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Abstract

In this thesis we study the Bousfield-Kan spectral sequence (BKSS) in the Quillen model
category s%om of simplicial commutative Fy-algebras. We develop a theory of unstable
operations for this BKSS and relate these operations with the known unstable operations
on the homotopy of the target. We also prove a completeness theorem and a vanishing
line theorem, and together these eliminate the possibility of convergence problems for a
connected object of sGom.

We approach the computation of the BKSS by deriving a composite functor spectral
sequence (CFSS) which converges to the BKSS Fs-page. We then extend this construction
to an infinite sequence of CFSSs, with each abutting to the Es-page of the last. Equipping
each of these CFSSs with a theory of unstable spectral sequence operations, we are able
to calculate the Bousfield-Kan Fs-page in the most important case, that of a connected
sphere in s6om. We use this calculation to describe the Fi-page of a May-Koszul spectral
sequence which computes the BKSS FEs-page for any connected object of s6om. We conclude
by making two conjectures which would, together, allow for a full computation of the BKSS
for a connected sphere in som.
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Chapter 1

Introduction

The primary object of study in this thesis is the Bousfield-Kan spectral sequence (BKSS)
in the Quillen model category s%om of simplicial non-unital commutative Fo-algebras.
This spectral sequence calculates the homotopy groups of the homology completion X~

of X € s6om, with FEs-page given by certain derived functors applied to the André-Quillen

*
Com

cohomology groups X. The approach we take in this thesis is two-fold. On the one
hand, we develop an extensive theory of spectral sequence operations on the BKSS. On the
other hand, we use composite functor spectral sequences (CFSSs) to calculate the derived

functors that form the Fs-page.

In §1.1 we recall certain aspects of the theory of the BKSS of a pointed connected
topological space, including a CFSS due to Miller for the computation of its Fo-page. There
are a number of useful analogies to be drawn between this classical theory and the content

of this thesis.

After giving a little of the necessary algebraic and topological background in §1.2, we
discuss in §1.3 the BKSS in s%om, and introduce the unstable spectral sequence operations
referred to in the title of this thesis. There are three types of operations appearing at Fo.
Higher divided power operations and a commutative product arise as the Koszul dual op-
erations to Goerss’ operations on André-Quillen cohomology, and an action of the Steenrod
algebra emerges as an artifact of the positive characteristic. The §-operations and the Steen-
rod operations are unstable as described in §1.3, and we also describe an elegant relation
between the two types of operations. We also explain how the J-operations and product
relate to the natural homotopy operations on the target, a relationship clarified by a com-
pleteness theorem and a vanishing line theorem which, together, eliminate the potential for

convergence problems.

We describe the other part of our approach in §§1.4-1.6. The derived functors that

form the BKSS FEs-page may be analyzed using a sequence of composite functor spectral
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sequences. As we explain in §1.4, the algebraically rich BKSS Fs-page is the target of the
first CFSS, and a key aspect of our approach is to extend this rich structure into this CFSS,
producing therein a theory of unstable operations. This structure alone does not suffice for
us to make our computations, and in §1.5 we generalize the construction, forming an infinite
regress of CFSSs, each calculating the Fo-page of the last, and each possessing a theory of

unstable spectral sequence operations.

In §1.6, we explain how it is possible to use this immense amount of structure to make
calculations, including a calculation of the BKSS Fs-page for a sphere in the category s¢om.
This special case is important for the more general calculation of the BKSS FEs page, as it is
involved in the description the Ei-page of a May-Koszul spectral sequence which calculates

the BKSS FEs» page for a general connected simplicial algebra.

Finally, in §1.7, we discuss some conjectures which would unify the two parts of our
approach. Were these conjectures verified, we would be able to give a complete description
of the differentials available in the BKSS of a commutative algebra sphere. These conjectures

are supported by the calculation we have given of the Es-page in this case.

1.1. The classical Bousfield-Kan spectral sequence

The homotopy theory s€om has much in common with that of pointed connected topological
spaces, and before we introduce our main results, we briefly recall the analogous classical
theory in this section. The intention of this thesis is to produce an enriched version in the

model category s€om of this classical theory.

Suppose that X is a pointed connected topological space with m,X finitely generated
in each degree. The (absolute) Bousfield-Kan spectral sequence of X over Fq is a second

quadrant spectral sequence
[EQX]%S = EXt?{(F*(X;F2)7F*(St;]F2)) g ﬂ-thXia

where X3 is the completion of X at the prime 2. Throughout this thesis, we use the notation
[E,X]7 rather than the more standard ES’t for the pages of the spectral sequence.

At least when X is simply connected and 7, X is of finite type, one may view this spectral
sequence as a tool for calculating m, X, as m.(X2) = (7.X )3 determines the 2-torsion in m, X.
Under certain hypotheses (satisfied for example when X = S™ for n > 1) the BKSS admits
a vanishing line at Fs [5], and is thus strongly convergent.

The non-abelian derived functors Ext® are calculated in the category X of non-unital

unstable algebras over the Steenrod algebra (c.f. [51, §1.4]). If we write VT for the category

12



of cohomologically graded vector spaces
W= @nZl wr,

the objects of X are graded non-unital Fa-algebras W € VT equipped with an unstable left

action of the Steenrod algebra, i.e. maps:

Sq': Wh — Wi
prWhe Wl — Wit

satisfying the usual properties — Adem relations, unstableness relations, and the Cartan
formula. We take a moment to introduce notation, defining the functor of indecomposables
Q¥ : X — VvVt by the formula

X i
W Wy (im(W W W) & @y im (W W)) evt.
The BKSS FEs-page can be rewritten as the dual left derived functors
(B, X[} = Hi(H (X;F2)): := D((LsQ™)(H (X, F2))"),

where we write DV for the linear dual of a vector space V', and insist that D interchanges
homological and cohomological dimensions. We will use notation following this pattern for
the rest of the thesis.

One useful idea is to search for operations which act on the BKSS. Spectral sequence
operations are typically used to produce new elements on the Fs-page and to compute
differentials on those elements. Bousfield and Kan [11, §14| construct a Lie bracket:

[E.X]; © |E,X]j — [B,X];{5 " for 1 <r< oo,

with the bracket on FE, satisfying a Leibniz formula and inducing the bracket on E, ;.
There are two reasons why one might expect such a Lie algebra structure. First, the
commutative operad € and the Lie operad .Z are Koszul dual, and even though the theory
of Koszul homology is complicated by the non-zero characteristic, there is an action of .
on the derived functors calculating Es. Next, there is a graded Lie algebra structure on

homotopy groups given by the Whitehead bracket [56]:
[7] t X2 ® Wn/Xé — 7Tn+n’71X§7

and one may ask whether or not this action preserves the filtration, in which case it would

13



define a Lie algebra structure on E,. Bousfield and Kan answer this question in the affir-
mative by proving that the bracket at E., is compatible with the Whitehead bracket, and
they also show that the pairing given at Fo has the correct homological description.

This appears to be as far as it is possible to pursue this strategy, as at both Fy and F
we lose hope of finding structure that can be readily described. We do not expect to extract
further structure on Fs using the Steenrod algebra action in X, or at least not any that can
be described so explicitly. The Steenrod algebra As suffers from the inhomogeneity Sq° = 1.
Were it a homogeneous Koszul algebra (in the sense of [46]), then its Koszul dual would at
very least act on Exty, (Fo, M) for an As-module M, but even this is not the case. There
is no particular reason to think that the situation should be any better for the non-abelian
derived functors defining Es. Moreover, we simply do not understand the natural operations
that exist on 7, in enough detail to expect to see uniform structure appearing on E.,. After
all, by the Hilton-Milnor Theorem [44, §4|, all natural operations on the homotopy groups
of pointed spaces are composites of the Whitehead bracket and unary operations, and a
natural homotopy operation m, X — m,, X is equivalent to an element of m,,5™.

Before we break from our extended analogy, we will discuss the considerable task of
calculating the FEs-page of this classical BKSS. Performing this calculation is at least as
difficult as the calculation of the Es-page for the classical (stable) Adams spectral sequence,
which appears to be rather difficult. There is, however, the following method due to Miller

[42] for extracting information about the derived functors Hj. There is a factorization of
QX into
Com U
% 8 su 4 v
where YU is the algebraic category whose objects are vector spaces V € V' equipped with
a left action of Ay such that Sq’ : V* — V™t is zero unless 0 < i < n. This modified

unstableness condition is necessary in order that Q%™ satisfies an acyclicity condition, so

that for W € X there is a composite functor spectral sequence
[ESTW;™ = HE (HE™(W)] = HET52(W),.

This spectral sequence was an integral part of Miller’s proof of the Sullivan conjecture. The
functor H%°™ appearing in the above description is the André-Quillen homology functor on

sGom.

1.2. The various categories sC

In this thesis we will use quite a number of categories of universal algebras, such as the

category om of non-unital commutative Fo-algebras, or the category Zie of Lie algebras

14



over Fo. While we introduce certain general notions we will write € for any one of these
categories.

For any category € of universal algebras, the category sC of simplicial objects in € is a
Quillen model category [48]. These model categories have much in common with the category
of topological spaces. For example, an object X € sC possesses homotopy groups m,X
and homology groups HSX. We use the pragmatic notion of homology that appears in the
spectral sequences that appear in this context, and it does not always coincide with Quillen’s
notion of homology derived abelianization. The cohomology groups Hg X are defined to be
the linear duals of the homology groups.

