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Abstract

The study of fusion first arose in the local theory of finite groups. Puig abstracted the
fusion data of a finite group to the notion of fusion system, an object that reflects local
data in more abstract algebraic settings, such as the block theory of finite groups.
Martino and Priddy conjectured that the algebraic data of a fusion system of a finite
group should have a topological interpretation, which result was proved by Oliver
using the notion of p-local finite group introduced by the team of Broto, Levi, and
Oliver. The study of fusion systems and p-local finite groups thus provides a bridge
between algebraic fields related to local group theory and algebraic topology.

In this thesis we generalize the notion of abstract fusion system to model the local
structure of a group action on a finite set. The resulting fusion action systems can be
seen as a generalization of the notion of abstract fusion system, though we describe
other possible interpretations as well. We also develop the notion of a p-local finite
group action, which allows for connections between fusion action system theory and
algebraic topology.

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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Chapter 1

Introduction

1.1 Foundations

Let p be a prime. The goal of this thesis is to explore the p-local structure of finite

groups from both algebraic and topological perspectives.

The algebraic p-local structure of finite groups has long been a fruitful area of

research. For a finite group theorist, the term “p-local” roughly refers to the study

of how the p-subgroups of a finite group G are embedded in G, with particular em-

phasis given to understanding how the ambient group acts on its p-subgroups by

conjugation. Consequently, the p-local structure of a finite group is closely related to

an understanding of the normalizers and centralizers of its p-subgroups. The fusion

system of a finite group is an algebraic structure that encodes such p-local data for

all p-subgroups, together with their relations to one another.

As the p-local study of finite groups progressed, interest in related algebraic struc-

tures rose. A prime area of research was the structure of blocks of a finite group, the

indecomposable chunks of the representation theory associated to that group. A block

naturally gives rise to the sort of fusion structure previously associated only to actual

finite groups.1 As in any case where similar structures occur in different situations, a

natural question arises: Is it possible to study fusion data as an algebraic structure in

its own right, divorced not only from finite groups but also from blocks or other mo-

1Cf. [AB] for more details.

11



tivating examples? Could such an abstraction provide insight to the original sources

of fusion systems?

Puig provided the insight necessary to achieve this level of abstraction. In [Pui1]2

he describes the notion of an abstract Frobenius category, an algebraic structure that

generalizes both the fusion systems of finite groups and blocks of finite groups to a

setting where no ambient algebraic object must be mentioned. Later authors, for

us most relevantly the team of Broto-Levi-Oliver, would use the term abstract fusion

system to describe essentially the same data, and make use of this level of abstraction.

As I learned this material first by reading [BLO2], I shall use the terminology of that

document, and we shall henceforth use the term “fusion system” to describe the new

algebraic object.

While all this work was going on mostly in the world of pure algebra and finite

group theory, it was clear that the study of fusion data in whatever form would have

deep implications for other mathematical fields, especially algebraic topology. The

connection to topology comes from the study of classifying spaces of finite groups.

These spaces can be thought of as topological versions of finite groups in that they

encode all the algebraic data of a group in the homotopy theory of a space.

The p-local study of spaces is another area of clearly worthwhile research; in this

document, the p-local study of spaces will be achieved by use of the Bousfield-Kan

p-completion functor. In particular, we have arrived at our notion of the topological

p-local study of finite groups: The examination of their p-completed classifying spaces.

So, given a finite group, there is both an algebraic and a topological notion of

what the “p-part” of this group looks like. To express the obvious question: What is

the relationship between these two?

Martino and Priddy conjectured [MP] that, properly understood, the algebraic

and topological parts of a finite group are the same. By this we mean that each

determines the other exactly, and so we might hope that the interplay of these two

disciplines would lead to a greater understanding of each.

2This is the earliest published work of Puig I have found that details the relevant notions, though
there is also an earlier unpublished manuscript that greatly influenced the development of the theory
of fusion systems.
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Proving the Martino-Priddy conjecture turned out to be no easy task. Martino

and Priddy proved the “easy” direction—that topological information determines al-

gebraic information—using a result of Mislin [Mis], which in turn relies on the Sullivan

Conjecture proved by Miller [Mil1, Mil2]. The “hard” part was ultimately proved by

Oliver [Oli1, Oli2], using the insight of Puig concerning the nature of abstract fusion

systems [Pui1], the machinery of Broto-Levi-Oliver [BLO2], and the Classification

Theorem of Finite Simple Groups (cf. 20th century finite group theory). Both di-

rections of the proof rely on very deep mathematics, but when the dust had settled,

another strong connection between algebra and topology had been established.

And, like all good theorems, the proof of the Martino-Priddy conjecture ended up

raising more questions than it answered.

In order to prove that fusion data determine the p-completed homotopy type of

a finite group’s classifying space, it was necessary to define a “classifying space” for

the fusion system itself. The search for such a construction led to the development

of the notion of a p-local finite group, which at its heart is an extra level of structure

associated to a fusion system that allows us to create an interesting topological space.

It was observed by Solomon [Sol] that there exists 2-local fusion data that, by

itself, is essentially indistinguishable from the 2-local fusion of a finite group and yet

cannot be realized by any finite group. His work preceded the development of the

notion of abstract fusion systems, and it ultimately turned out that he was describing

an example of an exotic fusion system. Since the discovery of Solomon’s family of

exotic fusion systems, many others have been discovered for other primes, with the

aid of the Classification Theorem.

These exotic fusion systems are interesting in their own right as sort of p-shadows

of a nonexistent finite groups. Moreover, Broto-Levi-Oliver showed how to complete

even an abstract fusion system to a p-local finite group, allowing us to study their ho-

motopy theory.3 So we might ask ourselves the question: Given an arbitrary abstract

fusion system, is it possible to complete it to a p-local finite group? If so, can this

3Indeed, the proof the Martino-Priddy conjecture can be seen as moving from ordinary fusion
systems to general abstract fusion systems in order to define their classifying spaces, and only then
specializing back to ordinary ones.
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be done uniquely? Oliver showed that if the fusion system is not exotic, the answer

to both questions is yes, and for all exotic examples studied so far this seems to be

the case. The existence and uniqueness of a classifying space for a general abstract

fusion systems are two of biggest open questions in p-local finite group theory.

A secondary, but still extremely important, question concerns the desire for math-

ematical objects to play nicely with each other. For us, this means that we would like

p-local finite groups to form a category. Finite groups certainly form a category in a

natural way, and abstract fusion systems do as well. Unfortunately, when the data

needed to construct a classifying space is added, there seems to be no sensible way

of defining morphisms between p-local finite groups. This is true even if we restrict

attention to the ordinary fusion systems, which is if anything even more troublesome:

Any homomorphism of finite groups induces a map of their p-complete classifying

spaces, but at this point it seems impossible to realize these data while using the

intermediary of the p-local finite groups.

This background material is covered in more detail in Chapter 2.

1.2 Results

In this document we explore the question of what it means for a fusion system to

act on a finite set. Starting with a finite group acting on a finite set, what “p-local”

data can we extract? Can this be generalized to the notion of abstract fusion system

introduced by Puig? Can we relate this to topology by defining a p-local finite group

action?

The motivation for these questions comes from both the algebraic and topological

aspects of the study of fusion systems. Algebraically, the study of group actions was

an important stage in the understanding of finite groups. Indeed, historically the

notion of group was introduced in terms of symmetries of some mathematical object,

so perhaps we should look to fill in this gap of the development of fusion theory. On

the topological side, any group action gives rise to a covering space of the classifying

space of that group. Could an action of a p-local finite group on a finite set similarly

14



give rise to a sort of covering space theory, or at least a notion of stabilizer subsystem

whose classifying space plays an analogous role?

In our development, we give three levels of structure to the notion of “actions in

the fusion context.” The first is actually just a condition that must be put on the

action of a p-group S on a finite set X. This condition is called F-stability or the

S-set X, and means that the S-action “respects the fusion data” in an appropriate

manner. This F -stability is a notion pleasing in its simplicity, and may well have

applications to questions about the stable homotopy theory of p-local finite groups,

but sadly it turns out to be too flabby to be useful in the unstable context we wish

to investigate. F -stable S-sets are the subject of Chapter 3.

The second level can be seen as starting with the notion of F -stability and then

adding structure relating the fusion system to the p-group action. The resulting

algebraic objects, named fusion action systems, are introduced in Chapter 4 and are

the central topic of study of this thesis. Fusion action systems may be interpreted in

several ways—as rigidifications of the concept of F -stability, as intermediaries between

fusion systems and transporter systems, even as extensions of a fusion system by a

finite group—but in all cases they play the role of a fusion system in a more general

context.

In particular, the standard notion of fusion system can be recovered as a special

case of a fusion action system acting on a one-point set. This observation begins

the project of using fusion action systems to study certain associated fusion systems,

tying our new notions back to their motivating origins. We go on to describe the core

or kernel of the fusion action and the stabilizer subsystems, which play roles analogous

to the kernel of a group action and the stabilizer subgroup of a point, respectively.

Chapter 5 concludes the content of this document with the third level of structure,

the one that allows us to study the topology of our fusion actions. We call these data

p-local finite group actions ; the similarity with the term “p-local finite group” is not

accidental, as once again if the underlying p-group action is trivial we recover the

notion of [BLO2]. With this machinery set up, we are able to produce a fusion-

theoretic version of the Borel construction of a finite group action, as well as defining
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the notion of a stabilizer subsystem and showing that it has the topological properties

we would expect of it. Interestingly, we shall see that a p-local finite group action

is not too different in its own structure from the corresponding p-local finite group,

and that in fact the key difference comes primarily from the extra data of a map to

a symmetric group.

Finally, Appendix A outlines a particular worldview that has greatly influenced the

course of my research: That the study of groupoids as algebraic objects in their own

right yields insight to the study of groups, and in particular we may view our fusion

action systems as “fusion systems with many objects” to gain a greater understanding

of fusion systems in their own right. While the content of the Appendix does not have

much of a direct effect on the rest of the thesis, it suggests a general “fusion theory

of finite groupoids” as an interesting future research direction.

We are still far away from such a radical generalization, so for the moment let

us consider simply the fusion theory of translation groupoids, which we shall now

describe.
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Chapter 2

Fusion systems and p-local finite

groups

In this chapter we review the basics of the theory of fusion systems and related

concepts. We introduce the classical notion of the fusion system of a finite group and

Puig’s abstraction of this idea, the transporter systems of Oliver-Ventura, and the

centric linking systems of Broto-Levi-Oliver. To motivate the difficult concept of a

p-local finite group, we give a brief discussion of the Martino-Priddy Conjecture and

its proof by Oliver.

Informing much of this chapter, and indeed the study of fusion systems in general,

is the perspective that sometimes it is useful to consider a small category as an

algebraic object in its own right: Not only can groups and rings be viewed as certain

categories with a single object, but the ability to consider multiple objects gives rise

to generalized notions that are difficult to describe without the language of categories.

Whether categories are thought of as algebraic objects or simply a framework in which

to discuss a mathematical system depends largely on one’s point of view, and we will

definitely make use of both perspectives in the sequel.

Throughout this document let p be a prime, G a finite group, and S a finite

p-group, which will be thought of as a Sylow subgroup of G.
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2.1 Groups as categories

2.1.1 Classifying category of a group

How can we view a group as a category? The most obvious, if somewhat unenlight-

ening, answer is simply to appeal to a definition of the notion of group: A category

with a single object and all of whose morphisms are invertible.

Definition 2.1.1. The classifying category of a group G is the category BG with

a single object ∗ and where BG(∗, ∗) = G as a set with composition defined by

the multiplication of G.1 Note that, in the terminology of Appendix A, BG is the

translation groupoid of the one-point G-set.

Let BG := |BG| denote the geometric realization of the nerve of BG, also known

as the classifying space of G.2

Let EG denote the groupoid whose objects are the elements of G and with precisely

one morphism between any two objects. There is a natural G-action on EG, which

gives rise to a free G-action on the contractible G-space EG := |EG|. Thus we have

BG ' G\EG. ♦

2.1.2 Transporter systems of finite groups

We are interested in the p-local structure of finite groups, so ideally our categorical

version of G should pick out such structure as part of its data. The first piece of p-data

one can associate to the finite group G is S, one of its Sylow subgroups. Moreover,

the content of Sylow’s theorems asserts, roughly, that not only are all Sylows equal in

the eyes of G, but each contains all of G’s p-structure. What this means will become

clear shortly.

1As we read group multiplication from left to right but morphism composition from right to
left, there are possible grounds for confusion here. Luckily, we will not actually encounter such a
problematic situation in this thesis.

2Throughout this document, we shall refer to taking the geometric realization of a category. This
is entirely a notational convenience, as every time we actually mean the geometric realization of the
nerve of the category.
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Notation 2.1.2. For g ∈ G, the homomorphismG→ G : g′ 7→ gg′g−1 will be denoted

by cg. For H ≤ G, denote by gH the subgroup cg(H). If gH ≤ K, conjugation by g

defines a map H → K, which will also be denoted cg. ♦

We are now ready for our second categorical description of a finite group.

Definition 2.1.3. Let G be a finite group and S ∈ Sylp(G). The transporter system

on S relative to G is the category TG = TS(G) whose objects are all subgroups P ≤ S

and whose morphisms are given by

TG(P,Q) = NG(P,Q) :=
{
g ∈ G

∣∣gP ≤ Q
}

NG(P,Q) is the transporter of P to Q in G. ♦

This definition singles out a given Sylow subgroup and plays an important role

throughout this document. However, it contains too much information, especially

p′-data. In fact, TG can be easily seen to contain exactly the information of BG,

together with a choice of Sylow subgroup, by noting that TG(1) ∼= G.3 Indeed, the

natural functor BG → TG sending ∗ to 1 induces a homotopy inverse to the natural

functor TG → BG; in the world of topology, |BG| ' |TG|.

2.1.3 Fusion systems of finite groups

One way of understanding the sense in which TG has too much information is to note

that there may be distinct elements element g, g′ ∈ G that conjugate P to Q but are

indistinguishable from the point of view of the conjugation action on P . In other

words, cg|P = cg′ |P or g−1g′ ∈ ZG(P ). Let us suppose that the conjugation action is

the truly important p-local data, and define

Definition 2.1.4. For G a finite group and S ∈ Sylp(G), the fusion system on S

relative to G is the category FG := FS(G) whose objects are all subgroups P ≤ S

3We here make note of our notational convention: Just as for a category C we denote by C(a, b)
the set of morphisms HomC(a, b), we shall write C(a) for the automorphism group of the object a.
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and whose morphisms are given by

FG(P,Q) = HomG(P,Q) :=
{
ϕ ∈ Inj(P,Q)

∣∣∃g ∈ G s.t. ϕ = cg|P
}

Note that we can also write FG(P,Q) = TG(P,Q)/ZG(P ), so FG can be thought of

as a quotient of TG and we have a natural projection functor TG → FG. ♦

Notation 2.1.5. We shall reserve ϕ and ψ for morphisms in a fusion system. ♦

FG is another categorical version of the finite group G—a version that extracts

and focuses on the p-local fusion, or ambient conjugacy, data of the finite group. It

will be the basis of our study in this document.

Example 2.1.6. The most basic example of a Sylow inclusion S ≤ G is the case that

the supergroup G is equal to S itself. We denote the resulting fusion system by FS,

the minimal fusion system on S. Minimality in this case means that if H is any finite

group with S ∈ Sylp(H) then FS ⊆ FS(H) = FH . The importance of this minimal

example will become clear with the introduction of abstract fusion systems, starting

in Section 2.3. ♦

Example 2.1.7. Consider D4, the dihedral group on 4 points. This is a 2-group of order

8, which can be thought of as the group of symmetries of a square. The subgroup

lattice of nonidentity subgroups of D4, together with D4-conjugacy relations denoted

by horizontal wavy lines, is given by Figure 2-1.

D4

P1

||||||||
P2 P3

BBBBBBBB

Q1

||||||||
/o/o/o Q2 Q3

BBBBBBBB

||||||||
Q4

/o/o/o Q5

BBBBBBBB

P1, P3
∼= Z/2× Z/2 P2

∼= Z/4 Qi
∼= Z/2 Q3 = Z(D4)

Figure 2-1: Subgroup-conjugacy lattice of D4
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Every Sylow subgroup of Σ4 is isomorphic to D4, so we may consider the diagram

of Figure 2-2, in which we record the isomorphism classes of objects of FΣ4 . Note in

D4

P1

||||||||
P2 P3

BBBBBBBB

Q1

||||||||
/o/o/o Q2 Q3

BBBBBBBB

||||||||

Σ4

/o/o/o Q4
/o/o/o Q5

BBBBBBBB

Figure 2-2: Fused 2-subgroups of Σ4

particular the additional Σ4-conjugacy, or fusion4, relation between Q3 = Z(D4) and

both Q4 and Q5.

Of course, these subgroup-fusion lattices are just shadows of the structure of the

fusion systems FD4 and FΣ4 : The fusion system records not only which subgroups

are fused, but how they are fused. Thus for every fusion relation, say Q3
∼=Σ4 Q4,

there is at least one explicit isomorphism ϕ ∈ FΣ4(Q3, Q4), given by conjugation by

some element of Σ4.

Moreover, each subgroup R ≤ D4 has an action by NΣ4(R), which factors through

the automorphism group FΣ4(R). For example, the isomorphism considered above

ϕ : Q3
∼=Σ4 Q4 can be realized as conjugation by an element of NΣ4(P3). Therefore ϕ

extends to some ϕ̃ ∈ FΣ4(P ). However, Q3 = Z(D4) is a characteristic subgroup of

D4, so it is impossible that ϕ could be extended all the way to an automorphism of

the entire Sylow D4. Equivalently, ϕ cannot be written as conjugation by an element

of Σ4 that normalizes D4. ♦

The last paragraph of Example 2.1.7 suggests that understanding of fusion systems

might be accomplished through understanding of the automorphism groups of the

subgroups of S. This is in fact the content of a weak form of Alperin’s Fusion

Theorem.

4Cf. [Gor] or other group theory literature, where “fusion” originally referred to conjugacy in
the supergroup that was not realized in S itself. We do not draw this distinction, and by “fusion”
simply mean conjugacy either in S or some (possibly nonexistent) supergroup.
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Definition 2.1.8. For a small (preferably finite) category C, a system of inclusions

is a subcategory I ⊆ C such that Ob(I) = Ob(C) and for any c, c′ ∈ Ob(C) there is

at most one morphism in I(c, c′). The category C is an Alperin category (relative to

I) if every morphism of C can be written as a composition of morphisms of I and

automorphisms of objects of C. ♦

Every fusion system of a finite group naturally comes equipped with a system of

inclusions, namely the actual inclusions of the subgroup lattice.

Theorem 2.1.9 (Alperin’s Fusion Theorem). For G a finite group and S ∈ Sylp(G),

the fusion system FG is an Alperin category.

Proof. See [Alp] for a stronger version of this result. This result was strengthened

further in [Gol] to the Alperin-Goldschmidt fusion theorem, which described a par-

ticular class of subgroups that the fusion system. Finally, Puig showed in [Pui2] that

the class of groups identified by Goldschmidt is truly essential in order to generate

the fusion system and proved in [Pui1] an abstract analogue of the Fusion Theorem

that makes no reference to the finite group G (see Section 2.3 for more information

on this point).

2.1.4 Centric linking systems of finite groups

We’ve already seen in Definition 2.1.4 that the fusion system FG can be thought of

as the quotient of the transporter system TG obtained by killing the action of the

centralizer of the source. This quotienting process kills both p- and p′-information;

if we wish to study the p-local structure of G, perhaps we should seek a less brutal

quotient as an intermediary between TG and FG.

To find this intermediary category, technical considerations suggest that we re-

strict attention to a particular collection of subgroups of S. The reasons will become

clear in short order. Let us therefore introduce a seemingly ad hoc definition of the

class of subgroups that will be central in the following discussion:
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Definition 2.1.10. A p-subgroup P of G is p-centric if Z(P ) ∈ Sylp(ZG(P )). Equiva-

lently, P is p-centric if there exists a (necessarily unique) p′-subgroup Z ′G(P ) ≤ ZG(P )

such that ZG(P ) = Z(P )× Z ′G(P ). ♦

This is an appropriate place to introduce some notation from finite group theory:

Definition 2.1.11. Let G be a finite group.

• Op(G) is the largest normal p-subgroup of G.

• Op′(G) is the largest normal p′-subgroup of G.

• Op(G) is the smallest normal p-power index subgroup of G.

• Op′(G) is the smallest normal subgroup of G with p′ index.

Each of these subgroups is characteristic in G. ♦

Notation 2.1.12. We shall reserve the notation Z ′G(P ) for Op(ZG(P )) in the case

that P is p-centric in G, in which case we also have Z ′G(P ) = Op′(ZG(P )). ♦

Notation 2.1.13. By T cG we mean the full subcategory of the transporter system TG
whose objects are the p-centric subgroups of S. We use similar notation to denote

full centric subcategories of fusion systems and other related categorical versions of

groups we’ll encounter. ♦

We are now in the position to introduce our intermediary between TG and FG:

Definition 2.1.14. The centric linking system of a finite group G with Sylow S is

the category LcG whose objects are the p-centric subgroups of S and whose morphisms

are the classes

LcG(P,Q) = NG(P,Q)/Z ′G(P )

♦

The quotient functors T cG // LcG // F cG relate our three nontrivial notions of

G as a category and emphasize how some information is lost at each transition. We

shall make use of the relationship between these three players in the sequel.
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2.2 Groups as spaces

The goal of this section is to describe how we can use the categorical versions of a

group G to construct topological spaces that will form the objects of our study.

2.2.1 Geometric realization

The classifying space functor B : GRP → T OP is the primary tool we use in this

document for studying groups in the context of algebraic topology. We have already

described B as the composition of B : GRP → CAT with the geometric realization

functor, which suggests that perhaps our alternate categorical versions of finite groups

should be viewed as topological spaces via geometric realization.

For the transporter system TG, this works: As |TG| ' BG, essentially all the

algebraic information of TG is realized topologically in this manner.5

However, simply taking the nerve of the fusion system FG will not yield an inter-

esting space: The object 1 is initial in FG, so |FG| is contractible.6 We will have to

be more clever about how we construct a topological space from a fusion system if

we are to arrive at anything interesting; this will be the focus of Subsection 2.2.2.

This brings us to the last of our categorical versions of G introduced in 2.1, the

centric linking system LcG. The space |LcG| should be related to BG in some way, but

as information is lost from the transition from transporter system to linking system

it is unreasonable to expect that |LcG| ' BG.

Example 2.2.1. Let G be your favorite finite group, S ∈ Sylp(G), and H your favorite

finite p′-group. Then H is a p′-subgroup of ZG×H(S) so for any P ≤ S we have

H ≤ Z ′G×H(P ). We conclude LcG ∼= LcG×H (actual isomorphism of categories). It

easily follows that the same result applies to fusion systems: FG = FG×H (equality

of categories). ♦
5The problem is, roughly, that the transporter system has a “minimal” object that includes in

every other one. One can see that in such a situation, all the topological data we could hope to
extract from the transporter system is in some sense concentrated in the automorphisms of this
minimal object; this is a situation that is explored in greater depth in [OV].

6As fusion systems are naturally equipped with a collection of “inclusion morphisms”—honest
inclusions of subgroups in this case—this fact could be seen as a special case of the general reason
why |TG| ' BG.
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Since we construct the linking system by killing certain p′-primary data of the

transporter system, we should look for an operation on topological spaces that “iso-

lates p-information” in some appropriate sense.

Notation 2.2.2. Let (−)∧p : T OP → T OP denote the Bousfield-Kan p-completion

functor of [BK]. There is a natural transformation η : idT OP ⇒ (−)∧p ; for a space X ,

let ηX : X → X ∧p denote the resulting p-completion map. ♦

We shall view (−)∧p largely as a black box that isolates the p-primary data of a

space, at least in good cases:

Definition 2.2.3. A space X is p-complete if the p-completion map ηX : X → X ∧p is

a homotopy equivalence. X is p-good if X ∧p is p-complete. ♦

Proposition 2.2.4. (−)∧p has the following important properties:

1. A map of spaces f : X → Y induces an isomorphism of mod-p cohomology if

and only if f∧p : X ∧p → Y∧p is a homotopy equivalence.

2. If π1(X ) is finite, X is p-good.

3. If S if a finite p-group, BS is p-complete.

4. If G is a finite group, π1(BG∧p ) ' G/Op(G), the largest p-group quotient of G.

5. For spaces X and Y, (X × Y)∧p ' X ∧p × Y∧p .

6. If X is not p-good, neither is X ∧p (or: p-bad is infinitely p-bad).

Proof. These results can be found in [BK].

Remark 2.2.5. We could use the first point of Proposition 2.2.4 to restate the notion

p-good spaces as: X is p-good if the natural completion map ηX : X → X ∧p induces

a mod-p cohomology isomorphism. ♦

Notation 2.2.6. If the spaces X and Y satisfy the equivalent conditions of Point 2 of

Proposition 2.2.4, we say that X and Y are mod-p equivalent or homotopy equivalent

up to p-completion. In this case we write X 'p Y . ♦

25



So, even though it is unreasonable to expect that |LcG| is homotopy equivalent

to BG, it is conceivable that these spaces should be equivalent up to p-completion.

The following two theorems of [BLO1] describe the relationship of the centric linking

system of G to the space BG∧p :

Theorem 2.2.7. For G a finite group, the natural functors BG T cGoo // LcG
induce mod-p cohomology isomorphisms on realization. In particular, |LcG|∧p ' BG∧p .

Theorem 2.2.8 (Weak Martino-Priddy Conjecture). For finite groups G and H,

BG∧p ' BH∧p if and only if the categories LcG and LcH are equivalent.

2.2.2 Classifying spaces of fusion systems

In this subsection we describe how to associate a topological space to the fusion

system FG. In doing so we introduce formal machinery, some of which will not be

used until later in this document.

Homotopy colimits

The notion of a homotopy colimit of a functor into T OP is the “homotopically

correct”—or invariant—notion of colimit; cf. [BK] for more of the general theory

of homotopy colimits. For our purposes it is possible to chose an explicit model for

the homotopy colimit that has the advantage of being combinatorial, or even alge-

braic, in nature. We introduce this model effectively as the definition of the homotopy

colimit.

Definition 2.2.9. Let F be a functor from a small category C to CAT . The

Grothendieck category or Grothendieck construction of F is the category G := G(F )

whose objects are pairs (c, o) where c ∈ Ob(C) and o ∈ Ob(F (c)). The morphism sets

are defined by

G((c, o), (c′, o′)) =
{

(α, γ)
∣∣α ∈ C(c, c′), γ ∈ F (c)(F (α)(o), o′)

}
and with composition defined by (α′, γ′) ◦ (α, γ) = (α′α, γ′F (γ)). ♦
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Remark 2.2.10. As GRP , GRPD, and SET are subcategories of CAT (where we

identify SET as the subcategory of categories with no nonidentity morphisms), it

makes sense to speak of the Grothendieck category for a functor whose target is any

of the three as well. ♦

Example 2.2.11. Another variant of the Grothendieck construction is the following:

Let G and H be finite groups and f : H → Aut(G) a group map. Then f induces a

functor Bf : BH → BAut(G), and we can form the Grothendieck construction G(Bf)

in the obvious way. It is not hard to see from the definitions that G(Bf) = B(GofH),

so the Grothendieck construction can be viewed as a generalization of the semidirect

product of groups in this sense. ♦

The following theorem of Thomason relates the Grothendieck construction to the

notion of homotopy colimit, and states that we can think of homotopy colimits as

realizations of certain categories:

Proposition 2.2.12. Let C be a small category and F : C → CAT a functor. Then

there is a homotopy equivalence

hocolim
C

|F | ' |G(F )|

Proof. See [Tho].

