP the in-

duced map 1,€ — 1,C is an equivalence).
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Proof. Since 8 is an co-topos, the groupoid object 1,C is effective (cf. [Lur09a, Corollary
6.1.3.20]). The result therefore follows from Lemma[2.1.10.4 O

We end this subsection by showing that several other reasonable definitions of an
equivalence in an enriched co-category are equivalent to the one we introduced above:

Definition 4.2.1.12. Suppose V is presentably monoidal, and let [1]y be the V-co-category
[1] ® Iy.

The inclusion [1]y — E3, corresponding to the map from 0 to 1 induces a map ;€ —
Map([1]y, €). The two inclusions of EY into [1]y and E}, then give a commutative triangle

1@ Map([1]y, €)

N

1pC X 1pC.

Lemma 4.2.1.13. The fibre of Map([1]y, €),,, at points x,y € 1€ is Map(I, C(x,y)).

Proof. The functor t: § — 'V given by tensoring with I is a strong monoidal colimit-
preserving functor, and therefore the induced map t,: Alg A% (8*) — Alg A%, (V¥) has

by Proposition a right adjoint, given by u, where u: V¥ — 8% is a canonical lax
monoidal structure on the functor Map(I,-).

Thus Map([1]v, C)xy =~ Map([1]s, u+C)y,y. Since [1]s is the free 8-co-category on the
graph having a single edge from 0 to 1 this is given by 1.C(x,y) ~ Map(I, C(x,y)). O

Definition 4.2.1.14. Suppose C is a V-co-category and x, y are objects of €. We denote the
subspace of Map(I,C(x,y)) consisting of the components that are in the image of 1Cy,
under the induced map on fibres in the diagram above by Map(I, C(x, ¥))eq-

Proposition 4.2.1.15. The map ¢;Cy,; — Map(I, C(x,y))eq is an equivalence.

Proof. Observe (by Proposition again) that it suffices to prove this for the 8-co-
category 1,C obtained by composing with the lax monoidal functor # ~ Map(I,-). Using
the identification of 8-co-categories with Segal spaces, this therefore follows from the cor-
responding statement in that setting. The latter is a consequence of [Rez01, Theorem 6.2],
since a map I — C(x,y) is a “homotopy equivalence” in the sense of [Rez01, §5.5] if and
only if it extends to a map from E;, by [Rez01, Proposition 11.1]) O

Proposition 4.2.1.16. Suppose C is a V-co-category and a: I — C(x,y) is a morphism in C.
Then the following are equivalent:

(i) « is an equivalence (i.e. it extends to a functor E! — C).
(ii) Forall z € (€, the composite map
C(y,z) = (LC(y,2)) = (E(x,y),C(y,2)) = C(x,2)

given by composing with « is an equivalence.
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(iii) For all z € 1€, the composite map
C(z,x) — (C(z,x),I) — (C(z,x),C(x,y)) — C(x,y)
given by composing with « is an equivalence.

Proof. We will show that (i) is equivalent to (ii); the proof that (i) is equivalent to (iii) is
similar.

Suppose (i) holds, and let &: E! — € be an equivalence extending a. Composing with
the inverse equivalence from y to x gives an inverse to composition with «, since the com-
posite map is composing with the composite x — y — x, which is the identity.

Now suppose (ii) holds. Without loss of generality, we may assume that V is pre-
sentably monoidal (by embedding in a presentably monoidal co-category of presheaves in
a larger universe, if necessary); then a map Ej, ~ t.E} — Cis adjoint to a map E} — u..C
where u: V — 8 is again the lax monoidal functor given by Map(I,—). Clearly if (ii) holds
for a then the analogous condition holds for a considered as a morphism in u,C. It thus
suffices to show that (ii) implies (i) in the case where V is §. We again use the equivalence
between §-co-categories and Segal spaces; the map « is clearly a “homotopy equivalence”
in the sense of [Rez01, §5.5], and so extends to a map from E! by [Rez01, Theorem 6.2]. [

4.2.2 Fully Faithful and Essentially Surjective Functors

In this subsection we introduce the notions of fully faithful and essentially surjective functors
between enriched co-categories, and prove their basic properties.

Definition 4.2.2.1. A V-functor is fully faithful if it is a Cartesian morphism in Alggt(\?)
with respect to the projection Alg® (V) — 8.

Lemma 4.2.2.2. A V-functor F: € — D is fully faithful if and only if the maps C(x,y) —
D(Fx, Fy) are equivalences in V for all x, y in £yC.

Proof. If f: X — 19D is a map of spaces, then a Cartesian morphism over f with target
D has source f*D = Do &;p ; in particular a Cartesian morphism induces equivalences

f*D(x,y) = D(f(x), f(y)) forall x,y € X.
Conversely, suppose F: € — D gives an equivalence on all mapping spaces. The func-
tor F factors as

e (wF)yp &,

where F” is Cartesian. The morphism F’ induces an equivalence on underlying spaces and
is given by equivalences C(x,y) — D(ioF(x), 10F(y)) for all x,y € 10C. By Lemma [3.3.5.3]it
follows that F’ is an equivalence in Algg%)e (V¥) and so in Alggt(\?@). In particular F’ is a

Cartesian morphism and hence so is the composite F ~ F” o F'. O

Definition 4.2.2.3. A functor F: € — D is essentially surjective if the induced map (€ — 1D
is surjective on 7.

Lemma 4.2.2.4. A functor F: € — D is essentially surjective if and only if for every point
x € 1D there exists an equivalence E! — D from x to a point in the image of ioF.
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Proof. Since 14D is a groupoid object, the set 791D is the quotient of 71p.pD where we iden-
tify two components of (D if there exists a point of 11D, i.e. an equivalence El — D,
connecting them. Thus F: ¢ — D is essentially surjective if and only if every point of /oD
is connected by an equivalence to a point in the image of (o F. O

Proposition 4.2.2.5. If f: € — D is fully faithful and essentially surjective, then the in-
duced map if: 1€ — 1D is an equivalence.

Proof. The simplicial spaces 1,C and 1D are groupoid objects by Corollary and
since f is essentially surjective the map (f is by definition an effective epimorphism in
the co-topos § (since these are precisely the maps of spaces that are surjective on 77p). By
[Lur09b, Remark 1.2.17] it therefore suffices to show that the diagram
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1€ X 1nC —— 1pD X 1pD

ll'D

is a pullback square. To prove this we must show that given points x,y € 1C the map
of fibres 1€y, — 11Dy, sy is an equivalence. By Proposition we can identify this
with the map Map(I, C(x,y))eq — Map(IL, D(fx, fy))eq- Since f is fully faithful the map
C(x,y) = D(fx, fy) is an equivalence in V, hence Map(I, C(x,y)) — Map(I, D(x,y)) is an
equivalence in 8. To complete the proof it therefore suffices to show that

Map(I, €(x,y))eq — Map(I, D(fx, fy))eq

is surjective on components — i.e. if a: I — D(fx, fy) is an equivalence then it is the
image of an equivalence f: I — C(x,y). We know that « is the image of some map f, so
it suffices to show that such a f must be an equivalence. By Proposition the map
B is an equivalence if and only if for every z € 1 C the map C(z,x) — €(z,y) induced by
composition with § is an equivalence. Consider the diagram

C(z,x) —— D(fz, fx)

|

G(Z/y) - e(lefy)'

Since f is fully faithful and « is an equivalence, all morphisms in this diagram except the
left vertical map are known to be equivalences. By the 2-out-of-3 property this must also
be an equivalence for all z, so f is indeed an equivalence. O

Corollary 4.2.2.6. A fully faithful functor F is essentially surjective if and only if (F is an
equivalence.

Corollary 4.2.2.7. A fully faithful and essentially surjective functor between complete V-
co-categories is an equivalence in Alg® (V®).
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Proof. This follows by combining Lemma [4.2.2.2} Proposition and Lemma 3.3.5.3

O]

Proposition 4.2.2.8. Fully faithful and essentially surjective functors satisfy the 2-out-of-3
property.

Proof. Suppose we have functors F: € —+ D and G: D — & of V-co-categories. There are
three cases to consider:

1)

()

©)

Suppose F and G are fully faithful and essentially surjective. The map Alggt(\?®) —
8 is a Cartesian fibration, so composites of Cartesian morphisms are Cartesian and
thus G o F is fully faithful. Since rrotF and 71o.G are surjective, so is their composite
mot(G o F), thus G o F is also essentially surjective.

Suppose G and G o F are fully faithful and essentially surjective. Then F is also Carte-
sian, i.e. fully faithful, by [Lur09a, Proposition 2.4.1.7]. By Proposition 4.2.2.5| the
maps (G and ((G o F) are equivalences, hence so is (F, thus F is also essentially surjec-
tive.

Suppose F and G o F are fully faithful and essentially surjective. By Proposition[4.2.2.5]
the maps (F and (G o F) are equivalences, hence so is (G, thus G is essentially sur-
jective. To see that G is fully faithful, we must show that for any x, y in oG the map
D(x,y) — E(Gx,Gy) is an equivalence. But since F is essentially surjective there
exist objects x’, i’ in o€ and equivalences Fx' ~ x, Fy’ ~ y in D. Then we have a
commutative diagram

D(Fx',Fy') —— &(GFx',GFy')

| |

D(x,y) &(Gx, Gy),

where the vertical maps are equivalences by Proposition 4.2.1.16| The top horizontal
map is also an equivalence, since in the commutative triangle

&(GFx',GFy')

\/

Fx Fy

the other two maps are equivalences. Thus by the 2-out-of-3 property the bottom
horizontal map D(x,y) — &(Gx, Gy) is also an equivalence, hence G is fully faithful

by Lemma 4.2.2.2 O

Remark 4.2.2.9. Under the equivalence Alg® (8%) ~ Seg?, the fully faithful and essen-

tially surjective functors correspond to the Dwyer-Kan equivalences in the sense of [Rez01,
§7.4].
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4.2.3 Local Equivalences

In this subsection we assume that V¥ is a presentably monoidal co-category, so that the
co-category Alggt(\?®) is presentable by Proposition(4.1.3.8

Definition 4.2.3.1. The local equivalences in Alggt(\?®) are the elements of the strongly sat-
urated class of morphisms generated by the map s°: E! — EC.

Lemma 4.2.3.2. The following are equivalent, for a V-co-category C:
(i) Cis complete.

(ii) € is local with respect to E! — E°, i.e. the map Map(E’,€) — Map(E!,C) is an
equivalence.

(iii) For every local equivalence A — B, the induced map Map(B,C) — Map(A, €) is an
equivalence.

Proof. (i) is equivalent to (ii) by Corollary and (ii) is equivalent to (iii) by [Lur09a,
Proposition 5.5.4.15(4)]. O

Definition 4.2.3.3. Write Cat), for the full subcategory of Alggt(\?) spanned by the com-
plete V-co-categories.

Lemma 4.2.3.4. The inclusion Cat}, < Alggt(\?) has a left adjoint, which exhibits Cat), as
the localization of Alggt(\?) with respect to the local equivalences.

Proof. The co-category Alggt(\?®) is presentable by Proposition|4.1.3.8, and the local equiv-
alences are generated by a set of maps. The existence of the left adjoint therefore follows
from [Lur09a, Proposition 5.5.4.15(4)] and Lemma4.2.3.2 O

Lemma 4.2.3.5. The co-category Cat,, is presentable.
Proof. This follows from [Lur09a, Proposition 5.5.4.15(3)]. O
Lemma 4.2.3.6. Cat3, is equivalent to Cat.

Proof. Under the equivalence Alg‘g1t (8%) ~ Seg? of Corollary4.1.4.4, the subcategory CatS,
corresponds to the subcategory of complete Segal spaces. By Theorem [2.2.1.9| this is equiv-
alent to Catc. O

Lemma 4.2.3.7. The map id ® s°: E! ® E! — E!' ® E® ~ E! is a local equivalence.

Proof. Tt suffices to prove this when V¥ is §*. We can identify E! ® E! with E{01}x{01} ~
E3; under this identification the map E! ® E! — E! is induced by the map {0,1,2,3} —
{0,1} sending 0,1 to 0 and 2, 3 to 1. Using the equivalence

E3 ~ E{O’l} HE{l} E{l’z} HE{Z} E{Z’B}

this corresponds to s’ Uid Us: E ITg, E! ITpo E! — E° I E! Mg EY, which is clearly in
the strongly saturated class generated by s°. O

Lemma 4.2.3.8. If C is a complete V-co-category, then the V-co-category CE' is also com-
plete.
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Proof. We need to show that the natural map 10CE" — 1 CE isan equivalence. Using the
adjunction between cotensoring and tensoring we can identify this with the map

Map(E?, @) — Map(E! ® E, @)

induced by composition with id ® s°. This map is an equivalence since € is complete and
id ® s is a local equivalence by Lemma O

4.2.4 Categorical Equivalences

In this subsection we study categorical equivalences between enriched co-categories, which
are functors with an inverse up to natural equivalence. We show that categorical equiva-
lences are always local equivalences as well as fully faithful and essentially surjective.

Definition 4.2.4.1. Suppose A and B are V-co-categories and f,g: A — B are V-functors.
A natural equivalence from f to g is a functor H: A ® E! — B such that Ho (id ® d') ~ f
and H o (id ® d°) ~ ¢. We say that f and g are naturally equivalent if there exists a natural
equivalence from f to g.

Definition 4.2.4.2. A functor f: A — B is a categorical equivalence if there exists a functor
g: B — A and natural equivalences from f o g to idg and from g o f to id 4. Such a functor
g is called a pseudo-inverse of f.

Proposition 4.2.4.3. Categorical equivalences are fully faithful and essentially surjective.

Proof. Suppose f: € — D is a categorical equivalence, and let g: D — € be a pseudo-
inverse with natural equivalences ¢: C® E! — C from go f to ide and ¢: D ® E! — D
from f o g to idp. For each object x in 1nD the natural equivalence i supplies an equiv-
alence between x and fg(x), which is in the image of f, so f is essentially surjective by

Lemma[4.2.2.4l

By Lemma to prove that F is fully faithful it suffices to show that for all x,y in
1pC the induced map a: C(x,y) = D(fx, fy) is an equivalence.

The natural equivalence ¢ supplies an equivalence B: C(gfx, ¢fy) — €(x,y) and a
commutative diagram

Clx,y) — C(gfx,8fY)

The top map is the composite

C(x,y) = D(fx, fy) 5 C(gfx, gfy),

and so we get that o yow ~id.
From f o ¢ we likewise get an equivalence €: D(f¢fx, f¢fy) — D(fx, fy) and a com-
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mutative diagram

D(fx, fy) D(fgfx, f8fy)

D(fx, fy).

where the top map is the composite

D(fx, fy) = €(gfx, gfy) = D(fefx fefy),

and so € 0 § o y o~ id. Moreover, we have a commutative square

C(gfx gfy) —— D(fefx, f3fy)
ﬁ\ :

C(x, ) " D(fx, fy),

and sowe getx o foy ~ €0 o =~ id. This shows that § o 7y is an inverse of «, and so &
is an equivalence in V. O

Corollary 4.2.4.4. A categorical equivalence between complete V-co-categories is an equiv-
alence.

Proof. Combine Proposition and Corollary 4.2.2.7| O

Lemma 4.2.4.5. Categorical equivalences satisfy the 2-out-of-3 property.

Proof. Suppose we have functors f: € — D and f': D — E&. There are three cases to
consider:

1)

)

Suppose f has a pseudo-inverse ¢ with natural equivalences ¢: € ® E! — € and
¢: D®E! — D, and f’ has a pseudo-inverse ¢’ with natural equivalences ¢': D ®
E' - Dand ¢': EQ E! — €. Then go ¢’ o (f ®id) is a natural equivalence from
¢¢'f'f to gf. Combining this with ¢ gives a map (€ ® E!) legpo (€ ® EY) — €. But
tensoring with € preserves colimits, and E! Il E! ~ E? by Theorem so we
get a map C® E? — €. Composing with id ® d': € ® E! — € ® E? we get a natural
equivalence from gg'f’f to the identity. Using the same argument we can also com-
bine f' oo (¢’ ®id) and ¢’ to get a natural equivalence from f'fgg’ to the identity.
Thus f'f is a categorical equivalence with pseudo-inverse gg’.

Suppose f has a pseudo-inverse ¢ with natural equivalences ¢: € ® E! — € and
p: D®E' — D, and f'f has a pseudo-inverse i with natural equivalences a: C ®
E!' — Cand B: € ® E! — €. We will show that fh is a pseudo-inverse of f’. Since B is
a natural equivalence from f’(fh) to id it remains to construct a natural equivalence
from fhf' toid. Let ¢ denote i o (id ® E;), where o: {0,1} — {0,1} is the map that
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interchanges 0 and 1 (thus ¢ is i considered as a natural equivalence from id to fg).
Combining fhf' o, fowa o (g®id) and ¢ we get a map

DRE~DRE' Il DRE ' Ilp DRE! - D
and composing with D ® Eqp31 =+ D ® E3 we get the required natural equivalence.

(3) Suppose f’ has a pseudo-inverse ¢’ with natural equivalences ¢': € ® E' — @ and
¢': D®E! — D, and f'f has a pseudo-inverse i with natural equivalences a: € ®
E' — Cand B: € ® E! — &. We will show that hf’ is a pseudo-inverse of f. Since « is
a natural equivalence from (if’)f to id it remains to construct a natural equivalence
from fhf’ toid. Let ¢’ denote ¢ o (id ® E;); combining ¢’ o (fhf' ®id), ' o o (f' ®
id) and ¢’ we get a map

DRIE~DRKE' Ny DRE Il DR E! — D,
and composing with D ® Egp31 =+ D ® E3 we get the required natural equivalence.

O

Our next goal is to prove that categorical equivalences are local equivalences; this will
require some preliminary results:

Lemma 4.2.4.6. Suppose f: S — T is a map of sets. Then Ef: Es — Er is a categorical
equivalence.

Proof. It suffices to prove this in §*. First suppose f is surjective; let g: T — S be a section
of f. We claim that E, is a pseudo-inverse to Er. We have Ef o Eg >~ Ef,, =~ id, so it suffices
to construct a natural equivalence Es x E! ~ Eg, (01} — Es from Eg( to the identity. This
is given by E; where h: S x {0,1} — S sends (s,0) to gf(s) and (s,1) to s.

By the dual argument the result holds if f is injective. By Lemma we can there-
fore conclude that it holds for a general f. O

Lemma 4.2.4.7. Suppose V¥ is a presentably monoidal co-category and f: A — B is a
categorical equivalence of 8-co-categories. Then for any V-co-category € the induced map
€% — €4 is a categorical equivalence.

Proof. A natural equivalence A ® E! — A induces a natural equivalence ¢ ® E! — €4 by
taking the adjoint of the induced map C* — GACE" ~ (@4)E", O

Lemma 4.2.4.8. If C is a complete V-co-category, then the natural map € ~ CE' — @F'isan
equivalence.

Proof. The map E! — E° is a categorical equivalence by Lemma [4.2.4.6| so it follows by
Lemma that € — €F isalsoa categorical equivalence. But CE is complete by
Lemma and a categorical equivalence between complete objects is an equivalence

by Corollary O

Proposition 4.2.4.9. For any V-co-category C, the map id ® s%: C® E! -+ C®QE? ~ Cisa
local equivalence.
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Proof. We must show that for any complete V-co-category D the map
Map(€, D) — Map(€ ® E!, D)

is an equivalence. Using the adjunction between tensoring and cotensoring with E', we
see that this map is equivalent to the map

Map(€C, D) — Map(@,DE])

given by composing with the map D — DE" induced by s’. This is an equivalence by
Lemma[4.2.4.8 O

Corollary 4.2.4.10. Suppose D is a complete V-co-category; then for any V-co-category €
we have [Map(C® E*, D)| ~ Map(C, D).

Proof. Since tensoring preserves colimits, and E® is a cogroupoid object, the simplicial
space Map(C ® E*®, D) is a groupoid object. By Lemma it therefore suffices to
show that Map(€ ® E°, D) — Map(C ® E!, D) is an equivalence, which is true by Proposi-
tion4.2.4.91 O

Lemma 4.2.4.11. Suppose D is a complete V-co-category. Then for any V-co-category € the
two maps
(id®d")*, (id®d")*: Map(C® E', D) — Map(C, D)

are homotopic.
Proof. Clearly (id ®s°)* o (id ® d’)*: Map(€, D) — Map(€, D) is homotopic to the identity
for i = 0,1. But by Proposition [£.2.4.9) the map (id ® s°) is a local equivalence, hence

(id ® s°)* is an equivalence since D is complete. Composing with its inverse we get that
(id®d%)* ~ (id®d")*. O

Theorem 4.2.4.12. Categorical equivalences are local equivalences.

Proof. Suppose f: € — D is a categorical equivalence with pseudo-inverse g: D — € and
natural equivalences ¢: C® E! — € from ¢f toid and ¢: D ® E! — D from fg to id. If &
is a complete V-co-category we must show that the map

f*:Map(€,&) = Map(D, &)
is an equivalence of spaces. By Lemma we have equivalences
§ff ¢ o(id@d) ~¢*o(id®d”)* ~id,
g ~y*o(idod)* ~¢*o(id®d°)* ~id.

Thus g¢* is an inverse of f*, and so f* is indeed an equivalence. ]

4.2.5 Completion in the Presentable Case

We will now construct an explicit completion functor, and use this to deduce that the local
equivalences are precisely the fully faithful and essentially surjective functors. We again
assume that V¥ is a presentably monoidal co-category.
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Definition 4.2.5.1. If C is a V-co-category, the cosimplicial 8-co-category E® gives a simpli-
cial V-co-category CE*. We let € denote its geometric realization |CE".

Theorem 4.2.5.2. The natural map € — Cisboth a local equivalence and fully faithful and
essentially surjective. Moreover, the V-co-category C is complete.

Proof. The functors E" — E™ induced by maps [n] — [m] in A\ are categorical equivalences
by Lemma so the induced functors CE" — CF" are also categorical equivalences by
Lemma These functors are therefore all fully faithful and essentially surjective by
Proposition [4.2.4.3} and local equivalences by Theorem Local equivalences are by
definition closed under colimits, so it follows that the map € — C is a local equivalence.

By Lemma 3.2.8.7| we know that AlgQo (V¥) ~ lim AlgQe (V). Moreover, the maps
1€ mC

CE" — eF" in the simplicial diagram CF" are fully faithful, i.e. Cartesian. By Proposi-
tionit follows that the induced maps CE" — € are also Cartesian. In particular, the
map € — C is fully faithful, and since 1y preserves colimits this functor is also essentially
surjective.

It remains to prove that € is complete, i.e. that the map 10€ = 1Cis an equivalence.
We have a commutative diagram

’loGE.‘ — l()/é

|

]11615'\ E— ll/é,

where the top horizontal morphism is an equivalence since 1y preserves colimits. The left
vertical map is also an equivalence: We have equivalences 11CF" ~ Map(E! ® E",C) =~
1,CE', so |1CE"| ~ 1CE', and under this equivalence the left vertical map corresponds to
that induced by the natural map ¢ — CE'; we know that this is tully faithful and essentially
surjective, and so induces an equivalence on ¢ by Proposition[4.2.2.5 In order to show that
€is complete, it thus suffices to show that the bottom vertical map [:1CF"| — 1€ is an
equivalence.
To see this we consider the commutative diagram

heE | —— 4@

.