In §3, we recall the definition of spheres and Eilenberg-Mac Lane objects in sC. These
play the same role in sC as their namesakes in the category of pointed topological spaces,
which is to represent the homotopy and cohomology functors on the homotopy category of sC,
respectively. We also present a unified treatment of homotopy and cohomology operations
(and of homology co-operations) for such categories.

In §5 and §6 we present a number of existing examples of homotopy and cohomology
operations in a common framework, with the construction of cohomology operation following
Goerss’ method from [33]. In particular, it will be useful for us to understand the well-known
cohomology operations for simplicial Lie algebras in this same framework, and in Appendix
A

In §4, we recall Radulescu-Banu’s [49] cosimplicial resolution of X € s%om, which we
denote by X € csom. The resolution X is suitable for the construction of a BKSS for X.
This construction is rather more difficult than that of Bousfield and Kan’s [Fo-resolution, as
the naive monadic cobar construction in sC is not homotopically correct. The totalization
of X is the homology completion X~ of X, and the (absolute) BKSS is the spectral sequence
associated with the totalization tower. In §4.1 we perform the homotopical algebra needed

to identify the E; and Fo-pages arising from Radulescu-Banu’s resolution.

1.3. The Bousfield-Kan spectral sequence in séom

At this point we depart from generalities, turning to the homotopy theory of simplicial non-
unital commutative algebras in earnest. We will restrict to the connected objects X € som,
which simplifies various aspects of our analysis. As in the classical case, one must know
how the homotopy groups of the homology completion X~ determine those of X. We will
demonstrate (Theorem 4.4) that X~ is equivalent to X as long as X is connected. Moreover,
we will prove in Theorem 15.3 that the BKSS admits a vanishing line from FEjs in this case,
and thus strongly converges to the homotopy of X.

As forecast by the discussion in §1.1, it will help to know a little about the natural

15
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operations on the homotopy of simplicial Fs-algebras in advance. Fortunately, we have
the explicit description of homotopy operations which is lacking in the category of pointed
spaces, since they have been completely calculated by Dwyer [26] (and were studied earlier

by Bousfield [8, 6] and Cartan [14]). In summary, 7, X supports operations

0; 1 mp X — M4 X, defined when 2 < i <mn,

Wi X @ X — Ty X,

with p a graded non-unital commutative algebra product, and the §; satisfying various
compatibilities which we discuss in detail in §5.4. In fact, these d-operations satisfy a d-
Adem relation which is homogeneous, and there is a corresponding unital associative algebra
A. Note that 7, X is not a left module over the algebra A, because the operations are
not defined in every dimension. This situation can not be remedied simply be defining
the missing operations to be zero, as doing so is incompatible with the Adem relations
on homotopy. Instead, we must adopt language for such situations, saying that A has a
partially defined unstable left action on 7, X. In general, unstable homotopy operations will
be partially defined, whereas unstable cohomology operations will be everywhere defined

but vanish in certain ranges.

Goerss [33] described the analogue for s¢om of the category K, and all of the natural
operations on the André-Quillen cohomology HZ, X of X € s6om are generated by:

P HY, X — HELX;
[ 2 Higo X ® Hif,,, X — Hy X
B:HY, X — HL X

As we restrict to connect objects of s€om, the operation 8 can be ignored. These operations
satisfy various compatibilities which we recount in detail in §6.6, and we will denote by W(0)
the category whose objects are vector spaces W € V1 equipped with the Pi-operations and
the bracket. The bracket satisfies the Jacobi identity but falls just short of being a Lie algebra

pairing as [z, z] is not always zero. The P’ satisfy a P-Adem relation that is homogeneous.

*

<om 18 @ homogeneous Koszul algebra,

The evident unital associative algebra P acting on
the P-algebra with Koszul dual the algebra A, and indeed, this is how it was originally
described by Goerss. In §4.1, we identify the Es-page (for connected X € som with 7, X

of finite type) as the non-abelian derived functors
[EZIX:]? = H\%(O)(H‘*ﬁomX)t

16



This description begets a laundry list of operations that we expect to see on Fy. The
cohomology of a Lie algebra enjoys an action of the commutative operad (the Koszul dual
of the Lie operad). As we are working in positive characteristic, they also support an
action of the homogeneous Steenrod algebra A := EyAsz, due to Priddy [47]. We will discuss
these operations in detail in §6.8 and Appendix A.1. We construct in Proposition 8.9 the
corresponding natural ‘horizontal’ operations on Fo:
Sa : (Hyy(0) X )t — (HWSNJE%)X)%H;
p: (Hypo)X)e @ (Hi\;(o)X)t' — (H\SNJES/)HX)HVH-

Moreover, we construct in Proposition 8.2 natural vertical operations constituting a (par-

tially defined) action of the Koszul dual A of the P-algebra:
87+ (Hygoy X )t — (H%JE(I))X)tHH defined for 2 <i < t.

These operations satisfy various compatibilities (c.f. §8.4 and Propositions 8.2 and 8.9).

Although the product and §-operations on Fs look encouraging, there is the following
issue: if x € [E,X]{ is a permanent cycle detecting a class T € m, X, then at least when
s > 2 there are more operations dyx,...,d; ;z defined on E, than there are operations
09X, ...,0t_sx defined on homotopy. Moreover, the Steenrod operations at FEs have no

counterpart in homotopy.

This situation is quite reminiscent of that described by Dwyer [25], who works in the
spectral sequence of a cosimplicial simplicial coalgebra (such as the Eilenberg-Moore spectral
sequence). In such a spectral sequence, one expects to find Steenrod operations at Fs but
finds too many. Dwyer constructs §-operations and differentials mapping the excess Steenrod
operations to the § operations. In this way, the excess Steenrod operations fail to be defined

at Fo, and the J-operations become zero by F.,, an excellent resolution to this problem.

Unfortunately, we cannot use Dwyer’s operations. Indeed, although the linear dual of a
cosimplicial simplicial coalgebra is a cosimplicial simplicial algebra (of which the resolution
X is an example), the choice of filtration direction is transposed. Instead, we perform
analogous constructions in the dual setting, and describe in §10.6 a theory of operations on
the spectral sequence of a cosimplicial simplicial Fs-algebra, which may be of independent
interest. While defining these operations is a good first step, they are not yet what we

require, as it happens that they can be lifted one filtration higher when we are working in
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the BKSS. In §10 and §11, we explain how to construct operations
6 + [EX]§ — [Erx]fj—_il—i-l?
S(ﬁl : [Erx]f — [E,,:X:];;Zl,

I [Erx]ts ® [Erx]f’ — [Erx]fj__;_tlla

with the 6} potentially multi-valued functions, defined when 2 < ¢ < max{n,t—(r—1)}, and
single-valued whenever i < min{n+1,t+1—2(r—1)}, and the Sqf; potentially multi-valued
functions with indeterminacy vanishing by Fs,_2, and which equal zero unless min{¢,r} <
j < s+ 1. All of the functions that are defined on F, are single-valued, and indeed, they
coincide with the operations defined on H{j\](o), as we show in Proposition 11.2.

For z € [E,X]; such that 6)z is defined:

Sqﬁ7i+2(x), ifi>t—sandr=t—1i+1;
d.6; (z) + 0] (drx) = § p(r @ dyx), ifi=t—s,s=0andr>2;

0, otherwise.

S

This is Corollary 11.6. In particular, if i > ¢ — s and x € [E,_; ;X]; survives to [E,_, ,X|7,

t—i+2
v

then d;_;+1 maps 6z to Sq x. These formulae explain how the Sq, serve to absorb

differentials supported by the excess §".
1.4. The first composite functor spectral sequence

Now that we have a theory of the operations available on the BKSS in s¢om, we turn to the
question of calculating it. If we hope to imitate Miller’s use of a composite functor spectral

sequence (CFSS), using the factorization
U(0) £(0)
QMO = *© 0 Q1O (W(0) L £(0) LS V),

where £(0) is the category whose objects are graded vector spaces W € V which are Lie

algebras under a bracket which shifts gradings,
Wte Wt — wittt'+1,

We write U(0) for the category whose objects are vector spaces V € V* equipped with an

unstable action of the P-algebra given by operations
PV — yrit
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which are zero unless 2 < i < t. The functor QU is defined for W € W(0) by

W s W/ @y im(W 25 ).

As the category £(0) is not an abelian category, it is a more technical task to form a
CFSS, and we use the method of Blanc and Stover [3]. The key idea in their presentation
is that the derived functors ' .= L,QYO take values in the category W(1) of £(0)-II-
algebras, as they are calculated as the homotopy of an object of s£(0). The first CFSS takes
the following form for W € W(0):

u

c $9,8 * 0 S9,8 * s1+s
([BSW™" = Hyygy (H VW)™ = (Hipq) W2,

We will now unpack this somewhat dense expression, and explain how various unstable

operations defined at the Fs-page and the target interact with the spectral sequence.

Objects of the category W(1) are certain bigraded Lie algebras with a certain partially
defined right action of the A-algebra (c.f. §1.5). In §9.2 we calculate the structure of HE(O)W
as an object of W(1) by explicit chain-level computation, after defining in §9.1 an unstable

version of Priddy’s Koszul resolution [46] for the functors a0,

The linear duals Hﬁ(o)W admit an unstable partially defined left A-algebra action, since
the algebras A and P are Koszul dual, and by Proposition 12.9 there is a commuting diagram
(for 2 <i<t):

edge hom

* S C 0,s * S
(HypoyW)i [ES'W]; (HyyoyW)i
5ty N
« s edge hom c 0,s5+1 « s
(HW(O)W)tiil-i-l [EQfW]H-H-l (HU(O)W)HJ-ril—H

In this sense the 0} -operations on the BKSS Fs-page are compatible with the CFSS.