While we will make repeated use of the homotopy colimit in its own right, we will

also need the following related construction:

Example 2.2.13 (Left homotopy Kan extensions). Let C and D be small categories

and consider the following diagram:

C
F

**

F ′

��

F

// CAT |−|
// T OP

D

The left homotopy Kan extension of F over F ′ is a natural, homotopically invariant
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functor L = LKanF ′(F ) : D → T OP associated to this picture, which has the

important property that hocolimD L ' hocolimC F .

We can describe the values of L in terms of homotopy colimits of certain functors,

and our assumption that F factors through CAT allows us to describe L in terms of

the Grothendieck construction. On objects, L is given by

L(d) = hocolim
(c,α)∈(F ′↓d)

F (c)

where (F ′ ↓ d) is the overcategory of F ′ over d ∈ D. The objects of (F ′ ↓ d) are pairs

(c, α), where c ∈ Ob(C) and α ∈ D(F ′(c), d). A morphism from (c, α) to (c′, α′) is

γ ∈ C(c, c′) such that the following diagram commutes in D:

c
F ′(γ) //

α
��======== c′

α′���������

d

A morphism δ ∈ D(d, d′) defines a functor (F ′ ↓ d)→ (F ′ ↓ d′) given by

(c, α) � //

γ

��

(c, δα)

γ

��
(c′, α′) � // (c′, δα′)

This allows us to describe the left homotopy Kan extension in purely categorical

terms, though it gets a bit messy. We shall see more of this in Chapter 5. ♦

The orbit category of a fusion system

We have seen that the passage from transporter system to linking system loses some

p′-information, but not so much that the homotopy type of BG∧p cannot be recovered.

Following Martino and Priddy, let us conjecture an extension of this result, which at

first glance may seem unreasonable in its strength: No further topological information

is lost in the passage from linking system to fusion system. More explicitly,
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Theorem 2.2.14. [Martino-Priddy Conjecture] The finite groups G and H have

homotopic p-completed classifying spaces if and only if the p-fusion data of G and H

are the same.

Proof. The “topology implies algebra” direction is given in [MP]. The “algebra im-

plies topology” direction was proved by Oliver in [Oli1, Oli2], using the machinery of

[BLO2] and the Classification Theorem of Finite Simple Groups.

That “the p-fusion data of G and H are the same” means that there is an iso-

morphism of fusion systems FG ∼= FH . The notion of isomorphism of fusion system

is much stronger than saying that these categories are equivalent, or even isomorphic

as categories: Such a notion would record only the shape of the fusion system as a

diagram without giving due deference to the structure of the objects of the fusion sys-

tem. Although we give the general notion of morphism of fusion system in Definition

2.3.7, we provide the special case here for completeness:

Definition 2.2.15. Let G and H be finite groups with respective Sylows S and T .

An isomorphism α : S → T is a fusion preserving isomorphism if for every P,Q ≤ S

and β ∈ Hom(P,Q), β ∈ HomG(P,Q) if and only if αβα−1 ∈ HomH(αP, αQ). In this

case the fusion systems FG and FH are isomorphic as fusion systems. ♦

So we claim that the data of the fusion system FG determine the p-completed

homotopy type of BG, which returns us to the question of how to associate a topo-

logical space to a fusion system. We have already seen that simply taking the nerve of

FG yields nothing interesting. This should not be surprising, as taking the geometric

realization of the fusion system only records the shape of the category as a diagram

without taking into account the fact that it is a diagram in p-groups. This is not a

problem for either the transporter or linking systems of G, as for any P ≤ S we have

P ≤ NG(P ) and therefore there is a natural way to identify P with a subgroup of its

automorphism group. Such is not the case for fusion systems, so we must try a little

harder to recover this information.

A first attempt to get an interesting space from FG would look as follows: We

wish to record that FG is a diagram in groups, so let us simply consider the space

29



hocolimFG BP . If this were the right space to consider in proving the Martino-Priddy

Conjecture, we should at the very least have BG 'p hocolimFG BP . However, if

S is nonabelian, it turns out to be impossible that hocolimFG BP should have this

property.7

Example 2.2.16. This is a heuristic argument for why hocolimFG BP does not have

the right p-completed homotopy type for use in the Martino-Priddy conjecture. The

natural map BS → BG induced by the inclusion S ≤ G is Sylow, which is to say if

R is any p-group and we have a map BR→ BG, there is a factorization

BS // BG

BR

bbF
F

F
F

<<xxxxxxxx

up to homotopy. If S is nonabelian, Inn(S) is nontrivial, and therefore S o Inn(S)

contains S as a proper subgroup. As a consequence of Example 2.2.11, we have

S o Inn(S) ≤ AutG(B−)(S), and therefore there there is an obvious map of spaces

B(S o Inn(S))→ |G(B−)| that does not factor through BS. ♦

The problem with this construction is that we are effectively double-counting

some elements of S. Any noncentral s ∈ S defines both a morphism š ∈ BS and a

nonidentity morphism cs ∈ F(S); by simply taking the homotopy colimit of B− these

separate morphisms both contribute even though they come from the same element

of S. In other words, hocolimF B− is too big because the underlying Grothendieck

construction has too many arrows.

So let’s kill the offending morphisms.

Definition 2.2.17. The orbit category8 of FG is the category OG := O(FG) whose

7In fact, this is an “if and only if” statement, as can be inferred from the following discussion of
orbit categories and the fact that if S is abelian, FG = OG.

8This notion is not to be confused with the category of orbits of G, whose objects are the transitive
G-sets and where morphisms are maps of G-sets. Although there is a relationship between these
two notions, we will not make use of the category of G-orbits in this document.
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objects are the subgroups of S and whose morphisms are given by

OG(P,Q) = Q\FG(P,Q)

In other words, the hom-set from P to Q is the set orbits of the Q-action of FG(P,Q)

given by postcomposition by cq.

OcG will denote the full subcategory of OG whose objects are the F -centric sub-

groups of S. ♦

The functor B− : FG → T OP does not descend to a functor OG → T OP , but

because OG is defined by quotienting out inner automorphisms, it is easy to see that

there is a homotopy functor B− : OG → hoT OP . If we could find a homotopy lifting

T OP

��
OG

eB− ::t
t

t
t

t

B−
// hoT OP

we could consider hocolimOG B̃−, and relate this space to BG∧p . The following Propo-

sition explains this relationship.

Proposition 2.2.18. For G a finite group, consider the diagram

LcG
∗ //

π

��

T OP

OcG
L

<<x
x

x
x

x

where π is the composite of the natural quotients LcG → F cG → OcG and L is the left

homotopy Kan extension of the trivial functor ∗ over π. Then L is a homotopy lifting

of B− : OcG → hoT OP, and in particular we have

hocolim
OcG

L ' hocolim
LcG

∗ = |LcG| 'p BG
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Proof. [BLO2].

So far we have simply restated the original question of whether topological infor-

mation is lost on the transition from linking system to fusion system: If we have a

linking system in mind for FG, there is a homotopy lifting of B−, which allows us

to construct our desired space from the fusion system. But what if there is another

finite group H such that FG = FH and yet LcG 6= LcH : Is it possible there are two

distinct homotopy liftings and thus two different spaces associated to FG? Or can

this never happen? How do we approach this problem?

2.3 Abstraction as the answer

The basic problem introduced at the end of Section 2.2.2 is the need to think of fusion

and linking systems as algebraic objects distinct from the finite groups from which

they came. The work of Alperin-Broué gives further evidence that such a program

should be undertaken: A consequence of their paper [AB] is that a block of a finite

group gives rise to a fusion system on the defect group of that block. We shall not go

into further detail as to exactly what this means beyond the observation that there

may be a notion of “fusion system” that is somehow more general than that of “finite

group.”

Puig provided the necessary insight and abstraction to codify this generalization.9

This section introduces his idea of abstract fusion systems (or “Frobenius categories”

in the terminology of [Pui1]), though we shall use the language of Broto-Levi-Oliver.

We also review the abstraction of the notion of centric linking system, due to [BLO2].

2.3.1 Fusion systems

Definition 2.3.1. Let S be a p-group. An abstract fusion system on S is a category

F whose objects are all subgroups P ≤ S and whose morphisms are some collection of

9Cf. [Pui1] for a published version of his work, though an earlier unpublished manuscript was
very influential on the development of this subject.
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injective group maps: F(P,Q) ⊆ Inj(P,Q). We require that the following conditions

be satisfied:

• (S-conjugacy) The minimal fusion system FS is a subcategory of F .

• (Divisibility) Every morphism of F factors as an isomorphism of groups fol-

lowed by an inclusion.

Composition of morphisms is composition of group maps. ♦

This is a very simple definition. In fact, it is perhaps too simple to be useful: This

mimics the situation where S is a p-subgroup of some unnamed ambient group, but

not where S is a Sylow p-subgroup. There is a great deal of additional structure that

comes from such a Sylow inclusion; the question is how to codify these interesting data

without reference to an ambient group. This will lead to the addition of saturation

axioms that must be imposed on a fusion system.

Definition 2.3.2. We will need the following terms to state the saturation axioms:

• P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(Q)| for all Q ∼=F P .

• P ≤ S is fully centralized in F if |ZS(P )| ≥ |ZS(Q)| for all Q ∼=F P .

• For any ϕ ∈ IsoF(P,Q), let Nϕ ≤ NS(P ) denote the group

Nϕ =
{
n ∈ NS(P )

∣∣ϕ ◦ cn ◦ ϕ−1 ∈ AutS(Q)
}

=
{
n ∈ NS(P )

∣∣∃s ∈ S s.t. ∀p ∈ P, ϕ(np) = sϕ(p)
}

Nϕ will sometimes be called the extender of ϕ. ♦

Remark 2.3.3. Perhaps some motivation for these concepts is in order. Each of these

definitions comes from the idea that there are certain “global” phenomena that can

be captured purely through local, fusion-theoretic data of a group. For instance, if

there is an ambient Sylow G giving rise to the fusion system, then P ≤ S is fully

normalized in F if and only if NS(P ) ∈ Sylp(NG(P )), and similarly for the concept

of full centralization.
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The motivation for the extender Nϕ comes from Alperin’s Fusion Theorem 2.1.9.

If we wish the the morphisms of a fusion system be generated by inclusions and

automorphisms of subgroups, there must be some way of extending certain morphisms

between different subgroups within the fusion system. The extender is the maximal

subgroup of NS(P ) to which we could hope to extend ϕ ∈ F(P,Q), so the question

becomes when we can achieve this maximal extension. We shall examine this point

in much greater detail and generality in Chapter 4. ♦

Definition 2.3.4 (Saturation axioms for abstract fusion systems). The fusion

system F is saturated if

• Whenever P is fully F -normalized, P is fully F -centralized.

• Whenever P is fully F -normalized, AutS(P ) ∈ Sylp (F(P )).

• If Q is fully F -centralized and ϕ ∈ IsoF(P,Q), then there is some morphism

ϕ̃ ∈ F (Nϕ, S) that extends ϕ: ϕ̃|P = ϕ.

The first two conditions will be referred to as the Sylow Axioms and the third the

Extension Axiom. ♦

We next define morphisms of (saturated) fusion systems, so that they may form

a category:

Definition 2.3.5. For fusion systems (S,F) and (S ′,F ′), a group map α : S → S ′

is fusion-preserving if there exists a functor Fα : F → F ′ such that Fα(P ) = αP for

all P ≤ S and the following diagram of groups commutes for all ϕ ∈ F(P,Q):

P
α //

ϕ

��

αP

Fα(ϕ)
��

Q α
// αQ

♦
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Remark 2.3.6. Note that there can be at most one functor Fα associated to α. In the

case that α is injective, the formula Fα(ϕ) = αϕα−1 gives the unique possible choice

for Fα. ♦

The functor Fα is unique if it exists, so saying that α is fusion-preserving is a

condition on the group map and not extra data.

Definition 2.3.7. A morphism of fusion systems (S,F) → (S ′,F ′) is a fusion-

preserving morphism α : S → S ′. The set of all such morphisms is denoted Hom(F ,F ′),

and in the case that (S,F) = (S ′,F ′) the resulting group of fusion preserving auto-

morphisms of S is written Aut(F). ♦

Remark 2.3.8. Implicit in Definition 2.3.7 is the easy result that if α ∈ Hom(F ,F ′),

α′ ∈ Hom(F ′,F ′′), and Fα, Fα′ are the corresponding functors, then Fα′α = Fα′Fα is

the functor that shows that α′α ∈ Hom(F ,F ′′). ♦

There is an easy way to check which automorphisms of the group S actually lie

in Aut(F). To express this, let us introduce a piece of terminology that is important

in its own right:

Definition 2.3.9. Given a p-group S, subgroups P,Q ≤ R ≤ S, and an injective

map γ : R→ S, the translation along γ from P to Q is the map

tγ
∣∣Q
P

: Hom(P,Q) // Hom(γP, γQ)

η � // γηγ−1

In cases where there will be no confusion, we simply write tγ for tγ
∣∣Q
P

. ♦

Proposition 2.3.10. Given a fusion system F on the p-group S and α ∈ Aut(S),

α ∈ Aut(F) if and only if tα (F(P,Q)) = F(αP, αQ) for all P,Q ≤ S.

Proof. We can write out the content of Remark 2.3.6 more explicitly as follows: If

there is a functor Fα making (α, Fα) a morphism of F , for all ϕ ∈ F(P,Q) we must

have Fα(ϕ) = αϕα−1 = tα(ϕ) ∈ F(αP, αQ). Thus if α extends to a functor of F ,
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it follows that tα(F(P,Q)) ⊆ F(αP, αQ) for all P,Q ≤ S. The fact that α is an

automorphism of S forces equality.

Conversely, if we have tα(F(P,Q)) = F(αP, αQ), the assignment ϕ 7→ tαϕ can

easily be seen to give the action of the desired Fα on morphisms.

Example 2.3.11. F(S) ⊆ Aut(F). In other words, if ϕ ∈ Aut(S) is a morphism

in F , ϕ is actually fusion preserving. This follows immediately from Proposition

2.3.10 together with the Divisibility Axiom of fusion systems, which implies that the

restriction of a morphism in F to a subgroup also lies in F .

Moreover, it is easy to see that F(S) E Aut(F): If α ∈ Aut(F) and ϕ ∈ F(S),

αϕα−1 = tα(ϕ) ∈ F(S) again by Proposition 2.3.10. ♦

Definition 2.3.12. The inner automorphism group of F is Inn(F) := F(S). The

outer automorphism group of F is the quotient Out(F) := Aut(F)/ Inn(F). ♦

Let us expand our terminology slightly so as to relate fusion systems to actual

finite groups.

Definition 2.3.13. If (S,F) is a fusion system and G is a finite group, a morphism

α : S → G is fusion-preserving if for some (and hence any) T ∈ Sylp(G) containing

α(S), we have that α : (S,F)→ (T,FT (G)) is a morphism of fusion systems. ♦

Lemma 2.3.14. Given a fusion system (S,F), a finite group G, and group map

α : S → G, α is fusion-preserving if and only if for every ϕ ∈ F(P,Q) there is some

ψ ∈ HomG(αP, αQ) such that αϕ = ψα : P → αQ.

Proof. If α is fusion-preserving, the implication is clear. Conversely, note that ψ is

necessarily unique if it exists, and the composition of two such morphisms arising

from G also arises from G. Therefore the assignment ϕ 7→ ψ gives a well-defined

functor F → FT (G), as desired.

Notation 2.3.15. Except in cases where there may be confusion, we shall simply

write F for the pair (S,F). Indeed, we have already done so in this section. ♦
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2.3.2 Transporter systems and linking systems

Definition 2.3.16 ([OV]). Let F be an abstract fusion system on S. An abstract

transporter system associated to F is a category T whose objects are some set of

subgroups P ≤ S that is closed under F -conjugacy and overgroups, together with

functors

T Ob(T )
S (S)

δ // T π // F

For any s ∈ NS(P,Q), set ŝ = δP,Q(s) ∈ T (P,Q). Similarly, for any g ∈ T (P,Q), set

cg = πP,Q(g) ∈ F(P,Q).

The following axioms apply:

(A1) On objects, δ is the identity and π is the inclusion.

(A2) For any P ∈ Ob(T ), define

E(P ) = ker [πP,P : T (P )→ F(P )]

Then for any P,Q ∈ Ob(T ), the group E(P ) acts right-freely and E(Q) acts

left-freely on T (P,Q). Moreover, the map πP,Q : T (P,Q) → F(P,Q) is the

orbit map of the E(P )-action.

(B) The functor δ is injective on morphisms, and for all s ∈ NS(P,Q) we have

cbs = cs ∈ F(P,Q).

(C) For all g ∈ T (P,Q) and all p ∈ P , the following diagram commutes in T :

P
g //

bp
��

Q

ĉg(p)
��

Q g
// Q

Saturation axioms:

(I) δS,S(S) ∈ Sylp(T (S)).
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(II) For all g ∈ IsoT (P,Q) and normal supergroups P̃ D P and Q̃ D Q such that

g ◦ δP,P
(
P̃
)
◦ g−1 ≤ δQ,Q

(
Q̃
)

, there is a morphism g̃ ∈ T (P̃ , Q̃) that satisfies

g̃ ◦ 1̂
eP
P = 1̂

eQ
Q ◦ g ∈ T (P, Q̃). ♦

Notation 2.3.17. As was noted in the definition of transporter systems, for any

s ∈ NS(P,Q) we set

ŝ
∣∣Q
P

= δP,Q(s) ∈ T (P,Q)

and if the source and target are obvious from the context we shall simply write ŝ.

Similarly, for any R ≤ NS(P ) we denote by R̂
∣∣P
P
≤ T (P ) the group δP,P (R), again

writing simply R̂ if there is no chance of confusion. ♦

Remark 2.3.18. E(P ) always contains δP,P (Z(P )) by Axiom (B). As δ is injective, we

identify Z(P ) with its image in T (P ). ♦

We shall return to this point later, but for now say that P ≤ S is F-centric if

ZS(Q) = Z(Q) for all Q that are F -conjugate to P . The collection of F -centric

subgroups is of central importance to the study of the homotopy theory of fusion

system:

Definition 2.3.19 (Linking systems as minimal transporter systems). Let F be a

saturated fusion system on S. A transporter system L associated to F is an abstract

centric linking system if:

• Ob(L) is the collection of F -centric subgroups of S.

• For every P ∈ Ob(L), E(P ) = Z(P ).

Thus an abstract linking system can be thought of as a minimal transporter system

on the F -centric subgroups of S. ♦

The following definition of centric linking system is (basically) the one given in

[BLO2]. It is less compact than Definition 2.3.19, but it will be easier to work with

in the sequel.
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Definition 2.3.20. Let F be a (not necessarily saturated) fusion system on the finite

p-group S. An abstract centric linking system is a category L whose objects are the

F -centric subgroups P ≤ S, together with two functors

T cS (S) δ // L π // F c

that satisfy:

(A) On objects δ is the identity and π is the inclusion. δ is injective on morphisms

and π is surjective on morphisms.

(B) Identifying Z(P ) with a subgroup of L(P ) via δ, the center Z(P ) acts right-

freely on L(P,Q), and the map L(P,Q) → F(P,Q) is the orbit map of this

action.

(C) For all g ∈ L(P,Q) and p ∈ P , the following diagram commutes in L:

P
g //

bp
��

Q

ĉg(p)
��

Q g
// Q ♦

Remark 2.3.21. There are two obvious differences between Definitions 2.3.19 and

2.3.20. The first and more trivial is that in Definition 2.3.20 we do not assume that

Z(Q) acts left-freely on L(P,Q), but this turns out to follow from the other axioms

and the result that every morphism in L is mono in the categorical sense.

The deeper difference lies in two extra Saturation Axioms of Definition 2.3.19 that

come from the original definition of transporter system, and which have no analogue

in 2.3.20. In [OV] it is shown that these definitions are equivalent so long as F is

centric-saturated (i.e., if F obeys the saturation axioms on the centric subgroups,

which by [BCG+] implies that it is in fact globally saturated).

In effect, Axioms (I) and (II) of Definition 2.3.16 deserve the name “Saturation

Axioms,” as they imply the saturation of the underlying fusion system whenever they

are in effect. ♦
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Chapter 3

F-stable S-sets

What does it mean for a fusion system to act on a finite set? In this chapter we take

motivation from the ambient group case and consider the case of a G-set X restricted

to a Sylow p-subgroup S. In this view, an action of FG = FS(G) on X is an S-set

that satisfies some additional, easily checked conditions. We describe how this notion

can be abstracted to an arbitrary saturated fusion system F , and record some of the

properties of these F -stable S-sets.

3.1 The ambient case

Let G be a finite group, S ∈ Sylp(G), and X a finite left G-set.

Notation 3.1.1. We write GX whenever we wish to emphasize that X is a (left)

G-set. If ϕ : H → G is an arbitrary map of groups, denote by ϕ
HX the H set whose

action is given by twisting along ϕ, so that h ·x := ϕ(h) ·x. In particular, for H ≤ G,

we denote by HX :=
ιGH
H X the H-set X with action given by restriction from G. ♦

Let us examine what data of the G-action on X is seen by the fusion system

FS. The most obvious piece of structure is the restricted S-set SX itself. It is clear,

however, that not every S-set can be realized as the restriction of a G-set, and there

are some obvious fusion-theoretic conditions which our SX must satisfy:

Notation 3.1.2. For any finite set X, let ΣX be the group of permutations of X. A
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G-set structure is the same as a group map ρ : G → ΣX . Let ρS : S → ΣX be the

restriction of ρ that gives the S-set structure of SX. For any H ≤ G, let XH denote

the H-fixed points of X, and |XH | the order of this set. ♦

Lemma 3.1.3. In the above situation:

(1) ρS : S → ΣX is FG-fusion-preserving (cf. Definition 2.3.13).

(2) For all g ∈ G, s ∈ S, and x ∈ X, we have g · (s · x) = cg(s) · (g · x).

(3) For all H ≤ G and g ∈ G, we have HX ' cg
HX as H-sets.

(4) For any P ≤ S and g ∈ G, we have |XP | = |XgP |.

Proof. For (1), if cg ∈ FG(P,Q) a direct calculation shows that defining Fρ(ϕ) = cρ(g)

gives the functor Fρ making ρ into a fusion-preserving map. Assertion (2) is obvious.

The isomorphism of (3) is given by ρ(g) : X → X. Lastly, (4) is a basic fact of G-sets

that states that if H,K ≤ G are G-conjugate, the orders of the fixed points of H and

K are equal.

3.2 Definition of F-stability

Let S be finite p-group, F a (saturated) fusion system on S, and X a finite S-set via

the action map ρ : S → ΣX .

Notation 3.2.1. For an element s ∈ S, let `s = ρ(s) ∈ ΣX be the permutation given

by left translation by s. For P ≤ S, let P ≤ ΣX be the image of P under the action

map ρ. ♦

We wish to impose conditions on X that will mimic its being the restriction of a

G-set, for G some imaginary ambient group that induces the fusion system F .

Definition 3.2.2. The S-set X is F-stable if ρ : F → ΣX is fusion-preserving. ♦

Thus we have simply take then first result from Lemma 3.1.3 as the defining

property we wish to impose. The following result shows that we could just as easily

have taken any of the other points from that Lemma as our definition:
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Proposition 3.2.3. For any S-set X, the following are equivalent:

(1) X is F-stable.

(2) For all ϕ ∈ F(P,Q), there is some σ ∈ ΣX such that the following diagram

commutes:

P
ρ //

ϕ

��

P

cσ
��

Q ρ
// Q

(3) For all ϕ ∈ F(P,Q), there is an abstract isomorphism of P -sets PX ∼= ϕ
PX.

(4) For all ϕ ∈ F(P,Q), the orders of the fixed point sets are equal:
∣∣XP

∣∣ =
∣∣XϕP

∣∣.
Proof. (1)⇔ (2): This is just an application of Proposition 2.3.14.

(2) ⇔ (3): We can restate Assertion (3) to say that there exists a σ ∈ ΣX that

intertwines ϕ. This means that for all p ∈ P and x ∈ X, we have σ(p·x) = ϕ(p)·σ(x).

Using our notational convention of setting ρ(p) = `p, this easily becomes the function

equation ρ ◦ ϕ = cσ ◦ ρ, and the equivalence is proved.

(3) ⇒ (4): Given ϕ ∈ F(P,Q) and σ intertwining ϕ, by definition σ gives an

isomorphism of P -sets PX ∼= ϕ
PX. In particular,

∣∣
PX

P
∣∣ =

∣∣ϕ
PX

P
∣∣.

Now, suppose that ϕ ∈ F(P,Q) is an isomorphism; we claim that ϕ
PX

P = QX
Q.

If x ∈ ϕ
PX

P , then for all p ∈ P , x = ϕ(p) · x, and as p ranges over P , ϕ(p) ranges

over Q, so x ∈ QX
Q. Performing the same calculation with ϕ−1 yields the reverse

inclusion.

Finally, the trivial observation that
∣∣XP

∣∣ =
∣∣
PX

P
∣∣ and

∣∣XQ
∣∣ =

∣∣
QX

Q
∣∣ combines

with the previous two paragraphs to give the desired implication.

(4)⇒ (3): The statements

• PX ∼= ϕ
PX for all ϕ ∈ F(P,Q)

•
∣∣
PX

R
∣∣ =

∣∣ϕ
PX

R
∣∣ for all R ≤ P

are equivalent by the standard theory of G-sets, see for example [tD]. By assumption

we have
∣∣XR

∣∣ =
∣∣XϕR

∣∣, and the same argument in the second paragraph of (3)⇒ (4)

shows that RX
ϕR = ϕ

RX
R. The result follows.
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3.3 Basic results

In Section 3.2 we defined F -stability, one of the fundamental concepts of this doc-

ument. It was a very simple definition—too simple, it turns out, for our ultimate

purpose. In this section we explore a few basic properties of this notion.

Example 3.3.1. The trivial S-set ∗ and the free S-set S are F -stable for any fusion

system F on S. ♦

Proposition 3.3.2. For F-stable S-sets X and Y , the disjoint union X q Y and

cartesian product X × Y are F-stable.

Proof. By (4) of Proposition 3.2.3, it suffices to check that the orders of the fixed-point

sets of P and Q are equal for P ∼=F Q. The fact that
∣∣(X q Y )P

∣∣ =
∣∣XP

∣∣+ ∣∣Y P
∣∣ and∣∣(X × Y )P

∣∣ =
∣∣XP

∣∣ ∣∣Y P
∣∣, together with the assumptions that X and Y are F -stable,

then finish the proof.

Definition 3.3.3. The F -stable S-set X is F-simple (or just simple) if it contains

no nontrivial proper F -stable S-sets. ♦

The following proposition shows that the notions of irreducibility and indecom-

posibility are identical for F -stable S-sets, which justifies both conditions’ being

named “simplicity.”