’ler. ’ X2 Lo/éxz.

Here the bottom horizontal map is an equivalence, so to prove that the top horizontal
map is an equivalence it suffices to show that this is a pullback square. Since ¢ — € is
essentially surjective, to see this we need only show that for all (x,y) € 1C*? the induced

map on fibres |/ GE'](W) — 11C(y,) is an equivalence.

Since CF" — CF" is fully faithful and essentially surjective for all [n] — [m] in A°P, the
map (CF" — 1CF" is an equivalence by Proposition Since the groupoid objects ts CF"
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and 1,CF" are effective, the diagram

m n
1CF ——— eF

]

(lerm)Xz (ler”)xz

is therefore a pullback square. In other words, the natural transformation 1 CF" — (1CE")*?
is Cartesian. By [Lur09a, Theorem 6.1.3.9] the extended natural transformation of functors
(A°P)> — 8 that includes the colimits is also Cartesian. Thus we have a pullback square

116 \1165']

.

R a— T

In particular, for (x,y) € 1C*? the induced map on fibres 1€,y — [1CF|,) is an
equivalence. Since € — € is fully faithful and essentially surjective, the map 1 C(, ) —
Ll/é(x,y) is also an equivalence. By the 2-out-of-3 property it then follows that |11 CE’| (xy) —
11C(y,y) is an equivalence too. This completes the proof that € is complete. O

Remark 4.2.5.3. The proof that € is complete closely follows Rezk’s proof in [Rez01, §14]
of the equivalent statement for Segal spaces.

Corollary 4.2.5.4. The following are equivalent, for a functor f: € — D of V-co-categories:
(i) fisalocal equivalence.
(ii) f is fully faithful and essentially surjective.

Proof. By Theorem we have a commutative diagram

AN

S

QQYe——— @
Oy

]/(\ 7

where the vertical maps are both local equivalences and fully faithful and essentially sur-
jective, and € and D are complete.

Since local equivalences form a strongly saturated class of morphisms, it follows from
the 2-out-of-3 property that f is a local equivalence if and only if f is a local equivalence,
i.e. if and only if fis an equivalence, since €and D are complete.

Fully faithful and essentially surjective functors also satisfy the 2-out-of-3 property,
by Proposition so f is fully faithful and essentially surjective if and only if f is.
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But by Corollary m f is fully faithful and essentially surjective if and only if it is an
equivalence, since € and D are complete. Thus f is a local equivalence if and only if f is
an equivalence, which is true if and only if f is fully faithful and essentially surjective. [

Corollary 4.2.5.5. Cat, is the localization of Alggt(\?®) with respect to the fully faithful
and essentially surjective functors.

Remark 4.2.5.6. We might expect that the fully faithful and essentially surjective functors
also coincide with the categorical equivalences, but this turns out not to be the case when
we allow spaces of objects. To see this, first observe that if f: A — B is a categorical
equivalence, then for every V-co-category € the map f.: |[Map(C ® E*, A)| — |[Map(C®
E*,B)| is surjective on 7p: suppose g: B — A is a pseudo-inverse to f, then given a
functor ¢: € — B the natural equivalence from f o g to id gives a natural equivalence
from f o go ¢ to ¢, so up to natural equivalence ¢ is in the image of f,. Now if B —
B is a categorical equivalence where B is complete, then by Corollary m we have
|Map (€ ® E*,B)| ~ Map(€,B), and since Map (€ ® E*,B) is a groupoid object the map
Map(€,B) — |[Map(€ ® E*,B)| is surjective on 71p. Thus Map(€, B) — Map(C,B) is
surjective on 71p.

Now suppose 1B is discrete and (B is not; then there clearly exists for some n > 0
a map from the n-sphere S" — 1B that does not factor through (B. But we have a V-
co-category S" @ E such that Map(S" @ E%, B) ~ Map(S",1yB) — so if B — B were a
categorical equivalence then Map(S”,1pB) — Map(S”,:B) would have to be surjective
on 7, a contradiction. This shows that completion maps B — B cannot be categorical
equivalences in general.

4.2.6 The Non-Presentable Case

We now show that we can invert the fully faithful and essentially surjective functors of
V-co-categories for a general large monoidal co-category V¥ by restricting to complete V-
oo-categories:

Theorem 4.2.6.1. Let V¥ be a large monoidal co-category. The inclusion of the full subcat-
egory of complete V-co-categories Caty, < Alggt(\?®) has a left adjoint that exhibits Cat_,

as the localization of Alggt(\?@) with respect to the fully faithful and essentially surjective
functors.

Proof. Let P(V) be the co- -category of presheaves of large spaces on V. By [Lurll, Proposi-
tion 6.3.1.10] there exists a monoidal structure on P(V) such that the Yoneda embedding
j: V — P(V) is a strong monoidal functor. Let Algc‘,jIt (P(V)®) be the (very large) co-category

—P(V)

of large categorical algebras in iP(V) ; this is a presentable co-category, and writing Cat,,
for its subcategory of complete ‘P(V)-oo-categories we know from Corollary 4.2.5.5/that the

inclusion Catoo( - Algcat(?(\?)) has a left adjoint L that exhibits (/Zaﬁi,(v) as the localiza-
tion with respect to the fully faithful and essentially surjective functors.
If € is in the essential image of the fully faithful inclusion

Alge, (V) = Alg,, (P(V)),

then the natural map € — LG is fully faithful and essentially surjective. But then 10Le ~ (€,
so 1pLC is an (essentially) small space, and the mapping objects in LC are in the essential
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image of V in P(V). Thus L€ is in the essential image of Alggt(\?), and so the functor L
restricts to a functor L: Alggt(\?) — Caty,, since Cat, is equivalent to the full subcategory

of E\ati,(v) spanned by objects in the essential image of Alg® (V). O

4.2.7 Properties of the Localized Category

In this subsection we prove that the co-category Caty, inherits the naturality properties of
Alg® (V®)
Bcat :

/\O,l
Proposition 4.2.7.1. Let Alggit — Mon,, ™ be a coCartesian fibration corresponding to
the functor Alggt(—). Define Enr,, to be the full subcategory of Alg?at whose objects are

——0,lax
the complete enriched co-categories. Then the restricted projection Enr, — Mon,, isa

——0,lax

coCartesian fibration, and the inclusion Enr,, — Alggt admits a left adjoint over Mon,,

Proof. The result follows from Proposition to apply this we must show that if
¢: V¥ — W is a lax monoidal functor, then ¢, preserves fully faithful and essentially sur-
jective functors. It is clear that ¢, preserves fully faithful functors. To see that it preserves
essentially surjective ones we note that if two points of /oC are equivalent as objects of C
then they are also equivalent as objects of ¢.C, since the map Iw — ¢(Iy) induces a functor
E}, — ¢+Ed. O

Lemma 4.2.7.2. Suppose V¥ and W® are monoidal co-categories compatible with small
colimits, and F: €% — D is a strong monoidal functor such that Fy;: V — W preserves

colimits. Then the induced functor F, : Cat’, — Cat)’ preserves colimits.

Proof. The functor F; is the composite

Alg
Cat!, — AlgC, (V®) I AIgO, (W) 1% cat,

where Ly is the completion functor for W, and we write Ff‘ 8 for the functor on Alg?at
induced by composition with F for clarity. We know that FMe preserves local equivalences,
so Ff lgLVG and Ff 180 are locally equivalent for all C; it follows that Ly o Ff g Ly ~
Ly o Ff I Cq is a diagram in Catfo then its colimit is Ly(colim €,) where this
colimit is computed in Alggt(V®). Thus we have

F.(colim C,) ~ LywF 8Ly (colim €,) ~ Ly F2'8(colim C, )

~ colim Ly F/8(€,) ~ colim F, C,. 0

Proposition 4.2.7.3. The restriction of the functor Caty) to MonQ** factors through Prl.
Proof. This follows from Lemma and Lemma|4.2.3.5 O

Proposition 4.2.7.4. Cat( is a lax monoidal functor with respect to the Cartesian product
of monoidal co-categories.
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Proof. Given a V-co-category B, a W-co-category € and a V x W-co-category A we clearly
have
Map(A, BX €) ~ Map(m; .4, B) x Map(mp.A, €C),

where 711 and 71, denote the projections from V x W to V and W, respectively. Moreover
;i «EX ~ EX for all X, so
le(BXC) ~ 14B X 1,C.

It follows that the complete enriched co-categories are closed under the exterior product in
Alggt, and so the definition of the lax monoidal structure on the functor Alggt(—) implies

that Cat(_) is lax monoidal. O

Corollary 4.2.7.5. If V¥ is an [E,-monoidal co-category, then the co-category Cat., inherits
an [E,,_;-monoidal structure.

Proof. By Proposition [3.2.4.5 we can identify [E,-monoidal co-categories with [E,-algebras
in Cate. Since E, ~ (E;)®" by [Lurll, Theorem 5.1.2.2], we have

Mon&®r ~ Algps (Alg%@ (Caty)) ~ Alg%ﬁ1 (AlgSo (Catl)) =~ Alggaai1 (MonQ).

n—1

Thus E,-monoidal co-categories are equivalent to [E,,_;-algebras in monoidal co-categories.

Since Cat() is lax monoidal, it takes [E,_1-algebras in monoidal co-categories to [E,_1-
algebras in Catc, i.e. IE,,_j-monoidal co-categories. O

Proposition 4.2.7.6. Suppose V is an co-category with finite products. Then the natural
symmetric monoidal structure on Cati is Cartesian.

Proof. This follows from Proposition4.1.3.10} since the inclusion
Catl, — Alg? (V)
preserves limits. O

Definition 4.2.7.7. If V¥ is an [E,-monoidal co-category, we can iterate the enrichment
functor k times for k < n to obtain co-categories Ca’c\{oo k) of (00, k)-categories enriched in V.

Proposition 4.2.7.8. When restricted to Mong’Pr, the functor Catc(;) is lax monoidal with
respect to the tensor product of presentable co-categories.

Proof. This follows because the complete enriched co-categories are closed under the exte-
rior product, as in the proof of Proposition4.2.7.4 O

4.3 Some Applications

In this section we describe two simple applications of our machinery: In we show
that enriching in a monoidal (n,1)-category gives an (n + 1,1)-category, and use this
to prove the Baez-Dolan stabilization hypothesis for k-tuply monoidal n-categories, and
in §4.3.2) we prove that there is a fully faithful embedding of associative algebras in a
monoidal co-category into pointed enriched co-categories.
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4.3.1 The Baez-Dolan Stabilization Hypothesis

Recall that an (n, 1)-category is an co-category where the mapping spaces are (n — 1)-types,
i.e. there are no non-trivial k-morphisms for k > n. Our first goal in this subsection is
to prove that enriching in an (n,1)-category gives an (n + 1,1)-category of enriched oo-
categories.

Remark 4.3.1.1. Suppose V¥ is a monoidal oco-category such that V)

[
Then clearly V¥ is also an (n,1)-category. The phrase monoidal (n,1)-category is thus un-

ambiguous.

| is an (n,1)-category.

Proposition 4.3.1.2. Suppose V¥ is a monoidal (#,1)-category and € is a V-co-category.
Then the space (C is an n-type.

Proof. Lets: mp(1pC) — 1€ be a section of the projection 10€ — 71919C. Then the Cartesian
morphism s*C — C is fully faithful and essentially surjective, and so induces an equiv-
alence ((s*C) — (€ by Proposition Without loss of generality we may therefore
assume that the space 1(C is discrete.

The simplicial space ,C is a groupoid object by Corollary By [Lur09a, Corol-
lary 6.1.3.20] this groupoid object is effective, and so we have a pullback diagram

Lle — l()e

|

1pC — 1C.

If x is a point of 19C, we get a pullback diagram

Lle{x} —— Loe

|

{x} —— €,

where 11C (x) 18 the fibre of /1€ — (o€ at x. Since the map (€ — (C is surjective on compo-
nents, by considering the long exact sequence of homotopy groups associated to this fibre
sequence we see that /C is an n-type provided the spaces 11C(,} are (n — 1)-types for all
x € 1pC.

The space (1€ {x} is a union of components of 11C, so it suffices to show that (1€ is
an (n — 1)-type. Since 1€ is discrete, i.e. a O-type, by [Lur09a, Lemma 5.5.6.14] this is
equivalent to proving that the fibres of the map 1€ — 1€ X (€ are (n — 1)-types. But
by Proposition we can identify the fibre 1€y, at (x,y) € 1C*? with the space
Map (I, C(x,y))eq that is the union of the components of Map(I, €(x,y)) corresponding to
equivalences. Since V is by assumption an n-category, the space Map(I, €(x,y)) is neces-
sarily an (n — 1)-type, hence so is the union of any subset of its components. O

Theorem 4.3.1.3. Suppose V¥ is a monoidal (n,1)-category. Then Cat, is an (n + 1,1)-
category.
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Proof. We need to show that if € and D are complete V-co-categories then the space
MaPCatfo(e' D) ~ MapAIggt(W) (€,D)

is an n-type. By Proposition 4.3.1.2} the space (oD ~ (D is an n-type, hence so is the space
Mapg (1€, 1pD). It then follows from [Lur09a, Lemma 5.5.6.14] that in order to prove that
Map 4,0 (e (€, D) is an n-type it suffices to show that the fibres of the map

cat

Map ;1.0 (yey (€, D) — Mapg (1€, D)

induced by the projection Alg® (V¥) — § are n-types.

Since the projection Alggt(\?®) — 8 is a Cartesian fibration, by [Lur09a) Proposition
2.4.4.2] we can identify the fibre of this map at f: (xC — 1pD with

Map g op (v2) (€ f7D).

1€
This space is the fibre of

Map yop (AR X AL, V) = Map pop (AR, V) X Map gop (AR, V)
at (€, f*D). Since n-types are closed under all limits by [Lur09a, Proposition 5.5.6.5],
it suffices to show that the spaces Map AOP(AZ%,VQ@) and Map AOP(AZ% x A1, V%) are n-
types. Now these spaces are fibres of Map (A%, V¥) — Map(A°P,V¥) and Map(A%, x
A, V) — Map(A°P,V¥), so by the same argument it’s enough to show that these map-
ping spaces are n-types. But V¥ is by assumption an (1,1)-category, so this holds by

[Lur09a, Proposition 2.3.4.18]. O

It follows that if V¥ is a symmetric monoidal (1, 1)-category, then [Ej-algebras in Cat_,
are equivalent to [E.-algebras for k large:

Corollary 4.3.1.4. Let V¥ be a symmetric monoidal (1, 1)-category. Then

(i) the map [E;” — I°P induces an equivalence

Algig (Catl,) = Alggo,(Catl)

fork>n+1,
(ii) the stabilization map i: ]E;? — ]E;?H (defined in [Lurl1} §5.1.1]) induces an equiva-
lence
ok F v F v
i Alg]Ei@+1 (Caty) — Alg]Eia(Catoo)
fork >n+1.

Proof. (i) is immediate from [Lurll, Corollary 5.1.1.7], and (ii) follows by the 2-out-of-3
property. ]

We end this subsection by observing that when V is the monoidal co-category of n-
categories, this yields the Baez-Dolan stabilization hypothesis, by the same proof as Lurie’s
version for (n, 1)-categories [Lur09a, Example 5.1.2.3]. First we give the obvious definition
of (weak) n-categories using our machinery:

128



Definition 4.3.1.5. The category Set of sets is a symmetric monoidal (1,1)-category. We
can therefore define co-categories Cat, := Cat?f(f n) of Set-(co, n)-categories, i.e. (weak) n-

categories, as in Definition Applying Theorem inductively we see that Cat,
is an (n 4+ 1,1)-category. A k-tuply monoidal n-category is an Ey-algebra in Cat,, i.e. an
[Ex-monoidal n-category.

Corollary 4.3.1.6 (Baez-Dolan Stabilization Hypothesis). The stabilization map i: E;’ —

® . .
E e induces an equivalence

i Algial (Cat)) — Alggg (CatX)
fork > n+2.

Proof. Apply Corollary to Caty,. O

Remark 4.3.1.7. The Baez-Dolan stabilization hypothesis was originally stated by Baez
and Dolan in [BD95]. A version of it was proved by Simpson [Sim98|], who showed that
for k > n + 2 a k-tuply monoidal n-category can be “delooped” to a (k + 1)-tuply monoidal
n-category; the co-categorical version above extends this by showing that this construction
gives an equivalence of co-categories.

4.3.2 [E,-Algebras as Enriched (oo, n)-Categories

We now prove that the natural map from associative algebras in a monoidal co-category V%
to pointed complete V-co-categories is fully faithful; we then show by induction that the
same is true for the natural map from [E,-algebras to pointed complete V-(oo, n)-categories.

Definition 4.3.2.1. We have a fully faithful inclusion
AlgQe, (V?) — AlgD (V¥)

since AlgRo, (V) is the fibre of Alg® (V?) at * in 8. The unit of V® is the initial object
of AlgRe(V®), so this functor factors through AlgY (V®)g,. Composing this with the
localization functor we get a functor i: AlgQ, (V®) — (Catl,) g, .

Proposition 4.3.2.2. The functor i: AlgQe, (V®) — (Caty,) o ; is fully faithful.

Proof. Let A and B be two A°P-algebras in V¥. We have a fibre sequence

Map e, , (i(A),i(B)) — Mapc,w (i(A),i(B)) — Mapc, (E,i(B)).

E0/
Let B be the completion of B, regarded as a V-co-category. Then we have equivalences
MapCatx (i(A)/ i(B)) = MaPAlggt(W) (A/ B\)

and



The projection ¢o: Alggt(\?@)) — 8 gives a commutative diagram

Map g0, y=) (A, B) —— Map,y0 (1) (E”, B)

Mapg (*, 10B) Maps(*,zog)

where the right vertical map is an equivalence by Lemma and the bottom horizontal
map is the identity, since E0 — A is the identity on 19. Thus we can identify the fibre
of the top horizontal map at the functor E — B corresponding to a point p: x — 1B
with the corresponding fibre of the left vertical map, which is Map Algop (V%) (A, p*B) by

[Lur09a, Proposition 2.4.4.2]. R
Take p to be the underlying map of spaces of the completion functor B — B; since this
is fully faithful the induced map B — p*B is an equivalence, and in particular

MapAngOp (Vo) (A,B) = MapAlggop ve) (A, p*B).

Thus the map MapAlggop(W) (A,B) — Map(CatlZ)Eo/ (i(A),i(B)) is also an equivalence, i.e. i

is fully faithful. O

Remark 4.3.2.3. A pointed V-co-category C is in the essential image of the functor i if and
only if /€ is connected, since then the functor p*€ — € induced by the chosen point p :
* — 1pC is fully faithful and essentially surjective, and p*C is a A°P-algebra. In other
words, A°P-algebras in V¥ are equivalent to V-co-categories with a single object.

Definition 4.3.2.4. By Proposition monoidal co-categories are equivalent to E{’-
monoidal co-categories, and A°P-algebras in a monoidal co-category are equivalent to E{-
algebras in the associated E}-monoidal co-category. Since Ej @ E;, ~ E?,  for all n,m
by [Lurll, Theorem 5.1.2.2], we get maps

Algge (V°) =~ Algg. (Algg (V¥)%) — Algg. ((Catl) ).

We can identify (Caty, ), with Algggﬁ ((Catl)®), so

Alge ((Caty)f,) ~ Algge (Algg, ((Catl)®)®)
~ Algpe o ((Catd)®)

~ Algggl ((Caty)®).
Thus we have maps

(o0,11)

AlgE. (V?) = AlgE. ((Cat])®) = - — Algk. ((Catll,,, 1))®) = (Catls,,))po,-

Applying Proposition inductively, we get the following:

Corollary 4.3.2.5. Suppose V is an [E,;-monoidal co-category. Then the composite functor

Alggﬁf <V®) — (Catyoo,n))EO/
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is fully faithful.

4.4 Comparisons

Monoidal model categories are an important source of monoidal co-categories. One of
our main goals in this section is to prove that if V is a nice monoidal model category,
then the homotopy theory of V-categories is equivalent to that of co-categories enriched in
the monoidal co-category associated to V. When the tensor product in V is the Cartesian
product, we will use the same method to show that the latter is also equivalent to the
homotopy theory of Segal categories enriched in V. Our other main result is that 8-(co, n)-
categories are equivalent to n-fold Segal spaces.

In §4.4.T7|we prove some technical results about co-categorical localizations of fibrations
of categories, and in §4.4.2) we review some results on rectification of associative algebras
in monoidal model categories. Then we carry out the comparison with enriched categories
in §4.4.3|and the comparison with Segal categories in Finally, in §4.4.5we compare
8-(00, n)-categories and n-fold Segal spaces.

Notation 4.4.0.6. In this section, if V is a model category we write V, for the associated
oo-category. This can be constructed as the localization NV [W~1] where V*f is the full
subcategory of V spanned by the cofibrant objects, and W is the class of weak equivalences
inV.

44.1 Fibrewise Localization

Suppose we have a functor of ordinary categories F: C — Cat together with a collection
of weak equivalences in each category F(c) that is preserved by the functors F(f). Then
we have two ways to construct an co-category over C where these weak equivalences are
inverted: On the one hand we can invert the weak equivalences to get a functor C — Catc,
which corresponds to a coCartesian fibration € — C. On the other hand, if E — Cis a
coGrothendieck fibration corresponding to F then there is a natural collection W of weak
equivalences in E induced by those in the fibres, and we can invert these to get an co-
category E[W~!]. Our main goal in this subsection is to prove that in this situation the
natural map E[W~!] — € is an equivalence of co-categories.

We will do this in two steps: first we show that the co-category € here is a fibrant
replacement in the coCartesian model structure on (Set} ) nc for NE equipped with a
certain collection M of marked edges, and then we use an explicit model for E[W~!] to
show that this, equipped with a natural choice of marked edges, is also weakly equivalent
to (NE, M). In addition, we will prove that when the weak equivalences in each category
F(c) come from a (combinatorial) model structure, then there is a (combinatorial) model
structure on E whose weak equivalences are the morphisms in W.

Let’s explain the first step more precisely. Recall that a relative category is a category
C equipped with a collection of “weak equivalences”, i.e. a subcategory W containing all
objects and isomorphisms. Write RelCat for the obvious category of relative categories; this
has been studied as a model for the theory of (oo, 1)-categories by Barwick and Kan [BK12].
The usual nerve functor from categories to simplicial sets extends to a functor L: RelCat —
Set} thatsends (C, W) to (NC,NWj ). In the model structure on Set}, a fibrant replacement
for L(C, W) is given by the co-categorical localization of C that inverts the morphisms in
W (marked by the equivalences).
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In [Lur09a, §3.5.2] Lurie describes a right Quillen equivalence N&L from the projective
model structure on Fun(C, Set} ) to the coCartesian model structure on (Set, ) /xc. Given a
functor F: B — RelCat we therefore have two reasonable ways to construct a fibrant object
of (Set}) /nc:

(i) Find a fibrant replacement F for the functor LF: C — SetX, and then form Ngl:" .