The BKSS FEs-page also supports products and horizontal Steenrod operations, and we
should attempt to identify them in the CFSS. The functor H\j\?(l) may also be viewed as
a Lie algebra cohomology functor, so that we expect horizontal Steenrod operations and

;"1 We use a new definition of these operations that fits

products to appear in [ngW]
into the framework set out in §6 (deferring to Appendix A the work of showing that these

operations coincide with those constructed by Priddy [47].)

Moreover, just as we expected d; operations on H{f\;(o), we expect a ‘vertical’ left action of
the homogeneous Steenrod algebra on H{,‘v(l), as it is Koszul dual to the A-algebra. Indeed,
we construct in Proposition 8.9 such operations on the derived functors H\j\)u)' Moreover,

Proposition 8.6 applies to H{ﬁv(l) just as it applies to H;\?(o)’ yielding horizontal Steenrod
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operations and products, so that ultimately we obtain operations

Sty + [BSWI™ — [ESWIG L
Sa, + [BSWI™ — [BSWI5 ™,

w [ESWES @ [ngw]gz,pl . [ngw]:i-gfl—i-l,sl—&-m?

with both the horizontal and vertical Steenrod operations satisfying their own unstableness

conditions.

Now suppose that z € [ESTW];?* is a permanent cycle detecting an element T €

(H%(O)W)fﬁsl. The sg+s1—1 operations ST, ... ,Sqfl2+$1+lf are the potentially non-
zero Steenrod operations on Z. The s;—2 vertical operations Sz, ..., Sqs'x and the sy+1
horizontal operations Sq}llx, . Sqff“x are the potentially non-zero Steenrod operations

on x. This is quite reminiscent of Singer’s framework [52] (c.f. §13.1), and in §13.2 we use
Singer’s methods to extend the operations on [ESfW] to the entire CFSS. The upshot is that
if x € [ESTW];*°! is a permanent cycle, then so are all of the above mentioned Sq’z and

Sq{lx, and moreover,
Sq’a detects SqLT (3 <i < s1) and Sq{lx detects Sqi' 7 (1 < j < s+ 1).

That is, the horizontal and vertical Steenrod operations combined account for the horizontal
Steenrod operations on the target. We examine how this plays out for admissible sequences

of Steenrod operations in Theorem 8.15.

1.5. Higher composite functor spectral sequences

We have constructed a comprehensive theory of the operations in the first CFSS, but it may
still be the case that the H{/kV(l) is as difficult to calculate as H;v(o)’ which would mean that
the CFSS is of little use for the calculation of H{j\](o). Rather than being discouraged, we
will turn this similarity to our advantage by iterating our approach. In §7 we extend the
constructions summarized in §1.4, defining algebraic categories W(n) and £(n) for n > 1

such that W(n) is the category of L£(n — 1)-II-algebras and there are factorizations

(n) 2(n)
QY = Q4 6 QU - (W(n) I o) L5 V).

There are CFSSs for W € W(n):

U

[ESTWI™% = Hy ) (T2t (B W omsssnesss,
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and we equip each of these spectral sequences with a theory of operations which generalize

those discussed in §1.4.

At this point it is useful to summarize the definitions. For n > 1, let U(n) denote the
category whose objects are vector spaces V € V,I' equipped with linear right A-operations

it 241
(SN Vg, s — Vo ti2s, 1251 (1.1)

defined whenever 0 < i < s,41 and not all of i, s,,...,s1 are zero. Let £(n) denote the
category whose objects are V' € VI equipped with a (typically non-linear) A-operation as in
(1.1) defined whenever i = s,4+; and not all of i, s, ..., s are zero, which acts as a partial
restriction for a Lie algebra bracket

t+t'+1
Vvanrsil,‘..,&Jrs/l :

[’] : Vstn,-~.,s1 ® Vst;L,...,s’l —
Finally, let W(n) be the category whose objects are simultaneously objects of U(n) and £(n)
subject to certain compatibilities.

The functor HH My may be calculated by an unstable Koszul resolution, and both
its linear dual Hﬁ(n)W and the functor H{‘;\,(n)W are naturally objects of My (n + 1), the
category whose objects are graded vector spaces M € VZ_H with an unstable left action of
the Steenrod algebra, operations

Sqi C St LSt M5n+1+1,sn+i—1,25n,1,...,251

v o t 2t+1 )
which are zero except when 1 < ¢ < s, and 7 — 1,s8,-1,...,51 are not all zero. This
structure is derived in §8.2, using the Koszul duality between the A-algebra and the ho-
mogeneous Steenrod algebra. This differs from the analogous constructions for W(0)- and

U(0)-cohomology, in that H;V(o) supports one fewer vertical §-operation than Hﬁ(o)'

On the other hand, as in the n = 0 case, H;;V(n) is an example of (partially restricted)
Lie algebra cohomology, so that ‘horizontal’ Steenrod operations and products appear. In

§8.3 we define these operations:

j 41y n+1+7,28n,...,2
Sat, : (Hygmy X)e™ "0 — (Hygy X)arfn 77,

* m e * n EARAS) * n + n “Fl, n+ 7L geeey +
o (I'I\/\?(n))()%g s 0y (HW(n)X);g Pl (HW(n)X)fJ,_;_l;,_lp +1TL8nTP s1 p1,

so that W(n)-cohomology is also a certain type of unstable algebra over the homogeneous
Steenrod algebra, with the horizontal Steenrod action. We write My (n + 1) for the resulting

category of Vﬁﬂ—graded unstable algebras over the homogeneous Steenrod algebra.

We identify in §8.4 the relations between the My (n+1)- and My (n+1)-operations, which
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leads to the definition of an algebraic category My (n + 1) in which W(n)-cohomology takes
values for n > 1.
Consider again the CFSS for W € W(n):

[BSW]S20% = Hiy gy (W)t (W) bomssineess,

The target is an object of My (n+1), while the Es-page is an object of My, (n+2). We prove
in Proposition 12.9 that there is a commuting diagram relating the M, (n 4 1)-structures on
H{;\,(n)W and Hﬁ(n)W under the edge homomorphism. As in the n = 0 case, after extending
the My (n + 2)-structure on Fs to the whole spectral sequence, this structure converges to

the My, (n + 1)-structure on the target.

1.6. Computing with the composite functor spectral sequences

So far, we have not explained how the CFSSs may be used for calculation. First, we make the
following simple observation. Suppose we wish to calculate the group (H%(n)W)f”“’S""“’Sl
for a given choice of indices. The part of the Fs-page that contributes to this particular group
is the following direct sum indexed by pairs of indices s}, 5, 5], such that s} o+ 5], ;| =
Sp41:

@ (H;V(nﬂ)(Hy(")W):%HvS%H,sn,..,,sl)

Now in each summand, either s, ; = 0 or s, .5 < sp11. Except for the challenges of
understanding the differentials and hidden extensions of algebraic structure, it suffices then
to calculate the groups
(H%(n+k)Hy(n+k_l) . H}:((TL)W):n+k+17~--,3n+175n7‘..,31
for all £ > 1 and for all indices s],, ;. + -+ 8}, = Spy1 satisfying either s/, ., =0 or
s 41 = 0. Tt is easy to calculate these groups in either case, as long as we understand the
derived functors
H}kl(n-i-k—l) . Hil(n)W

as objects of W(n+ k). We undertake these calculations in §9.2. When s}, ., = 0 there are
no derived functors being taken, and when s/, 4 = 0 the derived functors may be calculated
simply as the cohomology of a (constant, not simplicial) partially restricted Lie algebra.
With this computation in mind we define the Chevalley-Eilenberg-May complex of a
partially restricted Lie algebra in §A.3. This complex interpolates between the Chevalley-
Eilenberg complex for the homology of Lie algebras and May’s X complex [39] for the

homology of restricted Lie algebras.
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This method is employed to prove Theorems 14.4 and 14.6, which together imply Corol-
lary 14.7, that My, (n + 1) is the category of W(n)-cohomology algebras for n > 1. That is,
the My (n + 1)-structure is all of the natural structure on W(n)-cohomology for n > 1.

Finally, we are able to use all of this structure together to calculate, at least as a vector
space, the BKSS Fs-page for the commutative algebra T-sphere S?m whenever T' > 1. That

Com
ST

is, we calculate the derived functors H;;V(O)W, where W = HZ is a one-dimensional

Com
trivial object concentrated in dimension 7" > 1.

Finally, we derive in §15.1 a convergent spectral sequence which calculates the Es-page for
any connected X € s€om of finite type, which we name the May-Koszul spectral sequence.
Its F1-page may be described in terms of the BKSS Fs-pages of the spheres (using Theorem
14.6), and information about the Es-operations in the BKSS for a sphere passes over to

information about the general BKSS FEs-page via the May-Koszul spectral sequence.

1.7. The Bousfield-Kan spectral sequence for S%™

In §14.6, we present a small model for the BKSS FEi-page for a commutative algebra sphere.
Given our knowledge of the operations on the BKSS, of the Fs-page for S?m and of the
homotopy groups W*S}&)m (c.f. §5.4), a natural goal is the complete computation of the BKSS
for S;gfom. In §16.1, we make two conjectures which would together allow us to make this
complete computation. It turns out that Es is not the right place to start this computation,
and we need to consider classes on E; and d; differentials in order to see the full picture. The
problem is that certain relations involving the 6¥- and Sq;-operations only hold from Fj,.
The conjectures we make would overcome these problems, and would lead to the description
given in §16.2 of the full structure of the BKSS for S?"m.