Proposition 3.3.4. The F-stable S-set X is simple if and only if X cannot be written

as Y q Z for nonempty F-stable S-sets Y and Z.

Proof. This follows from the more general result that if X and Y ⊆ X are F -stable,

then X\Y is as well. This follows immediately from point (4) of Proposition 3.2.3.

The following definition will be of great importance in later chapters:

Definition 3.3.5. The core of X is the largest subgroup K ≤ S that acts trivially

on X. In other words, K is the kernel of the action map ρ : S → ΣX . ♦

Definition 3.3.6. A subgroup P ≤ S is strongly closed in F if for all p ∈ P and

ϕ ∈ F , we have ϕ(p) ≤ P so long as this makes sense. ♦
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Proposition 3.3.7. The core of an F-stable S-set X is strongly closed in F .

Proof. As X is F -stable, |XP | = |XQ| for any F -conjugate subgroups P and Q. Let

k ∈ K be an element that acts trivially on X, so that |X〈k〉| = |X|. If ϕ ∈ F is any

morphism for which ϕ(k) is defined, we must then have |X〈ϕ(k)〉| = |X|, or ϕ(k) ∈ K,

which is the condition for K being strongly F -closed.

Point (4) of Proposition 3.2.3 means that it is is not difficult to find examples

of F -stable S-sets; we will use this repeatedly in Section 3.4. Before examining the

abstract case, note that we already have a large supply of examples that arise from

actual finite groups:

Lemma 3.3.8. If F = FG for some finite group G and X is a finite G-set, then SX

is F-stable.1

Proof. Compare Lemma 3.1.3 with the definition of F -stability or Proposition 3.2.3.

Notation 3.3.9. For P ≤ S, let [P ] denote the S-set S/P , up to isomorphism. Thus

[P ] ∼= [P ′] if and only if P ∼=S P
′. ♦

Example 3.3.10. Consider again the case of D4 ∈ Syl2(Σ4) introduced in Exam-

ple 2.1.7. We reproduce Figure 2-2 here as Figure 3-1 to show the 2-fusion relations of

Σ4. Recall that P1, P3
∼= Z/2×Z/2 and P2

∼= Z/4, while each of the Qi is isomorphic

to Z/2.

D4

P1

||||||||
P2 P3

BBBBBBBB

Q1

||||||||
/o/o/o Q2 Q3

BBBBBBBB

||||||||

Σ4

/o/o/o Q4
/o/o/o Q5

BBBBBBBB

Figure 3-1: Fusion of Σ4 at 2

1Note that we do not even need to require that S ∈ Sylp(G) here.
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We have explicitly computed the restrictions of transitive Σ4-sets to D4 and listed

the results in Figure 3-2. Further calculations show that in fact every FΣ4-stable

D4-set is a linear combination of the restrictions in this table, leading us to to the

line of inquiry of Section 3.4.

Σ4 − set [1] [Q1] [Q3] [P1] [P2]
Restriction 3[1] [Q1] + [1] [Q3] + 2[Q4] [P1] + [Q4] [P2] + [Q4]

Σ4 − set [P3] [S] [Z/3] [Σ3] [A4]
Restriction 3[P3] [S] + [P3] [1] [Q1] [P3]

Figure 3-2: Restrictions of transitive Σ4-sets to D4

♦

3.4 The Burnside ring of a fusion system

Definition 3.4.1. Recall that the Burnside ring of the finite group S, denoted A(S)

is the group completion of the additive monoid of finite S-sets. The cartesian product

of S-sets gives A(S) the structure of a unital ring.

Proposition 3.3.2 states that that the subset of A(S) consisting of isomorphism

classes of F -stable S-sets is closed under addition and multiplication, while the proof

of 3.3.4 shows that it is closed under subtraction. Example 3.3.1 shows that both the

zero element (the class of the empty S-set) and the multiplicative identity (the class

of the one-point S-set) of A(S) are F -stable, so the F -stable classes form a unital

subring of A(S). Denote this subring by A(F), the Burnside ring of F . ♦

Notation 3.4.2. By Lemma 3.3.8, if F = FG then the subring of A(S) consisting of

the restrictions of classes of G-sets is actually a subring of A(F). Denote this subring

resGS A(G), or just resA(G). ♦

Example 3.4.3. As noted at the end of Example 3.3.10, it is easy to calculate that an

additive basis for resA(Σ4) is given by

{[1], [Q1], [Q3] + 2[Q4], [P1] + [Q4], [P2] + [Q4], [P3], [S]}
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By direct calculation we see that in fact resA(Σ4) = A(FΣ4). This is not true in

general, but could be a question to examine in the future. ♦

3.4.1 Example: The case of an abelian p-group

The goal of this section is to understand the Burnside ring A(F) in the special case

that the underlying p-group S is abelian. We derive some results about F -stable S-

sets for abelian S and note that these will in fact hold more generally, as will become

apparent from the proofs. The main idea is that we can study F -stable S-sets by

understanding their fixed points and using Point (4) of Proposition 3.2.3.

The first few results do not require any conditions on S. Let S be a general p-

group until otherwise noted, F a saturated fusion system on S, and X an F -stable

S-set.

If we wish to understand |XQ| for Q ≤ S, it will be helpful to first decompose X

as a disjoint union of S-orbits, so that we can examine
∣∣(S/P )Q

∣∣ one at a time.

Lemma 3.4.4. There is a bijection of finite sets [P ]Q ∼= P\NG(Q,P ).

Proof. Recall that NS(Q,P ), the transporter from Q to P in S, is the set of s ∈ S

such that sQ ≤ P . Since P normalizes itself, as does Q, we have a free left action

of P and a free right action of Q on NS(Q,P ). The claim is that there is a bijective

correspondence between Q-fixed points [P ]Q and P -orbits P\NS(Q,P ).

Suppose that sP ∈ [P ]Q, so that for all q ∈ Q we have qsP = sP , or s−1qs ∈ P .

Thus s−1 ∈ NS(Q,P ), and conversely if s ∈ NS(Q,P ) the same calculation shows

that s−1P ∈ [P ]Q. We have just seen the set-map NS(Q,P )→ [P ]Q given by sending

s 7→ s−1P is surjective. It is clear that two elements of NS(Q,P ) have the same image

if and only if one is a left P -translate of the other, so the result is proved.2

Remark 3.4.5. Note in particular that Lemma 3.4.4 implies that [P ]Q 6= ∅ if and only

if Q ≤S P . ♦
2An equivalent proof would be to note that there is a natural bijection [P ]Q with the set

HomG([Q], [P ]) of G-maps of orbits. A calculation similar to that given here then shows that
we can identify HomG([Q], [P ]) with P\NG(Q,P ).
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At this point we specialize to the case that S is abelian.

Observation 3.4.6. Note that in this case, transporter sets are particularly simple, as

NS(Q,P ) = S if Q ≤ P and is empty otherwise.

While this observation certainly makes life easier for us in the abelian case, it

turns out to not be nearly as important a fact as the following:

Proposition 3.4.7. If F is a saturated fusion system on the abelian group S, then

F is generated by the inclusions of subgroups and F(S).

Proof. This is an easy consequence of the extension axiom of saturation: For any

ϕ ∈ F(P,Q) it follows immediately from the definition that Nϕ = S, so ϕ can be

written as a restriction of an F -automorphism of S.

Our list of examples of F -stable S-sets currently consists of just the trivial and

free S-sets. We can now add several more examples:

Definition 3.4.8. A subgroup P ≤ S is weakly closed in F if whenever P ≤ R and

ϕ ∈ F(R, S) we have ϕP = P . ♦

Note that being strongly closed (cf. 3.3.6) implies that P is weakly closed.

Proposition 3.4.9. If P ≤ S is weakly closed, then [P ] is F-stable.

Proof. By (4) of Proposition 3.2.3, it suffices to show that
∣∣[P ]Q

∣∣ =
∣∣[P ]ϕQ

∣∣ for any

Q ≤ S and ϕ ∈ F(Q,S). By Lemma 3.4.4 and Observation 3.4.6:

∣∣[P ]Q
∣∣ =

 [P : S] if Q ≤ P

0 else
and

∣∣[P ]ϕQ
∣∣ =

 [P : S] if ϕQ ≤ P

0 else

By Proposition 3.4.7, we may assume without loss of generality that ϕ is defined on

all of S, and in particular is defined on P . Thus ϕQ ≤ P if and only if Q ≤ ϕ−1P = P

because P is weakly closed in F . The result follows.

To state the main result of this section, we introduce the following terminology:

48



Notation 3.4.10. For P ≤ S, let P1 = P, P2, . . . , Pn denote the distinct F -conjugates

of P . We denote by [P ]F the disjoint union of the S-orbits
∐n

i=1[Pi]. ♦

Then, with slight modifications, Proposition 3.4.9 applies more generally:

Proposition 3.4.11. For any subgroup P ≤ S, the S-set [P ]F is F-stable.

Proof. Just as in the proof of Proposition 3.4.9, we must show that for any Q ≤ S

and ϕ ∈ F(S) (here using again that all morphisms of F are restrictions of elements

of F(S)) we have
∣∣∣[P ]QF

∣∣∣ =
∣∣∣[P ]ϕQF

∣∣∣. Decomposing [P ]F into S-orbits, this becomes

n∑
i=1

δQ≤Pi [P : S]
?
=

n∑
i=1

δϕQ≤Pi [P : S]

where δQ≤Pi is 1 for Q ≤ Pi and 0 otherwise. But ϕQ ≤ Pi if and only if Q ≤ ϕ−1Pi,

and ϕ−1 permutes the Pi, so the right hand side of the equation is simply a reordering

of the left. Thus [P ]F is F -stable.

We are almost ready to prove that the [P ]F , as P ranges over the F -conjugacy

classes of subgroups of S, forms an additive basis for A(F). First, we record a basic

fact that does not depend on the group S’s being abelian:

Notation 3.4.12. Recall that for any x ∈ X, the S-stablizer of x, denoted Sx, is the

maximal subgroup of S that fixed x. ♦

Lemma 3.4.13. For any point x ∈ X, subgroup P ≤ Sx, and morphism ϕ ∈ F(P, S),

there is some x′ ∈ X such that ϕP ≤ Sx′.

Proof. If x ∈ XP we have |XP | ≥ 1, so Proposition 3.2.3 implies |XϕP | ≥ 1.

Proposition 3.4.14. If X is an arbitrary F-stable S-set there exist (unique up to

F-conjugacy) subgroups R1, R2, . . . , Rm ≤ S such that X =
∐m

i=1[Ri]F .

Proof. The argument goes by induction on the order of X, being obvious in the case

that X is empty. For a general F -stable S-set, pick x ∈ X such that the order of the
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stabilizer of x is maximal: |Sx| ≥ |Sx′ | for all x′ ∈ X. Set R = Sx; the claim is then

that [R]F ⊆ X.

By 3.4.13, for each F -conjugate of R, say Ri = ϕiR, there is some xi such that

Ri ≤ Sxi . By assumption that |R| ≥ |Sxi |, we must actually have equality. Thus the

sub S-set spanned by the {xi} is isomorphic to [R]F . The proof of 3.3.4 shows that

Y = X\[R]F is again F -stable, so we may apply the inductive hypothesis.

Corollary 3.4.15. As a Z-module, the rank of A(F) is equal to the number of F-

conjugacy classes of subgroups of S.

Remark 3.4.16. As hinted above, we have actually proved more than we set out

to: The important part of the calculation of a basis for A(F) was not that the

underlying p-group S was abelian, but that F is generated by F(S). Indeed, whenever

F = NF(S) the proof of 3.4.14 carries through to give the same description of the

basis of A(F), with the sole modification that we must now define [P ]F to sum over

representatives of the S-conjugacy classes of the F -conjugacy class of P .3 ♦

3Cf. [Lin] for further details on normalizer subsystems. We shall not make use of the concept
of normalizer subsystems or normal subgroups of fusion systems in this document, so we omit this
part of the background.
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Chapter 4

Fusion action systems

The notion of F -stability of S-sets is, it turns out, too flabby for us to work with

unstably. The problem can be seen most clearly when asking the simple question:

What are the morphisms of F -stable S-sets? As F -stability is just a condition and

not additional structure, the most reasonable answer seems to be that morphisms

of F -stable S-sets are morphisms of the underlying S-sets. This cannot be “right,”

however, as considering the case that S ∈ Sylp(G) and X a G-set will quickly show:

An S-equivariant permutation of X need not be G-equivariant.

The problem stems from Part (3) of Proposition 3.2.3: For any F -stable S-set X

and ϕ ∈ F(P,Q), the P -sets PX and ϕ
PX are abstractly isomorphic, but we do not

identify by which isomorphism. These choices of isomorphisms form an extra level of

structure, of which we will make great use in the sequel. We call the totality of this

structure a fusion action system.

4.1 The ambient case

Let us look again and more closely at the p-local data of a finite group acting on a

finite set. Let G be a finite group, X a G-set, and S ∈ Sylp(G). Recall the shorthand

FG = FS(G) and FS = FS(S).

Definition 4.1.1. The fusion action system on S relative to the G-action on X is the

category XG := XS(G) whose objects are the subgroups P ≤ S and whose morphisms
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are given by

XG(P,Q) =
{

(ϕ, σ)
∣∣∃g ∈ G s.t. ϕ = cg|P and σ = `g : PX ∼= ϕ

PX
}
.

Composition is defined coordinatewise. ♦

Example 4.1.2. The restriction of the G-action to S defines a fusion action system

XS. This is a minimal fusion action system, in that for all H containing S as a Sylow

subgroup and acting on X with a given restricted S-action, XS ⊆ XH . Compare to

to the situation FS ⊆ FH for all Sylow supergroups H of S. ♦

Remark 4.1.3. The fusion action system XG has an underlying fusion system on S,

obtained by simply ignoring the second coordinates of the morphisms of XG. This is of

course just FG. If we ignore the first coordinates of XG, we obtain another interesting

algebraic structure, which turns out to be, effectively, a transporter system on a

quotient of S.

The G-action on X is determined by a group map ρ : G→ ΣX . Denote by H the

image of a subgroup H ≤ G in ΣX . Then S ≤ Sylp(G), and we can talk about the

transporter system on S relative to this inclusion, TG := TS(G). Then the functor

XG → TG given on objects by P 7→ P and on morphisms by projection onto the

second factor is surjective, in the sense that any morphism of TG lies in the image of

a morphism of XG. ♦

Thus the fusion action system XG comes naturally equipped with natural surjec-

tive functors FG XG
πFoo πT // TG that relate XG to two reasonably well understood

algebraic objects. We shall investigate the structure of the fusion action system in

terms of this pair of a fusion system and a transporter system. In particular, we

shall see that the various automorphism groups of these categories can be described

in terms of certain subgroups of S and G.

It turns out that working with the functor πT : XG → TG is not most convenient

for our purposes. Instead, we will simply consider the projections onto the second

coordinate directly.
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Definition 4.1.4. For any pair of subgroups P,Q ≤ S, let πΣ : XG(P,Q) → ΣX be

the set-map projection onto the second coordinate. When P = Q, the set-map πΣ is

a homomorphism of groups. In this case let ΣG
X(P ) be the image of XG(P ) under πΣ

and ΣS
X the image of XS under πΣ.

In general, the notation will not record the source P or target Q. ♦

To emphasize the connection with fusion systems, we introduce the following

notation:

Notation 4.1.5. We will denote by AutG(P ;X) the group XG(P ). This group is a

simultaneous generalization of AutG(P ) = FG(P ) and of the group AutG(X) of G-set

automorphisms of X. Similarly define AutS(P ;X). ♦

There are several groups of automorphisms that arise from inspection of the cat-

egory XG, two of which are AutG(P ;X) and AutS(P ;X). We need some notation to

introduce the others.

Notation 4.1.6. Let K̂ be the core, or kernel, of the G action on X. We define the

X-normalizer and X-centralizer in G of a subgroup H ≤ G to be

NG(H;X) := NG(H) ∩ K̂ and ZG(H;X) := ZG(H) ∩ K̂

Similarly, let K be the core of the S-action on SX, so K = K̂ ∩S. The X-normalizer

and X-centralizer in S of P ≤ S are then

NS(P ;X) := NS(P ) ∩K and ZS(P ;X) := ZS(P ) ∩K

Note that NG(H;X) is just another name for N bK(H). We use this notation to

emphasize the idea that G is acting simultaneously on its subgroups (by conjugation)

and on X (by left multiplication). ♦

Definition 4.1.7. For any P ≤ S, we have the inclusions of the groups ZG(P ;X),

NG(P ;X), ZG(P ), and NG(P ) as depicted in Figure 4-1. All of these inclusions are
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normal, so we name to the respective quotients in that Figure as well. The term

G-automizers of P will refer to any of these quotient groups.

NG(P )

XG(P )

FG(P )
zzzzzzzz

zzzzzzzz

ΣG
X(P )

SSSS

SSS

NG(P ;X)

FG(P )0

wwwwwwww

wwwwwwww
ZG(P )

ΣG
X(P )0

RR

RR

ZG(P ;X)

Figure 4-1: Naming the G-automizer groups

We can expand on the definitions of these G-automizers as follows:

XG(P ) = NG(P )/ZG(P ;X) = AutG(P ;X)

FG(P ) = NG(P )/ZG(P ) =
{
ϕ ∈ Aut(P )

∣∣(ϕ, σ) ∈ XG(P )
}

ΣG
X(P ) = NG(P )/NG(P ;X) =

{
σ ∈ ΣX

∣∣(ϕ, σ) ∈ XG(P )
}

FG(P )0 = NG(P ;X)/ZG(P ;X) =
{
ϕ ∈ Aut(P )

∣∣(ϕ, idX) ∈ XG(P )
}

ΣG
X(P )0 = ZG(P )/ZG(P ;X) =

{
σ ∈ ΣX

∣∣(idP , σ) ∈ XG(P )
}

We also have the short exact sequences

1 // ΣG
X(P )0

// XG(P ) // FG(P ) // 1

1 // FG(P )0
// XG(P ) // ΣG

X(P ) // 1

Clearly ΣG
X(P )0 can be identified with a subgroup of AutP (X) and FG(P )0 with a

subgroup of FG(P ). If ϕ ∈ FG(P )0, the identity map defines an isomorphism of

P -sets idX : PX ∼= ϕ
PX, or `p = `ϕ(p) for all p ∈ P . Thus ϕ(p) = p mod K̂, so we have

FG(P )0 ≤ ker
(
FG(P )→ FG(P )

)
.1 ♦

1Here, we are using the fact that if K is an F-strongly closed subgroup of S, there is a natural
fusion system on G, denoted FG, and a fusion-preserving functor FG → FG. As we shall not make
further use of this fact, we refer the reader to [Pui1, Lin] for more details.
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Relative to S we have the same relationships amongst the groups ZS(P ;X),

ZS(P ), NS(P ;X), and NS(P ). We also have the inclusions ZS(P ;X) ≤ ZG(P ;X),

etc. These data give rise to the rather more complicated diagram of Figure 4-2.

NG(P )

NG(P ;X)

ΣG
X(P )

NNNNNNNN

NNNNNNNN

ZG(P )

FG(P )
oooooooooooooooo

ooooooooooooooooooooo

ZG(P ;X)

ΣG
X(P )0MMMMMMMM

MMMMMMMM
FG(P )0

ooooooooooooooooooooo

oooooooooooooooo

XG(P )








































NS(P )

NS(P ;X)

ΣS
X(P )

NNNNNNNN

NNNNNNNN

ZS(P )

FS(P )
oooooooooooooooo

oo

ooooooooooooooooooo

ZS(P ;X)

ΣS
X(P )0MMMMMMMM

MMMMMMMM
FS(P )0

ooooooooooooooooooooo

oooooooooooooooo

XS(P )








































Figure 4-2: Comparing S-automizers to G-automizers

This diagram allows us to relate the “minimal” automizer groups—those that arise

from the simultaneous S-action on its subgroups and X—with those that arise from

G. For certain subgroups P ≤ S, there is a particularly nice relationship; to express

this, we will need the following terminology:
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Definition 4.1.8. Given the fusion action system XG and P ≤ S, we say that

• P is fully normalized relative to G if NS(P ) ∈ Sylp (NG(P )).

• P is fully centralized relative to G if ZS(P ) ∈ Sylp (ZG(P )).

• P is fully X-normalized relative to G if NS(P ;X) ∈ Sylp (NG(P ;X)).

• P is fully X-centralized relative to G if ZS(P ;X) ∈ Sylp (ZG(P ;X)).

The reference to G will be omitted if it is clear from the context. ♦

We can think of these definitions in the following manner: Instead of starting out

with a chosen Sylow subgroup S ≤ G and a p-subgroup P ≤ S, we want to investigate

the p-subgroup P on its own terms. For instance, to understand the p-part of NG(P )

we must pick a “right” Sylow of G: Such a Sylow must contain not just P , but also

a Sylow subgroup of NG(P ). Saying that P is fully normalized means that we have

made this choice correctly within the G-conjugacy class of P inside S. Moreover, for

a fixed Sylow S, it is always possible to do so, in the following sense:

Proposition 4.1.9. For P ≤ S, there is some g ∈ G such that gP ≤ S is fully

normalized relative to G, or fully centralized relative to G, or fully X-normalized

relative to G, or fully X-centralized relative to G.

Proof. Sylow’s theorems.

We now use this terminology to describe the relationships between the groups

XG(P ) and AutS(P ;X), etc.:

Lemma 4.1.10. Fix XG and P ≤ S.

(1) If P is fully normalized relative to G, then

• AutS(P ) ∈ Sylp (FG(P ))

• AutS(P ;X) ∈ Sylp (XG(P ))

• ΣS
X(P ) ∈ Sylp

(
ΣG

X(P )
)
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and furthermore P is fully centralized, X-normalized, and X-centralized relative

to G.

(2) If P is fully X-normalized relative to G, then FS(P )0 ∈ Sylp (FG(P )0) and P

is fully X-centralized relative to G.

(3) If P is fully centralized relative to G, then ΣS
X(P )0 ∈ Sylp

(
ΣG

X(P )0

)
and P is

fully X-centralized relative to G.

Proof. All of the proofs are basically the same, so we just prove that if P is fully

normalized then AutS(P ;X) ∈ Sylp (XG(P )) and P is fully X-centralized.

We have XG(P ) = NG(P )/ZG(P ;X) and AutS(P ;X) is the image in XG(P ) of

NS(P ), which is by assumption Sylow in NG(P ). The result then follows from the

general statement that the image of a Sylow is Sylow in the quotient.

To see that P is fully X-centralized, consider the digram

1 // ZG(P ;X) // NG(P ;X) // XG(P ) // 1

1 // ZS(P ;X) //
?�

OO

NS(P ;X) //
?�

Sylow

OO

AutS(P ;X) //
?�

Sylow

OO

1

where the unmarked inclusion is Sylow because the other two inclusions are.

Lemma 4.1.10 tells us certain properties of XS(G) that follow from a subgroup

P ≤ S having the property that the normalizer, X-normalizer, or centralizer of S is

Sylow in the respective group of G. It gives no information, however, about the case

when P is fully X-centralized relative to G, which turns out to be very important

for understanding extensions of morphisms in the fusion action system. Recall that

if g ∈ G is such that gP ≤ S, then g determines the morphism (cg, `g) ∈ XG(P, gP ).

Definition 4.1.11. For P ≤ S and g ∈ G such that gP ≤ S, define

N(cg ,`g) =
{
n ∈ NS(P )

∣∣∃s ∈ NS(gP ) s.t. (cgng−1 , `gng−1) = (cs, `s)
}
.

This is the extender of (cg, `g) in the fusion action system. ♦
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Remark 4.1.12. Consider the following easy observations:

• P · ZS(P ;X) ≤ N(cg ,`g) ≤ NS(P ).

• We can define an analogue of the notion of translation along morphisms, as in

Definition 2.3.9. Given g ∈ G and P ≤ S such that gP ≤ S, define

t(cg ,`g) : XG(P )→ XG(gP ) : (ϕ, σ) 7→ (cgϕc
−1
g , `gσ`

−1
g ).

We could then define N(cg ,`g) to be the subgroup of n ∈ NS(P ) such that

(cn, `n) ∈ t−1
(cg ,`g) (AutS(gP ;X))

or even more confusingly, the preimage in NS(P ) of the preimage in XG(P ) of

AutS(gP ;X).2

• The extender N(cn,`n) is the largest subgroup of NS(P ) to which we could hope

to extend (cg, `g). Here, extension of a morphism means that we would find a

g′ ∈ G such that g′N(cg ,`g) ≤ S, `g′ = `g, and cg′ = cg on P ,3 and in this case we

say that (cg′ , `g′) ∈ XG

(
N(cg ,`g), S

)
is an extension of (cg, `g) ∈ XG(P, S).

The reason why N(cg ,`g) is the domain of the largest possible extension is as

follows: Given such an extension defined by g′, pick n ∈ NS(P ). If g′n ≤ S,

then the fact that g′p = gp for all p ∈ P implies that g′n(g′)−1 ∈ NS(gP ). Thus

(cg′cnc
−1
g′ , `g′`n`

−1
g′ ) ∈ AutS(gP ;X), which is just to say that n ∈ N(cg ,`g).

• If g′ defines an extension of (cg, `g) as above, then in fact the extension (cg′ , `g′)

lives in XG

(
N(cg ,`g), NS(gP )

)
. ♦

The importance of P ≤ S having the property that ZS(P ;X) ∈ Sylp (ZG(P ;X))

is given by the following:

2If we followed this line of discussion further, and with greater detail, we would arrive at a notion
similar to Puig’s original definition of Frobenius categories in [Pui1].

3In other words, g′ZG(P ;X) = gZG(P ;X).
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Lemma 4.1.13. Let P ≤ S and g ∈ G be such that gP ≤ S is fully X-centralized in

G. Then there is a g′ ∈ G such that g′N(cg ,`g) ≤ S and (cg′ , `g′)
∣∣
P

= (cg, `g). In other

words, g′ defines an extension of (cg, `g) to a morphism in XG

(
N(cg ,`g), S

)
.

Proof. If gP is fully X-centralized, then

[NS(gP ) : NS(gP ) · ZG(gP ;X)] =
|NS(gP )| |ZG(gP ;X)| /|ZS(gP ;X)|

|NS(gP )|
= [ZS(gP ;X) : ZG(gP ;X)]

is prime to p, so NS(gP ) ∈ Sylp (NS(gP ) · ZG(gP ;X)). From the definition of the

extender we have gN(cg ,`g) is a p-subgroup of NS(gP ) · ZG(gP ;X), so we can choose

some z ∈ ZG(gP ;X) so that zgN(cg ,`g) ≤ NS(gP ). Then setting g′ = zg gives the

desired extension (cg′ , `g′).

4.2 Abstract fusion actions of F on X

In this section we describe an abstraction of the fusion action systems of Section 4.1

without reference to an ambient group: We reproduce Puig’s notion of abstract fusion

systems in the context of fusion action systems, but we still fix the underlying fusion

system F . Let us call the resulting fusion action system an abstract fusion action of

F on X.

Definition 4.2.1. For F a saturated fusion system on S and X an F -stable S-set,

let FXΣ be the category whose objects are the subgroups P ≤ S and whose Hom-sets

are given by

FXΣ (P,Q) = {(ϕ, σ)|ϕ ∈ F(P,Q), σ : PX ∼= ϕ
PX} .