(ii) Construct a coGrothendieck fibration E — C associated to F, regarded as a functor
to categories, and write S for the collection of 1-simplices in NE that correspond to
composites of (fibrewise) weak equivalences and coCartesian morphisms. Then find
a fibrant replacement in (Set} ) /nc for (NE, S) — NC.

The precise statement of our first goal in this subsection is to prove that these give weakly
equivalent objects. We begin by reviewing the definition of the functor N¢:

Definition 4.4.1.1. Let C be a category. Given a functor F: C — Sets, we define N¢F to be
the simplicial set characterized by the property that a morphism A’ — NcF, where [ is a
partially ordered set, is determined by:

(1) afunctoro: I — C,
(2) for every non-empty subset ] C I with maximal element j, a map 7;: A/ — F(o(jf)),
such that for all subsets K C | C [ with maximal elements k € K and j € ], the diagram

TK

A —— F(o(k))

]

N —— F(e()))

commutes. This defines a functor N¢: Fun(C, Setp) — (Seta) /nc-

The functor N¢ has a left adjoint, which we denote
Fc: (Seta) /nc — Fun(C, Sety).

Proposition 4.4.1.2. Let 7: E — C be a functor. Then §cNE is isomorphic to the functor
Oy : C — Setp defined by ¢ — NE/..

Proof. We must show that there is a natural isomorphism Hom(NE, N¢(-)) = Hom (O, -);
we will do this by defining explicit natural transformations

¢: Hom(O,,—-) — Hom(NE,N¢(-))

and
¢: Hom(NE,N¢(-)) — Hom(Op,-)

that are inverse to each other.

Given X: C — Setp and a natural transformation #: O, — X, define ¢(77): NE —
NcX to be the morphism that sends a simplex ¢: Al — NE (which we can identify with a
functor I — E) to the simplex of NcX determined by
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e the composite functor I — E — C,

(o)) .
= X(7t(o(j)))-
Conversely, given a map G: NE — NcX of simplicial sets over NC, let ¢(G) be
the natural transformation O, — X determined as follows: for ¢ € C, the morphism
#¥(G)e: NE,. — X(c) sends a simplex o: Al — NE,., where I has maximal element i, to
the composite

e for ] C I with maximal element j, the composite A/ — NE /(@(j))

A5 x(o(i) 22 x(0)

where

e T is the [-simplex determined by the image under G of the I-simplex ¢’ of NE under-
lying o,

e f is the morphism 77(¢(i)) — ¢ in C from o.

The remaining data in G o ¢’ implies that this defines a map of simplicial sets NE ;. — X(c),
and it is also easy to see that ¢»(G) is natural in c.

Both ¢ and 1 are obviously natural in X, and expanding out the definitions we see that
¢ = id and ¢ = id, so we have the required natural isomorphism. O

Definition 4.4.1.3. Let C be a category. Given a functor F: C — Set; we define N F to be
the marked simplicial set (NcF, M) where F is the underlying functor C — Set, of F, and
M is the set of edges A! — NcF determined by

e amorphism f: ¢ — ¢’ inC,

e avertex x € F(c),

e avertex X' € F(c') and an edge F(f)(x) — «’ that is marked in F(¢’).
This determines a functor N : Fun(C, Sety) — (Set} ) /nc.

The functor N¢{ has a left adjoint, which we denote F¢£.

Corollary 4.4.1.4. Let t: E — C be a functor, and let M be a set of edges of NE that
contains the degenerate edges. Then §&(NE, M) is isomorphic to the functor O, defined
by ¢ — (NE,., M,), where M, is the collection of edges determined by e — ¢’ in E and
nt(e) — (') — cin Csuch that 7t(¢’) = cand e — ¢’ is in M.

Proof. We must show that there is a natural isomorphism
Hom((NE, M)N{(-)) = Hom(Oy, -).

Given X: C — Set}, with underlying functor X: C — Seta, and a morphism G: NE —
NcX, it is immediate from the definitions that G takes an edge 0: e — ¢’ of NE lying over
¢ — ¢" in C to a marked edge of N.X if and only if ¢(G). takes o, regarded as an edge
of NE,, to a marked edge of X(c’). Thus the natural isomorphism Hom(NE,NcX)
Hom(Oy, X) of Proposition identifies Hom((NE, M), N X), regarded as a subset
of Hom(NE, N¢X), with Hom (O, X), regarded as a subset of Hom(Op, X). O

Theorem 4.4.1.5 (Lurie, [Lur09a, Proposition 3.2.5.18]).
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(i) The adjunction ¢ - N¢ is a Quillen equivalence between (Seta ) /nc equipped with
the covariant model structure and Fun(C, Sety) equipped with the projective model
structure.

(ii) The adjunction ¢ - N¢ is a Quillen equivalence between (Setj ) /nc equipped with
the coCartesian model structure and Fun(C, Set; ) equipped with the projective model
structure.

Recall that if € is an co-category we write " for the marked simplicial set given by €
marked by the equivalences, and that if & — NC is a coCartesian fibration we write &% for
the object of (Sety ) /nc given by € marked by the coCartesian morphisms.

Lemma 4.4.1.6. Let F: C — Cat be a functor. Write 7: E — C for the coGrothendieck
fibration associated to F, so that E has objects pairs (¢ € C,x € F(c)) and a morphism
(¢,x) — (d,y) in E is given by a morphism f: ¢ — d in C and a morphism F(f)(x) — yin
F(d). Then:

(i) Nc(NF) — NC is isomorphic to N7z.
(i) N&(NFY) — NC is isomorphic to (NE)? — NC.

Proof. 1t is clear from the definition of N¢ that there is a natural isomorphism between n-
simplices of Nc(NF) and n-simplices of NE, which proves (i). From Corollary an
edge of N&(NF?) is marked if it is given by f: ¢ — ¢ in C, x € F(c) and F(f)(x) — «'
an isomorphism in F(¢’). Under the identification with edges of NE, such edges precisely
correspond to the coCartesian edges. This proves (ii). O

Proposition 4.4.1.7. Given F: C — RelCat, the counit map géNJC’LF — LF is a weak
equivalence in Fun(C, Set} ).

Proof. Since Fun(C,Set; ) is equipped with the projective model structure, it suffices to
show that for all ¢ € C the morphism FENELF(c) — LF(c) is a weak equivalence in Set; .
Let Fy be the underlying functor C — Cat, and let E — C be the canonical coGrothendieck
fibration associated to Fy. Then by Lemma we can identify Né NFg with NE?, and

so by Corollary we can identify FENENE; (c) with NE ., marked by the set M. of
coCartesian morphisms e — ¢’ such that 7r(e’) = c.

The adjunction Sé = NJCr is a Quillen equivalence, so since NFg is fibrant and every
object of (Set} ) nc is cofibrant, the counit SéNéNFg — Nl—"(g1 is a weak equivalence in
Fun(C, Set} ). In particular, (NE,., M) — NFy(c)* is a weak equivalence.

Let M/ be the set of edges of NE . corresponding to weak equivalences in F(c). Then
we have a pushout diagram

(NE,., M,) NF(c)"

| |

(NE, ., M. UM.) —— LF(c),

since both vertical maps are pushouts along [ [rcpr A —1] feM! (A1)E. As the model struc-
ture on Set} is left proper, it follows that (NE,., M. U M.) — LF(c) is a weak equivalence.
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By Corollary [4.4.1.4 we can identify FENELF(c) with the simplicial set NE /., marked
by the set M/ of morphisms ¢ — ¢’ with 71(¢’) = ¢ such that given a coCartesian factor-
ization e — ¢ — ¢’ the morphism ¢ — ¢’ is a weak equivalence in LF(c). The obvious
map (NE,,, Mc UM,) — FENELF(c) is therefore marked anodyne, since the edges in
M are precisely the composites of edges in M. and M. In particular this is also a weak
equivalence, and so by the 2-out-of-3 property the map §¢NELF(c) — LF(c) is a weak
equivalence, as required. O

Corollary 4.4.1.8. Given F: C — RelCat, let LF — F be a fibrant replacement in the pro-
jective model structure on Fun(C, Set ). Then N:LF — N¢ F is a coCartesian equivalence
in (SetX)/Nc.

Proof. The adjunction §¢ - N¢ is a Quillen equivalence, so since F is fibrant and every
object of (Set} ) /nc is cofibrant, the morphism N:LF — N F is a weak equivalence if and
only if the adjunct morphism FENELF — F is a weak equivalence. This follows by the
2-out-of-3 property, since in the commutative diagram

SENELF LF
F

the morphism LF — F is a weak equivalence by assumption, and FENELF — LF is a
weak equivalence by Proposition[4.4.1.7] O

Using Lemma we can equivalently state this as:

Corollary 4.4.1.9. Given F: C — RelCat, suppose t: E — C is a coGrothendieck fibra-
tion corresponding to the underlying functor C — Cat. Let M be the set of morphisms
f: e — ¢ in E such that given a coCartesian factorization e — 7t(f)ie — ¢/, the morphism
7(f)ie — ¢ is a weak equivalence in F(7t(e’)). Then if LF — F is a fibrant replacement in
Fun(C, Set} ), there is a coCartesian equivalence (NE, M) — N¢F.

Our next goal is to prove that, with F: C — RelCat and 7: E — C as above, in-
verting the collection W of fibrewise weak equivalences in E gives a coCartesian fibration
E[W~!] — C. As a corollary, we will also see that E[W~!] is the total space of the coCarte-
sian fibration associated to the functor obtained from F by inverting the weak equivalences
in the relative categories F(c). We will prove this result by analyzing an explicit model for
E[W~!] as a simplicial category, namely the hammock localization. We now recall the defini-
tion of this, specifically the version defined in [DHKS04, §35], and its basic properties:

Definition 4.4.1.10. A zig-zag type Z = (Z1,Z_) consists of a decomposition {1,...,n} =
Z, I Z_. The zig-zag category ZZ is the category with objects zig-zag types and mor-
phisms Z — Z’ given by order-preserving morphisms f: {1,...,n} — {1,...,1n'} such
that f(Zy) C Z/, and f(Z_) C Z'. If Z is a zig-zag type, the associated zig-zag category
|Z| is the category with objects 0, ..., n and

x, i<jkeZ fork=i+1,...,j,
|Z|(i,j) =< *, i>jkeZ fork=j+1,...,i
@, otherwise.
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This clearly gives a functor |-|: ZZ — Cat. If 1 is an odd integer, we abbreviate

(n) = ({2,4,...,n—1},{1,3,...,n})

and if n is an even integer we abbreviate

(n) :=({1,3,...,n—1},{2,4,...,n}).

Definition 4.4.1.11. Suppose (C,W) is a relative category. For x,y € Cand Z € ZZ
we define LiyCz(x, y) to be the subcategory of Fun(|Z|, C) whose objects are the functors
F:|Z| — Csuch that F(0) = x, F(n) =y,and F(i — (i—1))isin Wforalli € Z_, and
whose morphisms are the natural transformations #7: F — G such that 9 = id,, 17, = id,,
and #; isin W for all i. We write LwCz(x,y) := NLyCz(x,y).

This construction gives a functor ZZ°°? — Cat; we let LwC(x,y) — ZZ be the fibra-
tion associated to it by the Grothendieck construction. Using concatenation of zig-zags
we get a strict 2-category Ly C with the same objects as C and with mapping categories
LwC(x,y); taking nerves, this gives a simplicial category £yC whose mapping spaces are
LwC(x,y) := NLwC(x,y). This simplicial category is the hammock localization of (C, W).

Theorem 4.4.1.12 (Dwyer-Kan). Let (C, W) be a relative category. Then:
(i) The diagram
W—— LywW

|

C— LyC

is a homotopy pushout square in simplicial categories.

(i) If LwW — LwW is a fibrant replacement in simplicial categories, then NLwW is a
Kan complex and NW — NLyW is a weak equivalence of simplicial sets.

Proof.

(i) This follows by combining [DHKS04, Proposition 35.7], [DK80b, Proposition 2.2], and
[DK80a, §4.5] (observe that a cofibration in the model structure on simplicial cate-
gories with a fixed set of objects described in [DK80a, §7] is also a cofibration in the
model structure on simplicial categories).

(ii) It follows from [DK80a, §9.1] that LiyW is a simplicial groupoid. If LW — LW
is a fibrant replacement in simplicial categories, then NLy W is the nerve of a fibrant
simplicial groupoid, hence a Kan complex by [DK84, Theorem 3.3]. Let & denote
the left adjoint to the nerve of simplicial groupoids, as defined in [DK84, §3.1]; by
[DK84} Theorem 3.3] the morphism NW — NLw W is a weak equivalence if and only
if the adjunct BNW — LW is a weak equivalence of simplicial groupoids. This
follows from [DK80a, §5.5], since this implies that the mapping spaces in both are the
appropriate loop spaces of NW. O

Corollary 4.4.1.13. Let (C, W) be a relative category. Suppose LwC — L C is a fibrant
replacement in the model category of simplicial categories. Then

L(C, W) — NLyC"
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is a weak equivalence in Set} .

Proof. We must show that for every co-category D, the induced map
Mapg, (€%, D) — Mapg, (L(C, W), D)
is a weak equivalence of simplicial sets. Observe that

Mapg,: (L(C, W), D) ~ Mapc,,_(NC,D) X Mapey,.. (NW,D) MaPcy, (NW, (D)

and Map,, (NW, D) ~ Mapg(NW, D) ~ Map,, (NW,D), where NW — NW denotes
a fibrant replacement in the usual model structure on simplicial sets, so this is equivalent
to requiring

NW —— NW

|

NC —— NLyC

to be a homotopy pushout square. Theorem {4.4.1.12(i) implies that

NW —— NLywW

|

NC —— NLyC

is a homotopy pushout square, since N is a right Quillen equivalence and all the objects are
fibrant. By Theorem [4.4.1.12(ii) we also have that NW — NZyW is a fibrant replacement
in the usual model structure on simplicial sets, so the result follows. O

We now fix a functor F: C — RelCat, and let 7t: E — C be a coGrothendieck fibration
associated to the underlying functor C — Cat. We say a morphism f: x — y in E lying
over f:a — bin C is a weak equivalence if f is an isomorphism and fix — y is a weak
equivalence in F(b); write W for the subcategory of E whose morphisms are the weak
equivalences. Our goal is to show that the nerve of LwE — C is (equivalent to) a co-
Cartesian fibration. To prove this we need a technical hypothesis on the relative categories
F(c):

Definition 4.4.1.14. A relative category (C, W) satisfies the two-out-of-three property if given
morphisms r: A — B and s: B — C such that two out of r, 5,5 o  are in W, then so is the
third.

Definition 4.4.1.15. We say that a relative category C = (C, W) is a partial model category if
C satisfies the two-out-of-three property and C admits a three-arrow calculus, i.e. there exist
subcategories U, V C W such that

(i) for every zig-zag A’ <~ A L, B in C with u € U, there exists a functorial zig-zag

A" Ly B &% B with ' € U such that u'f = f'uand 1’ is an isomorphism if u is,
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(ii) for every zig-zag X 5 Y & Yin C with v € V, there exists a functorial zig-zag

X & X' %5 Y with o € V such that g’ = vg’ and ¢’ is an isomorphism if v is,
(iii) every map w € W admits a functorial factorization w = vu withu € Uand v € V.

Remark 4.4.1.16. If M is a model category (with functorial factorizations), then the relative
category obtained by equipping M with the weak equivalences in the model structure is
a partial model category. Similarly, the relative categories obtained from the full subcate-
gories M of cofibrant objects, Mf of fibrant objects, and M° of fibrant-cofibrant objects
together with the weak equivalences between these objects are all partial model categories.
The term “partial model category” is taken from [BK], but we use the more general defi-
nition of [DHKS04, 36.1] since the more restrictive definition of Barwick and Kan does not
include what is for us the key example, namely M for M a model category.

Theorem 4.4.1.17 (Dwyer-Kan). Suppose (C, W) is a partial model category. Then for ev-
ery pair of objects X, Y € C, the morphism Ly C,y(X,Y) — LwC(X,Y) is a weak equiva-
lence of simplicial sets for all n > 3.

Proof. For n = 3 this is [DK80b| Proposition 6.2(i)]; the general case follows similarly. [

Proposition 4.4.1.18. Suppose F: C — RelCat is a functor such that F(C) is a partial model
category for each C € C. Let ¢: A — B be a morphism in C, and let X and Y be objects
of E4 and Ep, respectively. Write LiwE(X,Y)y for the subspace of LwE(X,Y) over ¢. The
morphism

4_)* : LwEB(gl)gX, Y) — LwE(X, Y)(P

given by composition with a coCartesian morphism ¢: X — ¢ X is a weak equivalence of
simplicial sets.

Proof. 1t is easy to see that E is also a partial model category. The maps LwE 4 (X,Y)y —
LwE(X,Y)y and Ly (Eg) 4 (41X, Y) — LwEg(¢1X,Y) are therefore weak equivalences by
Theorem Since composition with ¢ gives a functor ¢*: Lp := Ly (Eg) 4 ($: X, Y) —
LwE 4 (X,Y)y =: L it therefore suffices to prove that this gives a weak equivalence upon
taking nerves.

We will prove this in two steps. Let L! denote the full subcategory of L spanned by
objects

X=X x 2, Bxs o x =y

such that X; € Ep fori > 1 and f; lies over idg in C for i > 2. Then ¢* factors as
fog1 g,
Ly > L —L;

we will show that each of these functors gives a weak equivalence of nerves.
First we consider f: Lg — L!, given by composition with ¢. Define q: L' — Lg by
sending a zig-zag
X527 5Y Y
in L! to ,
X527 5Y Y
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where X % ¢ X £, 7 is the coCartesian factorization of g (which exists since the other
maps lie over idg). Then it is clear that gf ~ id and fq ~ id, so f is an equivalence of
categories.

Next we want to define a functor p: L — L!. Given a zig-zag

X5z ezhy vy

in L, this lies over
Ascdcopds

where 7 and B are isomorphisms, since weak equivalences in E map to isomorphisms in
C. Thus the coCartesian maps Z' — 7, 17" and B’ — ,B!_lB’ are isomorphisms, and our
zig-zag is isomorphic to the zig-zag

X—9'Z +7Z—=B 'Y +vY.

To define p we may therefore assume that § and < are identities, in which case p sends

xLzez8y oy
lying over

At cddchpidp
to

X—=>pZ +—pZ =Y «Y

in L, this is clearly functorial.

We wish to prove that p gives an inverse to i after taking nerves. It is obvious that
poi =~ id, so it suffices to show that i o p is homotopic to the identity after taking nerves.
To see this we consider the natural transformation 7: L — Fun([1], LwE)(x,y)e) that
sends our zig-zag to the diagram

X z z pZ —4 pz % Y

T T

X 7 ——7 A Pz Y Y,
1

After composing with the inclusion LwE ¢ (x,y)¢ — LwE(x,y)y the functor 7o is clearly
linked to the inclusion L — LywE(x, y)¢ by a sequence of natural transformations, and sim-
ilarly #; is linked to the composite of i o p with this inclusion. Since natural transformations
give homotopies of the induced maps between nerves it follows from Theorem[4.4.1.17]that
the morphism on nerves induced by i o p is homotopic to the identity. This completes the
proof. O

Corollary 4.4.1.19. Suppose F: C — RelCat is a functor such that F(C) is a partial model
category for each C € C. There is an co-category E[W 1] such that L(E, W) — E[W~ '] isa
weak equivalence in Sety, and E[W~!] — NC is a coCartesian fibration.
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Proof. Let LwE — LwE — C denote a factorization of LwE — C as a trivial cofibration
followed by a fibration in the model category of simplicial categories. Then (NZwE)"
is a fibrant replacement for L(E, W) in Set}. By [Lur09a, Proposition 2.4.4.3] to prove that
NZwE — NC is a coCartesian fibration it suffices to show that for each morphism f: ¢ — d
in C and each x in E. we have a homotopy pullback square of simplicial sets

LWE(ﬁx,y) - LWE(x/ y)

|

C(d,e) C(c,e)

foralle € Cand y € E,, where f_ : x — fix denotes a coCartesian morphism in E over f.

Since the inclusion of a point in a discrete simplicial set is a Kan fibration and the model
structure on simplicial sets is right proper, given g: d — e the fibres at {g} and {go f} in
this diagram are homotopy fibres. To see that the diagram is a homotopy pullback square
it thus suffices to show that composition with f induces a weak equivalence

LCwE(fix,y)g — LWE(x,y)gf

for all g: d — e. But by Proposition 4.4.1.18} in the commutative diagram

LwEe((gf)ix,y)

P

LCwE(fix,y)g LwE(x,Y)qf

the diagonal morphisms are both weak equivalences, hence by the 2-out-of-3 property so
is the horizontal morphism. O

Corollary 4.4.1.20. Suppose F: C — RelCat is a functor such that F(C) is a partial model
category for each C € C. Let LF — F be a fibrant replacement in Fun(C, Set} ). Then there
is a weak equivalence L(E, W) — (NcF)? in Set}.

Proof. The obvious map of categorical patterns p: Pre — P& induces a Quillen ad-
junction

pr: (Sety) ne: = (Sety) ne: P

where p; is the identity on the underlying marked simplicial sets, and p* forgets the
marked edges that do not lie over isomorphisms in C. Since all objects are cofibrant, p,
preserves weak equivalences.

By Proposition there exists a coCartesian fibration E[W~1] — NC with a map
¢: L(E,W) — E[W 1" that is a weak equivalence in Set,. The map ¢ is also a weak
equivalence when regarded as a morphism in (Set} ), nc:, and since p; preserves weak
equivalences it is a weak equivalence in (Set} ) /¢ as well.

Let M’ be the set of edges of NE corresponding to coCartesian morphisms in E, and
let E[W~1]* denote the marked simplicial set obtained from E[W~'] by also marking the
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morphisms in the image of M'. We have a pushout diagram

L(E, W) E[W ]!

| |

(NE,NW; UM') —— E[W1]*,

as both vertical maps are pushouts along [ [ Al — Hfem (A1)E. Since the model struc-
ture on (Set} ) /nc is left proper, it follows that (NE,NW; U M’) — E[W~!]T is a weak
equivalence.

Let E[W~!]* denote E[W~!], marked by the coCartesian morphisms. These are com-
posites of equivalences and morphisms in the image of M/, so E[]W~1]* — E[W~!]* is
marked anodyne. Moreover, NE marked by the composites of morphisms in NW; and
M’ is precisely NEF, so (NE,NW; U M) — N{F is also marked anodyne. By the 2-out-
of-3 property we therefore have a weak equivalence N(LF — E[W~']*. Thus E[W~!]*
and N£F are both fibrant replacements for N:LF, and so are linked by a zig-zag of weak
equivalences between fibrant objects.

This implies that the underlying co-categories E[W~!] and N¢LF are equivalent, and
so by the 2-out-of-3 property the map (NE, W) — (NcF)? is a weak equivalence in Set},
as required. O

Although not strictly necessary for the applications we are interested in below, we will
now show that if the functor F: C — RelCat is obtained from a suitable functor from C to
combinatorial model categories, then the relative category structure on E considered above
also comes from a combinatorial model category.