1.8. Overview

The primary object of study in this thesis is the Bousfield-Kan spectral sequence (BKSS) in
the Quillen model category s%om of simplicial non-unital commutative Fo-algebras. This
spectral sequence, which we discuss in §4, calculates the homotopy groups of the homology
completion X~ of X € s%om, with Fs-page given by certain derived functors applied to the
André-Quillen cohomology groups Hy, = X.

In §4 we work directly with the Adams tower to show that whenever X is connected,
X" is equivalent to X. Together with the vanishing line we prove in §15, this shows that
whenever X is connected, the BKSS is strongly convergent to the homotopy of X.

In §3 we give an introduction to the theory of homotopy and cohomology algebras and

homology coalgebras. In §§85-6 we construct a framework in which a number of classically
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known homotopy and cohomology operations may be considered together. In §§7-8 we
construct a number of homotopy and cohomology operations in preparation for the following
chapters, and in §9 we study the unstable Koszul resolutions related to certain of these
operations.

We define and study three families of unstable spectral sequence operations on the BKSS.
Our approach is to perform a generic construction of spectral sequence operations in a cosim-
plicial simplicial vector space in §10, and then perform a shift in filtration using properties
of Radulescu-Banu’s resolution in §11.

In §12 we define a sequence of composite functor spectral sequences (CFSSs) which we
use in §14 to make calculations of the BKSS Fs-page in the most important case, when X
is a sphere in s€om. In order for these spectral sequences to be of any use, we must equip
them in §13 with various unstable spectral sequence operations, using a technique due to
Singer.

We define a May-Koszul spectral sequence in §15 which converges to the BKSS FEs-page
for any connected simplicial algebra X, and describe the May-Koszul E'-page using the data
of the BKSS Fs-pages for spheres. Using this spectral sequence one can transfer information
about the spectral sequence for spheres to the general setting.

Using the operations on the BKSS we conjecture the full structure of the spectral se-

quence for a sphere in som in §16.
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Chapter 2

Background and conventions

2.1. Universal algebras

In this thesis we will be dealing with various categories C of universal graded algebras over
F5, which we will refer to as algebraic categories. The relevant examples include a number of
categories of graded associative algebras, commutative algebras and Lie algebras, categories
of graded unstable modules and unstable algebras. We'll give the background on such
categories of universal algebras in this section.

For us, an algebraic category is a category whose objects are G-graded Fo-vector spaces
X = {Xg}geq, for some set G of gradings, equipped with a set of operators of the form
Xg, X - x Xy, — X}, (with n > 1) satisfying a set identities, and whose morphisms are
graded vector space maps preserving this structure. These defining maps will be referred to
as the C-structure maps. This is similar to the definition given in [3, §2.1] of a category of
universal graded algebras.

It need not be true that all of the C-structure maps must be (multi-)linear in a given
presentation of an algebraic category €, but we will always assume that € is monadic over
the category of G-graded Fj-vector spaces. That is, the forgetful functor U® : € — V
will admit a left adjoint F® : V — €, and the natural comparison functor from € to the
category of algebras over the monad U®F® on 'V will be an equivalence.

In our examples, the monad U®F® will admit an augmentation (of monads) e : U F¢ —
id, reflecting homogeneity in the relations defining €. This augmentation has the monad
unit 7 : id — U®FC as a section, and may be thought of as projection onto generators.

We will generally omit the functor U® from our notation, writing F°¢ as shorthand for
either the monad U®F® on 'V or the comonad FCU® on €. We will refer to elements of a free
construction F®V using notation such as f(v;), thought of as a composite f of C-structure

maps applied to generators v; € V C FC(V). We will say that f(v;) is a C-expression. In
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this language, the linear maps
Frtv 5 Py, v 5 FOV and FOV -5V,

constituting the augmented monad F® on V may be described as follows: s collapses a C-
expression in C-expressions into a single C-expression; 7 sends a vector v to the C-expression
v; and € projects a C-expression onto those summands to which no (non-trivial) operations

have been applied. For X € €, the comonad structure maps in C,
FCFCX & FCX and X < FCX,

are as follows: on an expression f(z;), A = F® returns the same expression f(z;) in which
the z; € X are viewed as elements of F®X, and p is the evaluation map equivalent to the

C-structure on X.

2.2. The functor Q° of indecomposables

Using the augmentation € : ¢ — id of monads on V, any V € V becomes an F®-algebra,
i.e. an object of €. We denote this functor K¢ :V — €; it sends V € V to the trivial object
on V, which is V equipped with coaction map the projection € : F¢V — V. Whenever we
say trivial in this thesis, we will mean having no non-zero operations, and not equal to zero.

In each of our examples, K¢ has a left adjoint, Q° : @ — 'V, which sends X € C to the
quotient of X by the image of its non-trivial operations. The functor Q¢ sends X € C to the
coequalizer in V of p,e: FX — X,

Note that F© is a section of Q°, since Q®FC is adjoint to U¢K® = id.

2.3. Quillen’s model structure on sC and the bar construction

For any of the algebraic categories C appearing in this thesis we use Quillen’s simplicial
model category structure on the category sC of simplicial objects of € [48], [42], [3]. In
this structure, the weak equivalences (fibrations) are the maps which are weak equivalences
(fibrations) of simplicial abelian groups, so that every object is fibrant.

A simplicial object X € sC is almost free if there are subspaces V,, C X, for each n > 0
such that the composite F’ ¢y, — F°X,, SN X, is an isomorphism for all n, and such that
the subspaces V;, are preserved by all of the degeneracies and face maps of X except for dy.
An almost free object is cofibrant, and every cofibrant object is a retract of an almost free
object [42, §3|.

There is a richer notion, that of an almost free map, which is a map X — Y in sC
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such that Y, contains a subspace V,, for each n such that the V,, are preserved by all faces
and degeneracies except for dy, and such that the natural map X,, U F¢(V;,) — Y, is an
isomorphism for each n. An almost free map is a cofibration, and every cofibration is a
retract of an almost free map.

A cofibrant replacement functor for sC is an endofunctor f of sC equipped with a natural
acyclic fibration € : f = id such that the image of f consists only of cofibrant objects. One
classical such functor is the standard comonadic simplicial bar construction arising from the
F® 4 U adjunction. As a functor B® : € — s it is defined by iterated application of the
comonad F° to X € €:

BCX = (F&)*+1x,

with face maps given by d; = (F®)?p, and degeneracies by s; = (F®)?A. This object is almost
free, with B¢ X generated by its subspace V; = (F®)*X, moreover, it is standard [4, §4] that
the augmentation B®X — X is an acyclic fibration. This functor may be prolonged to a
functor B® : s€ — ssC, and by taking the diagonal we obtain an endofunctor B® of s€. A
standard spectral sequence argument shows that this endofunctor is a cofibrant replacement

functor.

2.4. Categories of graded [F,-vector spaces and linear dualiza-

tion

In this section we introduce notation for the key categories of graded vector spaces. We will
write V for a generic category of graded vector spaces or for the category of ungraded vector
spaces as convenient.

Write Vi for the category of vector spaces with r non-negative homological gradings and

g non-negative cohomological gradings, so that an object V of Vi decomposes as

. tg,---st1
v= & v

SpyeeyS1,tgseenst1 20
The category Vi is equipped with a tensor product:

T thnth t it
U V)i = @y Ul @V,

/ " 11

yeesST 8 5eees8Y
/ . 3/ "__y .
s;+s; —sl,tj—&—tj—tj

We will often discuss maps between graded vector spaces which do not preserve de-
grees. Although we could encode such maps as grading-preserving maps between appropri-
ate suspensions, it will not be helpful to be so systematic. For example, we will often write

V&®V — V for a map which in fact adds one to certain gradings of V', and will avoid
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confusion by explicitly stating the effect of such a map on degrees.
We will often need to consider the linear dual of a vector space V', and the standard
symbol, V*  will cause ambiguity, due to our already intensive use of superscripts. Instead

we opt for a modifier written prefix, defining the dualization functor D : (V#)°P — Vi by:
(DV)gryl o= hom (Vs !, Fa).

We will shortly define cohomology functors Hz X := DHCSX, and we will use the position of
the asterisk to indicate which of homology and cohomology we mean. This is not precisely
an exception to our convention, but was worth mentioning.

Often, the vector spaces we are interested in will support an extra grading, the quadratic
grading, so called because certain operations derived from an underlying quadratic operation
tend to double this extra grading. We do not think of the quadratic grading as either

homological or cohomological, so we write it prefix:

V= @/@1 qV.

We write Vi for the category of objects of Vi equipped with this extra grading.
A common pattern for us will be to consider vector spaces with r non-negative homo-

logical gradings and a single strictly positive cohomological grading:

v= & Vi ..

Sryees8120,121

and we write V" for the category of such objects. For the rest of this chapter we will often
use gradings of this type, simply because they will be used so extensively later in the thesis.