There are natural functors TS(S) δ // FXΣ
πF // F , each of which is the identity on

objects. On morphisms, πF is the projection onto the first factor, and δ is defined by

δP,Q : NS(P,Q)→ FXΣ (P,Q) is the map sending s to (cs, `s). ♦

It is worth reemphasizing that the relationship between the coordinates of the

morphism (ϕ, σ) ∈ FXΣ (P,Q) that follows from the condition on σ:
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Definition 4.2.2. For ϕ ∈ Hom(P,Q) and σ ∈ ΣX , we say that the pair (ϕ, σ) is

intertwined if for all p ∈ P and x ∈ X, we have σ(p · x) = ϕ(p) · σ(x). ♦

We have already seen certain subcategories of FXΣ arise in the context of ambient

fusion action systems. In particular, for G acting on X with S ∈ Sylp(G), we have

XS ⊆ XG ⊆ FXΣ .

That XS is a subcategory of XG is really reflecting the fact that there is a natural

functor δ : TS(S)→ XG. That XG ⊆ FXΣ is just to say that FXΣ is the maximal world

of discourse for fusion action systems. Therefore, we are interested in identifying

those subcategories of FXΣ which appropriately mimic the structure of XG.

Definition 4.2.3. An abstract action of the fusion system F on the F -stable S-set X

is a category X such that XS ⊆ X ⊆ FXΣ . We also require that the Divisibility Axiom

hold: Every morphism of X factors as an isomorphism followed by an inclusion. ♦

In X, the question of whether a morphism (ϕ, σ) ∈ X(P,Q) is an isomorphism

is determined by whether ϕ ∈ F(P,Q) is. Also, by “inclusion” in X we mean the

morphism (ιQP , idX) ∈ X(P,Q), where ιQP : P ≤ Q is the inclusion of subgroups.

Remark 4.2.4. As defined, the abstract action X is associated to the fusion system

F , but this is not reflected in the notation. This foreshadows Section 4.3 and all that

follows, where we take the view that X determines F . ♦

As in the case of abstract fusion systems, this definition captures the structure of

a p-subgroup S of G acting on X, but does not reflect the more interesting situation

that S is Sylow in G. We must therefore introduce saturation axioms. The following

is a list of definitions that will be needed to state the saturation axioms; many of

these are obvious and some are repeated from before, but all are included here for

ease of reference:

Definition 4.2.5. Let F be a saturated fusion system, X an F -stable S-set, and

P ≤ S.

• P is fully normalized in F if |NS(P )| ≥ |NS(Q)| for all Q ∼=F P .

• P is fully centralized in F if |ZS(P )| ≥ |ZS(Q)| for all Q ∼=F P .
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• P is fully X-normalized in F if |NS(P ;X)| ≥ |NS(Q : X)| for all Q ∼=F P .

• P is fully X-centralized in F if |ZS(P ;X)| ≥ |ZS(Q : X)| for all Q ∼=F P . ♦

If F = FG for some finite group G, it is well known (cf. [BLO2], Proposition 1.3)

that P is fully normalized in F if and only if P is fully normalized with respect to

G, and similarly for both definitions of full centralization. The following Proposition

shows that the same is true for the two new terms we have introduced:

Proposition 4.2.6. If the saturated fusion system F on S is realized by G, P ≤ S

is fully X-normalized if and only if

NS(P ;X) ∈ Sylp(NG(P ;X))

Similarly, P is fully X-centralized if and only if

ZS(P ;X) ∈ Sylp(ZG(P ;X))

Proof. We prove the result for X-normalizers and note that the same argument works

for X-centralizers.

The “if” implication is clear: if NS(P ;X) = S ∩NG(P ;X) is Sylow in NG(P ;X),

then |NS(P ;X)| ≥ |NS(gP ;X)| for all g ∈ G such that gP ≤ S.

Suppose now that |NS(P ;X)| ≥ |NS(gP ;X)| for all g ∈ G such that gP ≤ S. Pick

T ∈ Sylp(NG(P ;X)), and g ∈ G such that T ·P ≤ gS. Then we have P g ≤ S, and the

fact that NgS(P ;X) ∈ Sylp(NG(P ;X)) implies that NS(P g;X) ∈ Sylp(NG(P g;X))

(this uses the fact that the core of the action is normal in G). The assumption that

P is fully X-normalized now implies that the orders of the X-normalizers in S of

P and gP = g−1
P are equal, which in turn forces NS(P ;X) ∈ Sylp(NG(P ;X)), as

desired.

The last ingredient we need to state the saturation axioms is some way of relating

X to some more easily understood objects. Just as the fusion action system XG came

equipped with a functor to FG, projection onto the first coordinate of the morphisms
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defines a surjective functor X → F . In the case of ordinary fusion action systems,

projection onto the second coordinate gave a surjection to a transporter system of a

certain finite group. Let us determine which transporter system we should map to,

without reference to an ambient G.

Definition 4.2.7. Let S denote the subgroup of ΣX generated by all permutations

that appear in the second coordinate of some morphism of X. ♦

Lemma 4.2.8. Projection onto the second coordinate identifies X(1) with S.

Proof. As X(1) is already a group, it will suffice to show that if (ϕ, σ) ∈ X(P,Q) then

(1, σ) ∈ X(1). As XS ⊆ X we have that the inclusion morphism (ιP1 , idX) ∈ X(1, P ),

and therefore we also have that the composite (ιQ1 , σ) = (ϕ, σ) ◦ (ιP1 , idX) lies in

X(1, Q). Then the divisibility axiom for fusion actions forces (id1, σ) ∈ X(1), and the

result is proved.

As XS ⊆ X, it follows that S, the group of permutations of X induced by some

element of S, is a p-subgroup of S. Let us ignore for moment the question of whether

this is a Sylow inclusion.

Notation 4.2.9. Let TS denote the transporter system on S relative to S. ♦

Recall that K denotes the core of the S-action on X.

Definition 4.2.10. Let X be an abstract action of F on X and pick P ≤ S.

• Let the functors F X
πFoo πT // TS be the projections onto the first and second

coordinates of the morphisms of X, respectively. On objects, πF is the identity

and πT is reduction mod K.

• Let πΣ denote any of the maps X(P,Q)→ ΣX obtained by projection onto the

second coordinate. As in the ambient case, if P = Q then πΣ is a group map.

• Let F(P )0 := ker[πT : X(P ) → TS(P )] denote the group of automorphisms of

P that are intertwined with idX in X(P ).
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• Let ΣX(P ) := ΣFX (P ; X) = πΣ (X(P )) denote the group of permutations of X

that appear in the second coordinate of some morphism of X(P ).

• Let ΣX(P )0 = ker [πF : X(P )→ F(P )] denote the set of all permutations of X

that are intertwined with idP in X(P ).

• For any isomorphism (ϕ, σ) ∈ X(P,Q), define the group N(ϕ,σ) ≤ NS(P ) to be

N(ϕ,σ) =
{
n ∈ NS(P )

∣∣(ϕcnϕ−1, σ`nσ
−1) ∈ AutS(P ;X)

}
.

In other words, for each n in the extender N(ϕ,σ), there is some s ∈ S such that

(ϕcnϕ
−1, σ`nσ

−1) = (cs, `s) ∈ X(Q).

Similarly define FS(P )0 ≤ F(P )0, ΣS
X(P ) ≤ ΣX(P ), and ΣS

X(P )0 ≤ ΣX(P )0 to be the

respective subgroups induced by elements of S. ♦

We are now ready to state the saturation axioms for an abstract action of F on

X.

Definition 4.2.11. The abstract action X is saturated if

1. For any P ≤ S, the following implications hold:

P fully normalized +3

��

P fully X-normalized

��
P fully centralized +3 P fully X-centralized

2. If P is fully normalized, then

• AutS(P ) ∈ Sylp (F(P ))

• AutS(P ;X) ∈ Sylp (X(P ))

• ΣS
X(P ) ∈ Sylp (ΣX(P ))

3. If P is fully X-normalized, then FS(P )0 ∈ Sylp (F(P )0).

4. If P is fully centralized, then ΣS
X(P )0 ∈ Sylp (ΣX(P )0).
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5. If Q is fully X-centralized and (ϕ, σ) ∈ X(P,Q) is an isomorphism, then there

is some (ϕ̃, σ) ∈ X
(
N(ϕ,σ), S

)
that extends (ϕ, σ), i.e., such that ϕ = ϕ̃

∣∣
P

.

We shall refer to Points 2-4 collectively as the Sylow Axioms and Point 5 as the

Extension Axiom for fusion actions. ♦

These axioms are highly redundant (e.g., the first assertion of Axiom 2 is actually

an axiom for the saturation of F); we include the entire list mainly to indicate the

sort of properties we expect abstract actions of F to have. In particular, Axiom 1 is

no requirement at all, as it follows from the assumptions that F is saturated and X

is F -stable (and hence its core K is strongly F -closed):

Proposition 4.2.12. If P ≤ S is fully normalized in F (resp. fully centralized),

then P is fully X-normalized (X-centralized). Moreover, every fully X-normalized

subgroup is also fully X-centralized.

Proof. All of these facts depend on the result that if P is fully normalized in F

and Q ∼=F P , there is a morphism ϕ ∈ F(NS(Q), NS(P )) (cf. [BLO2, Proposition

A.2(b)]).

Thus if is Q is fully X-normalized, the fact that K is strongly closed in F forces

ϕ(c) ∈ K whenever this makes sense, so ϕ(NS(Q;X)) ≤ NS(P ;X). Therefore the

X-normalizer of a fully X-normalized subgroup injects into that of a fully normalized

subgroup, and the first claim is proved.

The second claim follows from the facts that the image of the restriction of ϕ

to ZS(Q) must lie in ZS(P ) and that in a saturated fusion system fully normalized

implies fully centralized, so for purposes of computing orders of centralizers we may

as well consider P fully normalized. Intersection with K again yields the desired

result.

Finally, if Q is fully X-normalized and P is fully normalized (hence fully X-

centralized), the same argument shows that |ZS(Q;X)| = |ZS(P ;X)|.

We close this section with a brief discussion of the motivation for the saturation

axioms of Definition 4.2.11. It should be clear that we are mainly taking certain ap-

plications of Sylow’s theorems from the ambient fusion action system case, especially
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those recorded in Lemmas 4.1.10 and 4.1.13, and simply defining them to be axioms

when we do not have an actual group with which to work.

We can take this a step further. Figure 4-2 gave us a pictorial heuristic of how to

view the Sylow conditions of a fusion action system. Considering the case of normaliz-

ers: If a subgroup P ≤ S is “good”with regard to normalizers—or fully normalized—

then P is also “good” for centralizers, X-normalizers, and X-centralizers. Moreover,

for any of the pairs of S- and G-automizers of P , if the S-autmoizer is Sylow in the

G-autmoizer. The same is not true if P is only fully X-normalized, say, but it is true

for all groups and automizers that live “beneath” the X-normalizer in Figure 4-2,

and similarly if P is fully centralized.

For an abstract action of F , we cannot reproduce all of Figure 4-2, but we still

have access to the diagram of Figure 4-3.

We still have a notion of P ≤ S being “good” with regard to normalizers (etc.),

though now that means P is fully normalized in the fusion-theoretic sense. The

content of the Sylow Axioms is basically that if you’re “good” at some point on

Figure 4-3, all of the groups associated to P that lie beneath the good point have the

property that a Sylow subgroup come from S.

4.3 Abstract fusion action systems

Now let us take the abstraction of the previous section a step further and forget not

only the ambient group but also the fusion system on S itself. In other words, here

we give ourselves only the data of the p-group S and an S-set X, and from this we

examine categories that mimic XG where both G and F are allowed to vary.

Let us start by naming our universe of discourse:

Definition 4.3.1. Let U := U(S;X) be the category whose objects are all subgroups

P ≤ S and whose morphisms are given by

U(P,Q) =
{

(ϕ, σ)
∣∣ϕ ∈ Inj(P,Q), σ ∈ ΣX , and ϕ intertwines σ

}
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Figure 4-3: Comparing S-automorphisms to X-automorphisms

Composition is defined componentwise. Again, this means that (ϕ, σ) ∈ X(P,Q) is

an isomorphism if and only if the group map ϕ : P → Q is. ♦

By identifying U as the “universe of discourse,” we mean that this is the category

in which all of our abstract fusion action systems will live.

Definition 4.3.2. An abstract fusion action system of S acting on X is a category

X such that XS ⊆ X ⊆ U and that satisfies the Divisibility Axiom: Every morphism

of X factors as an isomorphism followed by an inclusion.

The underlying fusion system of X is the fusion system FX on S where

FX(P,Q) =
{
ϕ ∈ Inj(P,Q)

∣∣(ϕ, σ) ∈ X(P,Q)
}
.
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In other words, FX is the fusion system obtained by projecting the morphisms of X

onto the first coordinate. ♦

By referring to this underlying fusion system we are able to speak of P ≤ S

being fully normalized or fully centralized (by definition, in FX), as well as fully X-

normalized and X-centralized. The latter two are again formed by considering the

normalizers or centralizers of subgroups intersected with K, the core of the action of

S on X.

Lemma 4.3.3. The S-set X is FX-stable.

Proof. This follows from the Condition (2) of Proposition 3.2.3 and the definition of

FX.

Corollary 4.3.4. The core K is strongly closed in FX.

Proof. The proof of Proposition 3.3.7 carries over. This can also be seen directly by

noting that if k ∈ K and ϕ ∈ FX(〈k〉, S), then there is some (ϕ, σ) ∈ X(〈k〉, S). Then

ϕ and σ’s being intertwined implies that ϕ(k) · σ(x) = σ(k · x) = σ(x) for all x ∈ X,

and thus ϕ(k) ∈ K.

Of course, we need further axioms to restrict ourselves to the interesting cases.

Note that all the terms of Definition 4.2.10 still make sense in this context, so we may

talk about the group S = X(1) ≤ ΣX , the functors πF and πT , the maps πΣ, and the

extender of an isomorphism.

Definition 4.3.5. The fusion action system X is saturated if all the axioms of Defi-

nition 4.2.11 are satisfied. ♦

Now the reason for including redundant axioms in Definition 4.2.11 should be

more apparent:

Proposition 4.3.6. If the abstract fusion action system X is saturated, the underlying

fusion system FX is as well.
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Proof. All of the saturation conditions are clear except for the extension axiom. Let

ϕ ∈ FX(P,Q) be an isomorphism with Q fully centralized in FX. Recall that

Nϕ =
{
n ∈ NS(P )

∣∣ϕ ◦ cn ◦ ϕ−1 ∈ AutS(Q)
}
.

If (ϕ, σ) ∈ X(P,Q) is a morphism that lies over ϕ, we have

N(ϕ,σ) =
{
n ∈ NS(P )

∣∣ (ϕ ◦ cn ◦ ϕ−1, σ ◦ `n ◦ σ−1
)
∈ AutS(Q;X)

}
.

Clearly N(ϕ,σ) ≤ Nϕ for all possible choices of σ. If we can show that we have equality

for some particular choice of σ, the extension axiom for the fusion action system X

will imply the desired axiom for the fusion system FX.

We can restate the problem as follows: Fix some σ such that (ϕ, σ) ∈ X(P,Q),

and let N ≤ X(Q) denote the group (ϕ, σ)◦δ (Nϕ)◦(ϕ, σ)−1. Then N is a p-subgroup

of X(Q). If N ≤ AutS(Q;X), by definition Nϕ = N(ϕ,σ) and we are done. The goal

then becomes to show that there is some τ ∈ ΣX(Q)0 such that τN ≤ AutS(Q;X),

for this will imply that Nϕ = N(ϕ,τσ) and complete the proof.4

It is easy to see that N ≤ ΣX(Q)0 · AutS(Q;X) as follows: For n ∈ Nϕ, we have

ϕcnϕ
−1 ∈ AutS(Q), so (ϕcnϕ

−1, σ`nσ
−1) differs from an element of AutS(Q;X) by an

element of ΣX(Q)0.

The claim is that AutS(Q;X) is Sylow in ΣX(Q)0 · AutS(Q;x). We compute

[AutS(Q;X) : ΣX(Q)0 · AutS(Q;X)] =
|ΣX(Q)0| |AutS(Q;X)|

|ΣX(Q)0 ∩ AutS(Q;X)| |AutS(Q;X)|
= [ΣX(Q)0 ∩ AutS(Q) : ΣX(Q)0]

By Axiom (4) for saturated fusion action systems, ΣX(Q)0∩AutS(Q;X) = ΣS
X(Q)0 is

Sylow in ΣX(Q)0. Thus there is some τ ∈ ΣX(Q)0 such that τN ≤ AutS(Q;X), and

the result is proved.

In other words, Proposition 4.3.6 states that saturated abstract actions of a given

4We shall ignore the distinction between an element σ ∈ ΣS and the corresponding morphism
(idQ, σ) that lies in X.
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fusion system F are the same as saturated abstract fusion action systems whose

underlying fusion system is F . From now on, we will conflate these two notions,

using whichever is more convenient for the situation at hand. For instance, we shall

simply use the symbol F to denote the underlying fusion system FX of the fusion

action system X.

We can now use the notion of abstract fusion action systems now to form a category

out of our objects of study. Definition 4.3.7 will not play a major role in the rest of

this thesis, but is included mostly for its relationship to Appendix A.

Definition 4.3.7. Let (S,X,X) and (T, Y,Y) be two (saturated) fusion action sys-

tems. An equivariant map is a pair

(α : S → Y, f : X → Y ) such that f(p · x) = α(p) · f(x)

for all p ∈ P and x ∈ X. An equivariant map is fusion-action-preserving if there is

a functor F = F(α,f) : X → Y such that F (P ) = α(P ) and the following diagram of

groupoids commutes for all (ϕ, σ) ∈ X(P,Q):

BPX
B(α,f) //

B(ϕ,σ)

��

Bα(P )Y

B
(
F (ϕ,σ)

)
��

BQX B(α,f)
// Bα(P )Y

where BPX is the translation groupoid of the P -set X and B(α, f) is the map of

groupoids defined on objects by f and on morphisms by α. That B(α, f) is well-

defined follows from the assumption that the pair (α, f) is an equivariant map. Note

that if f : X → Y is surjective, the functor F is unique if it exists (and more generally,

F is uniquely defined “on the image of f”). ♦
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4.4 Properties of fusion action systems

4.4.1 General properties

This first result is a sort of converse to the Sylow conditions of the saturation axioms

for fusion action systems.

Proposition 4.4.1. Fix a saturated fusion action system X and a subgroup P ≤ S.

(a) The following are equivalent:

1. P is fully normalized in F .

2. P is fully centralized in F and AutS(P ) ∈ Sylp(F(P )).

3. P is fully X-normalized in F and ΣS
X(P ) ∈ Sylp (ΣX(P )).

4. P is fully X-centralized in F and AutS(P ;X) ∈ Sylp (X(P )).

(b) P is fully centralized iff P is fully X-centralized and ΣS
X(P )0 ∈ Sylp (ΣX(P )0).

(c) P is fully X-normalized iff P is fully X-centralized and FS(P )0 ∈ Sylp (F(P )0).

Proof. Half of these implications are part of the saturation axioms, so prove only the

remaining ones.

(a) P ≤ S is fully normalized if:

– P is fully centralized and AutS(P ) ∈ Sylp(F(P )). In this case, the as-

sumptions on P together with the inclusion of short exact sequences

1 // ΣX(P )0
// X(P ) // F(P ) // 1

1 // ΣS
X(P )0

?�

Sylow

OO

// AutS(P ;X)
?�

OO

// AutS(P )
?�

Sylow

OO

// 1

force AutS(P ;X) ∈ Sylp (X(P )). Then if Q is fully normalized and F -

conjugate to P via (ϕ, σ) ∈ X(Q,P ), we have that

(ϕ, σ) ◦ AutS(Q;X) ◦ (ϕ, σ)−1 ≤ X(P )
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is an inclusion of a p-subgroup, so there is (ψ, τ) ∈ X(P ) such that

(ψϕ, τσ) ◦ AutS(Q;X) ◦ (ψϕ, τσ)−1 ≤ AutS(P ;X)

Note that AutS(Q;X) is the image in X(Q) of NS(Q), and that P being

fully centralized implies that it is fully X-centralized. The extension axiom

now gives the existence of (ψ̃ϕ, τσ) ∈ X(NS(Q), NS(P )), from which it

follows that
∣∣NS(Q)

∣∣ =
∣∣NS(P )

∣∣ and P is fully normalized as well.

– P is fully X-normalized and ΣS
X(P ) ∈ Sylp (ΣX(P )). The inclusion of short

exact sequences

1 // F(P )0
// X(P ) // ΣX(P ) // 1

1 // FS(P )0

?�

Sylow

OO

// AutS(P ;X)
?�

OO

// ΣS
X(P )

?�

Sylow

OO

// 1

shows that AutS(P ;X) ∈ Sylp (X(P )). The rest of the proof is the same

as the first point.

– P is fully X-centralized and AutS(P ;X) ∈ Sylp (X(P )). The argument is

the same as the end of the previous two.

(b) P is fully centralized if P is fully X-centralized and ΣS
X(P )0 ∈ Sylp (ΣX(P )0):

Observe that
∣∣ZS(P )

∣∣ =
∣∣ZS(P ;X)

∣∣∣∣ΣS
X(P )0

∣∣. If P ∼=F Q, then we have

ΣX(P )0
∼= ΣX(Q)0, so it is easy to see that the order of (the p-group) ZS(P ) is

maximized precisely when ΣS
X(P )0 ∈ Sylp (ΣX(P )0) and the order of ZS(P ;X)

is maximized. The result follows.

(c) P is fully X-normalized if P is fully X-centralized and FS(P )0 ∈ Sylp (F(P )0):

The same argument as the previous paragraph applies, with the observation

that
∣∣NS(P )

∣∣ =
∣∣NS(P ;X)

∣∣∣∣FS(P )0

∣∣.
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Next we provide a basic reality-check for our axioms: If these saturation axioms

are “right,” the least we would expect is for some sort of Alperin Fusion Theorem.

Proposition 4.4.2. If (ϕ, σ) ∈ X(P,Q) is an isomorphism such that Q is fully

normalized, then there are morphisms (ϕ, σ′) ∈ X(NS(P ), S) and (ψ, τ) ∈ X(P ) such

that ϕ
∣∣
P

= ϕ ◦ ψ and σ′ = σ ◦ τ .

Proof. By the assumption that Q is fully normalized, the saturation axioms state that

AutS(Q;X) ∈ Sylp(X(Q)), so the p-group (ϕ, σ) ◦AutS(P ;X) ◦ (ϕ−1, σ−1) ≤ X(Q) is

subconjugate to AutS(Q;X). Say

(χ, υ) ◦ (ϕ, σ) ◦ AutS(P ;X) ◦ (ϕ, σ)−1 ◦ (χ, υ)−1 ≤ AutS(Q;X)

and set (ψ, τ) = (ϕ−1χϕ, σ−1υσ) ∈ X(P ), so that

(ϕ, σ) ◦ (ψ, τ) ◦ AutS(P ;X) ◦ (ψ, τ)−1 ◦ (ϕ, σ)−1 ≤ AutS(Q;X).

Now the fact that Q is fully normalized and thus fully X-centralized implies that

(ϕψ, στ) ∈ X(P,Q) has an extension (ϕ, σ′) ∈ X
(
N(ϕχ,στ)(P ), S

)
by the extension

axiom of saturation. Recall that

N(ϕχ,στ)(P ) =
{
s ∈ NS(P )

∣∣(ϕχ ◦ cs ◦ χ−1ϕ−1, στ ◦ `s ◦ τ−1σ−1 ∈ AutS(Q;X)
}

so that by construction NS(P ) ≤ N(ϕχ,στ)(P ). The result follows.

One could also prove analogous statements in the cases that the target is fully

centralized or X-normalized, but we will not have need for such results.

Proposition 4.4.3. The saturated fusion action system X is an Alperin category.

Proof. The claim is that every morphism (ϕ, σ) ∈ X(P, S) can be written as a com-

position of automorphisms of subgroups and inclusions. Proof goes by downward

induction on the order of the source P . If P = S, then (ϕ, σ) ∈ X(S), and there’s

nothing to prove.
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Therefore suppose that P � S. Without loss of generality, we may assume that

Q = ϕ(P ) is fully normalized: Otherwise, pick Q′ in the F -conjugacy class of P that

is fully normalized and an isomorphism (ψ, τ) ∈ X(P,Q′). If the result is true for

(ψ, τ) and (ϕ, σ) ◦ (ψ, τ)−1, it clearly is for (ϕ, σ) as well.

Proposition 4.4.2 shows that if the target of (ϕ, σ) is fully normalized, then (ϕ, σ)

can be composed with an element of X(P ) so that the resulting morphism extends

to X(NS(P ), S). But NS(P ) 
 P as P is a proper subgroup, and the inductive

hypothesis gives the rest.

4.4.2 Faithful fusion action systems

In this section we examine in closer detail a fusion action system X at the opposite

extreme to F5: We assume that X is faithful as an S-set. We will see that in this

situation, the underlying saturated fusion system F is always realizable by a finite

group G, and moreover that G acts on X in such a way that X = XG.

Let G = S be the group of permutations of X that appear in some morphism of

X. The map S → G : s 7→ `s is an injection if we assume that X is faithful as an

S-set, so we will identify S with its image in G. The saturation axioms for fusion

actions imply that S ∈ Sylp(G), so the fusion system FG is saturated.

The following proposition shows that exotic fusion systems cannot act S-faithfully

on finite sets.

Proposition 4.4.4. In this situation, F = FG.

Proof. First we show that F ⊆ FG. It suffices to show that any ϕ ∈ F(P, S) is

realized by conjugation by an element of G. Pick some (ϕ, σ) ∈ X(P, S), so that ϕ

and σ are intertwined, so σ ◦ `p = `ϕ(p) ◦ σ ∈ ΣX for all p ∈ P . This is exactly to say

that σ conjugates P via ϕ, proving the first inclusion.

For the reverse inclusion, suppose that for some σ ∈ G and P ≤ S we have

σP ≤ S; we must show that cσ ∈ F(P, S). By the extension axiom, the morphism

5Note that F can be viewed as the unique fusion action of F on the one-point set.
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(id, σ) ∈ X(1) extends to some (ϕ, σ) ∈ X(N(id1,σ), S), where

N(id1,σ) =
{
n ∈ S

∣∣σ ◦ `n ◦ σ−1 ∈ AutS(X)
}
.

In other words, for all n ∈ N(id1,σ), there is some (necessarily unique by faithfulness

of the X-action) s ∈ S so that σ ◦ `n ◦ σ−1 = `s. Therefore N(id1,σ) is the maximal

subgroup of S that is conjugated into S by σ. Thus P ≤ N(id1,σ), and if we can show

that the assignment n 7→ s is equal to ϕ, the result will follow, as ϕ is by assumption

a morphism of F .

This final assertion follows again from the fact that ϕ and σ are intertwined:

σ ◦ `n = `ϕ(n) ◦ σ for n ∈ N(id1,σ) forces s = ϕ(n) in the above notation. The result is

proved.