Definition 4.4.1.21. Let ModCat® be the category of model categories and right Quillen
functors. A right Quillen presheaf on a category C is a functor C°? — ModCat®. A right
Quillen presheaf is combinatorial if it factors through the full subcategory of combinatorial
model categories.

Definition 4.4.1.22. Suppose C is a x-accessible category. A right Quillen presheaf on C
is K-accessible if for each x-filtered diagram i: I — C with colimit x, the category F(x) is
the limit of the categories F(i(«)), and the model structure on F(x) is induced by those
on F(i(a)) in the sense that a map f: a — b in F(x) is a (trivial) fibration if and only if
F(ga)(f) is a (trivial) fibration in F(i(«)) for all « € I, where g, is the canonical morphism
i(x) — x. We say a right Quillen presheaf F on an accessible category C is accessible if there
exists a cardinal x such that C and F are x-accessible.

Proposition 4.4.1.23. Suppose C is a complete and cocomplete category and F is a right
Quillen presheaf on C. Let r: E — C be the Grothendieck fibration corresponding to
F. Then there exists a model structure on E such that a morphism ¢: x — y with image
fra—binCis

(W) aweak equivalence if and only if f is an isomorphism in C and the morphism fix — v
is a weak equivalence in F(b).

(F) afibration if and only if x — f*y is a fibration in F(a).
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(C) a cofibration if and only if fix — y is a cofibration in F(b).

Moreover, if C is a presentable category and F is an accessible and combinatorial right
Quillen presheaf, then this model structure on E is combinatorial.

Remark 4.4.1.24. If f: a — b is an isomorphism in C, then f* = F(f) is an isomorphism of
model categories with inverse fi. Thus if ¢: x — y is a morphism in E such that f = 7(¢)
is an isomorphism in C, then fix — v is a weak equivalence in E, if and only if x — f*y is
a weak equivalence in E,.

Remark 4.4.1.25. This model category structure is a particular case of that constructed by
Roig [Roi94] (though he does not consider the combinatorial case), but we include a proof
for completeness.

Proof. Limits in E are computed by first taking Cartesian pullbacks to the fibre over the
limit of the projection of the diagram to C, and then taking the limit in that fibre. Since all
the fibres E, have limits, it is therefore clear that E has limits. Similarly, since each functor
¢* for ¢ in C has a left adjoint, and each of the fibres E, has all colimits, it is clear that E
has colimits.

To show that E is a model category we must now prove that the weak equivalences
satisfy the 2-out-of-3 property, and the cofibrations and trivial fibrations, as well as the
trivial cofibrations and fibrations, form weak factorization systems. We check the 2-out-
of-3 property first: Suppose we have morphisms f: x — y and §: y — z in E lying over
f:a—bandg: b — cin C. If two out of the three morphisms f, § and ¢f are weak equiv-
alences, it is clear that f and g must be isomorphisms. Thus g is an isomorphism of model
categories, and g fix — g1y is a weak equivalence in E, if and only if fix — y is a weak
equivalence in E,. Combining this with the 2-out-of-3 property for weak equivalences in
E. gives the 2-out-of-3 property for E.

We now prove that the cofibrations and trivial fibrations form a weak factorization
system:

(1) Any morphism has a factorization as a cofibration followed by a trivial fibration:
Given f: x — yin E lying over f: a — b in C, choose a factorization fix — z — y of
fix — y as a cofibration followed by a trivial fibration in E;. Then by definition x — z
is a cofibration and z — y is a trivial fibration in E.

(2) A morphism that has the left lifting property with respect to all trivial fibrations is a
cofibration: Suppose f: x — y, lying over f: a — b in C, has the left lifting prop-
erty with respect to all trivial fibrations. Then in particular there exists a lift in all
diagrams

x — x'

||

y——y
where x’ — ¥/ is a trivial fibration in E,. By the universal property of coCartesian

morphisms, this clearly implies that fix — y has the left lifting property with respect
to trivial fibrations in E;, and so is a cofibration in E;. Thus f is a cofibration.
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)

(4)

Cofibrations have the left lifting property with respect to trivial fibrations: Suppose
f:x — y, lying over f: a — b in C, is a cofibration, and §: ¥’ — ¥/, lying over
g:a’ — b, is atrivial fibration. Given a commutative diagram

a /
X ———X

lying over

b——V

we must show there exists a lift y — x’. Since § is a trivial fibration, g is an isomor-
phism. Pulling back along ¢! and pushing forward along ga = Bf and B gives a
diagram

x —— Bfix —— (g7 ——

]

/ /

y Bry y y

Here B fix — By is a cofibration in Ej since fix — y is a cofibration in E; and B is
a left Quillen functor, and (¢~!)*x’ — (¢71)*¢*y = v is a trivial fibration in Ej since
x — ¢*y is a trivial fibration in E; and (¢~!)* is a right Quillen functor. Thus there
exists a lift iy — (g¢~!)*x’ which gives the desired lift y — x'.

A morphism that has the right lifting property with respect to all cofibrations is a
trivial fibration: Suppose §: ¥ — /, lying over g: a/ — b’ in C, has the right lifting
property with respect to all cofibrations. Then in particular there exists a lift in all
diagrams

x — x'

||

y——
where x — y is a cofibration in E,. By the universal property of Cartesian mor-

phisms, this clearly implies that x’ — ¢*y’ has the right lifting property with respect
to cofibrations in E,/, and so is a trivial fibration in E,/. On the other hand, there exists
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a lift in the diagram

x — X

|

gx' ——

and projecting this down to C we see that ¢ must be an isomorphism. Thus ¢ is a
trivial fibration in E.

The proof that trivial cofibrations and fibrations form a weak factorization system is dual
to that for cofibrations and trivial fibrations, so we omit the details.

This completes the proof that E is a model category. Now suppose the right Quillen
presheaf F is combinatorial and accessible. It follows from [MP89, Theorem 5.3.4] that the
category E is accessible, and the functor 7r is accessible, thus E is a presentable category
since we already proved that it has small colimits.

Let x be a cardinal such that C is x-accessible and E, is x-accessible for each x-compact
object x in C. For x € C, let I, and ], be sets of generating cofibrations and trivial cofibra-
tions for E,. Let I and ] be the unions of I, and J,, respectively, over all x-compact objects
x € C; then I and | are sets.

Suppose a morphism f: x — y, lying over f: a — b in C, has the right lifting property
with respect to the morphisms in J; then x — f*y is a fibration in E,: To see thislet K — C,
« — a,, be a x-filtered diagram of x-compact objects with colimit 4, and let y,: a, — a be
the canonical morphism. Then y;x — i f*y has the right lifting property with respect to
a set of generating trivial cofibrations in E;,, and hence this is a fibration in E,, . Since the
right Quillen presheaf F is x-accessible, this implies that x — f*y is a fibration in E,. This
means f is a fibration in E, so | is a set of generating trivial cofibrations.

Similarly, if f has the right lifting property with respect to the morphisms in I, then
x — f*yis a trivial fibration in E,. To find a set of generating cofibrations we consider
also the set I’ of morphisms @y — @, and @, — @, where ¢ is a k-compact object of
C and @, denotes the initial object of E.. We claim that if f: x — y in E, with image
f:a — bin C, has the right lifting property with respect to the morphisms in I’, then f
is an isomorphism in C. To prove this it suffices to show that for every object ¢ € C the
map f.: Homc(c,a’) — Home(c, V') induced by composition with f is a bijection; since
C is k-presentable it is enough to prove this for ¢ a k-compact object. Since f has the right
lifting property with respect to @y — . and every morphism ¢ — b induces a morphism
@. — y, there exists a lift in the diagram

O ——a

h //// ‘f

c——b

for every map ¢ — b; this shows that f. is surjective. Moreover, given two morphisms
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¢ — a such that the composites c — b are equal, we get a lift in the diagram

cldc——a

h //// hf

c——b

since f has the right lifting property with respect to @.1; — @¢; thus the two morphisms
¢ — a must be equal and so f, is injective. It follows that if a morphism in E has the right
lifting property with respect to the union I IT I’ then it is a trivial fibration, so I IT I’ is a set
of generating cofibrations for E. Hence E is a combinatorial model category. ]

Remark 4.4.1.26. Let F be a right Quillen presheaf on a category C, and let E — C be a
coGrothendieck fibration associated to the underlying functor to categories. Write G for
the associated “left Quillen presheaf” obtained by passing to left adjoints, and let G*: C —
RelCat be the functor to relative categories obtained by restricting to cofibrant objects.
Then the full subcategory Ef of cofibrant objects in E, with the model structure defined
above, is the total space of the coGrothendieck fibration associated to Gf and the weak
equivalences in Ef are precisely those considered above.

4.4.2 Rectifying Associative Algebras

In [Lurll, §4.1.4] Lurie proves a rectification result for associative algebras: if V is a nice
symmetric monoidal model category, then the co-category of co-categorical associative al-
gebras in V, i.e. the co-category of algebras for the non-symmetric co-operad A°P, is
equivalent to that associated to the model category of (strictly) associative algebras in V
(constructed by Schwede and Shipley [SS00]). This is proved by showing that both are
equivalent to the co-category of algebras for the free associative algebra monad on V.. We
would like to use the same idea to show that the co-category associated to the model cat-
egory Catx (V) of V-categories with a fixed set X of objects is equivalent to Alg AP (Veo);
to do this we need a generalization of Schwede and Shipley’s results to the case of non-
symmetric monoidal model categories. Luckily this generalization has been carried out by
Muro [Murl1] as part of his work on model structures for algebras over non-symmetric
operads. We will now review this case of Muro’s work, and then observe that they allow
the technical parts of Lurie’s proof to work exactly as in [Lurl11].

First we recall an observation of Schwede and Shipley on model structures for algebras
over monads:

Definition 4.4.2.1. Let T be a monad on a model category C. We say that T is an admissible
monad if there exists a model structure on the category Alg(T) of T-algebras where a
morphism is a weak equivalence or fibration if and only if the underlying morphism in C
is a weak equivalence or fibration.

Write Fr: C = Alg(T): Uy for the associated adjunction. If C is a combinatorial model
category with sets I and ] of generating cofibrations and trivial cofibrations, we say that T
is combinatorially admissible if it is admissible and the model structure on Alg(T) is combi-
natorial with Fr(I) and Fr(]) as sets of generating cofibrations and trivial cofibrations.
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Lemma 4.4.2.2 (Schwede-Shipley, [SS00, Lemma 2.3]). Suppose C is a combinatorial model
category and T is a filtered-colimit-preserving monad on C, and let | be a set of generating
trivial cofibrations for C. If every morphism in the weakly saturated class generated by
Fr(]) is a weak equivalence in C then T is combinatorially admissible.

Remark 4.4.2.3. Since weak equivalences in C are closed under retracts and transfinite
composites, the weakly saturated class generated by Fr(]) will be contained in the weak
equivalences provided the pushout of any morphism in Fr(]) along any morphism in
Alg(T) is a weak equivalence.

Definition 4.4.2.4. Let C be a biclosed monoidal category. If f: A — Band g: A’ — B’ are
morphisms in C, let flg be the induced morphism

A®B/HA®A/B®A/—>B®B/.

Definition 4.4.2.5. Let C be a model category equipped with a biclosed monoidal structure.
We say that C is a monoidal model category if fL1g is a cofibration whenever f and g are both
cofibrations, and a trivial cofibration if either f or g is also a weak equivalence.

Definition 4.4.2.6. Suppose C is a monoidal model category. Let U be the set of morphisms
in C of the form f1[J---[Jf, where each f; is either a trivial cofibration or of the form
© — X; for some X; € C, with at least one f; being a trivial cofibration. We say that C
satisfies the monoid axiom if the weakly saturated class U generated by U is contained in
the weak equivalences in C.

Remark 4.4.2.7. If C is symmetric monoidal, then this is equivalent to the corresponding
statement where U consists of morphisms of the form f ® idx with f a trivial cofibration.
This is the original form of the monoid axiom, due to Schwede and Shipley.

We can now state the special case of Muro’s results on algebras over non-symmetric
operads that we will make use of:

Theorem 4.4.2.8 (Muro [Murll, Theorem 8.6]). Suppose C is a combinatorial biclosed
monoidal model category satisfying the monoid axiom. Write Alg(C) for the category
of associative algebra objects of C and F: C = Alg(C) : U for the free algebra functor and
forgetful functor. Let f: X — Y be a morphism in C and g: F(X) — A be a morphism in
Alg(C). If

F(X) —— F(Y)

‘g,

B

8

A

f/
is a pushout diagram in Alg(C), then there is a sequence of morphisms in C
A=By BB Bpy...

such that B = colim; B; and ¢ is a pushout of

I 1II <00
n>1SC{1,..,n}
|S|=t
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where

(S5 f, i€S
' lo—= A, iés.

Corollary 4.4.2.9. Suppose C is a combinatorial biclosed monoidal model category satis-
tying the monoid axiom. Then the free associative algebra monad on C is combinatorially
admissible.

Proof. By Remark it suffices to show that if f: X — Y is a trivial cofibration in C
and g: F(X) — A amorphism in Alg(C), and

F(X) —— F(Y)

‘g,

B

8

A

f/

is a pushout diagram in Alg(C), then f’ is a weak equivalence in C. By Theorem
the morphism f’ is a transfinite composite of pushouts of morphisms ¢; that are clearly
contained in the class U from Definition so f’ is contained in the weakly saturated
closure U. Since C satisfies the monoid axiom, this implies that f’ is a weak equivalence in
C. O

This allows us to generalize the key technical result [Lurll, Lemma 4.1.4.13] to non-
symmetric monoidal categories:

Definition 4.4.2.10. A model category is tractable if it is combinatorial and there exists a set
of generating cofibrations that consists of morphisms between cofibrant objects.

Lemma 4.4.2.11. Suppose C is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom and I is a small category such that NI is sifted. Then the
forgetful functor Ue: Alg(C)e — Co preserves NI-indexed colimits.

The proof is almost the same as that of [Lurll, Lemma 4.1.4.13], but we include it for
completeness:

Proof. By [Lurll, Proposition 1.3.3.11, Proposition 1.3.3.12] it suffices to show that the
forgetful functor U preserves homotopy colimits indexed by I. Regard the categories
Fun(I, Alg,,(C)) and Fun(I,C) as model categories equipped with the projective model
structures, let C: Fun(I,C) — C and Cypy: Fun(I, Alg(C)) — Alg(C) be colimit func-
tors, and let U': Fun(I, Alg(C)) — Fun(I, C) be given by composition with U. Since NI
is sifted, there is a canonical isomorphism of functors a: C o u = uocC Alg- We need
to prove that this isomorphism persists after deriving all the relevant functors. Let ILC
and ILCypg be left derived functors of C and Cay,; then a induces a natural transforma-
tiona: LCoU' — UoLLC Alg; we wish to prove that & is a natural weak equivalence. Let
A: 1 — Alg(C) be a projectively cofibrant functor; we must show that the natural map

LCU'(A) = U(ILCag(A)) = U(Cag(A)) = C(U'A)

is a weak equivalence in C.
Let’s call an object X € Fun(I, C) good if
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@)
(ii)
(iii)

the object X (i) is cofibrant in C for all i € I,
the colimit C(X) is cofibrant in C,

the natural map LC(X) — C(X) is a weak equivalence in C, i.e. the colimit of X is
also a homotopy colimit.

To complete the proof it suffices to show that U'A is good whenever A is a projectively
cofibrant object of Fun(I, Alg(C)).
Let’s say a morphism f: X — Y in Fun(I, C) is good if

@)
(ii)
(iii)

the objects X and Y are good,
the map X (i) — Y(i) is a cofibration for all i € I,

the map C(f): C(X) — C(Y) is a cofibration in C.

We now make the following observations:

)

()

)

(4)

(5)

Good morphisms are stable under transfinite composition: Given an ordinal « and
a direct system of objects {XP} g, of Fun(I, C) such that for every 0 < B < « the
map colim{X"7},.4 — XF is good, then the induced map X° — X := colim{XP} 4.,
is good. The only non-obvious point is to show that the object X is good. For this
we observe that X is a homotopy colimit of the system {X#} by (ii) and C(X) is a
homotopy colimit of {C(X?)} by (iii), and recall that homotopy colimit diagrams are
stable under homotopy colimits.

Suppose
X E Y

X/ Y/
f/

is a pushout diagram in Fun(I, C) such that f is good and the object X’ is good. Then
f' is also good: Again the only non-obvious point is to show the object Y’ is good.
The hypotheses imply that the diagram is a homotopy pushout square, and similarly
C(Y’) is a homotopy pushout of C(Y) with C(X’) over C(X), so it follows that Y’ is
good since homotopy colimit diagrams are stable under homotopy colimits.

Let G: I — C be a constant functor whose value is a cofibrant object of C. Then
G is good, since NI is weakly contractible, using [Lurll, Proposition 1.3.3.11] and
[Lur(09a, Proposition 5.5.8.7].

Every projectively cofibrant object of Fun(I, C) is good, and every projective cofibra-
tion between projectively cofibrant objects is good.

If X and Y are good, then so is X ® Y: The cofibrant objects of C are closed under
tensor products, and because NI is sifted, [Lurll, Proposition 1.3.3.11] gives a chain
of isomorphisms in hC

LC(X®Y) = LC(X) ®LC(Y) = C(X) ® C(Y) = C(X® Y).
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(6) Let f: X — X' be a good morphism, and let Y be a good object. Then f ® idy is good:
Condition (i) follows from (5), condition (ii) follows because tensoring with each Y (c)
preserves cofibrations, since Y(c) is cofibrant, and condition (iii) holds by the same
argument applied to C(Y'), since C commutes with tensor products.

(7) Let f: X — X' and g: Y — Y’ be good morphisms. Then f[lg is good. Condition
(ii) holds since C is a monoidal model category, as does (iii) since C commutes with
pushouts and tensor products. Then (i) holds by combining (5), (6), and (2).

(8) Every retract of a good object is good: this follows since cofibrations and weak equiv-
alences are closed under retracts.

By assumption the model category C is left proper and tractable, which implies that the
projective model structure on Fun(I, C) is also tractable. Using the small object argument
this implies that for every projectively cofibrant object A € Fun(I, Alg(C)) there exists a
transfinite sequence {Af} <, such that

(a) A%is an initial object,
(b) A is a retract of A%,
(c) if A < a is a limit ordinal, then A* = colim{ AP} B<As

(d) for each B < «a there is a pushout diagram

pxty 220 p(x)

Aﬁ AﬁJrl

where f is a projective cofibration between projectively cofibrant objects of Fun(I, C).

By (b) and (8) to prove that U'(A) is good it suffices to prove that U(A%) is good. We will
show by transfinite induction that for each v < < a the induced morphism

1yp: UN(AT) — U (AP)

is good. If B = 0 this holds since ul(A% is good by (a) and (3). If B is a non-zero limit
ordinal, this follows from (c) and (1). It therefore suffices to consider the case where f =
B’ + 1 is a successor ordinal. Moreover, we may suppose v = B if v < B’ then u, 5 =
ug g o i, p and composites of good morphisms are good by (1), while if > B’ then we
must have 7 = B and we are reduced to proving that U'(AP) is good, which will follow
from ug g being good. Invoking (d) we thus need to prove that if

Fx) 2L F(x)




is a pushout diagram where f: X’ — X is a projective cofibration between projectively
cofibrant objects of Fun(I, C) and U'B’ is good, then U!(v) is good. By Theoremthe
morphism U!(v) can be identified with a transfinite composite of morphisms ¢ : B;_1 —
By; by (1) it suffices to show that each ¢ is good. But ¢ is a pushout of

ve=1] ] KO- 0k,
n>18C{1,.,n}
|S|=t

and since By = U(B’) is good applying (2) inductively it suffices to prove that y; is good.
It is clear that an arbitrary coproduct of good morphisms is good, so by (7) to see this it
suffices to show that each morphism k¢ is good, which is true since this is either f, which
is good by (4), or @ — B’, which is good since B’ is good. O

Remark 4.4.2.12. Applying the more general version of Theorem actually proved
in [Murl1], the same proof clearly implies, for example, that if C is a left proper tractable
simplicial biclosed monoidal model category satisfying the monoid axiom, O is a small
simplicial non-symmetric operad, and I is a small category such that NI is sifted, then the
forgetful functor Algy,;(C)e — Co preserves NI-indexed colimits.

Proposition 4.4.2.13. Suppose C is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom. Then the natural map

Alg(C)o — AlgR (CZ)
is an equivalence.

Proof. We apply [Lurll, Corollary 6.2.2.14] as in the proof of [Lurll, Theorem 4.1.4.4]: We
have a commutative diagram

Alg(C) ATg0. (C2)

Cw.

Then we observe:

(a) The oco-category Alg(C)« is presentable by [Lurll, Proposition 1.3.3.9], and the oco-
category Alggop (CY) is presentable by Corollary since Cw is presentable by
[Lurll, Proposition 1.3.3.9] and the induced tensor product on C, preserves colimits
in each variable by [Lurll, Lemma 4.1.4.8].

(b) The functor U’ admits a left adjoint F by Theorem [3.3.4.6, and U, admits a left adjoint
F since it arises from a right Quillen functor.

(c) The functor U’ is conservative by Lemma [3.3.5.3| and preserves sifted colimits by

Proposition[3.3.5.2]

(d) The functor Uy is conservative by the definition of the weak equivalences in Alg(C),
and preserves sifted colimits by Lemma(4.4.2.11
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(e) The canonical map U’ o F/ — U o Fs is an equivalence since both induce, on the
level of homotopy categories, the free associative algebra functor A — [],~o C®" by

Proposition 3.3.4.9

The hypotheses of [Lurll, Corollary 6.2.2.14] thus hold, which implies that the morphism
in question is an equivalence. O

4.4.3 Comparison with Enriched Categories

Our goal in this subsection is to show that the homotopy theory of categories enriched in
a nice monoidal model category V is equivalent to the homotopy theory of co-categories
enriched in the monoidal co-category associated to V. More precisely, we will prove that
the co-category obtained from the category Cat(V) of small V-categories by inverting the
homotopically appropriate version of fully faithful and essentially surjective functors is
equivalent to the co-category CatY= of small V-co-categories. We will do this in three
steps: first we apply the results of to get an equivalence between the co-category
associated to a model structure on the category Catx (V) of V-categories with a fixed set of
objects X and the co-category Algg?(p (Vo) of AT -algebras. Next, using the results of §4.4.1

we see that this induces an equivalence between the co-category associated to a certain
model structure on Cat(V) and the oco-category Alg® (VE)se of categorical algebras in
V. whose spaces of objects are sets. Finally, we complete the comparison by showing that
inverting the fully faithful and essentially surjective functors in Algg1t (VE)set is equivalent
to inverting them in Alg® (VZ).

If V is a biclosed monoidal category and X is a set then it is well-known that there is a
monoidal structure on Fun(X x X, V), given by

(FoG)(xy) =[] F(x2)®G(zy),

zeX

such that an associative algebra object in Fun(X x X, V) is precisely a V-category with
objects X. This monoidal structure is well-behaved:

Proposition 4.4.3.1 (Muro [Murll, Proposition 10.3]). If V is a monoidal model category
satisfying the monoid axiom, then so is Fun(X x X, V) for all sets X.