Similarly, there is a category V',, and dualization is a functor D : (V,[)P — V'

2.5. The Dold-Kan correspondence

In this thesis we will use each of the following five chain complexes in ch; 'V, associated

with a simplicial graded vector-space V € sV

C,V =V, with differential d = 3" d;;
N,V = ﬂ0<i§n ker (d; : V;, — V,,—1) with differential d = dy;
N,V .= mO§i<n ker (d; : V,, — V,,—1) with differential d = dp;
Deg,V := 3 i im(si : Vo1 — V;,) with differential d = Yoo di
N, V :=V,/Deg,V with differential d = 3"} d;.
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There are evident inclusions of N,V and N,V into C.V, and a projection of C,V onto NV,
and all of these maps are weak equivalences. Moreover, the composite N,V — N7V is an
isomorphism (as is the composite from N, V). It will be helpful to have an explicit formula
for the composite

C.V — N7V = N,V.
Lemma 2.1. The normalization map
nml = (id + sody)(id + s1dg2) - - - (id + sp—1dy) : Vi, — V,,

1s an idempotent chain complex endomorphism with image N,V and kernel the degenerate

n-simplices of V', so that there is a commuting diagram

N,V>——C,V

| 2>
NoV s C,V —= N3V
\2_/

Proof. Tt is obvious that nml restricts to the identity on N,,V, and that (nml—id) has image

consisting of degenerate simplices. By the simplicial identities, for 1 < i < n:
d;(id + s;—1d;) = d; + d;si—1d; = d; +idd; = 0.
As for 1 < j < i, we also have
di(id + sj_1d;) = d; + sj_1di—1d; = (id + sj_1d;)d;,

this proves that d; onml = 0 for 1 < ¢ < n, or that nml has image inside N, V. Thus nml is
an idempotent with image N, V. As N,V — N, V is as isomorphism, the rest is easy. [

Each N,V retains the internal gradings of V', and the functor N, appears in the cele-
brated Dold-Kan correspondence [34, §II1.2]:

Proposition 2.2 (The Dold-Kan correspondence). There is an adjoint equivalence of cat-
egories:
N, : sV =2ch, VT,

under which the homotopy groups of V€ sVI (as a simplicial set) are naturally isomorphic

to the homology groups of N,V :

(an)t s = (HnN*V)t

Sryey SpyeesS1
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A cycle in N,V is an element = € V,, such that d;x = 0 for 0 < ¢ < n. We write ZN,V
for this group of cycles, referring to elements of ZN,V as normalized cycles. Note that

ZN;V = ZN,V is the same group of normalized cycles.

For x a cycle in any of the four homotopy equivalent chain complexes calculating m,V,

we will write T for the equivalence class of z in 7, V.

It will often be helpful to remove the notational distinction between the chain complex
dimension n and the other homological dimensions s, ...,s;. That is, we may view m,V as
a single object of V;FH, defined by

(W*V)t S (ﬂ-sr+1v)t

Sr41,-- SpyeeeyS1°

Now for any collection of indices s;41,...,51 > 0 and ¢ > 1, define:
KL gy = r(. - 0 Fo{z} 0 0 )
degrees: Spp1—1 Sr41 spp1+1 Srp1+2
CKL oo = r(. . 0 Fo{dh}<~—TF>{h} 0 )

Here z and h denote are both to lie in internal cohomological grading ¢ and homological

. . . . . . t t
gradings sy, ...,s1. There is an evident inclusion wn : K o — CK{ . .. For

any V € sV.I, we can identify the subspaces of cycles and boundaries with hom-sets:

V)= (ZNs, V)t and

t
homsv:r (K Sr41 Y )sp,.,81

Sr415--+5817

homs\?j (CKZTJrl,...,Sl?V) = (N5r+1+1v)27~,...,81'

Under these isomorphisms the chain complex differential Ny ., 1V — ZN; V' corre-

t
Sr41se0y

in a category of simplicial vector spaces, the distinction between spheres and Eilenberg-Mac

sponds to n*. In fact, K s, Tepresents . (—)ts, ,,...s; in the homotopy category of sV

Lane spaces disappears.

A dual theory exists for cosimplicial vector spaces U. We mention the cochain complexes

c"U =0 with differential d = > d7;
N"U :=U"/ Y g cicpim(d’ : U,y — U,) with differential d = d’;
NEU = Ny<icn_1 ker (s : Uy — Up—1)  with differential d = Y17 d'.

There are chain complex maps whose composite is an isomorphism:
N"U «— C"U <— N¢U,
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and an explicit normalization map
nml = (id + d"s" ") -+ (id + d*s")(id + d's”) : C"U — NEU

with properties dual to the simplicial version. The cohomology of any of these three equiv-

alent cochain complexes defines the cohomotopy 7*U of U.

Homotopy and cohomotopy correspond under dualization as follows. If V € sV, then

C*DV = DC\V, and there is a natural isomorphism 7*DV — D,V given by:

H*C*DV = H*DC,V — DH,C,V, a@— “0— a(v)”.

2.6. Skeletal filtrations of almost free objects

Suppose that X € sC is almost free on generating subspaces Vy; C X . Miller [42, p. 55|
defines a filtration of X by almost free subobjects

0 X BX X e colim F, X = X

as follows. For each m, ¢ > 0, write F},,V; for the subspace of V; spanned by the degeneracies
of elements of V; such that j < min{m,i}. Then write F},, X for the subobject of X which
is almost free on the subobjects F;,,V;. The inclusions of these subobjects are almost free

maps, and the colimit is evidently X.

Lemma 2.3. For each m >0, nml(V,,,) C V., and V,, has direct sum decomposition
Vin = (Vi N Np X)) @ (Vi, N Deg,,, X),

natural in maps of almost free objects preserving the chosen almost free subspaces, and such

nm]

that Vy, N Npy X = im (Vm e Vm). Moreover, the map
(i i) s Ve — FrpeaVin
18 1njective.

Proof. The final statement is implied by [42, Fact 3.9]. That nml preserves V,, is clear from
its defining formula. The direct sum decomposition and the fact about V,,, N N,, X both
follow from previous observations about the idempotent nml on X,,, in particular that it
has image N,, X and kernel Deg,, X. O
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2.7. Dold’s Theorem
According to Dold [22] (c.f. [17, Lemma 3.1|):

Theorem 2.4 (Dold’s Theorem). Suppose that F : sV, — sVI is a functor preserving
weak equivalences, for example, the prolongation of an endofunctor of V;\. Then there is a

functor & : \7;;1 — VLI such that the following diagram commutes:

sV T N sVF

E

vj+1 - Vjﬂ

Moreover, if F' is naturally equivalent to a composite Fo o Iy, then F is naturally isomorphic

to 920371.

The idea here is that the functor 7, induces an equivalence between the homotopy category

of sV} and \7;;1. In fact, the inverse equivalence can be lifted to a functor into sV;', namely
V—TYV, V,JIH — sV,

where we view V' as a trivial chain complex. Then JF can be constructed as FV := 7, (FT'V).

2.8. Homology and cohomology functors H¢ and Hp

In this thesis we will always define the C-homology of X € s€C by the formula:
H'X = 7,(Q*B*X) = H,N,(Q°B*X).

These homology functors are well defined, as the Q¢ 4 K adjunction is a Quillen adjunction
(that K¢ preserves fibrations and acyclic fibrations is immediate), and indeed we are free to
use any cofibrant replacement in place of B¢X.

It is not always entirely appropriate to call these functors homology. Indeed, Quillen [48,
§I1.5] defines homology to be the left derived functors of the abelianization functor, and it
is not true in all of our examples that Q® models the abelianization functor. Goerss [33, §4]
explains that this does occur when € is the category of non-unital commutative algebras,
but it does not occur when C is the category of restricted Lie algebras [21].

When € is monadic over VI

+, we may view the groups H’X together as an object of

+
Vi

grading is added (to the left of the existing homological gradings). We will sometimes avoid

substituting into the asterisk, writing (HSX)? in place of (H®  X)

Sr415--+»S1 Sr+1 SryeeeyS1°

That is, each homology group HS X retains the gradings of X, and a new homological
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We define the C-cohomology H5X of X to be D(HSX), or equivalently the cohomotopy
groups 7*D(Q®X) of the dual cosimplicial object. As we dualize to obtain cohomology, the
cohomological gradings and homological gradings are swapped, and H; X may be viewed as

: +1
an object of V',

Lemma 2.5. Suppose that X € sC is almost free with generating subspaces V,, C X,,. Then
any homology class in HSX = 7,Q%X can be represented by the image in Q°X, of an
element of V,, " N,,X.

Proof. This follows from Lemma 2.3 — simply represent the class in question by an element

of V,,, and then apply the natural map nml. O

This lemma states that we may find representatives for any homology class in the subobject
Vo N N, X of X,,, while for other applications it will be preferable simply to pass to the
quotient V,, of X,,. Trivially:

Lemma 2.6. Suppose that X is almost free with generating subspaces V,, C X,,. Then the
simplicial object {(Q®X),} may be identified with the collection of vector spaces {Vy}, using
the following composite as the zeroth face map of {V,,}:

v, 20 x, = FCV, -V,

and using the other structure maps of X, which by assumption preserve the gemerating sub-

spaces, as the other structure maps of {V,}.

2.9. The action of X5 on V&2

For any vector space V € V, the tensor power V®2 := V ® V has an action of 3y given by
the map T interchanging the two factors. We will write SoV for the coinvariants and S?V

for the invariants of this action:

SoV = (V® V)EQ = (V® V)/ZQ;
SV .=(VeV)*?2 :={zcVeV|z="Tz}

The trace map is the natural linear map
tri=(1+T): SV — 5%V,

and we write

A%V = im(tr) = SoV/ker (tr)
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Thus, we may view A2V either as a subobject of S?V of as the quotient of S3V by the

subspace generated by elements of the form v ® v.

For any V €V there is a natural map
SoDV — DS?V, a® f+— “v@w— a(v)f(w)”.

It is an isomorphism when V is finite-dimensional.