In this situation, there is a natural action of G = X(1) ≤ ΣX on X, and the

following is immediate:

Corollary 4.4.5. The fusion action system X is realized by the G-action on X:

X = XG.

Proof. The key point is that if the S-action on X is faithful, then any morphism

(ϕ, σ) ∈ X(P,Q) is actually determined by σ alone. This follows from the assumption

that ϕ and σ are intertwined, so that for all p ∈ P , we have `ϕ(p) = σ`pσ
−1 along

with the identification p↔ `p. In particular, X ⊆ XG, since (ϕ, σ) ∈ X(P,Q) implies

that σP ≤ Q and cσ = ϕ.

On the other hand, for any σ ∈ NG(P,Q) we have (cσ, σ) ∈ XG(P,Q), and the

claim is that this is also a morphism of X(P,Q). This follows from the extension

axiom of saturated fusion actions as in Proposition 4.4.4 and the observation that

σP ≤ S, implies P ≤ N(id1,σ). Thus XG ⊆ X.

4.5 Core subsystems

In this section let X be a saturated fusion action system. Recall that K ≤ S denotes

the core of the S action on X.
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Definition 4.5.1. The core fusion system associated to X is the fusion system K on

K with morphisms K(P,Q) =
{
ϕ ∈ Inj(P,Q)

∣∣(ϕ, idX) ∈ X(P,Q)
}

. ♦

Remark 4.5.2. There is a natural functor X → BΣX that sends inclusions to the

identity; this is precisely what the various maps πΣ piece together to give. K can

be thought of the kernel fusion action system of this functor, once we note that, as

the action of K on X is trivial, there is no distinction between a fusion system and a

fusion action system. ♦

The first result of this section is that K is saturated as a fusion system.

Proposition 4.5.3. K satisfies the following properties:

1. K is strongly closed in F .

2. For all P,Q ≤ K, ϕ ∈ K(P,Q) and ψ ∈ F(K), we have ψϕψ−1 ∈ K(ψP, ψQ).

3. For all P,Q ≤ K and χ ∈ F(P,Q), there are ψ ∈ F(K) and ϕ ∈ K(ψ(P ), Q)

such that χ = ϕ ◦ ψ
∣∣ψ(P )

P
.

Proof.

1. This has been observed several times already, for example in Corollary 3.3.7.

2. Pick some (ψ, τ) ∈ X(K) that lies over ψ ∈ F(K). Then

(ψ, τ)(ϕ, idX)(ψ, τ)−1 = (ψϕψ−1, idX)

and the result follows.

3. Let (χ, υ) ∈ X(P,Q) lie over χ ∈ F(P,Q), and consider (id1, υ) ∈ X(1). By the

extension axiom for saturated fusion action systems, (id1, υ) extends to a map

(ψ̂, υ) ∈ X(N(id1,υ), S), and it follows easily from the definition that K ≤ N(id1,υ).

Let (ψ, υ) ∈ X(K) be the restriction toK (which is necessarily an automorphism

of the strongly closed subgroup K), and let

(ϕ, idX) = (χ, υ) ◦ (ψ, υ)−1
∣∣P
ψ(P )
∈ X(ψ(P ), Q).
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Projection to F shows now that ψ and ϕ have the desired property.

The content of Proposition 4.5.3 is that K is almost a normal subsystem of F

in the sense of [Pui1]. We say “almost” because in that definition of normality, we

assume also that K is saturated as a fusion system, which is our current goal. We

need the third point of Proposition 4.5.3 to prove saturation, but luckily the logic

will not be circular.

Corollary 4.5.4. Every P ≤ K is fully normalized (resp. centralized) in K if and

only if P is fully X-normalized (resp. X-centralized) in F .

Proof. Note that NS(P ;X) = NK(P ) and ZS(P ;X) = ZK(P ) by definition, which

makes the “only if” implications obvious. We prove the “if” implication for normal-

izers; the same argument works for centralizers.

Suppose that P is fully normalized in K, and let Q ≤ K be fully X-normalized

and F -conjugate to P (such a Q must exist as K is strongly closed in F). For

any isomorphism χ ∈ F(P,Q), we can find ψ ∈ F(K) and ϕ ∈ K(ψ(P ), Q) such

that χ = ϕ ◦ ψ
∣∣ψ(P )

P
by the third point of Proposition 4.5.3. As ψ extends to an

automorphism of K, it sends the X-normalizer of P to the X-normalizer of ψ(P ). As

ϕ is necessarily an isomorphism in K by the two-out-of-three property, the assumption

that |NK(P )| ≥ |NK(ψ(Q))| forces that |NS(P ;X)| ≥ |NS(Q;X)|. The assumption

that Q is fully X-normalized forces equality, and the result is proved.

Proposition 4.5.5. K is a saturated fusion system.

Proof. We use the equivalent saturation axioms of [Sta], in which it suffices to show

that AutK(K) ∈ Sylp(K(K)) and that fully normalized subgroups satisfy the Exten-

sion Axiom.

To see that AutK(K) ∈ Sylp(K(K)): We’ve already noted thatK is strongly closed

in F , and therefore is fully X-normalized. By the saturation axioms for fusion action

systems, we have FS(K)0 ∈ Sylp(F(K)0). It is easy to see from the definitions that

F(K)0 = K(K), and we can describe FS(K)0 as the subgroup of AutS(K) consisting
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of those automorphisms that are induced by an element of S that acts trivially on X,

so that FS(K)0 = AutK(K).

To check the extension axiom: If P ≤ K is fully normalized in K, by Corollary

4.5.4 we see that P is fully X-normalized in F , and thus fully X-centralized. Given an

isomorphism ϕ ∈ K(Q,P ), we have (ϕ, idX) ∈ X(Q,P ), and the extension condition

for fusion actions gives a morphism

(ϕ̃, idX) ∈ X(NX
(ϕ,idX), K)

where the target may be assumed to be K instead of S because K is strongly closed

in F . We wish to show that

NKϕ =
{
n ∈ NK(Q)

∣∣ϕ ◦ cn ◦ ϕ−1 ∈ AutK(P )
}

is contained in NX
(ϕ,idX), as then ϕ̃|NKϕ will give the desired extension of ϕ. We have

NX
(ϕ,idX) =

{
n ∈ NS(Q)

∣∣(ϕ ◦ cn ◦ ϕ−1, `n) ∈ AutS(P ;X)
}
.

Since K acts trivially on S, for n ∈ NK(Q) such that ϕ ◦ cn ◦ ϕ−1 = ck ∈ AutK(P )

we have

(ϕ ◦ cn ◦ ϕ−1, `n) = (ck, idX) = (ck, `k) ∈ AutK(P ;X) ≤ AutS(P ;X)

and the result is proved.

Corollary 4.5.6. K is a normal subsystem of F in the sense of [Pui1].

We close this section by describing how the fusion action system X can be thought

of as an extension of K by the finite group S = X(1). First note that we have the

functors K � � ι // X
πT // // TS , where ι is “injective” in the sense that K naturally sits

as a subcategory of X, and πT is “surjective” in the sense already described for the

underlying transporter system of a fusion action system. Just as extensions of the

finite group H by G determines a morphism G→ Out(H), we have:
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Proposition 4.5.7. The fusion action system X determines a unique homomorphism

κ : S→ Out(K).

Proof. An easy application of the Extension Axiom for saturated fusion action sys-

tems implies that each σ ∈ S appears in the second coordinate of some (ϕ, σ) ∈ X(K).

As K is normal in F , ϕ ∈ Aut(K). The indeterminacy of the assignment σ 7→ ϕ is

measured by K(K) by definition of K, so the assignment σ 7→ [ϕ] ∈ Out(K) is the

desired map.
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Chapter 5

Linking action systems and p-local

finite group actions

In this chapter we discuss the homotopy theory of fusion action systems. Sections

5.1, 5.2, and 5.3 generalize the work of [BLO1, BLO2], 5.4 relates the new machinery

to that introduced in [OV], and 5.5 begins the project of using fusion actions to relate

a fusion system with certain subsystems.

5.1 The ambient case

Let us return for this section to the situation where we are given a finite group G, a

Sylow S ∈ Sylp(G), the fusion system F = FG, and X a G-set (which is then also an

F -stable S-set). We wish to reconstruct the homotopy type of the Borel construction

BGX := EG ×G X, at least up to p-completion, with a minimum of p′-data. This

section reproduces some results of [BLO1] in the context of fusion action systems

arising from ambient groups.

The game we want to play in reconstructing the p-completed homotopy type of

BGX is to look for a new category that will both allow us to construct BGX
∧
p but

that does not contain too much extra information. In some sense, the transporter

system TG = TS(G) contains all the information of G that we care about (for instance,

the natural functor BG → TG that sends the unique object of BG to the subgroup
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{1} induces a homotopy equivalence |TG| ' BG). The problem of course is that

TG contains too much information, especially p′-information. The goal then becomes

figuring out the right amount of data of TG to forget and still be able to understand

the Borel construction.

The first way of forgetting information of TG is to consider full subcategories

whose sets of objects are closed under G-conjugacy and overgroups. In other words,

we simply throw out all sufficiently small subgroups and the information of their Hom-

sets. Exactly which subgroups we will allow must depend somehow on the fusion data

of G and the action of G on X:

Definition 5.1.1. A p-subgroup P ≤ S is p-centric at X if Z(P ;X) ∈ Sylp(ZG(P ;X)).

Equivalently, P is p-centric at X if ZG(P ;X) = Z(P ;X)× Z ′G(P ;X) for some (nec-

essarily unique) p′-group Z ′G(P ;X). ♦

We shall generally call such a subgroup X-centric and omit mentioning the prime

p. This frees up our nomenclature so we can recall

Definition 5.1.2. A p-subgroup P ≤ S is p-centric if Z(P ) ∈ Sylp(ZG(P )), or

equivalently if ZG(P ) = Z(P ) × Z ′G(P ) for some (again, unique) p′-group Z ′G(P ).

This is equivalent to saying that P is X-centric for X = ∗ the trivial S-set. ♦

Note that the condition of being X-centric is determined purely by fusion data

and makes no reference to the fusion action system FG. This motivates the following

definition:

Definition 5.1.3. Given a saturated fusion system F on S and an F -stable S-set, a

subgroup P ≤ S is F-centric at X if Z(Q;X) = ZS(Q : X) for all Q ∼=F P . ♦

In the presence of an ambient group G, the two notions of X-centricity coincide:

Proposition 5.1.4. If G is a finite group that acts on X, S ∈ Sylp(G), and F = FG,

then a subgroup P ≤ S is p-centric at X if and only if it is F-centric at X.

Proof. First suppose that P is p-centric at X. As ZG(P ;X) = Z(P ;X)× Z ′G(P ;X)

for some uniquely defined p′-subgroup Z ′G(P ;X), it is clear that ZS(P ;X) = Z(P ;X).
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If g ∈ G is such that gP ≤ S, the fact that ZG(gP ;X) = gZG(P ;X) immediately

shows that ZG(gP ;X) = Z(gP ;X)× gZ ′G(P ;X), and we have the desired conclusion

for gP .

Conversely, suppose that P is F -centric at X, and pick T ∈ Sylp(ZG(P ;X)) such

that Z(P ;X) ≤ T . As S ∈ SylpG, there is some g ∈ G such that gP ≤ gT ≤ S.

Therefore gT ≤ ZS(gP ;X) = Z(gP ;X) by the F -centricity at X of P and we conclude

that T = Z(P ;X), as desired.

The main purpose of introducing the abstract fusion-centric way of thinking of

X-centricity at this point is that it makes certain results cleaner to prove:

Proposition 5.1.5. If X and Y are F-stable S-sets and there is a surjective map of

S-sets f : X → Y , then every Y -centric subgroup is also X-centric.

Proof. Let K and L be the cores of X and Y , respectively. The existence of such a

surjection forces K ≤ L. Thus ZS(P )∩K ≤ ZS(P )∩L, so if ZS(P )∩L = Z(P )∩L

then ZS(P ) ∩K = Z(P ) ∩K. The result follows.

Corollary 5.1.6. p-centricity implies X-centricity for all F-stable X.

In particular, every p- or F -centric (both henceforth “centric”) subgroup of S is

automatically X-centric for every F -stable X. Moreover, the more faithful X is (so

the smaller the kernel K is), the easier it is for subgroups of S to be X-centric, to

the point where if X is a faithful S-set, every P ≤ S is X-centric.

Definition 5.1.7. Let T cXG denote the full subcategory of TG whose objects are the

X-centric subgroups. Similarly, for X an abstract action with finite set X, let XcX be

the full subcategory on the X-centric subgroups. ♦

The first thing we must show is that we have not lost too much information by

this restriction. Let X : T cXG → T OP be the functor

P
� //

g

��

X

`g
��

Q � // X
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Proposition 5.1.8. There exists a mod-p equivalence hocolimT cXG X 'p BGX.

Proof. Let EG be the simplicial groupoid with objects g ∈ G, KcX the category

associated to the poset of X-centric subgroups, and KcX the associated G-simplicial

complex. We view the G-set X as a discrete G-category. If G(X) is the Grothendieck

construction associated to the functor X, we have |G(X)| ' hocolimT cXG X by [Tho],

so we will use the Grothendieck construction as our model for the homotopy colimit.

There is a functor EG×G (X ×KcX)→ G(X) given by

[g, (x, P )] � //

[g 7→hg,(idx,P≤Q)]

��

(gP, g · x)

h
��

[hg, (x,Q)] � // (hgQ, hg · x)

that is easily seen to have an inverse isomorphism of categories

(P, x) � //

h
��

[1, (x, P )]

[1 7→h,(idx,P≤h
−1
Q)]

��
(Q, h · x) � // [1, (h · x,Q)] [h, (x, h

−1
Q)]

Thus, on taking realizations, we get a homeomorphism of spaces

EG×G (X ×KcX) ' hocolim
T cXG

X.

Finally, consider the natural projection map EG ×G (X ×KcX) → EG ×G X; if

we can show that this is a mod-p homology isomorphism, the result will follow.

By Corollary 5.1.6, the collection of X-centric subgroups contains all centric sub-

groups, and it is easy to check that it is closed under p-overgroups. Thus [Dwy,

Theorem 8.3] applies to show that KcX is Fp-acyclic, and therefore the natural map

EG×G(X×KcX)→ EG×GX, being a fibration with fiber KcX , is a mod-p homology

isomorphism by the Serre spectral sequence.

There is a more drastic way of reducing information in TG than simply restricting

our attention to various subgroups, in which we quotient out p′-information directly.
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Note that there is a free right action of Z(P ) on TG(P,Q), so we can consider

categories whose morphisms are orbits of subgroups of Z(P ) in the transporter system.

The need to lose only p′-information is one reason why we have restricted our attention

to the X-centric subgroups of S, as we shall now see.

Recall that for H a finite group, Op(H) is the smallest normal subgroup of H of

p-power index. If P is X-centric, ZG(P ;X) = Z(P ;X) × Z ′G(P ;X) for Z ′G(P ;X) a

p′-group, and we have Op(ZG(P ;X)) = Z ′G(P ;X).

Definition 5.1.9. For a G-set X, define the p-centric linking action system of S at

X to be the category LcXG = LcXS (G) whose objects are X-centric subgroups of S, and

where LcXG (P,Q) = NG(P,Q)/Op(ZG(P ;X)). ♦

Just as we formed the Borel construction BGX up to p-completion by considering

the homotopy colimit of a functor T cXG → T OP , there is a similarly defined functor

whose homotopy colimit is of particular interest to us in the context of linking action

systems. Let X : LcXG → T OP be the functor

P
� //

[g]
��

X

`g
��

Q � // X

By construction, the natural quotient π : T cXG → LcXG satisfies the conditions of

[BLO1, Lemma 1.3]. In particular, this implies

Proposition 5.1.10. The quotient π : T cXG → LcXG induces a mod-p equivalence:

hocolim
LcXG

X 'p hocolim
T cXG

X ◦ π.

Corollary 5.1.11.

hocolim
LcXG

X 'p BGX

Proof. Combine Propositions 5.1.8 and 5.1.10 with the fact that X = X ◦ π.
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5.2 Classifying spaces of abstract fusion actions

5.2.1 Stating the problem

In this section let X be a fixed abstract fusion action system with underlying fusion

system F . The goal is to describe what a “classifying space” for X should look like.

The heuristic is that BX should recover the homotopy type of the Borel construction

of X, up to p-completion, just as in the ambient case.

The problem with the heuristic is that, without an ambient group, we lack a

Borel construction to aim for. Section 5.1 tells us that we could perhaps instead

try to define BX to be the homotopy colimit of some functor into T OP , but again

without an ambient group we do not know what the source category for such a

functor should look like. We could try to rectify the situation by developing some

notion of an abstract linking action system. This would be a category LX associated

to X that would have the “right” properties so that we could construct a functor

X : LX → T OP , all of which would be a generalization of the ambient case of Section

5.1.

This will in fact be the plan of attack take, but first a detour: In order to properly

understand what is meant by LX having the “right” properties, we should try to

understand the space we are looking for purely in terms that can be described by

the fusion action system itself. The question then becomes what spaces we can make

from the category X. The first guess of |X| will not give us what we want, as this

relies only on the shape of the category of X and does not take into account the fact

that it should be thought of as a combination of a diagram in groups together with

permutations of X.

More accurately, we should think of X as a diagram in groupoids via the functor

B−X : X → GRPD.1 For P ≤ S, let BPX denote the translation category of the

P -set X. Recall that the objects of BPX are the points of X and the morphisms

are given by BPX(x, x′) =
{
p̌
∣∣p ∈ P and p · x = x′

}
. We then define B−X to be the

1The claim that Appendix A would be irrelevant to the rest of this document is a bit of a lie; the
following discussion would benefit from taking that point of view into consideration. We repeat the
relevant definitions here.
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functor

P
� //

(ϕ,σ)

��

BPX
B(ϕ,σ)
��

Q � // BQX

where B(ϕ, σ) is the functor that acts on objects by σ and morphisms by ϕ.

If we then set B−X : X → T OP to be |B−X|, we can consider the space

hocolimXB−X, which is defined with information contained in X.

Unfortunately, this space is not what we want if S is nonabelian or acts nontrivially

on X, as we show in Example 2.2.16 in the case of X a one-point set.

The problem with simply taking hocolimX B−X is that this construction is in some

sense double-counting the noncentral elements of S, as well as the elements not in

K. In particular, any non-X-central s ∈ S defines both a morphism in š ∈ BS and

a morphism (cs, `s) ∈ X(S); by simply taking the homotopy colimit of B−X these

separate morphisms both contribute even though they come from the same element

of S. In other words, hocolimXB−X is too big, in that it has too many arrows.

So, again, let’s kill the offending morphisms.

Definition 5.2.1. The orbit category of X is the category OX := O(X) whose objects

are the subgroups of S and whose morphisms are given by OX(P,Q) = Q\X(P,Q).

In other words, the Hom-set from P to Q is the set orbits of the Q-action of X(P,Q)

given by postcomposition by (cq, `q).

The full subcategory of OX whose objects are the F -centric subgroups of S will

be denoted OcX. ♦

The functor B−X does not descend to OcX → T OP , but because OcX is defined

by quotienting out inner automorphisms, it is easy to see that there is a homotopy

functor B−X : OcX → hoT OP . If we could find a homotopy lifting B̃ as in Figure

5-1 we could consider the space hocolimOcX B̃−X as a possibility for the classifying

space of FX .

We shall see that the homotopy colimit of such a lifting B̃ is, in fact, the solution

we have been seeking.

85



T OP

��
OcX

eB−X 99t
t

t
t

t

B−X

// hoT OP

Figure 5-1: The homotopy lifting problem

Proposition 5.2.2. In the presence of an ambient group G acting on X and giving

rise to X,

hocolim
OcX

B̃−X 'p BGX.

Proof. Follows immediately from Problem 5.2.3, whose solution is detailed in Subsec-

tion 5.2.2.

We are now in the position to fully state the problem we want to solve:

Problem 5.2.3. Given an abstract fusion action system X, construct an abstract

linking action system associated to X. This should be a category LX together with

functors

π : LX → XcX and X : LX → T OP

such that

• In the presence of an ambient group G, this LcXG and the functor X described

in Section 5.1 give an abstract linking action system associated to XG.

• If π : LX → OcX is the composite LX π→ XcX → OcX, then the left homotopy

Kan extension of X over π is a homotopy lifting of B−X : OcX → hoT OP ,

which will be denoted B̃LX : OcX → T OP . Consequently,

hocolim
LX

X ' hocolim
OcX

B̃LX .
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5.2.2 Solving the problem

Definition 5.2.4. An (X-centric) linking action system associated to X is a category

LX whose objects are the X-centric subgroups of S, together with a pair of functors

T cXS
δ // LX π // XcX .

For each s ∈ NS(P,Q), let ŝ be the corresponding morphism in δP,Q(s) ∈ LX(P,Q).

For g ∈ LX(P,Q) denote the components of πP,Q(g) by the pair (cg, `g).

The following conditions must be satisfied:

(A) The functors δ and π are the identity on objects. δ is injective and π is surjective

on morphisms. Moreover, Z(P ;X) acts (via δ) right-freely on LX(P,Q), and

πP,Q : LX(P,Q)→ XcX(P,Q) is the orbit map of this action.

(B) For each p ∈ P , we have cbp = cp : P → P and `bp = `p : X → X.

(C) For each g ∈ LX(P,Q) and p ∈ P , the following commutes in LX:

P
g //

bp
��

Q

ĉg(p)
��

P g
// Q

Finally, every linking action system comes naturally equipped with a functor

X : LX → T OP defined by

P
� //

g

��

X

`g
��

Q � // X

where X is regarded as a discrete topological space. ♦

Remark 5.2.5. It is easy to see that:

• If X = ∗ is the trivial S-set and X = F is a saturated fusion system, the an

abstract linking action system is the same as a centric linking system as defined
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in [BLO2]. In this case X is just the trivial functor L∗ → T OP whose homotopy

colimit is |L∗|.

• In the presence of an ambient group G, the category LcXG of Section 5.1 is an

example of an abstract linking action system associated to XG. In particular,

this definition satisfies the first condition of Problem 5.2.3. ♦

Unless it is necessary to emphasize the fact that we are looking at the X-centric

subcategories, we shall omit explicit notational reference to them.

The remainder of this section is devoted to proving that these abstract linking

action systems satisfy the second condition of Problem 5.2.3. We begin with some

basic properties of abstract linking action systems:

Proposition 5.2.6. Let P
(ϕ,σ) // Q

(ψ,τ) // R be a sequence of morphisms

in X. Then for any

g ∈ π−1
Q,R((ψ, τ)) ⊆ LX(Q,R) and g̃h ∈ π−1

P,R((ψϕ, τσ)) ⊆ LX(P,R)

there is a unique h ∈ π−1
P,Q((ϕ, σ)) ⊆ LX(P,Q) such that gh = g̃h.

Proof. Pick any h′ ∈ π−1
P,Q((ϕ, σ)) ⊆ LX(P,Q). By Axiom (A), the X-center Z(P ;X)

acts freely and transitively on π−1
P,R((ψϕ, τσ)) ⊆ LX(P,R), so there is a unique

z ∈ Z(P ;X) such that g̃h = gh′ẑ. Therefore setting h = h′ẑ gives a morphism

in π−1
P,Q((ϕ, σ)) such that gh = g̃h.

To prove uniqueness, suppose that we have h1, h2 ∈ LX(P,Q) such that gh1 = gh2,

hi lifts (ϕ, ψ), and ghi = g̃h. Then cgch1 = cgch2 ∈ X(P,R), and since every morphism

of a fusion action system is mono (the first coordinate is an injective group map and

the second coordinate is invertible), we conclude that ch1 = ch2 . Therefore by Axiom

(A) there is a unique z ∈ Z(P ;X) so that h1 = h2 ◦ ẑ. Then the facts that

g̃h = gh1 = gh2 ◦ ẑ = g̃h ◦ ẑ

and Z(P ;X) acts right-freely on LX(P,R) implies that z = 1, so h1 = h2.
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Remark 5.2.7. Note that the full strength of the axioms of a linking action system is

not used to prove this proposition. In particular, the fact that LX comes equipped

with a functor T cXS → LX could have been replaced with the (apparently) weaker

assumption that for every X-centric P ≤ S, there is an injection P → LX(P ) such

that Axiom (A) holds. This observation will sometimes be useful when trying to

construct linking action systems. ♦

Proposition 5.2.6 has a number of immediate consequences:

Corollary 5.2.8. Every morphism in LX is categorically mono.

Proof. Suppose that we’re given morphisms g ∈ LX(Q,R) and h, h′ ∈ LX(P,Q) such

that gh = gh′. Then π(gh) = π(gh′), and g is a lifting of π(g), so the uniqueness

statement of Proposition 5.2.6 forces h = h′.

Corollary 5.2.9. If g ∈ LX(P,Q) is such that (cg, `g) ∈ X(P,Q) is an isomorphism,

then g is itself an isomorphism.

Proof. Apply Proposition 5.2.6 to the sequence Q
(cg,`g)−1

// P
(cg,`g) // Q with g

lifting (cg, `g) and idL
X

Q lifting the composite idX
Q. We obtain a unique h ∈ LX(Q,P )

such that gh = idL
X

Q . It follows that ghg = g = g ◦ idL
X

P and thus hg = idL
X

P as g is

categorically mono. Therefore h = g−1.

Notation 5.2.10. We denote by iQP the morphism δP,Q(1) ∈ LX(P,Q), and call this

the “inclusion” of P in Q in LX. ♦

Corollary 5.2.11. For any g ∈ LX(P,Q) and X-centric subgroups P ∗ ≤ P and

Q∗ ≤ Q such that cg(P
∗) ≤ Q∗, there is a unique morphism resQ

∗

P ∗(g) ∈ LX(P ∗, Q∗)

such that the following diagram commutes in LX:

P
g // Q

P ∗

iP
P∗

OO

resQ
∗

P∗ (g)

// Q∗

iQ
Q∗

OO
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Proof. Apply Proposition 5.2.6 to the diagram P ∗
cg|P∗ // Q∗

ιQ
Q∗ // Q with iQQ∗ lifting

ιQQ∗ and g ◦ iPP ∗ lifting the composite.

Notation 5.2.12. The morphism resQ
∗

P ∗(g) is called the “restriction” of g, and will

sometimes be denoted g
∣∣Q∗
P ∗

or just g|P ∗ if the target is clear. ♦

Corollary 5.2.13. Every morphism in LX factors uniquely as an isomorphism fol-

lowed by an inclusion.

Proof. For g ∈ LX(P,Q), the morphism (cg, `g) ∈ X(P, cg(P )) is an isomorphism

in the underlying action system, so res
cg(P )
P (g) is an isomorphism in LX by Corol-

lary 5.2.9. Clearly g = iQcg(P ) ◦ res
cg(P )
P (g), and uniqueness now follows by another

application of Proposition 5.2.6.

Proposition 5.2.14. Every morphism in LX is categorically epi.

Proof. By Corollary 5.2.13, it suffices to show that i := iQP is epi for all X-centric

P ≤ Q. Moreover, it suffices to assume that P E Q, as any inclusion of p-groups

can be refined to a sequence of normal inclusions. Let g1, g2 ∈ LX(Q,R) be two

morphisms such that g1 ◦ i = g2 ◦ i; we want to show that g1 = g2.