We can thus get a model structure on the category Catx (V) of V-categories with fixed
set of objects X:

Corollary 4.4.3.2. If V is a left proper tractable biclosed monoidal model category satis-
tying the monoid axiom, then there is a combinatorial model category structure on the
category Catx (V) such that a morphism is a fibration or weak equivalence if and only if
its image in Fun(X x X, V) is. Moreover, if I is a small category such that NI is sifted then
the forgetful functor Catx (V) — Fun(X x X, V) preserves NI-indexed colimits.

Proof. Apply Corollary 4.4.2.9)and Lemma (4.4.2.11| to Fun(X x X, V) equipped with the

monoidal structure described above, so that associative algebras are V-categories with set
of objects X. O

The co-category associated to this model category is equivalent to the co-category of
&(;(p—algebras in Vg
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Proposition 4.4.3.3. Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom, and let X be a set. The natural map #x: Catx (V) —
Alggop (VE) is an equivalence.

X

Proof. This follows by exactly the same argument as that in the proof of Proposition4.4.2.13
since the free associative algebra monad on Fun(X x X, V) is the same as the free Ay -

algebra monad by Proposition|3.3.4.9 O

Using Proposition [4.4.1.23| we can combine these fibrewise model structures to get a
model structure on the category Cat(V) of small V-categories:

Proposition 4.4.3.4. Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. Then there is a model structure on the category Cat(V) of
small V-categories such that a morphism F: C — D is a weak equivalence if and only
if F is a bijection on objects and the induced morphism C(x,y) — D(Fx, Fy) is a weak
equivalence in V for all x,y € ob C, and a fibration if and only if C(x,y) — D(Fx, Fy) isa
fibration in V for all x,y € ob C.

We say that a functor F: C — D of V-categories is weakly fully faithful if for all objects
x,y € C the morphism C(x,y) — D(Fx, Fy) is a weak equivalence in C; the weak equiva-
lences in this model structure on Cat(V) are thus the weakly fully faithful functors that are
bijective on objects. We therefore write Cat(V)f8 for Cat(V) equipped with this model
structure.

The map #x: Catx(V)e — Alggip(Vgg) is natural in X, so it induces a natural trans-

formation of functors Set — Set,. Applying Corollary 4.4.1.20 we get the following com-
parison of “algebraic” homotopy theories:

Theorem 4.4.3.5. The natural transformation # induces a functor
Cat(V)5® — Alge (V)set
and this is an equivalence.

The weakly fully faithful functors that are bijective on objects are clearly not the right
weak equivalences between V-categories — just as for ordinary categories the equiva-
lences are the functors that are fully faithful and essentially surjective, here they should
be the functors that are weakly fully faithful and essentially surjective up to homotopy, in
the following sense:

Definition 4.4.3.6. Let V be a monoidal model category. Then the projection V. — hV to
the homotopy category is a monoidal functor; this therefore induces a functor Cat(V) —
Cat(hV). We say a functor of V-categories is homotopically essentially surjective if its image
in Cat(hV) is essentially surjective.

Weakly fully faithful and homotopically essentially surjective functors are often called
DK-equivalences; they can also be described as the functors of V-categories that induce
equivalences of hV-categories.

Our next goal is to show that the co-category obtained by inverting the weakly fully
faithful and homotopically essentially surjective functors in Cat(V), which we will denote
by Cat(V)[FFES™], is equivalent to the co-category CatY of Ve-enriched co-categories.
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Remark 4.4.3.7. In many cases there is a model structure on Cat(V) where the weak equiv-
alences are the weakly fully faithful and homotopically essentially surjective functors; see
[Lur09a, BM12,Stal2] for general results on such model structures (and see [BM12, §1] for
a historical discussion). If this model structure exists, then Cat(V)[FFES™'] is equivalent
to the co-category associated to this model category.

The weakly fully faithful and homotopically essentially surjective functors in Cat(V)

clearly correspond to the fully faithful and essentially surjective functors in Alggt(V?;)g,et.
Theorem therefore implies the following:

Proposition 4.4.3.8. Suppose V is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom. Then Cat(V)[FFES™'] is equivalent to the localization
Alg® (VE)set[FFES ™! of Alg® (V)se with respect to the fully faithful and essentially
surjective functors.

To prove our desired comparison result it therefore suffices to show that inverting the
tully faithful and essentially surjective functors in Alggt(V%)Set is equivalent to inverting
them in the co-category Alggt(Vg) of all categorical algebras. This is true for all monoidal
oo-categories:

Proposition 4.4.3.9. Suppose V¥ is a monoidal co-category. The inclusion
2 Alg® (VF)ger — Alg® (V)
1r Algeat Set Bcat

induces an equivalence Alg® (V®)so[FFES™!] =5 Cat), after inverting the fully faithful
and essentially surjective functors.

Proof. Considering 8 as the co-category associated to the usual model structure on sim-
plicial sets, we get a functor j: Setx — 8 that exhibits § as the localization of Set, with
respect to the weak equivalences. Let Alggt(\?@) A be the co-category defined by the pull-
back square

jl
Alg® (V¥), —— Alg? (V¥)

|

SetA 8.

Then Alggt(VQ@)Set is the pullback of Alggt(\?®) A along the inclusion Set — Set, of the
constant simplicial sets. This has a right adjoint (—)o: Sety — Set that sends a simplicial set
to its set of 0-simplices. The inclusion i': Alg® (V®)se = AlgY, (V) therefore has a right
adjoint s: AlgQ (V¥), — AlgQ (V®)s, that sends an object (X € Sety, € € Alg® (V?)) to
the pullback of € along the morphism Xy — X — (C. It is clear that i’ preserves fully
faithful and essentially surjective functors, as does s by the 2-out-of-3 property. Moreover,

si ~ id and the counit is: ¢ — C is fully faithful and essentially surjective for all C. It then
follows from Lemma 2.1.8.4|that i’ induces an equivalence

Alg® (V¥)set[FFES™!] = Alg® (V¥)A[FFES™!]

after inverting the fully faithful and essentially surjective functors. Moreover, Alg® (V) is
the localization of Algglt (V) with respect to the morphisms that induce weak equivalences

153



in Sety and project to equivalences in Alggt(\?). These are obviously among the fully
faithful and essentially surjective functors, and so j’ induces an equivalence

Alg® (V¥)A[FFES™!] = Caty,.
Composing these two equivalences gives the result. O

Corollary 4.4.3.10. Suppose V is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. The functor ;7: Cat(V)e — Alg®, (V)ser induces an equiv-
alence Cat(V)[FFES™!] = Catys.

4.4.4 Comparison with Segal Categories

Segal categories are a model for the theory of (oo, 1)-categories where composition is only
associative up to coherent homotopy, inspired by Segal’s model of A-spaces. They were
introduced by Hirschowitz and Simpson [HS98]. A generalization to Segal categories en-
riched in a monoidal model category where the tensor product is the Cartesian product
was first given by Lurie [Lur09b], and later extensively studied by Simpson [Sim12].

Our goal in this subsection is to show that the homotopy theory of Segal categories
enriched in V is equivalent to that of co-categories enriched in V. Segal categories are
usually regarded as fibrant objects in a certain model structure on precategories; we first re-
view the definitions of Segal categories and precategories, and show that for our purposes
we may equivalently consider Segal categories as objects in a larger category of functors.
Then we prove the comparison result, using the same strategy as for the comparison with
enriched categories.

We begin by recalling the definition of enriched Segal categories:

Definition 4.4.4.1. A model category is Cartesian if it is a monoidal model category with
respect to the Cartesian product. If V is a Cartesian model category, a V-enriched Segal
category (or Segal V-category) with set of objects S is a functor C: AL — V such that
C(x,y) is fibrant for all x,y € S and for every object (xo, ..., x,) of A the Segal morphism
C(xo,...,xn) — C(xg,x1) X ---C(x,-1,%,) induced by the projections (xo,...,x,) —
(xj, xi+1) is a weak equivalence.

Remark 4.4.4.2. We can regard (fibrant) V-categories as the Segal categories where the
Segal morphisms are isomorphisms, rather than just weak equivalences.

Now we construct a model category whose fibrant objects are Segal categories with a
fixed set S of objects; for this we first need some notation:

Definition 4.4.4.3. If X is an object of AZP, letix: x — &;}p denote the functor with im-
age X, write i%: Fun(&?p ,V) — V for the functor given by composition with ix, and let
ix:: V= Fun(AY, V) be its left adjoint, given by left Kan extension along ix. Then ix  is
a left Quillen functor with respect to the projective model structure on Fun(A, V).

Observe that if V is a left proper combinatorial simplicial Cartesian model category,
then a functor C: AY’ — V is a Segal category if and only if it is projectively fibrant
and local with respect to the morphisms #(, v ) AL - [Ti(x, | x)0 A = i(xg,...x,),1 A fOr all
(x0,...,x,) in S and all A in a set of objects that generates V under colimits. Thus we
can define a model structure whose fibrant objects are Segal categories as a left Bousfield
localization of the projective model structure:
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Definition 4.4.4.4. The Segal category model structure on functors is the left Bousfield local-
ization of the projective model structure on Fun(A¢", V) with respect to these morphisms.
We write Fun(AgP, V)., for the category Fun(AgY, V) equipped with this model structure.

Enriched Segal categories are more commonly considered as objects in a category of
precategories:

Definition 4.4.4.5. A V-precategory with set of objects S is a functor C: Agp — V such
that C(x,...,x) is a final object for all constant sequences (x,...,x) with x € S. Write
Precats(V) for the full subcategory of Fun(Ac, V) spanned by the V-precategories, and
u*: Precats(V) — Fun(AZ", V) for the inclusion. Then u* has a left adjoint, which we
denote u;.

There is a model structure on Precats(V) analogous to that for Fun(Ag", V) we de-
scribed above:

Proposition 4.4.4.6 (Simpson [Sim12, Propostion 13.4.3]). There exists a model structure
on Precatg(V) where a morphism is a weak equivalence or fibration if it levelwise is one
in V. The functor u*: Precats(V) — Fun(AZ", V) is a right Quillen functor.

Definition 4.4.4.7. The Segual category model structure on precategories is the left Bousfield lo-
calization of the projective model structure on Precats(V) with respect to the morphisms
(i) ALL T, ) 0a) = Wiy, v A forall (xo, ..., x,) in S and all A in a set of
objects that generates V under colimits. We write Precats(V)seg for the category Precats (V)
equipped with this model structure.

We now prove that these two model categories in the fixed-object case are equivalent:

Proposition 4.4.4.8. The adjunction u; < u* gives a Quillen equivalence
Fun(Agp, V)seg = Precats(V)seg-

Proof. Since u* is fully faithful, the counit u,u*F — F is an isomorphism in Precats(V) for
all F. It thus remains to show that if X is a cofibrant object of Fun(&gp, V)seg and X' is a
fibrant replacement for ;X in Precats(V)seg, then the composite X — u*u;X — u*X'is a
weak equivalence in Fun(AZ, V)sgeg.

By [Sim12, Lemma 14.2.1] the functor u; only changes the values of a functor at the
constant sequences (x,...,x) for x € S, and so preserves fibrant objects. Moreover, if F
is a fibrant object of Fun(A¢’, V)se,, and so in particular F(x, ..., x) is weakly equivalent
to the final object, then the unit map F — u*u/F is a levelwise weak equivalence. Thus if
X is a cofibrant object in Fun(Ag", V)seg and X — F is a fibrant-cofibrant replacement for
X, then uyX — u,F is a weak equivalence and u/F is fibrant in Precats(V)Seg, ie. u/Fisa
tibrant replacement for u; X. Since X — F and F — u*u,F are weak equivalences, it follows
that the composite X — u*u,F is also a weak equivalence, as required. O

Using Proposition 4.4.1.23|we can combine these model structures as the set S varies:

Definition 4.4.4.9. Let Seg, . (V) denote the total space of the right Quillen presheaf given
by S — Fun(AY, V)se, and let Precat(V) denote the total space of the right Quillen
presheaf given by S > Precats(V)seg. The adjunction u; - u* is natural and so gives a
natural transformation between these right Quillen presheaves.
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Proposition 4.4.4.10. Let V be a left proper combinatorial simplicial Cartesian model cate-
gory. There exist combinatorial model structures on the categories Segp, . (V) and Precat(V)
where a morphism F: C — D is a weak equivalence if and only if the induced morphism
f on objects is a bijection and C — f*D is a weak equivalence in Fun(A(} ., V)seg oOr
Precat,, ¢(V)seg and a fibration if and only if C — f*D is a fibration in Fun(AgE ¢ V)seg
or Precat, c(V)seg- The adjunction

uy: Segp,, (V) & Precat(V) : u*
induced by the natural transformations u; and u* is a Quillen equivalence.

Our goal is now to prove that inverting an appropriate collection of weak equivalences
in Segp . (V) give an co-category equivalent to Caty". As in the case of enriched categories
we begin by considering the fixed-object case, i.e. comparing the co-category associated to
Fun(AY, V)seg to Algg(;(p (VZ).

We know the co-category associated to the projective model structure on Fun(AY, V)
is equivalent to the oco-categorical functor category Fun(AY, Vo). The Bousfield-localized
model category Fun(&%p, V)seg can therefore be identified with the full subcategory of
Fun(AY, Vo) spanned by the objects that are local with respect to certain maps. We can
identify this with the co-category of AT -monoids:

Definition 4.4.4.11. Suppose V is a presentable co-category and M is a generalized non-
symmetric co-operad. For m € M, write iy,: * — M for the inclusion of this object, and
let i,,; denote left Kan extension along i,,. Then for any functor F: M — Vand X € V
we have Map (i, icx, F) >~ Map(cx, i5,F) ~ Map,, (X, F(m)), where cx is the functor + — V
with image X.

Lemma 4.4.4.12. Suppose V is a presentable co-category such that the Cartesian product
preserves colimits separately in each variable, and M is a small generalized non-symmetric
co-operad. Then the oco-category Mnd$; (V) is the localization of Fun(M, V) with respect to
the morphisms 7,,,, X II - - - [T i, 1 X — 7,1 X for all m € M with X ranging over a set of
objects that generates V under colimits.

Proof. A functor F: M — V is a monoid if and only if it is local with respect to these
morphisms. O

Since Mnd$y (V) is equivalent to AlgD(V*), we have proved the following

Proposition 4.4.4.13. Suppose V is a left proper simplicial combinatorial Cartesian model
category. Then the natural map ax: (Fun(AY, V)geg)oo — Alggop (V&) is an equivalence.
X

The map ax: (Fun(AY, V)seg)oo — Algg;p (V&) is natural in X, so applying Corol-

lary 4.4.1.20| and Proposition 4.4.1.23| we get the following comparison of “algebraic” ho-
motopy theories:

Theorem 4.4.4.14. Suppose V is a left proper simplicial combinatorial Cartesian model
category. The natural transformation & induces a functor Segg, (V) — Alggt(V?g)Set
and this is an equivalence.
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The weak equivalences in Segp (V) are difficult to describe in general; however, a
morphism f: C — D between fibrant objects, i.e. Segal categories, is a weak equivalence
if and only if it is bijective on objects and a levelwise weak equivalence — given the Segal
conditions, it suffices for f to give a weak equivalence C(x,y) — D(fx, fy) for all ob-
jects x,y in C. To obtain the correct homotopy theory we clearly also need to invert the
morphisms that are fully faithful and essentially surjective in the appropriate sense:

Definition 4.4.4.15. Composition with the projection V — hV induces a functor
SegFun<V) - SegFun (hV)

This takes Segal categories to categories enriched in hV. We say a morphism between
Segal categories in Segp, . (V) is weakly fully faithful and homotopically essentially surjective if
its image in Segp,,,,(hV) corresponds to a fully faithful and essentially surjective functor of
hV-categories.

This definition extends to give a notion of weak equivalence in Segp .(V), and it is
possible to construct a model structure with these weak equivalences, cf. [Lur09b,Sim12].
For our purposes, however, it suffices to regard the co-category Segp, . (V) as obtained
by inverting the weak equivalences in the full subcategory of fibrant objects (i.e. Segal
categories). Then we can construct an co-category Seg..(V) [FFES™!] by further inverting
the weakly fully faithful and homotopically essentially surjective functors between Segal
categories; this is equivalent to the co-category associated to the above-mentioned model
categories.

The weakly fully faithful and homotopically essentially surjective functors between
Segal categories clearly correspond to the fully faithful and essentially surjective functors
between categorical algebras, so we get the following:

Proposition 4.4.4.16. Suppose V is a left proper simplicial combinatorial Cartesian model
category. There is an equivalence

Segpun(V)[FFES '] = AlgQ, (VE)suFFES].

Combining this with Proposition gives our comparison result:

Corollary 4.4.4.17. Suppose V is a left proper simplicial combinatorial Cartesian model
category. There is an equivalence

Segp...(V)[FFES™'] = CatY>.

4.4.5 Comparison with Iterated Segal Spaces

It follows from the results of the previous subsection that the co-category Cat?oo'n) of 8-
(00, n)-categories, obtained by iterated enrichment in spaces, is equivalent to that associ-
ated to the model category of iterated Segal categories. Our goal in this subsection is to
directly compare Cat‘?oo,n) to another established model of (oo, n)-categories, namely the
iterated Segal spaces of Barwick. We will deduce this comparison from a slightly more
general result: we will prove that if X is an absolute distributor, in the sense of [Lur09b],
then categorical algebras in X are equivalent to Segal spaces in X, and complete categori-
cal algebras are equivalent to complete Segal spaces. We begin with a brief review of the
notion of distributor:
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Definition 4.4.5.1. A distributor consists of an co-category X together with a full subcate-
gory Y such that:

(1) The co-categories X and Y are presentable.
(2) The full subcategory Y is closed under small limits and colimits in X.

(3) If X — Y is a morphism in X such that Y € Y, then the pullback functor Y,y — X,x
preserves colimits.

(4) Let O denote the full subcategory of Fun(A!, X) spanned by those morphisms f: X —
Y such that Y € Y, and let r: O — Y be the functor given by evaluation at 1 € AL
Since X admits pullbacks, the evaluation-at-1 functor Fun(A!,X) — X is a Cartesian
fibration, hence so is 7t. Let x: Y — (/Zz;c:f be a functor that classifies 7t. Then x
preserves small limits.

Definition 4.4.5.2. Anabsolute distributor is a presentable co-category X such that the unique
colimit-preserving functor § — X that sends * to the final object is fully faithful, and 8§ C X
is a distributor.

Proposition 4.4.5.3 ([Lur09b, Corollary 1.2.5]). Suppose Y C X is a distributor. Let K be
a small simplicial set, and let : p — 7 be a natural transformation between functors
p,q: K — X. If 7 is a colimit diagram in Y and a« = &|g is Cartesian, then & is Cartesian if
and only if p is a colimit diagram.

Lemma 4.4.5.4. Suppose X is an absolute distributor. Then for every space X € §, the map
vx: Fun(X,X) — X,x that sends a functor F: X — X to its colimit is an equivalence of
oo-categories.

Proof. Let ¢: X — X be the constant functor at the final object x € § C X. Since X is a
space, a functor F: X — X sends every morphism in X to an equivalence in X, and so the
unique natural transformation F — ¢ is Cartesian.

Write &: X” — X for a colimit diagram extending ¢. Then -yx factors as

Fun(X,X) ~ Fun(X, X) ¢ LN Fun(X",X) LN X/x,

where ¢, is given by evaluation at the cone point. The functor ¢; gives an equivalence
between Fun(X, X) ¢ and the full subcategory €; of Fun(X", X) /s spanned by the colimit
diagrams. On the other hand, the restriction of ¢, to the full subcategory £, spanned by the
Cartesian natural transformations to ¢ is also clearly an equivalence. By Proposition
&1 = &y, and so the composite yx is indeed an equivalence. O

Proposition 4.4.5.5. Let O be an co-category, and let F: O — 8 be a functor; write 7t: O —
O for the left fibration associated to F. Suppose X is an absolute distributor. Then left Kan
extension along 7 gives an equivalence Fun(Of, X) — Fun(O,X) r.

Proof. By Proposition the co-category Fun(OF, X) is equivalent to the co-category
of sections of the Cartesian fibration & — O whose fibre at x € O is Fun(F(x),X). Since X
is an absolute distributor, by Lemma the co-category & is equivalent over O to the
total space &’ of the Cartesian fibration associated to the functor sending x to X, p(,). Then

&' is the pullback along F of the Cartesian fibration Fun(A!,X) — X given by evaluation

158



at 1, so we have an equivalence between the co-category Fung (0, £’) of sections and the
fibre of Fun(O x A!,X) ~ Fun(A!,Fun(O, X)) — Fun(0O, X) at F. This is clearly equivalent
to Fun(0, X) /r, which completes the proof. O

Remark 4.4.5.6. In the cases we are most interested in, where X is the distributor of n-
fold iterated complete Segal spaces in 8, we can also prove this without using Proposi-
tion 2.1.5.13) by instead rewriting everything in terms of left fibrations over products of
AP,

Definition 4.4.5.7. Let X be an absolute distributor. A Segal space in X is a category object
F: A°P — X such that F([0]) isin 8 C X.

Proposition 4.4.5.8. Under the equivalence 71;: Fun(A3f, X) = Fun(A,X) ;. x, the full
subcategory Mndg?(p (X) of A -monoids corresponds to Seg(X)x, the co-category of Segal
spaces with Oth space X.

Proof. 1t is clear that 7, takes Mongop(X) into the co-category of functors A°? — X that
X

sends [0] to X. Since Seg(X)x is a full subcategory of this, it suffices to show that F: AY —
X is a Ay -monoid if and only if 7 F is a Segal space in X.
We must show that the Segal morphism

mE([n)) = mF([1]) xx - xx mE(([1]) = (mF)}F

is an equivalence for all 7 if and only if F is a AY -monoid. Since 7 is a coCartesian fibra-
tion, 70 F([n]) ~ colimzcyx(+1) F(&). It thus suffices to show that (7 F )Sneg is also a colimit

of this diagram if and only if F is a A -monoid. Using Proposition [4.4.5.3{ we see that this
condition is equivalent to the natural transformation of functors (X*(*+1))> — X given by

F(§) —— (mF)};?

-

{6} —— x>

being Cartesian. Since X is a space, it suffices to check that this square is a pullback. In
other words, we must show that the fibre of (mF)[S:’]g — X*H) at & = (xg,...,x,) is F(&)
if and only if F is a A -monoid. Since limits commute, it is clear that this fibre is the fibre
product
(T[!P[]'])(x[]/xl) X(TL’;F[O])(xl) T X (n!F[O])(xnfl) (n!F[l])(xnfl/xn)'
But by Proposition again, the natural maps F(x,y) — (7mF[1])(y,) and * = F(x) —
(7 F[0])x are equivalences. Thus the map F(§) — (mF[n])s is equivalent to the natural
map
F(&) — F(xp,x1) X -+ X F(xy—-1,%n),

which is an equivalence if and only if F is a A} -monoid. O

Corollary 4.4.5.9. Suppose X is an absolute distributor. The map Alggt(fxx) — Seg(X)
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given by left Kan extension of the corresponding monoids along the maps A — AP is
an equivalence.