Suppose that V and W are Fa-vector spaces, and p : SoV — W is a linear map. A

quadratic refinement of p is a function o : V. — W satisfying, for v1,v9 € V and a € Fo:
o(v1 +v2) = o(v1) + o(v2) + p(v1 ® v2) and o(avy) = a?o(v1).

In fact, the second condition is redundant (over Fq), and these conditions are equivalent to
the following condition. For any set B, define A2B to be the set of subsets of B of cardinality
exactly two. The equivalent condition is that, for every collection of vectors v, € V' and of
coefficients ap € o indexed by a set B, in which all but finitely many of the a4 are zero,

the following equation holds:

O'(Z ozbvb) = Z aga(vb) + Z apaep(vp @ ve).

beB beB {b,c}eA2B
If f:S5%V — W is a linear map, the function v — f(v ® v) is a quadratic refinement of

trof, and indeed:

Proposition 2.7. For any linear map p : SoV — W, extensions of p to a linear map

f: 8%V — W are in natural bijection with quadratic refinements of p.

Proof. Suppose that V has basis {v, | b € B}. Then SV has basis the set
{tr(vp ®v.) | {b,c} € A°B}U{v, @ vy | b € B}.

This is easy to check for V finite dimensional, and extends to the infinite dimensional case

as S? preserves filtered colimits, and we may calculate V as the colimit

colimFo(B') = V.
B'CB

In particular, an extension f of p is determined by the quadratic refinement v — f(v ®v).
Thus, as long as we can produce an extension f with o(v) = f(v ® v) for any quadratic

refinement o of p, we will have the natural construction we need.

34



What remains to prove is that the linear map f defined on this basis by
tr(vp @ ve) — p(vp @ ve),  Vp ® vy — o (V)

does in fact have the property that f(v ® v) = o(v) for all v € V. Indeed, if we write v in

terms of the chosen basis as v = ZbeB apvp, then

VRV = Z oduy + Z ape tr(vy ® ve),
beB {b,c}eA2B

and we can apply our definition of the linear map f to this expansion directly, obtaining

fo®v):=> apo(m)+ D aeep(vy @ ve) = o(v). O

beB {b,c}eA?2B

Corollary 2.8. There is a natural linear map /— : SV — V, the square root map,

uniquely determined by the requirements:

V1 Qua+1 Q01 =0, Vv®uv=uv forall vi,vy,v € V.

Proof. This map is the unique extension of 0 : S3V — V corresponding to the quadratic
refinement id : V. — V of 0. O

The evocative square root symbol is doubly appropriate, as if V' is dual to a finite-dimensional

vector space U € 'V, the linear dual of the square root map,
DV — DS?V <= $,DV

equals the squaring map U — SsU, defined by u — u ® u.

2.10. Lie algebras in characteristic 2

As we work in characteristic 2, there is more than one available notion of a Lie algebra. An
S(&Z)-algebra is a vector space L equipped with a bracket L ® L — L satisfying the Jacobi
identity and the (anti)-symmetry condition [z,y] = [y,z]|. A Lie algebra (or A(.Z)-algebra)
is a vector space L equipped with a bracket L ® L. — L satisfying the Jacobi identity
and the alternating condition [x,z] = 0. Finally, a restricted Lie algebra |20, 13| (or T'(.Z)-
algebra) is a Lie algebra equipped with a squaring or restriction function (7)[2] L — L,

satisfying the axioms

(w1 +22)2 = 2P 4 2 4 oy, 20] and 21 @) = [, [0, 2a]].

35



The alternating condition implies the (anti)-symmetry condition, and these three types of
Lie algebras form a hierarchy: a restricted Lie algebra is in particular a Lie algebra, and a

Lie algebra is in particular an S(.£)-algebra.

We will write Zie for the category of ungraded Lie algebras, and Zie" for the category

of ungraded restricted Lie algebras.

Fresse [31] explains how to construct the monads S(.%¢), A(.Z) and I'(.Z) on V which
give rise to these structures, starting with the Lie operad .Z. For V € V, it is standard that

the functor

S(Z):V— PZn) e Ve,

n>1
inherits the structure of a monad from the composition maps of .. Fresse observes that

the functor
D(Z):V— (L n) @ VE)

n>1

may also be equipped with a monad structure, such that the trace map S(.¢) — I'(.%) is

a map of monads, and that an intermediate monad may be defined by
AL) :V—im(tr: S(L)(V) — T(L)(V)).

These monads give rise to the three indicated forms of Lie algebras in characteristic 2. Each

of these functors supports a quadratic grading:
(L)) = (ZL(k)® V®k)2k, etc.,
and since Z(2) is one-dimensional, there are natural identifications:
@(S(L)V) 2 SV, q@(AL)V)= A%V, and q([(ZL)V) = S?V.

One can identify an S(.Z)-algebra with the corresponding map SoL — L, a A(Z)-algebra
with the map A2L — L, and a I'(.¥)-algebra with the map S?L — L, which is to say, for
instance, that a map SoV — V admits at most one extension to a S(.Z)-algebra structure

map S(.£)V — V. By pulling back along the natural maps
SV — AV — S?V
one can demote a restricted Lie algebra to a Lie algebra, or a Lie algebra to an S(.Z)-algebra.

A restrictable ideal in a Lie algebra L is a Lie ideal I of L, equipped with a restriction

36



function (=) : I — I, satisfying the following axioms, for 21,29 € I and x3 € L:
(21 + 29) = x[12] + x[;] + [z1,22] and [:c[lz], x| = [x1, [x1, 23]].

In fact, let PRL denote the category of partially restricted Lie algebras, whose objects are
pairs of vector spaces (L4, Lg), equipped with a Lie algebra structure on Ly @ Lg in which L4
is a restrictable ideal, and whose maps are Lie algebra maps preserving the decomposition
and commuting with the partial restrictions. This category is monadic over V x V, the

FPRL on (Vi,Vp) is just an

category of pairs of vector spaces, and the value of monad
appropriately chosen subalgebra of T'(.Z) (V. & V). We will refer to homogeneous elements
of Ly as restrictable, and homogeneous elements of Ly as non-restrictable.

In §7.1 we will define various categories of graded partially restricted Lie algebras, where

membership of the restrictable ideal is determined by the non-vanishing of certain gradings.

2.11. Non-unital commutative algebras

In this thesis we will work with non-unital commutative algebras except when we specify
otherwise. As for Lie algebras, there are three different notions of non-unital commutative
algebra available in characteristic 2. A commutative algebra (or S(%)-algebra) is a vector
space A equipped with an associative commutative pairing A ® A — A. We will work
with these often, and will write ¥om for the category of such algebras. In fact, we will so
often discuss simplicial non-unital commutative algebras that we will refer to them simply
as simplicial algebras.

An ezterior algebra (or A(%)-algebra) is a commutative algebra A with the property
that 22 = 0 for all x € A. A divided power algebra (or T'(¢)-algebra) is a commutative
algebra A equipped with divided power operations, as described in [31, 1.2.2] or [33, §2]. In
characteristic 2, these operations are all determined by a single operation, the divided square

v2 : A — A, which satisfies

Y2(zy) = 2*72(y), 12(Az) = N2(2) and ya(z + y) = v2(x) +2(y) + zy.

Note that the second condition is in fact extraneous over Fs, and that the last condition
implies that a divided power algebra is exterior. Thus, vo(zy) = 2272(y) = 0.

There is a notion of a divided power ideal of a commutative algebra: an ideal I of a
commutative algebra A equipped with a compatible divided power structure on I. In this
case, I is necessarily exterior, although for € A and y € I, vo(2y) = 2v2(y) need not be
ZEr0.

Again, Fresse [31] explains how to construct the monads F*°™ := S(%), A(%) and
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I'(¢) on V which give rise to these structures, using the commutative operad ¢ instead of
£. Again, there is a quadratic grading definable on these three monads, and each monad is
generated in degree 2, so that a commutative algebra may be thought of as a map SoL — L,

an exterior algebra as a map A2L — L, and a divided power algebra as a map S?L — L.

The coproduct AUB in the category of non-unital commutative algebras is the direct sum
A® (A® B) @ B, with the obvious product. Moreover, the smash coproduct (to be defined
in general in §3.5) is simply A Y B := A ® B. Indeed, coproducts and smash coproducts in

all three of the above categories are given by these formulae.

2.12. First quadrant cohomotopy spectral sequences

Suppose that V), is a bisimplicial vector space, ungraded for now. We will follow the
standard conventions, those of [52], in defining the cohomotopy spectral sequence of V,

which calculates the cohomotopy of the diagonal |V| of V. For more detail, see [52, §1.15].

There is a double chain complex C) ,V = C[}}C'(‘]’V = V)4, where we have decorated the
functors CV and C® in order to distinguish them from the functor C,. being introduced,
and to distinguish the coordinates — we will always refer to p as the horizontal coordinate
and g as the vertical coordinate. The total complex T'V | along with one of its two canonical

increasing filtrations, is defined by

n p
(TV)n = Cin-iV,  Fp(TV)n:= P Cin-iV.
=0 1=0

The dual total complex DTV admits a decreasing filtration defined by
FPDTV := ker (DTV —» DFp_lTV).

Correspondingly, H*(DTV') = 7*(D|V]) is equipped with a decreasing filtration. This fil-
tration is evidently finite (eventually stabilizing in any given dimension), ezhaustive (having

union H*(DTV')) and Hausdorff (having intersection zero), and one defines
[Bor* (D|V )] := FPrP*4(D|V])/FP*al*(D|V]).
Then, there is a spectral sequence with
[EaV]P? = mmd(DV),
and differential d, : [E, VP4 — [E,.V]PT47"*! 50 that [E,41V] is the cohomology of the
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cochain complex ([E,V];d,), and for each fixed p and g,

[E,V]P1 stabilizes to [Ex VP! = [Egn™ (D|V|)]P? as r — oo.