The image of gi in X(Q,R) is (cgi , σi) and the assumption that g1 ◦ i = g2 ◦ i

implies that σ1 = σ2. We first show that it also follows that cg1 = cg2 .

Note that the assumption that P E Q implies that every q ∈ Q determines a

morphism in q̂ ∈ LX(P ), which is easily seen to be the restriction of q̂ ∈ LX(Q). Then

the following diagram commutes in LX by axiom (C)

Q
gi //

bq
��

R

ĉgi (q)

��
Q gi

// R

for i = 1, 2. The assumption on the gi also implies that their restrictions to P in

LX are equal; denote this common morphism by h ∈ LX(P, ch(P )). We can therefore
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form the restriction of this diagram, which gives us

P
h //

bq
��

ch(P )

ĉgi (q)
��

P
h
// cg(P )

for i = 1, 2. As all the morphisms in this restriction diagram are iso, and three of the

four do not depend on choice of i, we conclude that ĉg1(q) = ĉg2(q) for all q ∈ Q. The

assignment q 7→ q̂ is injective, so we conclude that cg1 = cg2 on Q.

Thus we have π(g1) = π(g2), so by Axiom (2), there is some z ∈ Z(Q;X) such

that g2 = g1 ◦ ẑ. We then compute g1 ◦ ẑ ◦ i = g2 ◦ i = g1 ◦ i. The fact that g1 is mono

implies that ẑ ◦ i = i.

Finally, the fact that P ≤ Q implies that z ∈ Z(P ;X), and Axiom (3) again

shows that ẑ ◦ i = i ◦ ẑ (for ẑ respectively an isomorphism in LX of Q and P ). The

freeness of the right action of Z(P ;X) on LX(P,Q) forces z = 1, and the result is

proved.

Corollary 5.2.15. Extensions of morphisms in LX are unique when they exist. In

other words, for any g∗ ∈ LX(P ∗, Q∗) and subgroups P ∗ ≤ P and Q∗ ≤ Q, there is at

most one morphism g ∈ LX(P,Q) such that the diagram

P
g // Q

P ∗

iP
P∗

OO

g∗
// Q∗

iQ
Q∗

OO

commutes in LX.

Proof. If g′ is another such extension, the equalities g ◦ iPP ∗ = iQQ∗ ◦ g∗ = g′ ◦ iPP ∗ and

the fact that iPP ∗ is epi force g = g′.

Proposition 5.2.16. If P ≤ S is fully normalized in F , then N̂S(P )
∣∣P
P
∈ Sylp

(
LX(P )

)
.

Proof. By Axiom (A) of linking action systems,
∣∣LX(P )

∣∣ = |X(P )| · |Z(P ;X)| and by

91



definition of AutS(P ;X),

|NS(P )| = |AutS(P ;X)| · |ZS(P ;X)| = |AutS(P ;X)| · |Z(P ;X)| .

As P is fully normalized, the saturation axioms imply that AutS(P ;X) ∈ Sylp (X(P )),

and the result easily follows.

Notation 5.2.17. Let π be the composite LX π→ X→ OcX. ♦

Proposition 5.2.18. Suppose that g, h ∈ LX(P,Q) are such that π(g) = π(h). Then

there is a unique element q ∈ Q such that h = q̂ ◦ g. In other words, the map

πP,Q : LX(P,Q)→ OcX(P,Q) is the orbit map of the free left action of Q on LX(P,Q).

Proof. The condition on g and h implies that there is some q′ ∈ Q such that

(ch, `h) = (cq′ , `q′) ◦ (cg, `g).

Condition (A) then implies that there is a unique z ∈ Z(P ;X) such that

h = q̂′ ◦ g ◦ ẑ = q̂′ ◦ ĉg(z) ◦ g

where the second equality follows from Condition (C). Setting q = q′ ◦ cg(z) gives the

desired element.

The uniqueness of q is a direct consequence of the fact that g is epi and the

assignment q 7→ q̂ is injective.

We now have the necessary results to show that we have solved the second point of

Problem 5.2.3. Recall that B̃−X : OcX → T OP is the left homotopy Kan extension

of X : LX → T OP over π : LX → OcX, and that we are looking for a homotopy lifting

of B−X : OcX → hoT OP , as depicted in Firgure 5-2.

For ease of notation, write B̃ for B̃−X and B for B−X.
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LX

π
��

X // T OP

OcX
eB−X
;;vvvvvvvvv

T OP

��
OcX

?
99t

t
t

t
t

B−X

// hoT OP

Figure 5-2: What we have vs. What we want

Proposition 5.2.19. The functor B̃ is a homotopy lifting of B.

Proof. On objects: We want to show that B̃(P ) ' B(P ) = BPX. Recall that

B̃(P ) ' hocolim
(Q,α)∈(π↓P )

X(Q)

where (π ↓ P ) is the overcategory of π over P . The objects are pairs (Q,α), where Q

is an X-centric subgroup of S, viewed as either an object of LX or OcX as appropriate,

and α is a morphism in OcX(Q,P ). A morphism from (Q,α) to (R, β) is g ∈ LX(Q,R)

such that the following commutes in OcX:

Q
π(g) //

α
��??????? R

β����������

P

Thomason’s theorem [Tho] shows that this homotopy colimit expression of B(P )

has the homotopy type of |G(P )|, where G(P ) is the Grothendieck category associated

to (π ↓ P ) and the functor X.

Explicitly, G(P ) is the category whose objects are pairs ((Q,α), x) where (Q,α) is

an object of (π ↓ P ) and x ∈ X. A morphism ((Q,α), x)→ ((R, β), y)) is a morphism

g ∈ (π ↓ P )((Q,α), (R, β))—and therefore g ∈ LX(Q,R)—such that `g(x) = y.

Let B̌(P ) ⊆ G(P ) be the subcategory whose objects are pairs ((P, idP ), x) for all

x ∈ X, and where

B̌(P )(((P, idP ), x), ((P, idP ), y)) =
{
p̂
∣∣p ∈ P, p · x = y

}
.

This category is isomorphic to BPX; the claim is that the inclusion B̌(P ) ⊆ G(P )
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induces a deformation retract after realization. This will follow if we can find a functor

Ψ : G(P )→ B̌(P ) that is the identity on B̌(P ) together with a natural transformation

F : IdG(P ) ⇒ ι
G(P )

B̌(P )
◦Ψ, where ι

G(P )

B̌(P )
: B̌(P )→ G(P ) is the inclusion functor.

Pick some lifting of morphisms ξ : Mor(OcX) → Mor(LX), and assume that ξ

sends identities to identities. Let Ψ : G(P )→ B̌(P ) be the functor

((Q,α), x) � //

g

��

(
(P, idP ), `ξ(α)(x)

)
Ψ(g)

��
((R, β), y) � //

(
(P, idP ), `ξ(β)(y)

)
where Ψ(g) is defined to be p̂ for the unique p ∈ P such that

Q
g //

ξ(α)

��

R

ξ(β)

��
P bp // P

The existence and uniqueness of p follow from Proposition 5.2.18 and the fact that

π(ξ(β) ◦ g) = β ◦ π(g) = α = π(ξ(α)) because g is a morphism in (π ↓ P ).

We must check that p̂ indeed defines a morphism in G(P ):

((P, idP ), `ξ(α)(x))→ ((P, idP ), `ξ(β)(y)).

To do this, we must show that

P
(cp,`p) //

idP ��@@@@@@@ P

idP��~~~~~~~

P

commutes in OcX and that `p ◦ `ξ(α)(x) = `ξ(β)(y). The first is obvious from the

definition of OcX, and the second follows from the fact that p̂ ◦ ξ(α) = ξ(β) ◦ g, so

that `p ◦ `ξ(α)(x) = `ξ(β) ◦ `g(x) = `ξ(β)(y) by the assumption on g.

Observe that Ψ|B̌(P ) is the identity functor.
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Define the natural transformation Θ : IdG(P ) ⇒ ι
G(P )

B̌(P )
◦Ψ by

Θ(((Q,α), x)) = ξ(α) : ((Q,α), x)→ ((P, idP ), `ξ(α)(x)).

That this is a morphism in G(P ) follows easily from the definition of G(P ) above and

the fact that ξ(α) is a lift of α to L. If g : ((Q,α), x)→ ((R, β), y) is a morphism in

G(P ), we want the diagram

((Q,α), x)
g //

ξ(α)
��

((R, β), y)

ξ(β)
��

((P, idP ), `ξ(α)(x))
Ψ(g)

// ((P, idP ), `ξ(β)(y))

to commute in LX, which follows from the definition of Ψ(g).

Finally, note that for any object of x̌ ∈ B̌(P ), it is easy to see that F (x̌) is the

identity. Thus the geometric realization of Θ gives a homotopy that shows that |Ψ|

realizes
∣∣B̌(P )

∣∣ as a deformation retract of |G(P )|, and we have the result on objects.

On morphisms: First observe that each [ϕ, σ] ∈ OcX(P, P ′) induces a functor

(π ↓ P )→ (π ↓ P ′):

(Q,α) � //

g

��

(Q, [ϕ, σ] ◦ α)

g

��
(R, β) � // (R, [ϕ, σ] ◦ β)

This in turn induces a functor [ϕ, f ]∗ : G(P )→ G(P ′), defined by

((Q,α), x) � //

g

��

((Q, [ϕ, σ] ◦ α), x)

g

��
((R, β), `gx) � // ((R, [ϕ, σ] ◦ β), `gx)

Similarly, for (ϕ, σ) ∈ X(P, P ′) a lift of [ϕ, σ] ∈ OcX(P, P ′), there is a functor B̌(ϕ,σ) :

95



B̌(P )→ B̌(P ′):

((P, idP ), x) � //

bp
��

((P ′, idP ′), σ(x))

cϕp
��

((P, idP ), p · x) � // ((P ′, idP ′), ϕp · σ(x))

To finish the proof that B̃ is a homotopy lifting of B we must show that the

diagram of functors

B̌(P )
ι //

B̌(ϕ,σ)

��

G(P )

[ϕ,σ]∗
��

B̌(P ′) ι
// G(P ′)

commutes up to natural transformation.

Let F1 be the functor given by the top path of the diagram. Explicitly, F1 is the

functor

((P, idP ), x) � //

bp
��

((P, [ϕ, σ]), x)

bp
��

((P, idP ), p · x) � // ((P, [ϕ, σ]), p · x)

Let the bottom path be the functor F2:

((P, idP ), x) � //

bp
��

((P ′, idP ′), σ(x))

cϕp
��

((P, idP ), p · x) � // ((P ′, idP ′), ϕp · σ(x))

Choose some h ∈ LX(P, P ′) that lifts (ϕ, σ), and define the natural transformation

Φ : F1 ⇒ F2 : ((P, id), x) 7→ h.

To see that h is indeed a morphism in G(P ′) from ((P, [ϕ, σ]), x) to ((P ′, idP ′), σ(x)),

note that

P
π(h) //

[ϕ,f ]   @@@@@@@@ P ′

idP ′~~}}}}}}}}

P ′
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commutes because h is a lifting of [ϕ, σ]. Moreover, `hx = σ(x) because h is a lifting

of (ϕ, σ).

Finally, if p̂ is a morphism in B̌(P ) from ((P, idP ), x) to ((P, idP ), y), the diagram

((P, [ϕ, σ]), x)
h //

bp
��

((P ′, idP ′), σ(x))

cϕp
��

((P, [ϕ, σ]), y)
h
// ((P ′, idP ′), σ(y))

commutes in G(P ′) because Axiom (C) and the fact that ch = ϕ (h lifts (ϕ, σ))

together imply that ϕ̂p ◦ h = h ◦ p̂ in LX(P, P ′).

This completes the proof that B̃ is a homotopy lifting of B.

5.3 Obstruction theory

Fix an abstract fusion action system X. The material in this section does not depend

on X being saturated.

We can solve the homotopy lifting problem for B−X : OcX → hoT OP , and thus

create a space that we might call a “classifying space” for X, if we have an associated

linking action system LX. In this section we describe how we can construct LX from

the data of X, or more accurately, we describe the difficulties in doing so. We also

describe the obstructions to constructing LX uniquely. The work of this section can

basically be found mutatis mutandis in the obstruction theory of [BLO2].

Definition 5.3.1. If there is a unique LX associated to X, the space hocolimLX X is

the classifying space for the fusion action system. We denote this space by BX. ♦

Notation 5.3.2. We denote by (ϕ̃, σ̃) ∈ X(P,Q) a lift of [ϕ, σ] ∈ OcX(P,Q). ♦

Definition 5.3.3. Let ZX :
(
OcX

)op → Ab be the functor

P
� //

[ϕ,σ]

��

Z(P ;X) Z(ϕ̃(P );X)
eϕ−1
oo ZS(ϕ̃(P );X)

Q � // Z(Q;X)

ZX([ϕ,σ])

OO

ZS(Q;X)
?�

incl

OO
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where ZX([ϕ, σ]) is the unique map of groups that makes the rectangle commute. ♦

Proposition 5.3.4. The functor ZX is well-defined.

Proof. The equalities come from the assumption that P is X-centric. We must simply

show that for (ϕ̃′, σ̃′) any another lift of [ϕ, σ], the maps ϕ̃−1 and (ϕ̃′)−1 are equal

on Z(Q;X). Since that ϕ̃ and ϕ̃′ are both lifts of ϕ, there is some q ∈ Q such that

ϕ̃′ = cq ◦ ϕ̃. Therefore c−1
q is the identity on Z(Q;X), and the result follows.

The rest of this section will be devoted to proving the following fact:

Theorem 5.3.5. The data of the abstract fusion action X determines an element

u ∈ lim3
OcX ZX that vanishes precisely when there is a linking action system LX asso-

ciated to X. Moreover, if there is a linking action system, the group lim2
Ox ZX acts

transitively on the set of linking action systems viewed as categories over OcX.

Proof. Existence: Given X, let us try to construct a linking action system L by

brute force and see where problems arise. Let L be a category whose objects are the

X-centric subgroups of S.

If we had a linking action system LX, Proposition 5.2.18 says that the orbit of the

free left action of Q on LX(P,Q) would be OcX(P,Q). Thus, as a set we define

L(P,Q) = Q×OcX(P,Q).

We now need to define composition and show that the resulting category satisfies

the properties of an X-centric linking system. Let ξ be a lifting of the morphisms

of OcX to X that sends identities to identities. For each [ϕ, σ] ∈ OcX(P,Q), define

(ϕ̃, σ̃) to be ξ ([ϕ, σ]) ∈ X(P,Q). The lifting ξ almost certainly does not define a

functor OcX → X, but we can measure its failure to do so as follows: For each pair of

composible morphisms of OcX P
(ϕ,σ) // Q

(ψ,τ) // R it need not be the case that

(ψ̃, τ̃) ◦ (ϕ̃, σ̃) := (ψ̃ϕ̃, τ̃ σ̃) is equal to (ψ̃ϕ, τ̃σ) := ξ ([ψϕ, τσ])
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in X. However, the image of both these morphisms in OcX is equal, so there is some

t ([ϕ, σ], [ψ, τ ]) ∈ R such that

(ψ̃ϕ̃, τ̃ σ̃) = (ct([ϕ,σ],[ψ,τ ]) ◦ ψ̃ϕ, `t([ϕ,σ],[ψ,τ ]) ◦ τ̃σ).

In the interests of trying to reduce notational clutter, we will simply write t(ϕ, ψ)

for t ([ϕ, σ], [ψ, τ ]); it turns out that no additional confusion will be introduced by

omitting the permutations of X from the notation. Without loss of generality, we

may also assume that t(ϕ, ψ) = 1 if either [ϕ, σ] or [ψ, τ ] is an identity morphism.

Define for each P,Q ≤ S the set-map

πσP,Q : L(P,Q)→ X(P,Q) : (q, [ϕ, σ]) 7→ (cq, `q) ◦ (ϕ̃, σ̃) = (cq ◦ ϕ̃, `q ◦ σ̃)

Ultimately we would like to patch the various maps πσP,Q together to make up the

functor πξ : L → X required in the definition of an X-centric linking action system.

To this end, we are now ready to define what we would like composition in L to be.

We will denote this composition by ∗.

∗ : L(Q,R)×L(P,Q)→ L(P,R) : (r, [ψ, τ ])× (q, [ϕ, σ]) 7→ (r · ψ̃(q) · t(ϕ, ψ), [ψϕ, τσ])

Let us check that this “composition” makes πξ functorial, in the sense that πξ

sends ∗-composition to honest composition in X. Pick (q, [ϕ, σ]) ∈ L(P,Q) and

(r, [ψ, τ ]) ∈ L(Q,R). Then

πξQ,R
(
(r, [ψ, τ ])

)
◦ πξP,Q

(
(q, [ϕ, σ])

)
=
(
crψ̃, `rτ̃

)
◦ (cqϕ̃, `qσ̃) =

(
crψ̃cqϕ̃, `rτ̃ `qσ̃

)
while

πξP,R((r, [ψ, τ ]) ∗ (q, [ϕ, σ])) = πξP,R

(
(r · ψ̃(q) · t(ϕ, ψ), [ψϕ, τσ]

)
=

(
cr· eψ(q)·t(ϕ,ψ) ◦ ψ̃ϕ, `r· eψ(q)·t(ϕ,ψ) ◦ τ̃σ

)
.
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The definition of t(ϕ, ψ) then gives

cr· eψ(q)·t(ϕ,ψ) ◦ ψ̃ϕ = cr· eψ(q) ◦ ct(ϕ,ψ) ◦ ψ̃ϕ = cr· eψ(q)ψ̃ϕ̃ = crψ̃cqϕ̃,

and the fact that τ̃ intertwines ψ̃ gives

`r· eψ(q)·t(ϕ,ψ) ◦ τ̃σ = `r· eψ(q) ◦ `t(ϕ,ψ) ◦ τ̃σ = `r· eψ(q)τ̃ σ̃ = `rτ̃ `qσ̃.

Therefore πξ is functorial in the sense mentioned above.

The only problem now is that the composition ∗ of L need not be associative. Let

us see what the obstruction to associativity is. Pick a sequence of morphisms in L:

P
(q,[ϕ,σ]) // Q

(r,[ψ,τ ]) // R
(r′,[χ,υ]) // R′

and compute

(
(r′, [χ, υ]) ∗ (r, [ψ, τ ])

)
∗ (q, [ϕ, σ])

=
(
r′ · χ̃(r) · t(ψ, χ), [χψ, υτ ]

)
∗ (q, [ϕ, σ])

= (r′ · χ̃(r) · t(ψ, χ) · χ̃ψ(q) · t(ϕ, χψ), [χψϕ, υτσ])

and

(r′, [χ, υ]) ∗
(

(r, [ψ, τ ]) ∗ (q, [ϕ, σ])
)

= (r′, [χ, υ]) ∗
(
r · ψ̃(q) · t(ϕ, ψ), [ψϕ, ψσ]

)
= (r′ · χ̃(r) · χ̃ψ̃(q) · χ̃(t(ϕ, ψ)) · t(ψϕ, χ), [χψϕ, υτσ]).

Since the second coordinates are equal, the obstruction to associativity lies in the

difference between the first coordinates. Canceling the r′ · χ̃(r) from both, and then
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using the fact that χ̃ψ̃ = ct(ψ,χ) ◦ χ̃ψ, we are reduced to comparing

t(ψ, χ) · χ̃ψ(q) · t(ϕ, χψ) = t(ψ, χ) · χ̃ψ(q) · t(ψ, χ)−1 · t(ψ, χ) · t(ϕ, χψ)

= χ̃ψ̃(q) · t(ψ, χ) · t(ϕ, χψ)

to

χ̃ψ̃(q) · χ̃(t(ϕ, ψ)) · t(ψϕ, χ)

We can then rearrange to ask the question

t(ϕ, χψ)−1 · t(ψ, χ)−1 · χ̃(t(ϕ, ψ)) · t(ψϕ, χ)
?
= 1 ∈ R′

To examine this question, we go back to our two ways of computing the ∗-

composition of three morphisms in L. The fact that πξ takes ∗-composition in L

to composition in X implies that, as composition in X is associative,

cr′·eχ(r)·t(ψ,χ)·fχψ(q)·t(ϕ,χψ) ◦ χ̃ψϕ = cr′·eχ(r)·eχ eψ(q)·eχ(t(ϕ,ψ))·t(ψϕ,χ) ◦ χ̃ψϕ

and

`r′·eχ(r)·t(ψ,χ)·fχψ(q)·t(ϕ,χψ) ◦ υ̃τσ = `r′·eχ(r)·eχ eψ(q)·eχ(t(ϕ,ψ))·t(ψϕ,χ) ◦ υ̃τσ.

The second equation implies that

`t(ψ,χ)·t(ϕ,χψ) = `eχ(t(ϕ,ψ))·t(ψϕ,χ)

or equivalently that t(ϕ, χψ)−1 · t(ψ, χ)−1 · χ̃(t(ϕ, ψ)) · t(ψϕ, χ) ∈ K, the core of X.

The first equation implies that

ct(ψ,χ)·t(ϕ,χψ) ◦ χ̃ψϕ = ceχ(t(ϕ,ψ))·t(ψϕ,χ) ◦ χ̃ψϕ

or equivalently that k := t(ϕ, χψ)−1 · t(ψ, χ)−1 · χ̃(t(ϕ, ψ)) · t(ψϕ, χ) ∈ ZS
(
χ̃ψϕ(P )

)
.

We have already seen that k ∈ K, so in fact u ∈ ZS
(
χ̃ψϕ(P );X

)
= Z

(
χ̃ψϕ(P );X

)
by the X-centricity of P .
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Thus, as χ̃ψϕ ∈ F(P,R′) sends Z(P ;X) isomorphically to Z
(
χ̃ψϕ(P );X

)
, there

is a unique element u = uσ,t(ϕ, ψ, χ) ∈ Z(P ;X) such that

χ̃ψϕ(u) = t(ϕ, χψ)−1 · t(ψ, χ)−1 · χ̃(t(ϕ, ψ)) · t(ψϕ, χ).

If u(ϕ, ψ, χ) = 0 for all morphisms, the ∗-composition on L is associative, so L is a

category, and we’re happy. We have no reason to believe this should be true, but we

can view the failure of u to be identically zero as an obstruction to the existence of a

linking action system.

It is important to remember that the data that determine u are actually morphisms

of OcX, even if this is somewhat suppressed in the notation. We can view u as a

normalized 3-chain in C3(OcX;ZX). We claim that u is a 3-cocycle. The proof from

[BLO2] works mutatis mutandis. Let

P
[ϕ,σ] // Q

[ψ,τ ] // R
[χ,υ] // R′

[ω,ς] // R′′

be a sequence of morphisms in OcX. The definition of the coboundary map gives

δu(ϕ, ψ, χ, ω) = ϕ̃−1
(
u(ψ, χ, ω)

)
·u(ψϕ, χ, ω)−1 ·u(ϕ, χψ, ω) ·u(ϕ, ψ, ωχ)−1 ·u(ϕ, ψ, χ)

where each term is in Z(P ;X). In particular we can reorder, so let us write this as

δu(ϕ, ψ, χ, ω) = ϕ̃−1
(
u(ψ, χ, ω)

)
·u(ϕ, χψ, ω) ·u(ϕ, ψ, χ) ·u(ψϕ, χ, ω)−1 ·u(ϕ, ψ, ωχ)−1.

Let Φ := ω̃χψϕ for short; we will show that Φ(u(ϕ, ψ, χ, ω)) = 1, from which the fact

that Φ is an injective map of groups will give the result. Using all the above we get

Φ
(
ϕ̃−1(u(ψ, χ, ω))

)
= ω̃χψϕϕ̃−1(u(ψ, χ, ω))

= c−1
t(ϕ,ωχψ) ◦ ω̃χψϕ̃ϕ

−1(u(ψ, χ, ω))

= t(ϕ, ωχψ)−1 · t(ψ, ωχ)−1 · t(χ, ω)−1

·ω̃(t(ψ, χ)) · t(χψ, ω) · t(ϕ, ωχψ);
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Φ(u(ϕ, χψ, ω)) = t(ϕ, ωχψ)−1 · t(χψ, ω)−1 · ω̃(t(ϕ, χψ)) · t(χψϕ, ω);

Φ(u(ϕ, ψ, χ)) = ω̃χψϕ(u(ϕ, ψ, χ))

= c−1
t(χψϕ,ω)ω̃χ̃ψϕ(u(ϕ, ψ, χ))

= t(χψϕ, ω)−1 · ω̃(t(ϕ, χψ))−1 · ω̃(t(ψ, χ))−1

·ω̃χ̃(t(ϕ, ψ)) · ω̃(t(ψϕ, χ)) · t(χψϕ, ω)

= t(χψϕ, ω)−1 · ω̃(t(ϕ, χψ))−1 · ω̃(t(ψ, χ))−1 · t(χ, ω)

·ω̃χ(t(ϕ, ψ)) · t(χ, ω)−1 · ω̃(t(ψϕ, χ)) · t(χψϕ, ω);

Φ(u(ψϕ, χ, ω))−1 = t(χψϕ, ω)−1 · ω̃(t(ψϕ, χ))−1 · t(χ, ω) · t(ψϕ, ωχ);

Φ(u(ϕ, ψ, ωχ))−1 = t(ψϕ, ωχ)−1 · ω̃χ(t(ϕ, ψ))−1 · t(ψ, ωχ) · t(ϕ, ωχψ).

Writing these next to each other in this order, we find that they do in fact multiply

out to give the identity. Thus uσ,t is a cocycle, as claimed.

We have made two choices in defining uσ,t, namely σ and t. Let us see what

happens if wef we make different choices: Let t′ be another choice for t, so for each

pair of morphisms P
[ϕ,σ] // Q

[ψ,τ ] // R in OcX, we have

(ψ̃ϕ̃, τ̃ σ̃) = (ct′(ϕ,ψ)ψ̃ϕ, `t′(ϕ,ψ)τ̃σ) = (ct(ϕ,ψ)ψ̃ϕ, `t(ϕ,ψ)τ̃σ).

The last equality implies that t(ϕ, ψ)−1 · t′(ϕ, ψ) ∈ C and t(ϕ, ψ)−1 · t′(ϕ, ψ) ∈

ZS(ψ̃ϕ(P )) = Z(ψ̃ϕ(P )). Thus we can pick some c(ϕ, ψ) ∈ Z(P ;X) so that

t′(ϕ, ψ) = t(ϕ, ψ) · ψ̃ϕ
(
c(ϕ, ψ)

)
.

These c(ϕ, ψ) piece together to form a 2-cochain c ∈ C2(OcX;ZX).

Now, t′ defines a 3-cochain u′ just as t defined u; explicitly u′(ϕ, ψ, χ) ∈ Z(P ;X)

is the unique element that satisfies

χ̃ψϕ
(
u′(ϕ, ψ, χ)

)
= t′(ϕ, χψ)−1 · t′(ψ, χ)−1 · χ̃

(
t′(ϕ, ψ)

)
· t′(ψϕ, χ).

The claim is that u−1 · u′ = δc, which will show that the class [u] ∈ lim3
OcX ZX
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does not depend on the choice of t. We have

δc(ϕ, ψ, χ) = ϕ̃−1c(ψ, χ) · c(ψϕ, χ)−1 · c(ϕ, χψ) · c(ϕ, ψ)−1

and again, each of these terms lie in the center of P , so we can reorder them.