Proof. The projection j*: Seg(X) — 8 given by composition with j: {[0]} — A°P has aright
adjoint j,. given by right Kan extension. It follows from Lemma that j* is a Cartesian
fibration. The functor Alg® (X*) — Seg(X) clearly preserves Cartesian morphisms, so it
suffices to show that this functor induces an equivalence fibrewise, which we proved in

Proposition 4.4.5.8] O

Definition 4.4.5.10. Let X be an absolute distributor, and let A: X — 8 denote the right
adjoint to the inclusion 8 < X. The inclusion Gpd(8) < Seg(8) — Seg(X) admits a right
adjoint ¢: Seg(X) — Gpd(8), which is the composite of the functor A: Seg(X) — Seg(8)
induced by A, and ¢: Seg(8) — Gpd(8). We say a Segal space F: AP — X is complete if
the groupoid object (F is constant.

Remark 4.4.5.11. By Lemma 2.1.10.4} a Segal space F is complete if and only if the map
tF(s°): tF[0] — (F[1] is an equivalence.

Definition 4.4.5.12. Let E" denote the Segal space j.{0,...,n}. If X is an absolute distrib-
utor we also write E" for E" regarded as a Segal space in X via the inclusion § — X.

Proposition 4.4.5.13. Suppose X is an absolute distributor. Then a Segal space F in X is
complete if and only if it is local with respect to the morphism E! — E°.

Proof. Tt is clear that F is local with respect to E! — E°, considered as a morphism in
Seg(X), if and only if the Segal space AF in § is local with respect to E! — E°, considered
as a morphism in Seg(8). On the other hand, F is complete if and only if AF is complete,
so it suffices to prove this for Segal spaces in §. This case is part of [Rez01, Proposition
6.4]. O

Definition 4.4.5.14. Let CSS(X) denote the full subcategory of Seg(X) spanned by the com-
plete Segal spaces; by Proposition |4.4.5.13| this is the localization of Seg(X) with respect to
the morphism E! — E°.

Corollary 4.4.5.15. Let X be an absolute distributor. The equivalence Alg, (X*) = Seg(X)
induces an equivalence CatX, = CSS(X).

Proof. Ttis clear that E% € Alg? (X*) corresponds to E" € Seg(X) under this equivalence.
Both sides are therefore the localization with respect to E! — EP. O

Definition 4.4.5.16. By [Lur09b, Corollary 1.3.4], if X is an absolute distributor, then CSS(X)
is also an absolute distributor. We therefore have absolute distributors CSS" (X) of n-fold
iterated complete Segal spaces in X.

Applying Corollary 4.4.5.15/inductively, we get:
Corollary 4.4.5.17. Let X be an absolute distributor. Then Cat*_ . ~ CSS"(X).

(co,m)

In particular, taking X to be the co-category § of spaces, we obtain the desired compar-
ison with iterated Segal spaces:

Corollary 4.4.5.18. There is an equivalence Cat? . ~ CSS"(8).

(0,11)
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4.5 Natural Transformations and Functor Categories

In this section we consider two approaches to defining natural transformations in an en-
riched co-category: In §4.5.1]we consider an internal definition; this is probably the clearer
definition, and leads to a functor co-category that is easily seen to be an co-category. Then
in §4.5.2l we consider an external definition, and show the resulting functor co-category
is equivalent to the internal one; in we use this definition to construct an (co,2)-
category of enriched co-categories, functors, and natural transformations.

4.5.1 Internal Natural Transformations

In this subsection we introduce an internal definition of natural transformations between
functors between enriched oco-categories. We then use this to construct co-categories of
functors between enriched co-categories and show that this is the underlying co-category
of the internal hom when this exists.

Definition 4.5.1.1. Let G, denote the 8-graph with objects {0,...,n} and

o x, 1<]
9”(1’]):{® j>]i

We write [n]g for the free S-co-category on the graph §,,. If V¥ is a presentably monoidal
co-category, we write [n]y for EY, ® [n]s.

Remark 4.5.1.2. Let [1]* denote the full subcategory of 8* on @ and *. Then the graph G,
is obviously defined over [1]*, and the V-co-category [n]y exists provided V has an initial
object Dand x ® @ ~ D forall x € V.

Remark 4.5.1.3. The inclusion Set < 8§ induces an inclusion Sety — Fun(A°P,8). Let d[n]
denote the simplicial space associated to the nerve N|[n]| under this functor. This is a Segal
space, and using our description of free enriched co-categories it is easy to see that under

the equivalence Alggt(SX) ~ Seg¥ the $-co-category [n]s is equivalent to the Segal space
S[n].

Definition 4.5.1.4. Let V® be a presentably monoidal co-category, and suppose Fy and F
are functors € — D of V-co-categories. A natural transformation from F to F is a functor
¢: C® [1]y — D such that ¢ o (ide ® d') ~ F;.

Proposition 4.5.1.5. Let V® be a presentably monoidal co-category. The simplicial V-oco-
category [e]y is a coSegal object in Alg2 (V).

Proof. We must show that the natural maps [1]y Iljg),, - - - IIjg),, [1]v — [n]v are equivalences.
Since — ® EY, preserves colimits, it suffices to prove this in 8. By definition, [n]s is the free
§-co-category on the graph G, and it is obvious that the map G; Il - - - IIg, §1 — Gy is
an equivalence. Since the formation of free $-co-categories preserves colimits, this implies
that [e]g is a coSegal object. O

Definition 4.5.1.6. Let V® be a presentably monoidal co-category, and suppose € and D
are V-co-categories. The (internal) functor co-category Fun"(€, D) is the simplicial space

MapAlggt(V@a) (C® [o]s, D).
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Corollary 4.5.1.7. Let V¥ be a presentably monoidal co-category, and suppose € and D are
V-co-categories. Then Fun” (€, D) is a Segal space.

Remark 4.5.1.8. Using the results of Joyal and Tierney [JT07] we can describe the quasicat-
egory associated to this Segal space as the simplicial set Hom(C ® [e]y, D).

Proposition 4.5.1.9. Let V¥ be a presentably monoidal co-category, and suppose € and D
are V-co-categories. For any Segal space X we have an equivalence

Mapg,go (X, Fun” (€, D)) =~ Map .0 (s (€@ X, D),

where on the right we regard X as an 8-co-category.

Proof. Every Segal space can be canonically written as a colimit of a diagram of the objects
d[n]. Specifically, the Segal space X is the coend of

X: A x A% — Seg?, ([n], [m]) — co}}imé[n].

Since Map(4[n], Fun” (@, D)) ~ Map(C ® [n]s, D) we then have

Map (X, Fun” (€, D)) ~ Map(coend X, Fun” (€, D))
~ end Map(X, Fun” (€, D))
~ end Map (€ ® X, D)
~ Map(C® X, D). O

Corollary 4.5.1.10. Let V¥ be a presentably monoidal co-category, and suppose € and D
are V-co-categories. The underlying space (Fun” (@, D) of the Segal space Fun”(@,D) is
[Map(C ® E}, D)|. In particular, if D is a complete V-co-category then (Fun" (€, D) is equiv-
alent to Mapc,v (€, D), so the Segal space Fun” (€, D) is complete.

Proof. The underlying groupoid object of a Segal space X is Map(E®, X). By Proposi-
tion the underlying groupoid object of Fun” (€, D) is therefore Map(€ ® E*, D),
and the underlying space is the colimit of this simplicial space. By Corollary it
follows that if D is complete then (Fun’ (€, D) ~ Map(C, D). O

Now suppose V¥ is a presentably symmetric monoidal co-category. Then Alg® (V%)
and Caty, are also symmetric monoidal, and the induced tensor products preserve colimits
in each variable. This implies that Alggt(\?®) and Cat), have internal hom objects; we
write D€ for the internal hom object for maps € — D in Alg? (V).

Lemma 4.5.1.11. Let V be a presentably symmetric monoidal co-category, and suppose D is

a complete V-oo-category. Then DC is also a complete V-co-category, for all V-co-categories
C. Moreover, D¢ is also the internal hom in Catfo.

Proof. We must show that Map(E?, D®) — Map(E?!, D®) is an equivalence. Passing to left
adjoints this is Map (€, D) — Map(E! ® €, D), which is an equivalence since C ® E! — €

is a local equivalence by Proposition 4.2.4.9
Since D¢ is complete we have, for any complete V-co-category A,

Map,v (A, D) ~ MapAlggt(W) (A,D¢) ~ MapAlggt(W) (A®C,D)
~ Mapc,v (A®C,D),
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hence D¢ is also the internal hom in Cat,. O

Proposition 4.5.1.12. Let V® be a presentably monoidal co-category. Write t: § — V for
the unique colimit-preserving strong monoidal functor sending * to the unit I, and let
u: V — 8 be its lax monoidal right adjoint, given by Map(I,-). Then if € is a V-co-category
the Segal space corresponding to the 8-co-category 1, € is Map([e]y, C).

Proof. Since [n]s is the 8-co-category corresponding to d[n|, the Segal space corresponding
to 1,.C is Map([n]s, u+C) ~ Map(t.[n]s, €) ~ Map([n]y, C). O

Corollary 4.5.1.13. Let V be a presentably symmetric monoidal co-category, and suppose
€ and D are V-co-categories. The Segal space corresponding to the §-co-category u. D is
Fun”(C, D).

Proof. The Segal space associated to u.C? is given by

Map([e]y, D¢) ~ Map(C @ [e]s, D). O

4.5.2 External Natural Transformations

In this section we give an external definition of natural transformations, and prove that this
is equivalent to the internal definition. We first introduce some notation:

Definition 4.5.2.1. If X: A°? — §is a Segal space, then the associated right fibration X —
A°P is a double co-category. We write A°P[n] — AP for the double co-category associated
in this way to the nerve of the category [n], regarded as a Segal space via the inclusion
Set — 8.

Remark 4.5.2.2. The co-category A°P[n] can be identified with the category of simplices
Simp(N[n]) or Simp(A") of the nerve of [n]. Its objects can be described as sequences
(io,...,im), where 0 < ij < ijy1 < n, and for every ¢: [k] — [m] in A there is a unique
morphism (ip, ..., in) — (i¢(0),...,i¢(k)).

Definition 4.5.2.3. For X a space, let AY [1n] denote the double co-category AY X aep A°P[n].

Remark 4.5.2.4. Objects of AY [n] can be described as lists ((xo, ip), - . ., (xk, ix)) where x; €
Xand 0 <ip < -+ - < <.

Definition 4.5.2.5. Let V¥ be a monoidal co-category, and suppose € and D are V-oco-

categories. If Fy and F; are functors ¢ — D, an (external) natural transformation from Fy

to F; is a morphism of &Z%[l]-algebras 17:s%*C — ¢*s9*D, where ¢: &f;% 1] — &Z%[l]

is the morphism induced by (igFo, toF1): 1€ X [1] — 10D, such that 7 restricts to F; when

restricted to A;p X AP &({)f}.

Remark 4.5.2.6. The natural transformation 7 thus determines morphisms
C(x,y) = D(Fox, Fiy)

in V for all x,y € €. These are compatible with composition, which implies that, as ex-
pected, they are determined by the images I — D(Fyx, Fix) of the identity morphisms
I — C(x,x) for x € C.
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Definition 4.5.2.7. Let V¥ be a monoidal co-category. The objects A°P[n] clearly form a
cosimplicial object in generalized non-symmetric co-operads, hence they determine a nat-
ural transformation of simplicial co-categories Algﬂ/DAop m (VF) = (OpdQ8e™) , pop ] (cf. Re-
mark [3.2.8.2| for this notation). If C is a V-co-category, the A?Ope [n]-algebras 71;;C, where
Ty : &2}% n] — A?O% denotes the map of generalized non-symmetric co-operads induced by
the unique morphism 7, : [n] — [0] in A, determine a section. Given V-co-categories € and
D we therefore get a simplicial space Fun), (€, D) with

Funzxt(e, D), = MaPAlg%op[H](W) (r;C, ;D).

This is the (external) functor co-category from € to D.

Lemma 4.5.2.8. Let V¥ be a presentably monoidal co-category, and suppose C is a V-oco-

category. Write I, for the inclusion Az)pe [n] — AZ%XM' Then the functor € ® [n] — €
determines an equivalence I} (C ® [n]) = 7;C.

Proof. It suffices to observe that for i < jand any x,y € € the morphism

(€@ [n))((x 1), (v,])) = C(x,y)
is an equivalence. O

Proposition 4.5.2.9. Let V¥ be a presentably monoidal co-category, and suppose C is a V-
oo-category. The morphism I, (7€) — € ® [n] adjunct to the inverse equivalence 77;;C —
[}(C ® [n]) is an equivalence.

Proof. This is immediate from the description of free algebras in terms of operadic colimits.
O

Corollary 4.5.2.10. Let V¥ be a presentably monoidal co-category, and suppose € and D
are V-oo-categories. Using Lemma the inclusions I, : Az)pe [n] — AZ}%XM induce a
natural transformation

Nn: MapAlgq/)&op (o) (€@ [n], ppD) — MapAlg?Aop[n](W) (e, D),
[n]

where p,, denotes the morphism induced by the projection A([)f] — AP, ie. amorphism of
simplicial spaces
Fun” (@, D) — Fun),(C, D).

This is an equivalence.

Proof. To show that 7, is an equivalence, it suffices to show that it gives an equivalence on
the fibres over each map ¢: 1€ x [n] — 1D. This can be identified with

Map,, .0 vy (C®@ [n], ¢"p, D) — Map,, o (ye (704C, L py D).
gaop  (VF) 8aoe 1y (V)
10

1p€Cx[n]

This is an equivalence, since € ® [n] is I, 77;;C by Proposition O

Conjecture 4.5.2.11. Let V¥ be a presentably symmetric monoidal co-category. A natural
transformation #7: € ® [1] — D is a natural equivalence (i.e. extends to a functor from
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€ ® EY) if and only if for each ¢ € € the morphism [1] — D given by restricting to c is an
equivalence in D.

Sketch Proof. The “only if” direction is obvious. We may therefore assume given a natu-
ral transformation #: € ® [1] — D from F to G such that the induced maps [1] — D are
equivalences for all ¢ € €. To show that this extends to a natural equivalence, we will
show that the adjunct morphism [1]y — D¢ is an equivalence. Since [1]y is t.[1]s, we may
equivalently show that the associated functor [1]s — u.D° is an equivalence. By Proposi-
tion it suffices to show that for any H € D¢ the map u,D¢(H,F) — u,D%(H,G)
given by composition with # is an equivalence.

By Corollary and Corollary we may identify u,D® with the external
functor co-category Fung,(C, D). For fixed H: € — D, let ¢: 1€ x [1] — D be the map

ext

determined by (H, F). Then we can identify u.D®(H, F) with the fibre of

Map,g0,, [1](V®)(7ri‘€, ¢*7:D) — Map(€, H*D) x Map (€, F*D)
1nC

at (H,F). Now Alggop ] (V¥®) is monadic over Fun(i,€ x 1€ x {(0,0),(0,1),(1,1)},V).
1nC
This means we can describe the mapping space as the limit of a diagram of spaces whose
. . op .
vertices are mapping spaces between the free &loe[l]—algebra monad applied some num-
ber of times to the underlying functors for 777 C and ¢* 7t D in this functor category. After
taking the appropriate fibres, we see that this means the map u,D¢(H, F) — u.D®(H,G)
given by composition with 7 is indeed an equivalence, since equivalences in functor cate-
gories are detected pointwise. O

Remark 4.5.2.12. This result should clearly also be true without the assumption that 'V is
symmetric monoidal, but this proof seems to rely essentially on the existence of the internal
hom D¢ to reduce the construction of the inverse from V to 8.

4.5.3 The (o0,2)-Category of V-co-Categories

In this section we use the external definition of natural transformations to define an (oo, 2)-
category of V-co-categories, functors, and natural transformations.

It is clear that the full subcategory of (Opd8™) , nop ] spanned by generalized non-

symmetric co-operads of the form A [n] for some space X is equivalent to the full subcat-
egory diag, 8 of 8*" spanned by objects of the form (X, ..., X).

Definition 4.5.3.1. Suppose V? is a monoidal co-category. Write A,, for the pullback

An

|

diag, s —— (Opd8™) / aop -

Al poppy (V)

Then we define Cat,,[n] to be the full subcategory of A, spanned by objects of the form 7C
where € is a complete V-oco-category. This gives a simplicial co-category CATY, := Cat),[e].
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Remark 4.5.3.2. We must restrict to complete V-co-categories to get the right mapping
spaces: By Remark if D is not complete then (Fun”(C, D) ~ |Map(C ® E®, D)| is
not in general equivalent to the space of maps from € to D in Cat,.

Proposition 4.5.3.3. Let V¥ be a presentably monoidal co-category. The simplicial oco-
category CATL, is a double co-category.

Proof. We must show that for each n the Segal morphism
Cat),[n] — Caty,[1] X v+ X, Caty[1]

is an equivalence. On both sides the objects are just complete V-co-categories, so this func-
tor is clearly essentially surjective; it remains to show that it is fully faithful. Let € and D
be two complete V-co-categories; we must show that the morphism

Map (7, €, 71, D) — Map(717C, 11 D) Xnpap(e,0) * * * XMap(e,0) Map (71 €, 11 D)

is an equivalence. Using Corollary 4.5.2.10| we can identify the left-hand side here as
Map (€ ® [n], D) and the right-hand side as

Map (€ ® [1], D) Xnap(e,m) = * XMap(e,n) Map(€ @ [1], D).
This map is therefore an equivalence by Corollary O

Lemma 4.5.3.4. Let V® be a presentably monoidal co-category. Then the Segal space
Map(A!,Cat),[e]) is complete.

Sketch Proof. We must show that s”: Map(A!,Cat’) — Map(E!,Map(A!,Cat),[e])) is an
equivalence. To see this it suffices to show that the map induces an equivalence on fibres
over all (€, D) in (Caty,)*2. It follows from Proposition that over (€, D) we get the
map

s’: Map(€, D) — Map(€ ® E!, D),

and this is an equivalence since D is by assumption complete. O

Proposition 4.5.3.5. Let V¥ be a presentably monoidal co-category. Then the simplicial
space (Cat),[e] is constant.

Proof. This follows by combining Lemma}4.5.3.4/and Proposition[2.2.2.13|since it is obvious
from the definition that so: Caty,[0] — Caty[1] is essentially surjective. O

The simplicial co-category CAT}, is thus a Segal object in co-categories whose underly-
ing simplicial space is constant. This means that we may consider it as an (oo, 2)-category
— the (o0, 2)-category of V-co-categories, functors, and natural transformations. The oo-
category of morphisms from € to D in CATZ) is precisely Fun"” (€,D), as it should be.

4.6 Correspondences
If V is a closed symmetric monoidal category and C and D are V-categories, a correspon-

dence or profunctor from C to D is a functor C ® D°? — V, where V is V regarded as a
V-category via the internal hom. Our goal in this section is to introduce an co-categorical
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version of correspondences between enriched co-categories; our definition will be “exter-
nal”, using algebras for certain double co-categories, and is inspired by that given by Bac-
ard [Bac10] in the context of 2-categories.

4.6.1 Correspondences between V-co-Categories
To give our definition of a correspondence, we first introduce some notation:

Definition 4.6.1.1. Given spaces X and Y, consider the functor Fxy: {0,1} — 8 that sends
OtoXand 1toY. Letj: {0,1} — A°P[1] denote the inclusion of the fibre at [0]. The right
Kan extension j,Fx y is clearly a A°P[1]-category object. We write A}, — A°P[1] for the
left fibration associated to j.Fxy. Then AY_, is a double co-category.

Remark 4.6.1.2. If X = Y, then AY_, is precisely A{Y[1] as defined above.

Example 4.6.1.3. If Xy, ..., X, are sets, we can represent objects of &;po ..X, as sequences

(b, xg®xd, o x]xd, ., x) where ] € X

Remark 4.6.1.4. Pulling back A, — A°P[1] along the two inclusions d°,d': AP —
A°P[1] clearly gives A and A, respectively.

Definition 4.6.1.5. Let V® be a monoidal co-category, and suppose € and D are V-oco-
categories. A correspondence from C to D is a AZ% <,p-algebra M: &Z% <D V¥ such
that the restrictions to &Z]pe and AZJPD are C and D, respectively. We will use the notation
M: € + D for a correspondence M from C to D.

Definition 4.6.1.6. Let V® be a monoidal co-category, and suppose C and D are V-oco-
categories. The co-category of V-correspondences Corr” (€, D) from € to D is
R O] ® X
{e} XAlgA?Ope (Vo) Alg&;eQOD(V ) XAlgA?OpD ey {D}.

Remark 4.6.1.7. There should of course be an inclusion Fun” (@, D) — Corr" (€, D), but
using our definitions it is not obvious how to construct this.

If the co-category V is presentably monoidal, then we can compose correspondences.
To see this, we first need some more notation:

Definition 4.6.1.8. Given spaces X, ..., Xy, consider the functor Fx, x,: {0,...,n} — 8
that sends i to X;. Let j: {0,...,n} — A°][n] denote the inclusion of the fibre at [0]. The
right Kan extension j,Fx,, . x, is clearly a A°P[n]-category object. We write A?{po X,
A°P[n] for the right fibration associated to j.Fy,..x,. Then AY

Xp<-<X, 18 @ double oco-
category.

Definition 4.6.1.9. Given spaces Xy, ..., X, let A?g) g <X,

non-symmetric co-operads

denote the colimit of generalized

op - op
AXO<X1 HA;Pl H&;’{iil &XH,1<X,1'

Xo<...<X : : : op,II op
Let k%0 " (or just x) denote the inclusion AXO X, AXO X,
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Definition 4.6.1.10. Given spaces X),..., X, we say a &(;(po<__.<xn—algebra M in V¥ is a

op-L1 ie. if the

composite if it is the left operadic Kan extension of its restriction to AXO X,

adjunction morphism xix*M — M is an equivalence.

Definition 4.6.1.11. Given V-co-categories Cy, ..., Cy, let Corrv((?o, ...,Cy) denote the full
subcategory of

®
Alg&sz(?0<m<to(?n (V ) XAlngp (Vg)x-“XAlg&op (V®) {(GO’ ey en)}
10Co 10Cn
spanned by those AZ%O <...<iye,-algebras that are composites.

Given V-co-categories €, D, &, the projection
Corr”(€,D, &) — Corr” (€, D) x Corr’ (D, &),

given by restriction along the vertices (0,1) and (1,2) in A°P[2] is an equivalence — this
will follow from Corollary Since there is also a map Corr" (€, D, &) — Corr”(C, &)
coming from restriction to (0, 2), this means that given correspondences C + D and D + &
we can compose them to get a correspondence C —+ €.

It is possible to define a Segal category using the co-categories Corr" (Cy, ..., C,), giv-
ing a model for the (co,2)-category of V-co-categories and correspondences. In we
will construct a different model for this (oo,2)-category as the subcategory of horizontal
morphisms in a double co-category of V-co-categories, functors, and correspondences.

op,LL

4.6.2 The Double co-Categories AXO X,

In this subsection we will give an explicit model for the pushout of generalized non-

symmetric co-operads A;’(pog <X, which will allow us to better understand the functors
Ki.

Definition 4.6.2.1. Let A\°P[n] be the full subcategory of A°[n] spanned by those objects
(io, - -.,1n) such that [ix;1 — ix| < 1 (i.e. the i;’s can jump by at most 1 at each step).