Typically, V will admit an augmentation to a simplicial object V_1 € sV, inducing a
weak equivalence |V| — V_1. All of our augmentations are horizontal maps to a vertical

object, i.e. an augmentation is a simplicial (in ¢) map:
dg : Vo, — V_1,4 coequalizing dg, db Vi — Vo

In this case, we view the spectral sequence as a tool for the calculation of the cohomotopy

m*(DV_1), via isomorphisms

(s VP4 = [Egr* (DV_1)]P4.

If V is instead a bisimplicial graded vector space V' € ssV§, then we may regard [E,V]
as an element of V2. That is:

BV = BV,

tey.tl Shy-esS1

In our application of these conventions we will actually have V € V;', and will write p = sp49
and ¢ = sp41. We will even sometimes have a quadratic grading on V', which will transfer
to a further grading on the spectral sequence, so our spectral sequences will appear in the
format

Qk[Er‘V]thW’SI = [ET(QkVt

st )]Sh+2,8h+1 .

2.13. Second quadrant homotopy spectral sequences

Suppose that
0= ‘T_l ‘T() ‘Il < ‘TQ s ‘:Too

is a tower of surjections of chain complexes, with T, the inverse limit. Then T, has a

canonical decreasing filtration:
F™ = F"To :=ker (Too — Tn—1)
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and we define, with the conventional suspensions:

[Ey]® := X°ker (TS — 75—1)3
[E1)" = Hi[Ep]® = Hisker (‘IS — TS_1>'

From this data we may derive the following diagram, in which any pair of composable maps

that consists of a monomorphism then an epimorphism is a short exact sequence of chain

complexes:
0 50[E,]° SYE! S2E)? DB
i } A A A
T oo =——— F© F! F? F3
! J J J !
Too Too Tso Too Too
| V U { {
0 T_l ‘I() 71 TQ
1 | | x |
0 0 OB SE! 2B ?

Taking homology, each short exact sequence of chain complexes creates a long exact se-
quence, and we obtain two exact couples (c.f. [29] or [41, §2.2]), which we juxtapose, using

dotted maps to indicate boundary homomorphisms:

0 SOHE]  STUH[E]  STH[E]R SOH[EP
HT g =——— HF" HF! HF? HF?
HT o — H7.. — HT.,, ———— HT., — H7..

| o o R o

0———HT ;- HTy < HTy < HT,

T R Iy S

0 0 $-0H[E,]° S-1H([E,)! Y2 H[E,]?

The vertical boundary homomorphisms HT,, — Y HF™*! in fact form a morphism of exact
couples (c.f. [29]), as follows from Verdier’s octahedral axiom (in the homotopy category of
chain complexes, c.f. [38, Appendix A.1]) or a diagram chase. Moreover, the two resulting
spectral sequences have the same Ej-page, so that they are identical (c.f. [29, §6]). This
common spectral sequence is simply the spectral sequence of the decreasing filtration F™ on
the complex To, (c.f. [41, §2.2], [7]). The intended target HT . has an exhaustive decreasing

filtration, defined in either of two equivalent ways:
F™"(HTy) :=im(HF™ — HTy) =ker (HT — HTp—1),
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and one writes [EgHToo]; = FSHy—Too/F* T Hy— T oo

One context in which we may make these constructions is when given any sequence of
maps

0=T_1—To+— Ty <—---

in sV. Such a tower may be converted into a homotopy equivalent tower of surjections

0 — Tl_l T6 T/ <

and we may perform the above constructions with T;,, := C,T/,. Homotopy equivalent towers
will produce isomorphic spectral sequences from Fq. From this perspective, a straightforward
way to give a map of spectral sequences that shifts filtration is simply to give a map of such

towers with the corresponding shift.

Suppose now that V' is an object of (sV)2+, the category of coaugmented cosimplicial
objects in the category of simplicial vector spaces. We think of the cosimplicial direction
as horizontal and the simplicial direction as vertical, so that the coaugmentation of V' is a

(horizontal) map from a (vertical) simplicial object V=1 € sV, i.e. a simplicial (in ) map:

d) - V7l — VP equalizing dY, dj - V) — VL.

There is a cochain-chain complex
(CV); = CyCYV = V2,

with s the horizontal and ¢ the vertical coordinate, whose differential is the sum of the hor-
izontal and vertical differentials. The total complex T'V is a chain complex with a canonical

decreasing filtration, defined by
(TV)n =11, CV, d=dy+d, (F™TV),, = Ht_izn CVye.
s>m
This filtration of T'V corresponds to the tower of surjections of chain complexes defined by

(T V) == (TV/F™ TV, 2 [[t—s=n CV{,

s<m

which has inverse limit TV = TV. Again, the two evident filtrations of H,(T'V) =
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H,.(ToV) coincide, and the resulting spectral sequences coincide, satisfying

[EgV]i = CRCYV, do = d";
(B, V]} = Cpm}V, dy = dy;
[EQV]} = mym V.

The differential is of the form d, : [E.V]{ — [EV]7IT_|, and as ever, [E, V] is the
homology of the chain complex ([E,V];d,). We will work with this spectral sequence in
detail, and will need the following explicit description of the higher pages:

(Z,V); ={z € (FTV)_s |dx € (F*""TV)i_s_1};
[EV]; =2,V (d([Z, 1 V;T5) + [Z,0VIEH) -

T

The spectral sequence will sometimes admit a vanishing line of slope o on Ejy, i.e. there

will exist a constant ¢ such that:
[EyV]i =0 for s > c+ alt —s).
In this case, the filtration on H,(7TV') is Hausdorff and finite, and for each fixed s and ¢:

[E,.V]] stabilizes to [E_V]; = [EyH.(TV)]; as r — oc.

The coaugmentation induces a map V! = Tot V where Tot V is the totalization of
V in the simplicial model category sV [34, VIL.5]. Bousfield explains how this relates to the
totalization tower [34, VIL5] of V:

Lemma 2.9 |7, Lemma 2.2|. There are natural chain maps Ny Tot,, V. — T,V form < oo
which induce an isomorphism of towers m, Toty,, V. — H, T, V. In particular H.(TV) =
s TOt V.

Not only then do we have a tower under T,V ~ C,TotV, but TotV accepts the
coaugmentation map from V-l Of course, the coaugmentation map need not be surjective,

but if we factor it as a composite

V- Ss p(V) — Tot V

we may form the following diagram by demanding that the vertical composites be strict
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fiber sequences

r(V—1) =——=Fib’ Fib! Fib? Fib?
J J ! J !
r(V-1) r(V ) =r(V ) =r(V ) ==r(V)
¥ | } } }

0 Tot_q Totg Tot Toto

and applying the functor Ci.

We will in general hope that V1 — Tot V will be a weak equivalence, and to investigate
whether or not this is so, it will be helpful to be able to identify the fibers Fib™ up to
homotopy. For this we recall a useful relationship between cosimplicial objects and cubical
diagrams, explained by Sinha in [53, Theorem 6.5], and expanded on by Munson-Voli¢ [43].
We will only present that part of the theory that we need, and refer the reader to [35], [45]
or [43] for the theory of cubical diagrams and their homotopy total fibers. For n > 0 let
[n] ={0,...,n}, and define P[n] = {S C [n]} to be the poset category whose morphisms are
the inclusions S C S, so that an (n + 1)-cubical diagram in sV is a functor P[n] — sV.

Sinha describes a diagram of inclusions of categories

Pl — =P ——

P[0] s P[]
Ay

The augmented cosimplicial simplicial vector space V : Ay — sV may be pulled back
along h,, to form an (m + 1)-cubical diagram h’ V. After noting that V is Reedy fibrant

(c.f. [10, X.4.9]), Sinha explains that there are natural weak equivalences
Fib™ "1 ~ hofib(V ™! — Tot,,, V) — hototfib(h}, V)
under which the inclusion Fib™ <— Fib™*! is identified with the map
hototfib(h,,V') — hototfib(7*h;, V') = hototfib(h,, )

m—1

As h* |V is the O-cube with value V1, the tower of homotopy total fibers is identified up
to homotopy with the tower of the Fib™.
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Chapter 3

Homotopy operations and

cohomology operations

Let € be a category of universal graded algebras, monadic over V,I'. Our goal is to understand
construct operations on the homotopy and cohomology of an object of sC. In §3.2 and §3.3,
we set out dual frameworks in which these operations can be organized, and in 3.10 and
3.5, we describe some useful chain level operations that we will use to construct cohomology

operations in §6.

3.1. The spheres in sC and their mapping cones

Using the forgetful functor U® : ¢ — Vi, for any X € s€ we may define the homotopy
groups mX of X, which we view together as an object of \7;:1. By the definition of the

model structure on s€, the functor 7, : s€ — V,trl is homotopical, which is to say that it

inverts weak equivalences. For any set of indices ¢ > 0 and $,41,...,81 > 0, write:
C,t . Cyst .
S57‘+17---751 =F Ksr+1,---751’ and
et o C vt
CSST+17~-,S1 =F CKSrH,mm

These are the spheres in sC and cones on spheres in sC respectively, and we write

sph(@) := {Se’t [t >0, Spp1,...,81 > 0}

Spr41y--+5S1

for the set of spheres in sC. Note that we were very literal here — the spheres in sC are
precisely this set of objects, and not, say, the cofibrant objects in sC which are weakly
equivalent to some Ssﬁih-..m- For S € sph(€) we write C'S for the corresponding cone.