As χ̃ψϕ : P → R is an injective map of groups, we just have to show that

χ̃ψϕ(u−1u′) = χ̃ψϕ(δc). We compute

χ̃ψϕ
(
u′(ϕ, ψ, χ)

)
= t′(ϕ, χψ)−1 · t′(ψ, χ)−1 · χ̃

(
t′(ϕ, ψ)

)
· t′(ψϕ, χ)

= χ̃ψϕ
(
c(ϕ, χψ)

)−1 · t(ϕ, χψ)−1 · χ̃ψ
(
c(ψ, χ)

)−1 · t(ψ, χ)−1

·χ̃
(
t(ϕ, ψ)

)
· χ̃ψ̃ϕ

(
c(ϕ, ψ)

)
· t(ψϕ, χ) · χ̃ψϕ

(
c(ψϕ, χ)

)
= χ̃ψϕ

(
c(ϕ, χψ)

)−1 · t(ϕ, χψ)−1 · t(ϕ, χψ) · χ̃ψϕ
(
ϕ̃−1

(
c(ψ, χ)

)−1
)

·t(ϕ, χψ)−1 · t(ψ, χ)−1 · χ̃
(
t(ϕ, ψ)

)
· t(ψϕ, χ) · χ̃ψϕ

(
c(ϕ, ψ)

)
·t(ψϕ, χ)−1 · t(ψϕ, χ) · χ̃ψϕ

(
c(ψϕ, χ)

)
= χ̃ψϕ

(
c(ϕ, χψ)

)−1 · ϕ̃−1
(
c(ψ, χ)

)−1
) · t(ϕ, χψ)−1 · t(ψ, χ)−1

·χ̃
(
t(ϕ, ψ)

)
· t(ψϕ, χ) · χ̃ψϕ

(
c(ϕ, ψ) · c(ψϕ, χ)

)
where the third equality uses the relations χ̃ψ = ct(ϕ,χψ) ◦ χ̃ψϕ ◦ ϕ̃−1 and χ̃ ◦ ψ̃ϕ =

ct(ψϕ,χ) ◦ χ̃ψϕ. If we bring all the terms in the image of χ̃ψϕ to the left side of the

equation, noting that all the c(−,−) commute with each other and with u′(ϕ, ψ, χ),

we can rewrite the left side as χ̃ψϕ
(
δc(ϕ, ψ, χ) · u′(ϕ, ψ, χ)

)
.

On the right hand side all that is left is what we have already calculated to be

χ̃ψϕ
(
u(ϕ, ψ, χ)

)
, so we are done.

Finally, suppose that we made another choice σ′ of lifting of morphisms from OcX

to X. Since, as sets, the new “category” L′ and the original L have the same hom-sets,

σ′ just has the effect of chosing a new t, which we have just proved not to change the

class of u.

Summarizing: If [u] = 0, then there is a choice of t giving rise to some u′ ∈ [u]

which makes the composition in L associative. Then L is a category, and we claim that

it becomes an X-centric linking action system once we define the functor T cXS → L.
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To do this, we first give a homomorphism

P → L(P ) : p 7→ (p, [idP , idX ]).

This gives a right action of P on L(P,Q) = Q×OcX(P,Q) by composition. For any

z ∈ Z(P ;X), we have

(q, [ϕ, σ]) · p = (q, [ϕ, σ]) ∗ (p, [idP , idX ]) = (q · ϕ̃(p), [ϕ, σ]),

using the fact that t(idP , ϕ) = 1. In particular, because ϕ̃ is injective this shows that

the action of P on L(P,Q) is free.

Suppose now that (q, [ϕ, σ]) and (q′, [ϕ′, σ′]) are morphisms in L(P,Q) that have

the same image in X(P,Q) under πξ. Then (cq ◦ ϕ̃, `q ◦ σ̃) = (cq′ ◦ ϕ̃′, `q′ ◦ σ̃′). The

second coordinate of the equality implies that q−1q′ ∈ K, and the first implies that

q−1q′ ∈ ZS (ϕ̃P ) = (ϕ̃P ). Thus there is a unique p ∈ Z(P ;X) such that ϕ̃(p) = q−1q′,

and we see that πξP,Q : L(P,Q) → X(P,Q) is in fact the orbit map of the free right

Z(P ;X)-action.

We have enough data to apply Remark 5.2.7 to prove Proposition 5.2.6 in our

situation. In particular, if for every pair of X-centric subgroups P ≤ Q we let

iQP ∈ L(P,Q) be the morphism (1, [ιQP , idX ]), we see that Corollary 5.2.11 applies to

our situation: In L, restrictions of morphisms exist uniquely.

Any n ∈ NS(P,Q) is itself an element of NS(S, S), so let n̂ = (n, [idS, idX ]) ∈

L(S) be the corresponding morphism. By the previous paragraph there is a unique

morphism resQP (n̂) ∈ L(P,Q) defined to be the restriction of n̂. This allows us to

define the functor δ : T cXS → L to be:

P
� //

n
��

P

resQP (bn)
��

Q � // Q

The functor π = πξ : L → X has already been defined in the construction of L. From
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here, the verification that (L, δ, π) has the structure of an X-centric linking action

system is straightforward.

On the other hand, suppose we have an associated X-centric linking system LX.

A choice of sections Mor(OcX)
ξ→ Mor(X)

ξ′→ Mor(LX) gives rise to a natural identi-

fication of LX(P,Q) with the corresponding L(P,Q). Axiom (C) for LX shows that

composition in LX is then the same as composition in L, and then the fact that com-

position of morphisms is associative in LX implies that [u] = 0.

Uniqueness: Suppose we have two X-centric linking action systems LX
1 and LX

2

associated to X, with associated projection functors πi : LX
i → X. Pick a section

ξ : Mor(OcX)→ Mor(X), and sections ξ̃i : X→ LX
i of πi. For i = 1, 2, if we are given

a sequence of morphisms P
[ϕ,σ] // Q

[ψ,τ ] // R in OcX, then by definition the

morphisms ξ̃iξ([ψ, τ ]) ◦ ξ̃iξ([ϕ, σ]) and ξ̃iξ([ψϕ, τσ]) are equal after projecting to back

to OcX, so by Proposition 5.2.18 there are unique elements ti(ϕ, ψ) ∈ R (again using

only the first coordinate for ease of notation) such that

ξ̃iξ([ψ, τ ]) ◦ ξ̃iξ([ϕ, σ]) = ̂ti(ϕ, ψ) ◦ ξ̃iξ([ψϕ, τσ]).

Axiom (B) implies that these ti each play the role of the cochain t that arises

in the construction of a linking action system, so as above there exists a unique

c(ϕ, ψ) ∈ Z(P ;X) such that

t2(ϕ, ψ) = t1(ϕ, ψ) · [ψϕ]
(
c(ϕ, ψ)

)
.

Here and for the remainder of this section, [ψϕ] denotes the group map that appears

in the first coordinate of ξ([ψϕ, τσ]), and similarly for [ϕ] and [ψ].

As both LX
1 and LX

2 are categories with associative composition, the associated u1

and u2 are both trivial, and δc = u−1
2 u1 is a 2-cocycle. The claim is that the class

[c] measures the difference between LX
1 and LX

2 , so we need to check that a different

choice of ξ̃i gives rise to the same class.
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Pick a different ξ̃′i instead of our original ξ̃i : Mor(X)→ Mor(LX
i ). By construction

πiξ̃iξ([ϕ, σ]) = πiξ̃
′
iξ([ϕ, σ]) ∈ Mor(X),

so there is a unique w
(
ξ([ϕ, σ])

)
∈ Z(P ;X) such that

ξ̃′iξ([ϕ, σ]) = ξ̃iξ([ϕ, σ]) · w
(
ξ([ϕ, σ])

)
.

Alternatively, we could go directly from OcX to LX
i , and then there is an associated

w ∈ C1(OcX;ZX) satisfying for each [ϕ, σ] ∈ OcX(P,Q),

ξ̃′ξ([ϕ, σ]) = ξ̃ξ([ϕ, σ]) · w(ϕ).

Plugging this into the defining equation of t′i

ξ̃′iξ([ψ, τ ]) ◦ ξ̃′iξ([ϕ, σ]) = ̂t′i(ϕ, ψ) ◦ ξ̃′iξ([ψϕ, τσ])

we get ξ̃iξ([ψ, τ ])◦ŵ(ψ)◦ ξ̃iξ([ϕ, σ])◦ŵ(ϕ) = ̂t′i(ϕ, ψ)◦ ξ̃iξ([ψϕ, τσ])◦ŵ(ψϕ). Repeated

application of Axiom (C) turns this into

δR

(
[ψ]
(
w(ψ)

)
· [ψ][ϕ]

(
w(ϕ)

))
◦ ξ̃iξ([ψ, τ ]) ◦ ξ̃iξ([ϕ, σ])

= δR

(
t′i(ϕ, ψ) · [ψϕ]

(
w(ψϕ)

))
◦ ξ̃iξ([ψϕ, τσ]).

Now we can substitute ̂ti(ϕ, ψ) ◦ ξ̃iξ([ψϕ, τσ]) for the last two terms of the left hand

side and use the fact that each morphism in LX
i is categorically epi (Proposition

5.2.14) to conclude that

[ψ]
(
w(ψ)

)
· [ψ][ϕ]

(
w(ϕ)

)
· ti(ϕ, ψ) = t′i(ϕ, ψ) · [ψϕ]

(
w(ψϕ)

)
.

Rearrange to get

ti(ϕ, ψ)−1 · t′i(ϕ, ψ) = c−1
ti(ϕ,ψ)

(
[ψ]
(
w(ψ)

)
· [ψ][ϕ]

(
w(ϕ)

))
· [ψϕ]

(
w(ψϕ)

)−1
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and finally using that cti(ϕ,ψ) ◦ [ψϕ] = [ψ][ϕ], this becomes

ti(ϕ, ψ)−1 · t′i(ϕ, ψ) = [ψϕ]
(

[ϕ]−1
(
w(ψ)

)
· w(ϕ) · w(ψϕ)−1

)
= [ψϕ]

(
δw(ϕ, ψ)

)
.

In other words, c is changed by a coboundary when a different choice of lifting ξ′

is made. Thus the class [c] ∈ lim2
OcX ZX that measures the difference between LX

1 and

LX
2 is uniquely determined and well defined.

If [c] = 0, then t1 = t2 for some choice of sections, and we get that LX
1 is isomorphic

to LX
2 as categories over OcX, and conversely.

Finally, starting from LX
1 , any 2-cocycle can be realized by reverse engineering the

above. Therefore lim2
OcX ZX acts freely transitively on the set of isomorphism classes

of X-centric linking systems associated X over OcX.

5.4 Linking action systems as transporter systems

Let X be a saturated fusion action system and LX an associated linking action system.

Proposition 5.2.6 can be thought of a “unique right lifting” lemma, and we saw

that it implied many useful properties for a linking action system LX. In particular,

we learned from it that all morphisms are categorically mono, that restriction is

a well-defined notion (given the existence of specified “inclusion morphisms”), and

ultimately that all morphisms are epi. This last result “should” have been derived

from a “unique left lifting” lemma, but instead we used the additional structure of

the inclusion morphisms to derive it. Indeed, there is no direct left lifting analogue

of Proposition 5.2.6; instead, we have to settle with the following, which turns out to

have its own uses:

Proposition 5.4.1. Let P
(ϕ,σ) // Q

(ψ,τ) // R be a sequence of morphisms

in X. For any

h ∈ π−1
P,Q((ϕ, σ)) ⊆ LX(P,Q) and g̃h ∈ π−1

P,R((ψϕ, τσ)) ⊆ LX(P,R)

there is a unique g ⊆ LX(P,Q) such that gh = g̃h. Moreover, there is a unique
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z ∈ ϕ(Z(P ;X)) such that

(cg, `g) = (ϕ ◦ cz, σ ◦ `z).

Proof. The morphism h is epi by Proposition 5.2.14, so there is at most one g such

that gh = g̃h.

Pick any g′ lifting (ψ, τ). Thus g′ ◦ h and g̃h have the same image in X(P,R), and

by axioms (A) and (C), there is a unique z ∈ Z(P ;X) such that

g̃h = g′ ◦ h ◦ ẑ = g′ ◦ ϕ̂(z) ◦ h.

Then g = g′ ◦ ϕ̂(z) gives us the uniqueness statement.

Remark 5.4.2. The main difference between the left “lifting” of Proposition 5.4.1 and

the right lifting of Proposition 5.2.6 is that this more recent result cannot actually

lift the morphism (ψ, τ) ∈ X(Q,R), but only some ϕ(Z(P ;X))-translate of it. The

difference between the two stems from the possibility that Q 
 ϕ(P ), in which case ϕ

need not take central elements to central elements; as Q can be bigger, it is possible

that ϕ(z) acts nontrivially on Q, even though z acts trivially on P . ♦

Recall that an extension of g ∈ LX(P,Q) is g̃ ∈ LX(P̃ , Q̃) for P ≤ P̃ and Q ≤ Q̃

such that

P̃
eg // Q̃

P

i
eP
P

OO

g
// Q

i
eQ
Q

OO

commutes in LX. We have already seen (thanks to the fact that all morphisms of LX

are both epi and mono) that extensions are unique if they exist, and we are now in

the position to say when exactly they do exist:

Proposition 5.4.3. Let g ∈ LX(P,Q) be an isomorphism and let P̃ , Q̃ ≤ S be such

that P E P̃ , Q E Q̃, and g ◦ δP,P
(
P̃
)
◦ g−1 ≤ δQ,Q

(
Q̃
)

. Then there is a unique

extension g̃ ∈ LX(P̃ , Q̃) of g.
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Proof. First suppose that Q is fully X-centralized. By the extension axiom for sat-

urated fusion actions, the morphism (cg, `g) ∈ X(P,Q) extends to some (ϕ, `g) ∈

X
(
N(cg,`g), S

)
. The condition on P̃ implies that P̃ ≤ N(cg,`g) (project the condi-

tion down to X) and the condition on Q̃ implies that ϕ(p′) ∈ Q̃ for all p′ ∈ P̃ .

We can thus rename (ϕ, `g) to be its restriction in X(P̃ , Q̃). For the sequence

P

“
ι

eP
P ,idX

”
// P̃

(ϕ,`g) // Q̃ in X, let i
eP
P ∈ LX(P, P̃ ) lift the first map and i

eQ
Q ◦ g lift

the composite. Then Proposition 5.4.1 applies to give a unique extension g̃ of g as

desired (though note that it need not be the case that g̃ is a lift of (ϕ, `g), only a lift

of a ϕ(Z(P ;X))-translate of it).

Now consider the general case, where Q need not be fully X-centralized. Let R

be fully normalized and F -conjugate to P and Q. For any h ∈ LX(Q,R),

h ◦ N̂S(Q)
∣∣Q
Q
◦ h−1 ≤ LX(R)

is an inclusion of a p-subgroup. As R is fully normalized, Proposition 5.2.16 states

that δR,R (NS(R)) is Sylow in LX(R), so h can be chosen so that

h ◦ N̂S(Q)
∣∣Q
Q
◦ h−1 ≤ N̂S(R)

∣∣R
R
.

The subgroup R is fully X-centralized, so the first part of this proof implies that

there are morphisms h̃ extending h to NS(Q) and h̃g extending hg to P̃ . Let h

be the restricted isomorphism of h̃ with source Q̃, and similarly hg the restricted

isomorphism of h̃g with source P̃ . The situation can be represented as:

NS(Q)
eh // NS(R) P

fhg // NS(R)

Q̃

i

OO

∼=
h

// ceh
(
Q̃
)i

OO

P̃

=

OO

hg

∼= // cfhg

(
P̃
)i

OO

Q

i

OO

∼=
h

// R

i

OO

P

i

OO

h◦g
// R

i

OO
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The claim is that cfhg

(
P̃
)
≤ ceh

(
Q̃
)

. Axiom (C) implies that for p′ ∈ P̃ and q′ ∈ Q̃,

ĉfhg(p
′) = hg ◦ p̂′ ◦ hg

−1
and ĉeh(q′) = h ◦ q̂′ ◦ h

−1
.

Observing that every p′ ∈ P̃ defines a morphism in LX(P ), we can restrict this to get

δR,R

(
cffg
(
P̃
))

= (h ◦ g) ◦ δP,P
(
P̃
)
◦ (h ◦ g)−1 ≤ h ◦ δQ,Q

(
Q̃
)
◦ h−1 = δR,R

(
ch

(
Q̃
))

where the inequality comes from the initial assumption on P̃ and Q̃, and the claim

is proved.

Therefore the Divisibility Axiom of fusion action systems implies that there is

some (ψ, τ) ∈ X(P̃ , Q̃) such that

cfhg = (ι, idX) ◦ ceh ◦ (ψ, τ) ∈ X
(
P̃ , NS(R)

)
Now Proposition 5.2.6 implies that there is a unique g̃ ∈ LX

(
P̃ , Q̃

)
such that h̃g = h̃g̃.

Restricting this to P we get h ◦ g = h ◦ resQP (g̃), and the fact that h is mono implies

that resQP (g̃) = g, as desired.

Remark 5.4.4. Note that the condition on the overgroups can be restated as follows:

For every p′ ∈ P̃ , there is some q′ ∈ Q̃ such that g ◦ p̂′ ◦ g−1 = q̂′. This condition is

morally the same as the definition of the extender N(ϕ,σ) used to state the extension

axiom for saturated fusion actions. The key difference is that, when stated in terms

of the linking action system, the extension condition on the source is sharper, which

allows us to relax the assumption that the target of g be fully X-centralized. ♦

Recall the notion of an abstract transporter system associated to a fusion system

F , as introduced in [OV] and briefly described in Subsection 2.3.2.

Corollary 5.4.5. For a linking action system LX associated to X the composite LX →

X → F , together with δ : T cXS → LX, give LX the structure of a transporter system

associated to F .

Proof. The only difficult part of the proof is the extension condition, which Proposi-
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tion 5.4.3 shows to be true.

We can interpret this result as saying that a fusion action system X and an asso-

ciated linking system LX give rise to a transporter system on the underlying fusion

system F together with a map Mor(LX)→ ΣX that takes composition to multiplica-

tion and inclusions to the identity. In [OV] it is shown that this map is equivalent to

the data of a group map π1(|LX|)→ ΣX . We now set out to reverse this process:

Fix a (saturated) fusion system F on the p-group S and a transporter system

T associated to F . Assume that we are given a group map θ : π1(|T |) → ΣX ,

or equivalently a map Mor(T ) → ΣX that sends composition to multiplication and

inclusions to the identity.

Definition 5.4.6. Let Xθ be the category with Ob(Xθ) = Ob(T ) and morphisms

given by

Xθ(P,Q) =
{

(ϕ, σ) ∈ Inj(P,Q)× ΣX

∣∣∃g ∈ T (P,Q) such that (ϕ, σ) = (cg, θ(g))
}
.

♦

This allows us to define an action of S on X as follows: the p-group S embeds

as a subgroup of T (S) via the structure map δ : T Ob(T )
S → T . We denote by Ŝ the

image of S. θ defines a T (S)-action on X, and thus an S-action by restriction.

Clearly Xθ is a fusion action system, or at least generates one once we allow for

restrictions of morphisms to subgroups not in Ob(T ). Let F θ be the underlying fusion

system.

We would for Xθ to be saturated, but for now we must settle for a weaker condition.

Definition 5.4.7. For C a collection of subgroups of S closed under F θ-conjugacy

and overgroups, and X a fusion action system on S, we say that X is Ob(C)-saturated

if the saturation axioms hold for all P ∈ C. ♦

We need a little terminology to prove object-saturation of F θ:

Notation 5.4.8. In the above situation, recall that for all P ∈ Ob(T ) we define

E(P ) = ker[T (P ) → F θ(P )]. We also denote by K(P ) the kernel of the action
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map θ : T (P ) → Σ(X). Finally, let C be the core of the S-action on X, so that

Ĉ = Ŝ ∩ K(S).2 We can therefore define the notions of X-normalizers and X-

centralizers of objects of T in the obvious way. ♦

Proposition 5.4.9. For each P ∈ Ob(T ),

• P is fully normalized in F θ if and only if N̂S(P ) ∈ Sylp(T (P )).

• P is fully centralized in F θ if and only if ẐS(P ) ∈ Sylp(E(P )).

• P is fully X-normalized in F θ if and only if ̂NS(P ;X) ∈ Sylp(K(P )).

• P is fully X-centralized in F θ if and only if ̂ZS(P ;X) ∈ Sylp(E(P ) ∩K(P )).

Proof. The first two points are proved in [OV], Proposition 3.4. The proofs of the

remaining two points follow basically the same argument as the second.

Proof of third point: For P ∈ Ob(T ), let Q be F θ-conjugate to P and fully

normalized, so by the first point N̂S(Q) ∈ Sylp(T (Q)). Therefore

̂NS(Q;X) = ̂NS(Q) ∩K(Q) ∈ Sylp T (Q).

Now, F θ is Ob(T )-saturated by [OV], so the proof of Proposition 4.2.12 applies

here to give us that P is also fully X-normalized. Since K(Q) ∼= K(P ), we have

̂NS(P ;X) ∈ Sylp(K(P )) if and only if |NS(P ;X)| = |NS(Q;X)|, or equivalently, if

and only if P is fully X-normalized.

The proof of the fourth point is the same as that of the third, replacing every

instance of K(−) with E(−) ∩K(−).

The notation in the following Corollary is a direct analogy with that introduced

to describe fusion action systems.

2For this section we change the name of the core so as to free up the letter K.
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Corollary 5.4.10. For all P ∈ Ob(T )

• If P is fully normalized then

– Xθ
S(P ) ∈ Sylp(X

θ(P ))

– F θS(P ) ∈ Sylp(F θ(P ))

– ΣS
θ (P ) ∈ Sylp(Σθ(P ))

• If P is fully X-normalized, then F θS(P )0 ∈ Sylp(F θ(P )0).

• If P is fully centralized, then ΣS
θ (P )0 ∈ Sylp(Σθ(P )0).

Proof. Each of these follows from the observation that the image of a Sylow is Sylow

in the quotient.

Proposition 5.4.11. Let Q ∈ Ob(T ) be fully X-centralized and (ϕ, σ) ∈ IsoXθ(P,Q).

Then there is some (ϕ̃, σ) ∈ Xθ(N(ϕ,σ), S) that extends (ϕ, σ).

Proof. We first claim that N̂S(Q) ∈ Sylp

(
N̂S(Q) · E(Q) ∩K(Q)

)
:

[
N̂S(Q) : N̂S(Q) · E(Q) ∩K(Q)

]
=

∣∣∣N̂S(Q)
∣∣∣ · |E(Q) ∩K(Q)|

|NS(Q)| ·
∣∣∣N̂S(Q) ∩ E(Q) ∩K(Q)

∣∣∣
=

[
N̂S(Q) ∩ E(Q) ∩K(Q) : E(Q) ∩K(Q)

]
.

The fact that N̂S(Q) ∩ E(Q) ∩ K(Q) = ZS(Q;X) and the final point of Proposi-

tion 5.4.9 gives the claim.

Now, pick g ∈ T (P,Q) such that (cg, θ(g)) = (ϕ, σ). By definition of N(ϕ,σ),

g ◦ N̂(ϕ, σ)
∣∣P
P
◦ g−1 ≤ N̂S(Q)

∣∣Q
Q
· E(Q) ∩K(Q)

and so by the Sylow result just proved, there is some h ∈ E(Q) ∩K(Q) such that

(hg) ◦ N̂(ϕ, σ)
∣∣P
P
◦ (hg)−1 ≤ N̂S(Q)

∣∣Q
Q
.
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Then hg ∈ IsoT (P,Q), N(ϕ,σ) D P , and NS(Q).Q, so the conditions for the Extension

Axiom (II) of abstract transporter systems are satisfied. Therefore there is some

h̃g ∈ T (N(ϕ,σ), NS(Q)) that extends hg. This implies that (chg, θ(hg)) ∈ Xθ(N(ϕ,σ), S)

extends (cg, θ(g)) = (ϕ, σ) in Xθ, and the result is proved.

Corollary 5.4.12. The fusion action system Xθ is Ob(T )-saturated.

Proof. All the axioms have been verified in Propositions 5.4.9 and 5.4.11.

We have seen that a transporter system T together with a map θ : π1(T ) → ΣX

determine a saturated fusion action system, at least so far as the objects of T are

aware. We are given natural functors T Ob(T )
S

// T // Xθ , and we can ask how

close this is to being the data of an X-centric linking action system associated to Xθ.

The following result states that, so long as all the X-centric subgroups are ac-

counted for, T fails to be a linking action system “in a p′-way,” and moreover that it

contains enough data to construct a linking action system Lθ:

Proposition 5.4.13. Suppose that in the above situation Ob(T ) contains all X-

centric subgroups of S, and let T cX denote the fully subcategory with these as the

objects. Then for any X-centric P ≤ S, there is a unique p′-group EK ′(P ) such that

E(P ) ∩ K(P ) = ̂Z(P ;X) × EK ′(P ). Furthermore, EK ′(P ) is the subgroup of all

p′-elements of E(P ) ∩K(P ).

Consequently, if Lθ is the category whose objects are the X-centric subgroups of

S and whose morphisms are given by

Lθ(P,Q) = T (P,Q)/EK ′(P ),

then Lθ is an X-centric linking action system associated to Xθ.

Proof. Axiom (C) of transporter systems implies that E(P ) commutes with P̂ , so in

particular E(P ) ∩K(P ) does as well. Therefore the fact that P is X-centric implies

that

Ŝ ∩ E(P ) ∩K(P ) = ̂ZS(P ;X) = ̂Z(P ;X) E E(P ) ∩K(P ),

115



and the fact that P is fully X-centralized implies that ̂Z(P ;X) is a normal abelian

Sylow subgroup of E(P ) ∩ K(P ). The Schur-Zassenhaus theorem then implies the

existence and uniqueness of EK ′(P ), from which it easily follows that Lθ is an X-

centric linking action system associated to Xθ.

5.5 Stabilizers of p-local finite group actions

For H ≤ G finite groups, it is a basic result that

BH ' EG×H ∗ ' EG×G G/H.

In this section we prove that the analogous statement for linking actions systems

is true. Let X be a saturated fusion action system, and let LX be an associated linking

action system. We return to the notation that K is the core of the S action on X.

The first step is to understand the most important property of the G-set G/H—

that it is transitive—in the context of fusion actions:

Definition 5.5.1. The fusion action system X is transitive if S = X(1) acts transi-

tively on X. The linking action system LX is transitive if the underlying fusion action

system is. ♦

Lemma 5.5.2. If the fusion action system X is saturated, πΣ (X(1)) = πΣ (X(K)).

Proof. The non-obvious inclusion is πΣ (X(1)) ⊆ πΣ (X(K)), which follows from the

extension axiom for fusion action systems and from the easy calculation that K ≤

N(id1,σ) for any (id1, σ) ∈ X(1).

Remark 5.5.3. We could therefore have defined transitivity of fusion actions in terms

of the group πΣ (X(K)) ≤ ΣX . If we want to concentrate on linking action systems,

this alternate characterization has the advantage that K is always X-centric, and

therefore we can define transitivity of a linking action system in terms of subgroups

of S that are witnessed by LX. ♦
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We wish to introduce the notion of the “stabilizer” of a point x ∈ X from the

point of view of fusion and linking actions. Recall that Sx = StabS(x) denotes the

maximal subgroup of S that fixes x.