Definition 4.6.2.2. Given spaces X, ..., Xy, let /\g’(lz <X, be defined by the pullback

op op
/\X0<~-<X,, AX0<'“<XV,
NP [n] AC°P[n].

Lemma 4.6.2.3. Given spaces Xp, ..., X,;, the projection /\;po <X, A°P is a generalized
non-symmetric co-operad

Proof. N¥_ — AP is the full subcategory on some of the objects in the fibre at [1]. [
Xo<---< Xy gory )

Theorem 4.6.2.4. For spaces X, ..., Xy, let A(}){pog X, denote the colimit in simplicial sets

op - op
AX0<X1 H&;’fl HA%‘:H AXH,1<X,,'
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. . op, 11 op . .. . . . .
Then the.1nc1us1on AXO ex, /\XO <..cx, isa trivial cofibration in the generalized non-
symmetric co-operad model structure.

Lemma 4.6.2.5. Suppose ¢: M — N is a left fibration of generalized non-symmetric co-
operads and 7: A" — Nis asimplex lying over o: A" — A, Let 7r5: A" * 9%/ — Nbean
inert extension of & (with [r] the final vertex of ¢), and let 7t denote the restriction of 75 to
OA" x 9‘% / Let M5 and Jv[?, denote the pullbacks of M along 77 and ng, respectively. Then

the inclusion Mg < M; is a trivial cofibration of generalized non-symmetric co-operads.

Sketch Proof. Write X C M for the subspace lying over 9% , C AT 9‘% /- Let {7y }pep be the
set of non-degenerate simplices 7,: A — M; such that ¢, is a degeneracy of &. Choose a
well-ordering of B such that the dimension of T, is (non-strictly) increasing in b. For each
b € B, define MZ" to be the subspace of M generated by M2 together with the simplices

b’ < b, the morphism 7(q) — 7(g') is inert, and 7|1, factors through X. Define Mz?
similarly. Since weak equivalences are closed under transfinite composition, it suffices to
prove that the inclusions M5? — MZ? are trivial cofibrations.

Now from [Lurll, Lemma 3.1.2.5] we conclude that there is a homotopy pushout dia-
gram

OAP x X ) —— MP

.

AP % Xq ) —— M5,
where X, ; denotes (M5"),, x y<v X, so it suffices to prove that the inclusion dA? * Xy, —
AP x X, , is a trivial cofibration. Now choose inert morphisms extending 7, to a diagram
AP 9“[2] ; = M. Then the resulting map 9% ; — Xg,/ is a categorical equivalence (since
an object of X, , must be given by an inert map), hence in the diagram

AP x 9%/ —— dAP x Xy,

]

Ap*gg]/ —— A x Xy,

the horizontal morphisms are weak equivalences, as is the left vertical morphism. By the
2-out-of-3 property, it follows that so is the right vertical morphism, which completes the
proof. O

Proof of Theorem |4.6.2.4, To make the proof slightly easier to read, we will omit mention
of the markings of the simplicial sets involved. Observe that an n-simplex of A°[n] is
uniquely described by

e an n-simplex o = (fi,..., fu) of A°P where each f;: [r;] — [ri_1] is a morphism of A,

e an object | = (jo, j1, - - - jr,) of A°P[n].
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Such an object lies in A°P[n] if and only if | and all the objects J; = f - - - f{] are in A°P[n].
We'll say that a simplex (o, J) of A°[n] is

old if (o, ]) isin A [n], i.e. if ] € AP [n], and new otherwise,

narrow if r,, = 1 and wide if r,, > 1.

We say a morphism ¢ in A°P is neutral if it is neither active nor inert.
For an object | of A°P[n] over [r], write 71: 9‘[?] ; — A°P[n] for the diagram of inert

morphisms from «.
More generally for (¢, ]) an n-simplex of A% [n], write 7T, j): A" * 9‘[?] , — A%P[n] for

. . 9 . . O
the corresponding diagram, and o)) for the restriction of 77, j) to JA™ * 9[’] /-

g,

We now divide the non-degenerate new simplices of A°P[n] into various groups:

Let S1[n] be the set of nondegenerate wide new n-simplices (o, J) such that f7 is inert.

Let S}[n] be the set of non-degenerate new (n + 1)-simplices (o, J) such that r,,;1 is
either 0 or 1 and f;, ; and f; are both inert.

Let S/ [n] be the set of non-degenerate new (n + 2)-simplices (0, J) such that 7,1 =1,
ray2 = 0,and f7, | and f;7 are both inert.

For1 < k < r < n,let Ty[n](k,r) be the set of nondegenerate narrow new n-simplices
(0, ]) such that f{ isinert, f is neutral, and f{ is active for k < i < rand i > r. Let
Ti1[n](k) be the union of T;[n](k,r) for all r > k.

For1 < k < r < n, let T{[n](k,7) be the set of nondegenerate narrow new (n + 1)-
simplices (o, J) such that f{ is inert, f7 is inert, and f7 is active for k < i < r and
i > r. Let T{[n] (k) be the union of T} [n](k,r) for all r > k.

For1 < k < r < n, let T{[n](k,r) be the set of nondegenerate new (1 + 1)-simplices
(o,]) such thatr, =1, 7,41 = 0, f{ isinert, f7 is neutral, and f is active for k < i <r
and r < i < n+ 1. Let T [n](k) be the union of Tj [n](k,r) for all r > k.

For1 < k < r < n, let T{[n](k, ) be the set of nondegenerate new (1 + 2)-simplices
(o,]) such thatr, 1 =1, 7,2 =0, f isinert, f is inert, and f/ is active fork < i <r
and r < i < n+ 2. Let T]'[n] (k) be the union of T;'[n](k,r) for all r > k.

For 1 < k < n let Ty[n|(k) be the set of nondegenerate wide new n-simplices (o, J)
such that f is inert and f/ is active for i > k.

For 1 < k < n let Tj[n](k) be the set of nondegenerate new (1 + 1)-simplices (o, J)
such thatr, 1 = 1or0, f{ and f; | are inert and f; is active fork <i <n +1.

For 1 < k < n let T} [n](k) be the set of nondegenerate new (1 + 2)-simplices (o, J)
such thatr, 1 = 1,712 =0, f{ and f; ; are inert, and f; is active fork <i <n+1.

Let S[n](k) be the union of Ty [n] (k) and T»[n](k), let S5 [n] (k) be the union of T] [n](k),
T;[n](k), and Tj[n](k), and let S5 [n](k) be the union of T} [n](k) and Tj [n](k). Let
Sy[n], Sh[n] and S)[n] be the unions of Sy[n](k), S,[n](k), and S [n](k), respectively,
over all k.
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e For1 < k < n let S3[n](k) be the set of nondegenerate narrow new n-simplices (o, J)
such that f{ is neutral and f{ is active for i > k, and (o, ) is not contained in T;(!)
for any [ < k.

e For 1 < k < nlet S}[n](k) be the set of nondegenerate narrow new (# + 1)-simplices
(o,]) such that f{ is inert and f/ is active for i > k, and (¢, X) is not contained in
T (1) for any I < k.

e For 1 < k < nlet S4[n](k) be the set of nondegenerate new (n + 1)-simplices (¢, J)
such that r, = 1, 7,41 = 0, f{ is neutral, and f/ is active fork < i < n+1,and (c,])
is not contained in Tj (!) for any I < k.

e For 1 < k < n let S§[n](k) be the set of nondegenerate new (n + 2)-simplices (o, J)
such that 7,41 =1, 140 = 0, ff is inert and f7 is active for k < i < n+2, and (o, X)
is not contained in T;'(I) for any I < k.

e Let S3[n] be the union of S3[n|(k) for all k, let S;[n] be the union of S;[n](k) and
Sk[n] (k) for all k, and let S [n] be the union of S} [n](k) for all k.

e Let S4[n] be the set of nondegenerate wide new n-simplices (o, J) that are not con-
tained in 51 [n] or Sy[n].

e Let S)[n] be the set of nondegenerate new (1 + 1)-simplices (o, J) such that 7,1 = 0
or 1and f; ; is inert that are not contained in S/ [n] or S;[n].

e Let S} [n] be the set of nondegenerate new (n + 2)-simplices (o, J) such thatr, 1 =1,
fny2 = 0,and fy , is inert that are not contained in S{[n] or S5 [n].

Observe that if (o, ]) is an n-simplex such that all f{ are active and r, = 1 or 0, then (7, ])
must be old.

Now let F(n) be the subset of A\°P[n] containing the old simplices together with the
non-degenerate new n-simplices, the (1 4 1)-simplices in S’[n] and the (1 4 2)-simplices
in S/[n] for all i, and let F(n) be the subspace of /\;’(13 ..<x, over F(n). It then suffices to

prove that the inclusions A?g)g x, = F(—1) CF(0) C F(1) C ... are trivial cofibrations.
Fork =0,...,3 define F,x C F(n) to be the subset containing the simplices in F(n — 1)
together with those in S;[n], S/[n], and S/[n] for i < k, and let F, x be the subspace of

/\(;(po <..<x, OVer k- Then it suffices to prove that the inclusions

3‘(” - 1) - §n,0 g §n,1 g ?n,Z g §n,3 g §n,4 - ?(Tl)

are trivial cofibrations.

k = 1: For (o, ) in S1[n], observe that since any narrow new n-simplex whose final map
is inert is contained in F(n — 1) = F,, as is any new (n + 1)-simplex whose final map is
[1] — [0] and whose penultimate map is inert, the map 71? o)) factors through F(n — 1).
Thus we have a pushout diagram

Lo, pyesifn 90" % §0ey ) — Lo, nesiim A" * Sy,

Fno0 Fn
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Since the upper horizontal map is D%en-anodyne, so is the lower horizontal map. Let M, )

be the subspace of /\(})(p0 <.cx, OVer A x 9%] / and let M?U, N

Then we have a pushout diagram

be the subspace over dA” 9%] /

o nyesiim My — Uionesiin M)

F n,0 F nl-:

By Lemma the inclusion M? o) M) isa trivial cofibration, hence so is ¥, 0 —
Fna-

k = 2: First let G, x be the subset of J,,» containing the simplices in F),; together with
those in Sy[n](i), Sh[n](i), and Sy[n](i) for all i > k, and let G, x denote the subspace of
/\;po <..<x, over G ;. Then it suffices to prove that the inclusions

jjn,l = gn,n g gn,n—l g T g gn,l = jjn,2

are trivial cofibrations. Next fori = 0,1,2 let 9;’,{ be the subset of G, containing the
simplices in Gy, k41 together with those in Tj[n](k), T}[n](k), T;[n](k), and T}'[n] (k) for j <

op

i, and let g;,k be the subspace of /\Xo<...<

inclusions

x, over Gi . It then suffices to prove that the

= 0 =1 =2 =
Snk+1 =Gk € Gux € Gk = Gnk

are trivial cofibrations. We now consider these two inclusions in turn:

e i = 1: Let J,x, be the subset of !, containing the simplices of G, ;1 together with

those in Ty [n] (k, s), T [n](k,s), T;[n](k,s), and T} [n](k,s) for s < r,and let J, x , denote
the subspace of /\(;(po <oex, OverJy . It then suffices to show that the inclusions

=0 = = = =1

Sk =Inkk ©Inghkr1 S S Tnkn = Gk
are trivial cofibrations. Finally, let 7/ ,
in J,,x,1 together with those in Tj[n](k,r) and Tj[n](k,r), and let j;/k/r denote the

subspace of /\(;(lz <..<x, over J;/k,r. We then wish to show that the inclusions jn,k,r —
= = . o . .
Jukr = Jnjkri1 are trivial cofibrations. Observe that for (¢, J) in T [n] (k, r) there exists

a unique simplex (7, K) in T{[n](k, r) such that (¢, ]) = d,(7,K). Moreover, for j # r
the face d;(7, K) is contained in J,, i ,_1:

be the subset of J, x , containing the simplices

- fori <k—1wehaved;in T{[n —1](k—1,r — 1),

we have dy_q in Si[n — 1](r — 1), or possibly in Tj[n — 1](k — 1,n — 1) (or in
Siln—1)(r—1)ifk =1)

we have dy in S§[n —1](r — 1),

fork <i<r—1wehaved;in T{[n — 1](k,r — 1),

we have d,_q in Ty[n](k,r — 1) or T{[n — 1] (k,v — 1),

- forr <i<mn+1wehaved;in T|[n —1]|(k,r),
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- we have d,, ;1 in To[r].

Thus we get a pushout diagram

L)t (e AT —— L gyermkn A"

| |

/
Jn,k,r—l J

nkyr:

This means we have a pushout diagram

L kel (k) Ngeeax, X aefa] A — L(e0)em () Mg, X Ase[s) A"

— —
Jﬂ,kﬂ‘*l jn,k,r'

By [Lurll, Lemma 2.4.4.6] the upper horizontal map is a categorical equivalence,
and so a trivial cofibration, hence so is the lower horizontal map. Similarly, for
each (o, ]) in T{[n](k,7) there exists a unique simplex (7, K) in Ty [n](k,r) such that
(¢,]) = dr(t,K) and for j # r the face d;(7, K) is contained in J) , . We therefore have
another pushout diagram

Lz )€ty (k) AfF2 —— e )€ty (k) A2

!
Jn k,r J nk,re

By the same argument again, this implies that the map j:z,k,r — J,, 1, is also a trivial
cofibration.

i = 2: Observe that for (7, K) in T;[n] (k) the faces d;(t, K) fori < n+1arein G} ,: for
i < nwehaved; in F(n — 1) since these faces are narrow with final map inert, and dn
isin Ty [n](k,n) or F(n — 1). The same holds for (7, K) € Ty [n](k), thus for all (¢, J) in
Ty [n](k) the map 7(?0’ ;) factors through Gy, 4- This means we have a pushout diagram

(o, petinlt 98" * Sy, — Lo nenpulm A" * Sy

. . =1 =2 . .
By the same argument as in the case k = 1, it follows that G, , — G, is a trivial
cofibration.

k = 3: Let J(, x be the subset of J;, 3 containing the simplices in J;, , together with those
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in S3[n](1), Si[n](1), S4[n](1), and S¥[n](l) for I < k, and let I, denote the subspace of
/\c})(po <..<x, over H i It then suffices to show that the inclusions

ffn,z :ﬁn,o gﬁn,l c .- gﬁn,n :S:n,3

are trivial cofibrations. Let fH;,k be the subset of H{,, ; containing the simplices in 3, ;_1
together with those in S3[n](k) and S}[n](k), and let ﬁ;,k denote the subspace of /\;)(po co2X,

over 3/ .. We then wish to show that the inclusions J(,, ;1 — ﬁ;/k — H,,x are trivial
cofibrations. Observe that for (¢, ]) in S3[n](k) there exists a unique simplex (7,K) in
S3[n](k) such that (o, ]) = d(7,K). Moreover, for j # k the face d;(t, K) is contained in
:Hn,kfﬁ

e forj < k—1wehaved;in Sj[n —1](k - 1),

e we have di_1 in S3[n](k — 1) or S4[n — 1](k — 1), or in N if k = 1 (since all narrow
simplices all of whose maps are active are in AjF [1])

e fork <j<mn+1wehaved;in S3[n —1](k),
e we have d, 1 in T [n|(k).

Thus we get a pushout diagram

L x)esyimm AT —— e gesyme A"

/
Hp k-1 g{n,k'

Using [Lurl1l, Lemma 2.4.4.6] as above, this implies that J(,, ;1 — ﬁ;/k is a trivial cofibra-
tion. Similarly, for (o, J) in Si[n](k) there exists a unique simplex (7, K) in S5[n](k) such
that (0, J) = di (7, K). Moreover, for j # k the face d;(7, K) is contained in () ,. This gives
another pushout diagram

2 An+2

e xyesymm M — Lwryesypm k)

'
j_cn,k Ho k.

By the same argument it follows that ¥, , — F,,x is a trivial cofibration.

k = 4: Observe that for (7, K) in S}[n] the faces d;(7,K) for i < n+1 are in F, 3, since
this contains all narrow n-simplices of A°P[n]. Similarly for (7, K) in S} [n] the faces d;(T, K)
fori # n+1arein F,3. Thus for all (¢, J) in S4[n], the map 7'(? N factors through ¥, 3, and

g,
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so we have a pushout diagram

Lo, pyesyn 90" % $Pry ) — Lo, pesyin A" * S

F n,3 F n4-.

By the same argument as in the case k = 1, it follows that 5,3 — F, 4 is a trivial cofibration.
L]

Corollary 4.6.2.6. Suppose V¥ is a presentably monoidal co-category. For any spaces

Xo,..., Xy, and any A;‘;E <X"-algebra A in V¥, the adjunction morphism A — x*k A
is an equivalence.

Proof. By Theorem .6.2.4: we may regard « as the inclusion /\;’(}; ccx, = A?g) <.<x, Itis
clear that this morphism has the Kan extension property, so we have a description of free
algebras in terms of operadic colimits. Using this it is easy to see that A(¢) — x1A(¢) is an
equivalence for & € /\;I; X,y O

4.6.3 The Double co-Category of V-co-Categories

We will now construct a double co-category CAT(V) whose objects are V-co-categories and
whose vertical and horizontal morphisms are functors and correspondences, respectively.
From this we can extract an (oo, 2)-category CORRY, whose mapping oo-categories are the
co-categories Corr" (€, D) defined above.

Definition 4.6.3.1. It is easy to see that the full subcategory of (Opd28") , yop (n] Spanned
by the objects A _ _ is equivalent to 8*("*1). Define ALGS,(V?)[n] by the pullback
0<..e n

cat

ALGR,(V¥)[1]

Al noppy (V)

gx(n+1)

(Opder®™) ) aop -

This defines a simplicial co-category ALGZ, (V).

cat

Definition 4.6.3.2. Let CORR(V?®)n] be the full subcategory of ALGS, (V®)[n] spanned by

cat
those algebras that are composites and whose restrictions to Alggt(\?®) are all complete

V-co-categories. These are clearly closed under the functors induced by morphisms in A°P
and so form a simplicial co-category CORR(V?).

Lemma 4.6.3.3. Suppose V¥ is a presentably monoidal co-category. The simplicial co-
category CORR (V") is a Segal object.

Proof. We must show that the Segal morphisms

CORR(V¥)[n] = CORR(V®)[1] X corr(v#)[o] - - * Xcorrve)jo] CORR(V)[1]
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are equivalences. Since this functor clearly preserves Cartesian arrows over 8*("*1) it suf-
fices to show that it induces an equivalence on fibres. Given spaces X, ..., X,, we thus
have to show that we get an equivalence of co-categories

O ®\comp K~ (0] ®
Algase o raon (V)T = Al oy (V)
where Alggg% o /P[] (V¥)comp denotes the full subcategory of AIgR;% o /AP (V®)

spanned by the algebras that are composites, i.e. in the image of x;. By Corollary
every object A on the right-hand side is the image of x1A, so this functor is essentially
surjective. To see that it is fully faithful, suppose A and B are two &;pog ~x,-algebras in
V¥; then we must show that

Map (1A, x1B) — Map (k™ A, k" 11 A)

is an equivalence of spaces. Under the equivalence Map (x4, x1B) ~ Map(A, k*xB) given
by the adjunction this corresponds to composition with the unit A — x*xA. This is an
equivalence by Corollary 4.6.2.6, which completes the proof. O

Definition 4.6.3.4. Write CORRY, for the horizontal sub-(co,2)-category of CORR(V®),
given by restricting the Oth co-category CORR(V®)[0] ~ Cat’, to the space (Caty,. This
is an (oo,2)-category of V-co-categories and correspondences. We denote its underlying
co-category by Corr,,.

Lemma 4.6.3.5. The vertical sub-(co, 2)-category of CORR(V?) is the (oo, 2)-category CATY,
of V-co-categories and functors.

Proof. The vertical sub-(oo,2)-category is obtained by taking the full subcategories of the
oco-categories CORR(V¥)[n] spanned by the objects that are degeneracies of the objects in
CORR(V®)[0] ~ Cat’,. But these degenerate objects are precisely the A [n]-algebras 7;C
where C is a complete A;p—algebra in V. O
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Chapter 5

Enriched (oo, n)-Categories

In this brief chapter we indicate how the theory of O(#)-co-operads leads to a non-iterative
theory of enriched (oo, n)-categories. We do not, however, go very far in developing this
in this thesis.

5.1 n-Categorical Algebras

In this section we use the theory of generalized co-operads developed in Chapter 3| to
define n-categorical algebras in §5.1.1]and construct co-categories of these in We show
that n-categorical algebras in spaces are equivalent to Segal O(n)-spaces (i.e. @,-spaces) in
In §5.1.4)we introduce a notion of completeness for n-categorical algebras — we claim
complete n-categorical algebras give the correct notion of enriched (oo, n)-categories, but
do not make much progress towards proving this here.

5.1.1 The ®-Multiple co-Categories LS

To define categorical algebras above, we used certain double co-categories AF, where X
is a space. Here we will generalize this as follows: given a perfect operator category ®
and a clean atom A € ®, we will define analogous ®-multiple co-categories £$, where
X is a Segal ®, 4-space. When @ is O(n) and A is the (n — 1)-cell C,?fq), this gives O(n)-
multiple co-categories EDZ?X where X is a Segal O(n — 1)-space; we will use these to define
n-categorical algebras in IE,-monoidal co-categories.

Lemma 5.1.1.1. Let ® be a perfect operator category and A a clean atom of ®, and suppose
€ is an co-category with finite limits. Write j# for the inclusion £®/4 < £? induced by the
inclusion @, 4 < ®. Then right Kan extension along j* takes @, 4-category objects in € to
®-category objects in C.

Remark 5.1.1.2. In the situation above, the functor j4*: Cat®(€) — Cat®/4(€) induced by
composition with j* clearly preserves limits, and so has a right adjoint. Since right Kan
extension j4 along j preserves category objects, it follows that this right adjoint is simply
given by jA.

Proof. We first introduce the notation in the following diagram for the obvious inclusions
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of categories:

9@ L;Ir)lt LQD

g‘ ll V

GP/a —— £ —— P2
¥ mt b

Let F: £®/4 — Cbe a @, 4-category object. We must show that j2F is a ®-category object,
i.e. that j; F‘ﬂﬁt = A*j4F is a right Kan extension of j24F|ge = 7*A*j2AF along 7.

There is a natural transformation A*j4F — I,A*F whose adjunct jAF — A LA*F ~
jAAAYF is j# applied to the unit for A* - A,. On an object I € £? this is the natural map
from the limit of F over £, / 4 to the limit over (Lm{") 1. Butif I is not in £L®/4 then there
are no active maps from I to an object of £®/4, hence if f: I -+ ] is a morphism in £®
with ] € £®/4 and I -+ ]’ — ] is the inert-active factorization of f, then |’ is also in £L/4.

Thus (Lm{") 1 = L}D/ 4 is right cofinal and so A*j2F ~ [.A*F since this is true pointwise
on objects.
Similarly v*A*j4F ~ ¢.7*A*F. But since F is a category object, A*F is the right Kan

extension ¥, 7*A*F, hence we get
MNGAF ~ LAF ~ Ly Y A'F =~ 4,87 A*F =~ 4.9*A*jAF,

as required. N

Definition 5.1.1.3. If C is a @, 4-category object in Cate,, we let L& — L be a coCartesian
fibration associated to the ®-category object j2C

Example 5.1.1.4. If ® is O and A is @ then £Q is &gp for € an co-category.

Notation 5.1.1.5. If ® is O(n) and A is C (so P, 4 is O(n — 1)), then we write O)%, for

O(n)

Ls'", where € is an O(n — 1)-category ob]ect in Cate.

Lemma 5.1.1.6. Suppose Cis a ®, 4-category object in Cate. Then the coCartesian fibration
£E — £ is a P-multiple co-category.

Proof. 1t follows from Lemma [5.1.1.1| that j2€ is a ®-category object. The corresponding
coCartesian fibration is therefore a ®-multiple co-category. ]

Definition 5.1.1.7. Let V¥ be an O(n)-monoidal co-category and let X be a Segal O(n — 1)-
space. An n-categorical algebra in V¥ with underlying Segal O(1n — 1)-space X is a ©)%-
algebra in V%,

Remark 5.1.1.8. This definition clearly does not require V¥ to be an O(#n)-monoidal co-

category — we can define n-categorical algebras in any generalized O(n)-co-operad as
@' -algebras. We will not consider this generalization here, however.

Proposition 5.1.1.9. The functor @Zp(_) - SegO(=1) _, Opd2(M&en preserves filtered colim-
its.
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Proof. Suppose we have a filtered diagram of co-categories p: J — Segg(”*l) with colimit
C. Since @Zf’e is a generalized O(n)-o0-operad, by Lemma [3.2.5.1| it suffices to show that

@Z{D@ is the colimit of @Zp(_) in Cate. Now this composite functor
e%®
Segg("_l) —, Opdg’gen — Cateo
factors as '
SegQ"=1) I, Fun (@, Cat,) = CoCart(O3F) 25 Caty,

where CoCart(0,") is the co-category of coCartesian fibrations over @," and the rightmost
functor q is the forgetful functor that sends a fibration & — @;" to the co-category €. By Ex-
ample the functor g preserves colimits. It thus suffices to prove that j, preserves
filtered colimits. Colimits in functor categories are computed pointwise, so to see this it
suffices to show that for each I € O,F the composite functor Segg("_l) — Cate induced
by composing with evaluation at I preserves filtered colimits. It is easy to see that the in-
clusion SegQ"~1) — Fun(®" |, 8) preserves filtered colimits, since we are localizing with
respect to morphisms between compact objects, so it suffices to consider filtered colimits in
Fun(®" ,,8), which are computed pointwise. But j.(-)(I) is the limit of a finite diagram,
and so commutes with filtered colimits in Cat., or 8. O

5.1.2 The co-Category of n-Categorical Algebras

In this subsection we use the algebra fibration
AlgP™(v®) — Opd2™

to define an co-category of n-categorical algebras, and then show that this has various
useful properties.

Definition 5.1.2.1. Suppose V¢ is an [E,-monoidal co-category; to avoid clutter we will
also write V¥ for the associated O(1)-monoidal co-category u®")*V¥. The co-category

Algg(tn) (V¥) is defined by the pullback square

Alg?(”) ('\7@ ) . AIgO(") (\7@ )

at

| |

‘D(n)‘

where the lower horizontal map sends a Segal O(n — 1)-space X to the O(n)-co-operad

LO,Y associated to the generalized O(n)-c0-operad @, . The objects of Algo(n) (V¥) are

cat
thus n-categorical algebras in V¥. We will refer to Algggn)(\?@)) as the oo-category of n-

categorical algebras in V¥.

Remark 5.1.2.2. Since V¥ is an O(n)-monoidal co-category, and so in particular an O(n)-

oo-operad, we could equivalently have defined Algg(tn) (V¥) using the analogue of the al-
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gebra fibration over the base OpdQ ("8 since there is natural equivalence Alggg';) (V) ~

n,X
AlgOU (V2).

Brx
Our next goal is to prove that the co-category Algg(tn) (V¥) is presentable if V* is pre-
sentably [E,;-monoidal; to do this we first introduce the co-category of n-graphs in V:

Definition 5.1.2.3. Let V¥ be an IE,-monoidal co-category. The oo-category Graph'-” of
V-n-graphs is defined by the pullback

Graph”/ —— Algg.(n) (V)

1

Opd2™.
L&Y P

Thus the fibre of Graph”:” at X € § is equivalent to Fun((6,%)c,, V).

Remark 5.1.2.4. If X is a Segal O(n — 1)-space, we can describe (@Z?X)cn as the limit of the
diagram of spaces

X(Cnfl) E— X(Cn_z) te X(Co)

X(Cpo1) —— X(Cp-2) e X(Co).
Lemma 5.1.2.5. Suppose V is an accessible co-category. Then the co-category Graph” is
accessible.

Proof. Let & — § be the Cartesian fibration associated to the functor § — Cat. sending X
to Fun(X, V). Then there is a pullback square

Graphg;v — T

L,

SegQ(n—1) 5 S,

where the lower horizontal map is the functor ¢ that sends X to (@%’X)Cn.

The oco-category J is accessible, and the projection § — 8 is an accessible functor, by
Theorem Moreover, since filtered colimits in Segg(”_l) are computed pointwise,
and finite limits in § commute with filtered colimits, the functor ¢ preserves filtered col-
imits and so is accesible. The pullback Graph” is therefore accesible and the projection
Graph’;’ — Segg(”*l) is an accessible functor, by [Lur(09a, Proposition 5.4.6.6]. O

180



Proposition 5.1.2.6. Suppose V® is an E,-monoidal co-category compatible with small col-
imits. Then Algg(tn)
AlgOM (v®).

cat

(V¥) has all small colimits. Moreover, if V is presentable then so is

Proof. By Lemma [3.2.8.5, the fibration 7: Alg®™ (V®) — Opd2(" is both Cartesian and

coCartesian, hence the same is true of its pullback p: Alg?a(t”) (V€) — Seg"~1) Moreover,

its fibres Alggg”) (V¥) have all colimits by Corollary [3.2.7.6/ and the functors f; induced
n,X

by morphisms f in Segg(”_l) preserve colimits, being left adjoints. Thus p satisfies the

conditions of Lemma [2.1.5.10, which implies that Algggn) (V¥) has small colimits.

Since the functor T*: Alg®™ (V®) — Algg.(") (V¥) preserves filtered colimits by Corol-

1

lary [3.2.8.10} it is clear that so does its pullback U': Algg(t") (V®) — Graph!-”. Moreover,

the pullback of the left adjoint Ty of T* gives a functor F: Graph™’ — Algggn)(\?@) left
adjoint to U; this preserves compact objects by Lemma[2.1.7.11

Every object of Algo(”) (V¥) is a (sifted) colimit of objects in the image of

7 Algp!) (V¥) — Alg®™ (v¥),

iv

at

hence every object of Alg?(") (V¥) is a (sifted) colimit of objects in the image of F. The oco-
category Graph” is accessible by Lemma [5.1.2.5; suppose it is generated under colimits

by x-compact objects. Since F preserves colimits it follows that every object of Algggn) (V)
is the colimit of objects that are the images of k-compact objects of Graph;” under F. As

the functor F preserves x-compact objects, this means there is a small subcategory of «-

O(n)

compact objects of Alg_.;"' (V¥) — namely the images of x-compact objects of Graph!;V —

such that every object of Algg(tn) (V¥) is a colimit of objects in this co-category. In other
words, the co-category Algg(tn) (V?) is k-accessible. O
Now we show that Alg?a(t”) (V?) is functorial in V®:
Definition 5.1.2.7. As in §3.2.8, let AlgO") — Opd2™ x (@2(71))013 be a Cartesian fibra-
tion classifying the functor Alg(([i()") (-). Let Algﬂc?a(tlnc)0 be the pullback
(0]
Algeicy Algg")

——0O(n),lax

Segl" ) x (Mo, )% —— 0pd2" x (Opd,, "

°r.

Lemma 5.1.2.8. Alg;oa(t") (V?) is functorial in V¥ with respect to lax monoidal functors.

. O(n) ——O(n) lax_ e . o
Proof. The composite Alg,; ., — (Mon, )°P is a Cartesian fibration classifying a func-

tor V¥ — Alg?(n)(\?®). O

at
Proposition 5.1.2.9. Algg(tn) (-) is lax monoidal with respect to the Cartesian product of
O(n)-monoidal co-categories.
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Proof. The functor @Zi_): SegQ(=1) — OpdO(W&e preserves products, and if we define

[oe]

Algg(t”)(—) using the version of Alg®"(-) fibred over Opd2"&" we see by the same
proof as that of Proposition [3.2.8.13| that this functor is lax monoidal with respect to the
Cartesian product of generalized O(n)-o0-operads. Thus the pullback Algg(tn) (<) is also

lax monoidal. ]

5.1.3 n-Categorical Algebras in Spaces
(n)

In this subsection we prove that the co-category Alg‘?alt (8*) of n-categorical algebras in
spaces is equivalent to the co-category SegQ" of Segal O(n)-spaces.
If V is a Cartesian monoidal co-category, we can construct a Cartesian fibration

Mnd 2\ (V) — SegQn—1)

cat

(1)

o (V) of @F -monoids in V, in the same way as
X '

o 0
with fibre at X the co-category Mnd g

we defined Algg(tn) (V*) above. This has a natural equivalence over Segg(”*l) with the

0]
n,

co-category Algo\" (V).

at

(n),cat n—1)

We can also define a Cartesian fibration Mong, — Segg( whose fibre at X is the

O(n),®" . . . .
co-category Monoo(n) "* of @F,-monoidal co-categories. Using the equivalence between

;Oa(tn)(S) with the full subcategory
LMonQ" of MonQ™ <! spanned by those ©)% -monoidal co-categories that are left fi-
brations. '

Similarly, we can identify the co-category SegO") of Segal O(n)-spaces with the full

functors to 8§ and left fibrations, we can identify Mnd

subcategory LMultQ™ of MultQ™ spanned by the O(n)-multiple co-categories that are
left fibrations.

There is an obvious functor p: LMonS™< —5 LMults™ given by composing a @Z?X-
monoidal co-category C — @)Z?x that is a left fibration with the map @2& — ©,F, which is
also a left fibration and an O(#n)-multiple co-category.

Proposition 5.1.3.1. This functor p: LMonQ™ — LMultQ™ is an equivalence.

Proof. Let j denote the usual inclusion @)" ;| < @;. Then there is an adjunction
5 SegQ) = GegOn=1)

and @Zf’x is the object of LMulto™) corresponding to j. X. Moreover, j* is a Cartesian fibra-
tion by Lemma if A € Seg9™, a Cartesian arrow with target A over X — j*A is
given by taking the pullback of A — j,j*A along j. X — j.j*A.

To prove that p is an equivalence, we must show that it is fully faithful and essentially
surjective. We thus have to prove that the map

1\/IapLMong(”)/Cat (A’ B) - MapLMultg(") (p(A)I P(B))

is an equivalence. Since it is clear that the functor p preserves Cartesian morphisms over
Segg(”_l), it suffices to show that the induced maps on fibres over f: j*p(A) — j*p(B)
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are equivalences. But this is clear: on both sides the fibre at f can be identified with the
space of those maps over @)25.* 4 from A to the pullback of B along @25( that preserve inert
morphisms.

It remains to prove that p is essentially surjective. Suppose a: A — @;F is an object of
LMulto™ . The adjunction j* - j, induces amap h: A — @ZE* 4 this is equivalent to a left
fibration by Proposition[2.1.4.4/and so « is in the essential image of p. O

O(n)

Corollary 5.1.3.2. The composite functor Algoy" (8%) — Seg©™ is an equivalence.

5.1.4 Complete n-Categorical Algebras

In this subsection we define complete n-categorical algebras — the full subcategory Catg(n)

of Algg(tn) (V¥) spanned by the complete n-categorical algebras should be the “correct” co-

category of V-(oo, n)-categories. However, we will unfortunately not be able to show that
Catg(n) is a localization of Algg(t") (V¥), let alone the localization with respect to an ap-
propriate notion of “fully faithful and essentially surjective” morphisms. I hope to return

to this question, as well as the related problem of comparing Cat&n) to the co-category

Catfw,n) obtained by iterated enrichment, after more of the machinery of O(n)-co-operads
has been developed.

Definition 5.1.4.1. Suppose V¥ — @,F is an O(n)-monoidal co-category and X is a Segal
O(n — 1)-space. The trivial n-categorical algebra EY, with underlying Segal O(n — 1)-space
X is defined as the composite

¥, — aF L ve,

where I is the unit of V*. This gives a functor E/, : SegQ(n—1) Algg(t") (V).

Remark 5.1.4.2. The n-categorical algebra ES, can be described as the (oo, 11)-category con-
structed from the (co,n — 1)-category X by adjoining a unique n-morphism between any
two parallel (n — 1)-morphisms in X. In particular, all parallel (# — 1)-morphisms in X are
equivalent in E5.

The identity map ©;," — O, is the unique O(n)-monoidal structure on the point .
This is the unit for the Cartesian product of O(7n)-monoidal co-categories, and so for every

since Algg(tn) (-) is lax monoidal by Proposition Clearly the only *-co-categories are

of the form E¥ for Segal O(n — 1)-spaces X; we can identify the V-co-category EY, with the
tensor E5 ® Iy:

O(n)-monoidal co-category V¥ the co-category Alioi(") (V¥) is tensored over Algg(tn) (@),

Lemma 5.1.4.3. For any O(#n)-monoidal co-category V¥ and Segal O(n — 1)-space X, we

?(") (V¥) is tensored

have E}, ~ E% ® Iy. Moreover, if V¥ is presentably monoidal (so Alg_,;

over Alg?(”) (8%)), then EY, ~ E$ ® Iy.

at
Proof. Considering the construction of the external product in Algo("), we see that E5, ® Iy

is given by op op op . .
* . ~
EX X®2p Iy: @)n,X ><®2P 0, — 0, X@zp Ve~V
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We can factor this as

«
Ex %

id idx _opl
BF, g OF — 0 e
nX 0y, n

© 0 0] 0
: @np X@’ZP @np @np X®2p \7®,

which is clearly the same as EY.
In the presentable case, we have

ES @Iy~ (Ex®I) @y ~Ex® (Is®Iy) ~ Ex ® Iy ~ EY,

since it is easy to see that the tensorings with Algg(tn) (@,F) and Algg(tn) (8*) are compati-

ble. O
Recall that for A € ©)F we have a Segal O(n — 1)-space A* given by
A* (B) = Hom@)gp (A, B),
giving a functor (-)*: ©, — SegQ"~1). We write E4 := E4., thus EC) is a functor ©, —
O(n) (p®
Algcat (V )

Remark 5.1.4.4. When V is §, it is easy to see that EA as defined here corresponds to EA as

defined in §2.2.3|under the equivalence of §5.1.3

Definition 5.1.4.5. Suppose V¥ is an O(1n)-monoidal co-category and € is an n-categorical
algebra in V¥. An n-equivalence in € is a morphism E¢* — €.

Definition 5.1.4.6. Given an n-categorical algebra C in V, we write 1,C for the functor
oF -8 given by Map(E(‘), C).

Lemma 5.1.4.7. Let C be an n-categorical algebra in V with underlying Segal O(n — 1)-
space X, and let A be an object of @ZEI C @,P. Then the map

14€ := Map(E4, @) — Map(A*, X) ~ X(A)
is an equivalence.

Proof. Tt suffices to check that the homotopy fibres of this map are contractible. By [Lur09a)
Proposition 2.4.4.2] the homotopy fibre at p: A* — Xis

Map, | o (E4, p*e).
g@"PA*
Since Aisin @' |, there are no parallel (n — 1)-morphism in the (o0, n)-category E#, which

means that E# is equivalent to the initial @",.-algebra. Thus the fibre at p is indeed con-
tractible. ]

The restriction of 1,C to @' | is thus equivalent to the underlying Segal O(n — 1)-space
of C.

Definition 5.1.4.8. Let C be an n-categorical algebra in an O(n)-monoidal co-category V.
The classifying Segal O(n — 1)-space of n-equivalences 1C of € is the left Kan extension pi1eC
of the Segal O(n)-space 1,C along p: @,F — Q°F .
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Definition 5.1.4.9. Let Cbe a @Z?X—algebra in an O(n)-monoidal co-category V. We say C is
n-complete if the natural map X =~ 1¢C|ger o 1€ is an equivalence.

Conjecture 5.1.4.10. An n-categorical algebra is n-complete if and only if it is local with
respect to the map E¢ — ECi-1,

Remark 5.1.4.11. We would like to deduce this from the case where V is §, i.e. Proposi-
tion 2.2.3.16, In §4.2.1) we were able to carry out such a reduction because we knew that
if V® is presentably monoidal then Alggt(\?®) is tensored over Alg?at(SX) in a colimit-
preserving way — to see this we needed to know that composition with a strong monoidal

functor gives a colimit-preserving functor on algebras, and that the functor L&(()S pre-

serves products. However, we do not yet know how to prove the analogues of these two
statements in the setting of O(n)-c0-operads, and so we are currently unable to prove Con-

jecture5.1.4.10]

Definition 5.1.4.12. If € is an n-categorical algebra in an O(n)-monoidal co-category V¥, we
say that C is complete if C is n-complete and the @, _1-space (C is complete. We write Catg(n)

O(n)

for the full subcategory of Alg_,;"’ (V¥) spanned by the complete n-categorical algebras.

Remark 5.1.4.13. If V is the co-category § of spaces, then the complete n-categorical alge-
bras correspond to the complete ©;-spaces under the equivalence of

Conjecture 5.1.4.14. Suppose V¥ is a presentably [E,-monoidal co-category, so there is a
(strong) monoidal functor t: § — V, which induces a functor

b Algoy” (8%) — Algoy” (V9),

Let €, denote the morphism of n-categorical algebras in 8§ corresponding to the morphism
€y of @,-spaces of Definition [2.2.3.15 under the equivalence of 31 Then Cat&n) is the

localization of Algg(t”) (V®) with respect to . fork = 1,...,n. In particular, Catg(n) is an

accessible localization of Algg(tn) (V¥) and so is a presentable co-category.

Definition 5.1.4.15. A morphism ¢: € — D of n-categorical algebras in an [E,-monoidal
oco-category V® is fully faithful and essentially surjective if ¢ is Cartesian with respect to the

projection Algg(t") (V®) — Seg®"=1) and the morphism ¢ of Segal O (1 — 1)-spaces is fully
faithful and essentially surjective in the sense of Definition[2.2.3.1

Conjecture 5.1.4.16. Suppose V¥ is a presentably [E,-monoidal co-category. The fully faith-

ful and essentially surjective morphisms in Alggin) (V¥) constitute precisely the saturated

class of morphisms generated by t.e;, k = 1, ..., n. In particular Cat&n) is the localization

of Algg(tn) (V®) with respect to the fully faithful and essentially surjective morphisms.

5.2 n-Correspondences

In this section we will briefly discuss the analogue of correspondences for n-categorical
algebras.
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5.2.1 The ®-Multiple co-Categories £LP[I, {X,}]

Here we define the ®-multiple co-categories we will use below, in the case & = O(n), to
define correspondences between n-categorical algebras:

Definition 5.2.1.1. Suppose @ is a self-categorical perfect operator category. Let hj: £LL —
Set be the representable functor Hom e (I,-), and let £L®[I] — £® be a coGrotendieck
fibration associated to iij; then £®[I] is a ®-multiple co-category.

Example 5.2.1.2. If @ is O then £O[n] is A°P[n].

Definition 5.2.1.3. Suppose @ is a self-categorical perfect operator category that has an
initial object @, and let A be a clean atom of ®. Given a morphism a: [ -+ @ in £L® there is
a functor £® — £®[I] that sends | to the composite I -+ @ —+ ]. Restricting to L*/4 C £
we get a functor : [], £L¥/4 — L£P[I]. Given Segal ®, 4-spaces X, for a: [ + @ consider
their disjoint union Fix,: 1, L®P/4 — 8. The right Kan extension j. F(x,) is clearly a Segal
P-space. We write LP[I, {X,}] — LP[I] for the left fibration associated to j. Fx,); this is a
®-multiple co-category.

Example 5.2.1.4. If ® = O then £L%]n, (X, ..., X;)] is A

Xo< <Xy

Definition 5.2.1.5. If ® = O(n), we write O, [I, (X,)] for LOM[I, (X,)].

5.2.2 Correspondences

We now use the generalized co-operads introduced above to define correspondences be-
tween n-categorical algebras:

Definition 5.2.2.1. Let V¥ be an O(n)-monoidal co-category. A k-correspondence (1 < k < n)
between two n-categorical algebras € and D in V¥ is a @," [C, (X, Y)]-algebra M in V¥,
where X and Y are the underlying Segal O(n — 1)-spaces of € and D, respectively, such
that M restricts to € and D when pulled back along the two maps C;, + Co.

Definition 5.2.2.2. For I € @,F, let @,7[I, (X,)]" denote the colimit of generalized O(n)-
oo-operads
colim  @F[A, (X))
p: I—HAES?/@)

where Xf denotes X, when & is p composed with a map A + @. Let x: @,F[I, (X,)]" —
@, (I, (X,)] denote the obvious inclusion. We say a @,"[I, (X,)]-algebra M in an O(#n)-
monoidal co-category V¥ is a composite if it is the left operadic Kan extension of its restric-
tion to @, [I, (X,)]", i.e. the adjunction morphism x;x*M — M is an equivalence.

Definition 5.2.2.3. It is easy to see that that the full subcategory of (OpdQ("&en) O]
spanned by the objects ®F[I, (X,)] is equivalent to (SegQ"~1)*k where k is the number
of morphisms I + @. Define ALGOW™ (V¥)[I] by the pullback

cat

ALGO™ (v@)(1]

cat

Alg%’% [1] (V%)

(Segg(nfl))Xk - (Opdg(n)'gen)/@ﬁp[ly
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This defines a functor @;F — Cate,.

Definition 5.2.2.4. Suppose V¥ is an O(n)-monoidal co-category. For I € @,, we write
CORR®™ (V®)[I] for the full subcategory of ALGOM (v [I] spanned by those algebras

cat
that are composites and whose restrictions to Alggﬁn) (V¥) are complete n-categorical alge-
bras.

Conjecture 5.2.2.5. Forany I € @,F and any O, [I, (X,)]"-algebra M in an O(#)-monoidal
co-category V¥, the adjunction morphism M — x*x;M is an equivalence.

Remark 5.2.2.6. This would follow from an O(n)-analogue of Theorem |4.6.2.4] which can
probably be proved by essentially the same proof as that result, but we will not attempt to
carry out such an argument here.

Assuming this we can show the following, by the same argument as in the proof of

Lemma
Lemma 5.2.2.7. The functor CORRO™ (V®)[e]: @F — Cate, is an O(n)-category object.

Remark 5.2.2.8. By looking at the subcategory of @;"[I, (X,)]-algebras of the form 7}€
where 7; is the projection @;F[I] — ©,F, we can extract from the O(n)-multiple co-
category CORRC™ (V¥) an (co, n + 1)-category of V-co-categories, functors, natural trans-
formations, etc.
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