Definition 5.5.4. Given the fusion action system X and x ∈ X, the stablizer fusion

action system of x, denoted Xx = StabX(x), is the fusion action system on Sx acting

on X with morphisms Xx(P,Q) =
{

(ϕ, σ) ∈ X(P,Q)
∣∣σ(x) = x

}
.

We denote by Fx the stabilizer fusion system of x, which is the underlying fusion

system of Xx.

Similarly, given a linking action system LX associated to X, the stabilizer link-

ing action system of x, LX
x = StabLX(x), is the category whose objects are those

X-centric subgroups that are contained in Sx and whose morphisms are given by

LX
x (P,Q) =

{
g ∈ LX(P,Q)

∣∣`g(x) = x
}

. ♦

Remark 5.5.5. We can think of Xx and LX
x as the preimages under the natural maps

Mor(X)→ ΣX and Mor(LX)→ ΣX , respectively, of the subgroup ΣX−{x}. ♦

Even if the fusion action system is transitive, not all points of X are equal in the

eyes of X or LX: In the presence of an ambient group G, points whose stabilizers

in S are Sylow in the Gx are in some sense privileged in our world. We codify this

situation with the following:

Definition 5.5.6. x ∈ X is fully stabilized if |Sx| ≥ |Sx′| for all x′ ∈ X. ♦

Lemma 5.5.7.

(a) The point x ∈ X is fully stabilized if and only if πΣ (Sx) ∈ Sylp (X(1)x).

(b) The point x ∈ X is fully stabilized if and only if Ŝx
∣∣K
K
∈ Sylp

(
LX
x (K)

)
.

Proof.

(a) For any P ≤ S, denote by P the image of P in X(1). As K ≤ Sy for all y ∈ X

and
∣∣Sy∣∣ = |Sy|/|K|, it follows immediately that x if fully stabilized if and only

if
∣∣Sx∣∣ is maximal among the orders of the Sy. Moreover, the Sylow axioms for
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saturation imply that S ∈ Sylp (X(1)), and clearly Sy = S ∩ (X(1)y), so we find

ourselves in the following situation:

LetG be a finite group that acts transitively on the finite setX. For S ∈ Sylp(G)

and x ∈ X, we have |Sx| ≥ |Sy| for all y ∈ X if and only if Sx ∈ Sylp(Gx). This

result is easy to see, but we include the proof for the sake of completeness.

If x ∈ X is such that the order of Sx is maximal, let T be a Sylow subgroup of

Gx that contains Sx. As T is a p-subgroup of G and S ∈ Sylp(G), there is some

g ∈ G such that gT ≤ S. We have gGx = Gg·x, so gT ≤ Sg·x. The assumption

on the maximal order of the stabilizer of x then implies that
∣∣gT ∣∣ ≤ ∣∣Sx∣∣, from

which the assumption that Sx ≤ T implies that Sx = T ∈ Sylp(Gx).

Conversely, if Sx ∈ Sylp(Gx), for any y ∈ X, pick g ∈ G such that g · y = x.

Then the fact that gGy = Gx implies that gSy is a p-subgroup of Gx, and hence

subconjugate to Sx by the Sylow assumption. Thus
∣∣Sy∣∣ ≤ ∣∣Sx∣∣, as desired.

(b) The group LX(K) naturally acts on X by the composition

LX(K)
πK,K // X(K)

πΣ // ΣX .

Axiom (B) of linking action systems implies that

Ŝx
∣∣K
K

=
(
Ŝ
∣∣K
K

)
x
,

and it follows easily from the definitions that

Ŝx
∣∣K
K

=
(
Ŝ
∣∣K
K

)
∩
(
LX
x (K)

)
.

The core K is strongly closed in F , so in particular it is fully normalized and

NS(K) = S. Proposition 5.4.9 then implies that that Ŝ
∣∣K
K
∈ Sylp

(
LX(K)

)
.

Thus we have again reduced the problem to the case of actual finite groups, as

in the proof of part (a), and the result follows.
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Corollary 5.5.8. Let X be a transitive saturated fusion action system and x a fully

stabilized point of X. Then for every y ∈ X, the stabilizer Sy is F-subconjugate to Sx.

In particular, the stabilizers of distinct fully stabilized points of X are isomorphic.

Proof. First note that if (ϕ, σ) is a morphism of X such that σ(y) = x and s ∈ Sy,

then ϕ(s) lies in Sx when defined. This is simply a restatement of the fact that (ϕ, σ)

is an intertwined pair: ϕ(s) · x = ϕ(s) · σ(y) = σ(s · y) = σ(y) = x.

Thus the result will follow from the extension axiom if we can find some σ ∈ X(1)

such that σ(y) = x and Sy ≤ N(1,σ). As X is assumed to be transitive, there exists

a σ ∈ X(1) such that σ(y) = x. Then the group H :=
{
σ ◦ `s ◦ σ−1

∣∣s ∈ Sy} is a

p-subgroup of X(1)x. By Proposition 5.5.7 (a), Sx ∈ Sylp (X(1)x), so without loss

of generality we may assume that we have chosen σ such that that H ≤ X(1)x and

σ(y) = x. But then Sy ≤ N(1,σ), as desired.

With this interpretation of the stabilizer fusion, action, and linking systems, we

find ourselves in the situation examined in [OV], and we recall the following result:

Proposition 5.5.9. Let T be an abstract transporter system associated to the fu-

sion system F on the p-group S. Fix a finite group Γ and a group homomorphism

Φ : π1(|T |)→ Γ, or equivalently, a map Mor(T )→ Γ that takes composition to mul-

tiplication and inclusions to the identity. For any subgroup H ≤ Γ let SH ≤ S be the

maximal subgroup whose elements (viewed as morphisms of T ) are sent to H, and

assume that that S1 ∈ Ob(T ).

Let TH ⊆ T be the subcategory whose objects are those of T that are contained in

H and whose morphisms are given by TH(P,Q) =
{
g ∈ T (P,Q)

∣∣Φ(g) ∈ H
}

.

Let FH ⊆ F be the fusion system on SH generated by π(TH), and let

T Ob(TH)
SH

(SH)
δH,H // TH

πH // FH

be the restrictions of the structure maps for the transporter system T . Then:

(a) Φ(Mor(T )) = Φ(T (S1)).

(b) TH is a transporter system associated to FH if and only if δS1,S1(SH) ∈ Sylp(TH(S1)).
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(c) If the condition of Item (b) is satisfied and all fully centralized P ≤ S have the

property that ZS1(P ) ≤ P implies P ∈ Ob(T ) then FH is a saturated fusion

system.

(d) If for all P ∈ Ob(T ) we have P ∩S1 ∈ Ob(T ), then |TH | has the homotopy type

of the covering space of |T | with fundamental group Φ−1(H).

Proof. [OV, Proposition 4.1].

Proposition 5.5.10. If x ∈ X is fully stabilized, the stabilizer fusion system Fx ⊆ F

is saturated and LX
x is a transporter system associated to it.

Proof. From the natural map Mor(LX)→ ΣX and H = ΣX−{x} ≤ ΣX , in the notation

of Proposition 5.5.9 we have K = S1, Sx = SH , LX
x = TH , and Fx = FH . That LX

x is

a transporter system associated to Fx is then simply an application of Lemma 5.5.7

(b) to Proposition 5.5.9 (b).

To see that Fx is saturated, we appeal to Item (c) of Proposition 5.5.9 and show

that if P ≤ S is fully centralized and ZK(P ) ≤ P then P is X-centric, i.e., that

ZK(Q) = ZS(Q;X) = Z(Q;X) for all Q F -conjugate to P . If ϕ ∈ IsoF(P,Q), then

ϕ(Z(P ;X)) = Z(Q;X) ≤ ZS(Q;X). Because P is fully centralized, it is also fully

X-centralized, so the assumption that Z(P ;X) = ZS(P ;X) and comparison of orders

implies that Z(Q;X) = ZS(Q;X). Thus the conditions of Item (c) are satisfied and

Fx is saturated.

We now find ourselves in the following situation: Let LX be a linking action system

associated to the transitive saturated fusion action system X, and x a fully stabilized

point of X. We would like to understand the topological information of the stabilizer

linking action system LX
x as it relates to that of LX, and indeed Proposition 5.5.9

gives us some relevant information in terms of subgroups of π1(|LX|). We can also

calculate the homotopy type of |LX
x | directly, as follows:

Let ι : LX
x → LX be the inclusion functor, and let F : LX → T OP be the left

homotopy Kan extension of the trivial functor ∗ : LX
x → T OP over ι. We already

have the functor X : LX → T OP defined as part of the data of LX, and we would

like to relate these.
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Proposition 5.5.11. F is equivalent to X as functors LX → T OP.

Proof. Thomason’s theorem [Tho] tells us that we have a homotopy equivalence

F (P ) ' hocolim
(ι↓P )

∗ = |(ι ↓ P )|

for all P ∈ Ob(LX). We first prove that every component of |(ι ↓ P )| is contractible

and that the components can be put in natural correspondence with the points of X.

The equivalence of F with X is not natural: For every y ∈ X, Corollary 5.5.8

implies that LX(Sy, Sx) is nonempty as x is fully stabilized. Let gy ∈ LX(Sy, Sx)

be a choice of a morphism in this hom-set for each y, and assume gx = idSx . Also

let gy = (gy)iso be the restricted isomorphism of gy (cf. Corollary 5.2.13), gPy the

restriction of gy to Py ≤ Sy, and gPy =
(
gPy
)

iso
the restricted isomorphism of gPy .

For any (Q,α) ∈ (ι ↓ P ), so that Q ∈ Ob(LX
x ) and α ∈ LX(Q,P ), we have

`α(x) = y for some y ∈ X. Since the pair (cα, `α) is intertwined and Q ≤ Sx, we have

cα(Q) ≤ Py ≤ Sy. Thus we have the following commutative diagram in LX, where all

morphisms labeled i are the obvious inclusions:

Q
∼=
αiso

//

i
��

cα(Q)

i

&&NNNNNNNNNNNNN

i
��

cgy(Py)

i
��

Py
∼=

gPy

oo
i

//

i
��

P

cgy(Sy)

i
��

Sy
∼=
gy

oo

gy
vvmmmmmmmmmmmmmmmmm

Sx

The top composition is α by definition. By the choices made above, we have `g ◦

`α(x) = x, and therefore there is a factorization

α =
(
iPPy ◦ gPy

−1
)

︸ ︷︷ ︸
LX(cgy (Py),P )

◦
(
gPy ◦ i

Py
cα(Q) ◦ αiso

)
︸ ︷︷ ︸

LX
x (Q,cgy (Py))

.
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This is the unique (as all morphisms of LX are categorically mono and epi) factoriza-

tion of α : Q → P as a composite Q → cgy(Py) → P , so what we have really proved

is the following:

For any object (Q,α) ∈ (ι ↓ P ) such that `α(x) = y, there is a unique morphism

from (Q,α) to
(
cgy(Py), ι

P
Py
◦ gPy

−1
)

in (ι ↓ P ), namely gPy ◦ i
Py
cα(Q) ◦ αiso. In other

words, we have found a terminal object in the component containing (Q,α) that

depends only on our choice of the gy and where α sends x. This shows that F (P ) is

homotopically discrete, and as we have assumed that LX is transitive, the components

are naturally identified with the points of X.

All we have to do is see how F acts on morphisms, compared to the functor X.

Recall that X sends the morphism h ∈ LX(P, P ′) to the map of spaces `h. On the

other hand, F (h) is induced by the functor (ι ↓ P ) → (ι ↓ P ′) that sends (Q,α) to

(Q, h ◦α). If (Q,α) is in the component we have identified with y we have `α(x) = y,

and then (Q, h ◦ α) is in the component corresponding to `h ◦ `α(x) = `h(y). This is

just to say that F (h) permutes the space homotopy equivalent X by the permutation

`h, so the result is proved.

Corollary 5.5.12. In the above situation,

hocolim
LX

X '
∣∣LX

x

∣∣ .
Remark 5.5.13. The final piece of interpretation comes from thinking of the left hand

side as the p-local finite group action theoretic version of EG×GG/H, and the right

hand side as EH ×H ∗. ♦
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Appendix A

Weltanschauung: Fusion systems

of groupoids

This Appendix is a bit of an outlier, in that it does not relate directly to the content

of the rest of the thesis. Instead, this could be seen as an introductory chapter to the

same body of work, but presented with a very different perspective—one that was

secretly lurking in the back of my mind for much of the time when the work detailed

here was done. Though I have not chosen to use the perspective of this section to

describe fusion action systems here, I am hopeful that this point of view may be

enlightening in the future.

The material introduced here is largely informal, and will not be needed through-

out the rest of this document. Much of my motivation comes from [Hig].

A.1 Groupoids

Recall that a groupoid is a category G all of whose morphisms are invertible. In the

special case that G has a single object ∗, the composition law of the category gives

HomG(∗, ∗) the structure of a group: Groupoids can be thought of as “groups with

many objects.”

If the groupoid G is connected—for any two objects x, x′ ∈ Ob(G) we have

HomG(x, x
′) is nonempty—G is equivalent as a category to the vertex group Gx =
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AutG(x) for all x ∈ Ob(G).1

A finite groupoid is a groupoid G with only finitely many objects and morphisms.

For our purposes, we may as well assume that all of the groupoids we encounter here

are finite.

The classifying space of the groupoid G is the geometric realization BG := |G|.

If x1, . . . , xn are representative objects of the connected components of G, we have

BG ' qni=1BGxi is a disjoint union of classifying spaces of discrete groups.

A groupoid is unicursal if every two objects have at most one morphism between

them, and simplicial if they have exactly one. Thus the classifying space of a unicursal

category is homotopically discrete, and that of a simplicial one is contractible.

A.2 Conjugation in groupoids

Let G be a finite group. Every element g ∈ G defines an inner automorphism of G,

cg : g′ 7→ gg′g−1. Viewing G as a groupoid with a single object, we might hope to

generalize and describe conjugation in arbitrary groupoids.

To this end, let us define an arrow field of the groupoid G to be a collection of

morphisms Γ = {γx′x }x∈Ob(G) with γx
′
x ∈ HomG(x, x

′). Note that for every object x of

G there is a unique morphism γx
′
x with x as its source, but we do not require that the

same be true for targets.

The arrow field Γ determines an endofunctor of G which we shall denote cΓ. For

any object x ∈ Ob(G), let γx
′
x ∈ Γ be the unique morphism with x as its source. cΓ

sends x to x′. For a morphism δ ∈ G(x, y), cΓ(δ) is the morphism γy
′
y ◦ δ ◦

(
γx
′
x

)−1 ∈

HomG(x
′, y′).

If Γ and ∆ are arrow fields of G, we define the composite Γ ◦∆ to be the arrow

field whose morphism with source x is γx
′′

x′ ◦ δx
′
x . The identity for this composition is

the arrow field with γxx = idx, so the set of arrow fields naturally has the structure of

a monoid, which will be denoted Inn+(G).

1One could take this basic fact to mean that the study of connected groupoids is “the same”
as that of discrete groups. We take the more rigid view that it is isomorphism, not equivalence, of
groupoids that is the relevant notion of sameness.
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The arrow field Γ is invertible if the assignment Γ→ Ob(G) that sends a morphism

to its target is bijective. If Γ is invertible, its inverse is the arrow field Γ−1 whose

morphism with source x is (γxx′)
−1 for the unique γ ∈ Γ with target x. Clearly

Γ ◦ Γ−1 = Γ−1 ◦ Γ is the identity element of Inn+(G), so the set of invertible arrow

fields forms the group of inner automorphisms of G, denoted Inn(G).

It should be noted that Inn(G) is not invariant under equivalence of groupoids,

only under groupoid isomorphism. In particular, if G is connected but has more than

a single object, it is easy to see that Inn(G) is a priori much bigger than Inn(Gx) for

any x ∈ Ob(G). Though the groups Inn(G) and Inn(Gx) are related, we take this

evidence in support of our decision to focus on groupoid isomorphisms.

One could at this point start doing finite group theory for finite groupoids and

seeing how much would carry over. There are notions of normal subgroupoid, quotient

groupoid, etc., defined in [Hig], and one could formulate variations of the Sylow

theorems in a few different ways.

One could even ask the question: “What do we mean by fusion in a finite

groupoid?” Though this may be an interesting research direction to pursue at some

point, for now we shall restrict our attention to a very particular class of groupoids.

A.3 Translation groupoids

Let G be a finite group and X a finite G-set. The translation groupoid of G acting on

X is the category BGX whose objects are the elements of X and whose morphisms

are defined by HomBGX(x, x′) =
{
ǧx
′
x

∣∣g · x = x′
}

. We shall often simply write ǧ for

ǧx
′
x , when the source and target are either understood or not greatly relevant.

The important property that makes the study of translation groupoids somewhat

more tractable than the general case is in some sense little more than a naming

convention: From every object x of BGX and every element g ∈ G, there is precisely

one morphism ǧg·xx with x as a source, and similarly precisely one morphism ǧxg−1·x

with x as a target.

In particular, every element g ∈ G determines an arrow field Γ(g), and thus an
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inner automorphism cg of BGX. Explicitly, the functor cg is defined by

x � //

ǧ′

��

g · x

(gg′g−1 )̌
��

g′ · x � // gg′g−1 · x

We draw attention to the fact that the functor cg is completely determined by two

pieces of data, each of which takes place in a simpler context than that of an isomor-

phism of groupoids. The first is the permutation of X given by left multiplication by

g, which determines the action of cg on objects. The second is the automorphism of

G given by conjugation by g, which in turn determines the action of cg on morphisms.

Let us examine another situation in which this takes place. Suppose that X is a

G-set, and we give ourselves H,K ≤ G. Restriction of the action makes X into both

an H- and a K-set, so we may talk about the groupoids BHX and BKX. Suppose

further that H is subconjugate to K via g ∈ G, so that gH ≤ K. Then cg, defined as

above, actually restricts to a morphism of groupoids cg : BHX → BKX. We still have

that the complicated morphism of groupoids cg can be described simply in terms of a

permutation of X and a group map H → K, even though it is possible that neither

of these can be described in a manner “internal” to H or K if g lives in neither.

To take the example further, now suppose that we have the G-set X and the H-set

Y , together with an equivariant map of the pair (G,X) → (H, Y ). By this I mean

that we have a group map α : G → H and a set map f : X → Y that satisfy the

intertwining condition

f(g · x) = α(g) · f(x)

Then (α, f) determines a map of groupoids BGX → BHY , and obviously does so in

a way dictated simply in terms of a set map and a group map together.

Let us call any map of translation groupoids that can be described by such a

pair of maps of objects and group an ambient map of translation groupoids. As will

hopefully become clear throughout the course of this document, ambient maps of

translation groupoids are precisely the heuristic context in which we shall introduce
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the notion of fusion action system:

• The functors of the form cg : BGX → BGX represent the whole group of inner

automorphisms, analogous to the entire inner automorphism group of a finite

group. There is too much p′-information here for our purposes, so we must

restrict our attention.

• If S is Sylow in G and P,Q ≤ S, ambient group maps of the form cg : BPX →

BQX with gP ≤ Q give rise to the morphism of an ordinary fusion action

system—one induced by an actual ambient finite group.

• For S an arbitrary p-group and X a finite S-set, we may form a category whose

morphisms are certain ambient maps of translation groupoids BPX → BQX

for all P,Q ≤ S. Once we identify the appropriate conditions to place on the

resulting category, we come to our notion of abstract fusion action system.

The takeaway from this entire discussion is that the theory of fusion action sys-

tems, which encompasses the classical story of abstract fusion systems, can be realized

in terms of some restricted notion of “fusion system of groupoids.” Perhaps this more

general subject will prove to be of interest in the future, perhaps not. For now, let

us be content with the fusion theory of finite translation groupoids, also known as

fusion action systems.
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Appendix B

Index of notation

p a prime
G,H, . . . finite groups
Sylp(G) set of Sylow subgroups of G
S, T, . . . finite p-groups, thought of as Sylows
P,Q,R, . . . p-groups, usually subgroups of S
BG, EG classifying and simplicial categories of G
C(a, b), C(a) the Hom-sets HomC(a, b),HomC(a, a)
cg : G→ G conjugation map g′ 7→ gg′g−1

gH cg(H), the conjugate of H ≤ G by g
NG(P,Q), . . . transporter in G from P to Q
TG := TS(G) transporter system on S relative to G
TS minimal transporter system on S
NG(P ), ZG(P ), . . . normalizer and centralizer of P in G, etc.
AutG(P ) automorphisms of P induced by conjugation from G
HomG(P,Q) group maps from P to Q induced by G
FG := FS(G) fusion system on S relative to G
FS := FS(S) minimal fusion system on S
F cG, T cG, etc. full subcategories whose objects are the p-centric subgroups
LcG := LcS(G) centric linking system on S relative to G
[g], . . . class of element g ∈ G, viewed as morphism in LcS(G)
(−)∧p Bousfield-Kan p-completion functor
'p homotopy equivalence up to p-completion
G(F ) Grothendieck construction of the functor F : C → CAT ,SET , . . .
Rep(G,H) H\Hom(G,H), the representations of G in H
OG := O(FG) the p-orbit category of G
F abstract fusion system
∼=F F -conjugacy
Nϕ extender of ϕ ∈ Mor(F)
T abstract transporter system
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g, h, . . . morphisms in abstract linking or transporter systems
δ : TS → T , π : T → F structure maps of the transporter system
p̂ the group element p viewd as a morphism in T
L abstract centric linking system
X, Y, . . . finite sets
ΣX symmetric group on X

GX, SX, . . . X as a G-, S-, etc.-set
ϕ
HX X with H-action twisted via ϕ
XG G-fixed points of X
G,S, etc. images of G,S in ΣX , etc.
K, K̂ core of S, G action on X
[P ] isomorphism class of S-set S/P
Gx, Sx stabilizers of x in G,S, etc.
XG := XS(G) fusion action system on S relative to the G-set X
`g permutation of X given by translation by g
XS minimal fusion action system for S-set X
πF natural functor XG → FG
πT natural functor XG → TG
πΣ projection onto the second coordinate XG(P,Q)→ ΣX

ΣG
X(P ) πΣ(XG(P ))

AutG(P ;X), etc. XG(P ), the fusion action automorphisms of P , etc.

NG(H;K), etc. NG(H) ∩ K̂ = N bK(H), the X-normalizer of H in G, etc.

ZG(H;K), etc. ZG(H) ∩ K̂ = Z bK(H), the X-normalizer of H in G, etc.
FG(P )0 ker[πΣ : XG(P )→ ΣG

X(P )]
ΣG

X(P )0 ker[πF : XG(P )→ FG(P )]
X abstract fusion action system
S the finite group X(1) ≤ ΣX

N(ϕ,σ) the extender of (ϕ, σ) in X

FX fusion system on S underlying FX
K := KX core fusion system of X

BGX,BSX, . . . translation categories of the G- or S-set X
T cXG ,Xc, . . . full subcategories with the X-centric subgroups of S
LX abstract linking action system associated to X

X the functor whose homotopy colimit gives the classifying space of LX

OX the orbit category of X

ZX the linking action obstruction functor
Xθ the fusion action system arising from the functor θ : T → ΣX

Xx stabilizer fusion action system of x ∈ X
LX
x stabilizer linking action system of x ∈ X

Xx stabilizer fusion action system of x
FX
x stabilizer fusion system of x
LcXG X-centric linking system associated to XG

LX abstract X-centric linking system associated to X
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[BCG+] Carles Broto, Natàlia Castellana, Jesper Grodal, Ran Levi, and Bob Oliver.
Subgroup families controlling p-local finite groups. Proc. London Math. Soc.
(3), 91(2):325–354, 2005.

[BK] A. K. Bousfield and D. M. Kan. Homotopy limits, completions and local-
izations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin,
1972.

[BLO1] Carles Broto, Ran Levi, and Bob Oliver. Homotopy equivalences of p-
completed classifying spaces of finite groups. Invent. Math., 151(3):611–664,
2003.

[BLO2] Carles Broto, Ran Levi, and Bob Oliver. The homotopy theory of fusion
systems. J. Amer. Math. Soc., 16(4):779–856 (electronic), 2003.

[Dwy] W. G. Dwyer. Homology decompositions for classifying spaces of finite
groups. Topology, 36(4):783–804, 1997.

[Gol] David M. Goldschmidt. A conjugation family for finite groups. J. Algebra,
16:138–142, 1970.

[Gor] Daniel Gorenstein. Finite groups. Chelsea Publishing Co., New York, second
edition, 1980.

[Hig] P. J. Higgins. Categories and groupoids. Repr. Theory Appl. Categ., (7):1–
178, 2005. Reprint of the 1971 original [Notes on categories and groupoids,
Van Nostrand Reinhold, London; MR0327946] with a new preface by the
author.

[Lin] Markus Linckelmann. Introduction to fusion systems. In Group representa-
tion theory, pages 79–113. EPFL Press, Lausanne, 2007.

[Mil1] Haynes Miller. The Sullivan conjecture on maps from classifying spaces.
Ann. of Math. (2), 120(1):39–87, 1984.

131



[Mil2] Haynes Miller. Correction to: “The Sullivan conjecture on maps from clas-
sifying spaces” [Ann. of Math. (2) 120 (1984), no. 1, 39–87; MR0750716
(85i:55012)]. Ann. of Math. (2), 121(3):605–609, 1985.

[Mis] Guido Mislin. On group homomorphisms inducing mod-p cohomology iso-
morphisms. Comment. Math. Helv., 65(3):454–461, 1990.

[MP] John Martino and Stewart Priddy. Unstable homotopy classification of BG∧p .
Math. Proc. Cambridge Philos. Soc., 119(1):119–137, 1996.

[Oli1] Bob Oliver. Equivalences of classifying spaces completed at odd primes.
Math. Proc. Cambridge Philos. Soc., 137(2):321–347, 2004.

[Oli2] Bob Oliver. Equivalences of classifying spaces completed at the prime two.
Mem. Amer. Math. Soc., 180(848):vi+102, 2006.

[OV] Bob Oliver and Joana Ventura. Extensions of linking systems with p-group
kernel. Math. Ann., 338(4):983–1043, 2007.

[Pui1] Lluis Puig. Frobenius categories. J. Algebra, 303(1):309–357, 2006.

[Pui2] Luis Puig. Structure locale dans les groupes finis. Bull. Soc. Math. France
Suppl. Mém., (47):132, 1976.

[Sol] Ronald Solomon. Finite groups with Sylow 2-subgroups of type Ω(7, q),
q ≡ ±3 (mod 8). J. Algebra, 28:174–181, 1974.

[Sta] Radu Stancu. Equivalent definitions of fusion systems. Preprint (2004), avail-
able at http://www.math.ku.dk/∼stancu/equivalentdefinitions.pdf.

[tD] Tammo tom Dieck. Transformation groups and representation theory, vol-
ume 766 of Lecture Notes in Mathematics. Springer, Berlin, 1979.

[Tho] R. W. Thomason. Homotopy colimits in the category of small categories.
Math. Proc. Cambridge Philos. Soc., 85(1):91–109, 1979.

132