For any S € sph(C@), there is an evident cofibration wn : S — CS. Indeed, for any
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sphere S = SS’;’;I,,_,,SI, S contains a distinguished normalized cycle, the fundamental cycle:
S (ZNS’V‘Jrl S)ZT,...,Sl ’
and the cone C'S contains a distinguished normalized chain, the cone on z:

h € (Ns, ,+1CS)!

SryeeeyS17

and n is defined by the requirement that in(z) = doh. For any X € sC, by adjunction:

homse(SS;i_l,...,S17X) = (ZNS’I‘+1X)§7-,...,51 and
homse(CSS;il,...,sl7X) = (N3r+1+1X)§T,...,817

and indeed n* plays the same role as above, representing the differential of N, X. Moreover,
in the homotopy category corresponding to the above model category structure, SS’];,H___,SI
represents m,(—)% (c.f. |33, §1] or [3, §3.1.1]) which is why we refer to the objects

TyeeyS1

et
Sils,.....s, as spheres.

3.2. Homotopy groups and C-II-algebras

By virtue of the algebraic structure possessed by X € sC, the homotopy groups m,X possess
certain natural algebraic structure, that of a C-II-algebra. Indeed, as any given homotopy
group is a representable functor on the homotopy category, natural N-ary operations on
homotopy groups

(mX)h oxex (mX)fy

Sp41051 r410951

N — (M X)" (3.1)

Sr+41y.-+351

are in bijective correspondence with elements of the group

et etV t

e (Ssiﬂ,...,s% S Ssﬁ;l,...,sf’)5r+17-..,81' (32)
Blanc and Stover [3] define a new category of graded universal algebras, the category 7C of
C-IT-algebras, monadic over V;F 11, whose objects are graded vector spaces V' € V;”H with a
structure map

1 tN t
VY XXV —V
s7l,+1,...,s% Sf-erlv“"leV Sr41,--+,51

(3.3)

for every such homotopy class, satisfying certain natural compatibilities.
It is a standard formalism to encode these compatibilities as follows. A model [3] in

sC is an almost free object of s€ which is weakly equivalent to a coproduct of spheres (for
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example, FCT'V for any V € fo 41 viewed as a chain complex with zero differential). A finite
model is a model in which this coproduct is finite. Let II be the V-enriched category with

objects the finite models in s€, and morphisms
homyy (M, M) := homy,qse) (M, M').

Then the category of C-Il-algebras may be defined as the category of V-enriched functors
I1°? — V that send finite coproducts into products (where by V we mean the category
of ungraded Fa-vector spaces). The category of C-II-algebras is monadic over \7:;1, with
forgetful functor U™® defined on a functor A € 7€ by:

(UTCA), s = AST ),
and each of the structure maps (3.3) on U™ A is induced by the corresponding homotopy
class (3.2), viewed as a map in II.

One obtains the free C-lI-algebra on a graded vector space V € \7;,:1 using Dold’s
Theorem (2.4). That is, one views V as a chain complex in chV;" with zero differential, and
applies the Dold-Kan correspondence and C-free functor, obtaining an object FCTV € sC,
and then

F™V = 1 (FTV).

Moreover, as F° is an augmented monad, so is F®, via the map
F™V = 1 (F°TV) =5 n,(TV) = H,V =V,

and in particular, there is an adjunction Q™¢ 4 K7C.

The theory above has the upshot that understanding the category nC is equivalent to
calculating the homotopy groups of the finite models. In many cases, this can be performed
by calculating the homotopy of individual spheres, and then using a Hilton-Milnor Theorem
(c.f. §5.5) or Kinneth Theorem (c.f. Proposition 5.5) to bootstrap up to a calculation on all

finite models.

Lemma 3.1. For any model A in sC, the Hurewicz map m,A — m,Q%A descends to an
isomorphism
v Q™ A — m,QA = HEA.

Proof. A is (cofibrant and) homotopic to a coproduct of spheres, and as such may be taken
to be equal to a coproduct of spheres. As m,A is free on generators in correspondence
with the sphere summands, Q™®7, A is simply the vector space with basis their fundamental

classes, which is isomorphic to HSA. O
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3.3. Cohomology groups and C-H*-algebras

It will in general be preferable for us to consider algebraic structure on cohomology, rather
than coalgebraic structure on homology: algebra is in general a more familiar subject than
coalgebra, and cohomology has the advantage that it consists of representable functors.
Another advantage is that the theory of cohomology and C-H *-algebras is dual to the theory
of homotopy groups and C-II-algebras, and §3.3 can be (and has been) obtained from §3.2 by
appropriate dualization. On the other hand, using cohomology groups has the disadvantages

associated with double-dualization.

For any set of indices ¢t > 0 and s;41,...,51 > 0, write:
C,t . 77Cqet .
K5r+17~--751 =K K5T+17--~1517 and
et o 1C et
CKST+1,~~,S1 =K CKSrH,mm

The KS;L,._,,SI are the Filenberg-Mac Lane objects in sC. In the homotopy category of sC,
the object KS;’;T,,,,’SI represents the contravariant functor Hg(—)f“”"sl :s€ — V, cf. [33,

Proposition 4.3].

By virtue of the algebraic structure possessed by X, the cohomology groups Hg X possess
certain natural algebraic structure, that of a C-H*-algebra. As for C-Il-algebras, natural N-

ary operations on cohomology groups

* 571~+17~~15% * 37{V+17~-75{V * Sp4-1y--+551
(HeX) X - X (H@X)tN — (HeX), (3.4)

t1

are in bijective correspondence with elements of the group

Hy (RS o x K )i, (3.5)

r1S1 Sr10e0951
The category of C-H*-algebras, monadic over VTI, has objects graded vector spaces V' &€
Vfrl with a structure map

si-&-lr"?ﬁ S£V+1v~--’s{\] Sr+41;---,51
‘/;1 X"'X‘/;N —)‘/; (36)

for every such cohomology class, satisfying certain natural compatibilities.

The formalism required to express these compatibilities is as follows. A generalized
Eilenberg-Mac Lane object, or GEM, in sC is an almost free object of s€ which is weakly
equivalent to a product of Eilenberg-Mac Lane objects KS;117,,,781. A finite GEM is a GEM
in which this product is finite. Let K be the V-enriched category with objects the finite
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GEMs in sC, and morphisms
homg (M, M') := homy,gsey (M, M.

Then the category of C-H *-algebras may be defined as the category of V-enriched functors
K — V that preserve finite products. The category of C-H *-algebras is monadic over V:_H,
with forgetful functor defined on a functor A : K — 'V by:

(U)ot = RS, L),

Sr41,:058

and each of the structure maps (3.6) on UYCh is induced by the corresponding cohomology

class (3.5), viewed as a map in K.

One obtains the free C-H*-algebra on a graded vector space V € Vr++1 of finite type as
follows. One views DV as a chain complex in chV;" with zero differential, and applies the

Dold-Kan correspondence and K¢, obtaining an object K°TDV € s€. Then:
FACY = HEKTDV.

Moreover, FH¢

FTV — K°T'V, to obtain

is an augmented monad: one applies H; to the natural collapse map

KA = H;FTDV «+— HIKTDV =: FHECV.

and in particular, there is an adjunction Q¢ -+ KHE,

These definitions simplify when we apply them to the dual of a vector space U € \7;:_1
of finite type:

FI¢DU) := m*DQCcKTD?U +— m*DQCcK°TU — Dr,Q%cK°TU

FHC

suggesting that the functor is altogether of the wrong variance. It is preferable to work

with the functor
CHC—CoalgU . W*QGCKGFU

discussed in §3.7.

To dualize a paragraph from §3.2: the theory above has the upshot that understanding
the category HC is equivalent to calculating the cohomology groups of finite GEMs. In
many cases, this can be performed by calculating the cohomology of individual Eilenberg-
Mac Lane objects, and then using a Hilton-Milnor Theorem (c.f. [33, §11] and §6.6) or
Kiinneth Theorem (c.f. Theorems 6.15 and 14.6) to bootstrap up to a calculation on all
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finite GEMs.

3.4. The reverse Adams spectral sequence

We will now give a description of Miller’s reverse Adams spectral sequence [42, §4|, which
was used by Goerss [33, Chapter V| to calculate the cohomology of Eilenberg-Mac Lane
objects in som.

Suppose that X € sC, and consider the bisimplicial object QG(BSX)q € ssV;. There is

a first quadrant cohomotopy spectral sequence
[EQ Q@B@X]?%Snam,sl — ﬂ.ﬁﬂg(DQGBGX)fn,m,sl
converging to H3X := aPTIDQC| B X|. For each fixed p,

m™(DQBLX) = D, (Q°BL X)
= DQWGT"* (BSX)
= DQWGBZ;GW* (X)7

where the second isomorphism is that of Lemma 3.1, so that
[E2 QGBGX]f’q’S"""’Sl ~ (Hﬁe,n_*X)gysnwwsl.

When € = Gom, this is precisely the spectral sequence used by Goerss in [33, Chapter V]
to calculate the cohomology of Eilenberg-Mac Lane objects in s¢om. In this thesis, we will
use this spectral sequence only for certain low-dimensional calculations. Goerss equipped
the reverse Adams spectral sequence with certain spectral sequence operations [33, §14],
work which can be framed using the external operations, due to Singer, reprised in §13.

In this thesis we study a Bousfield-Kan spectral sequence (BKSS), which is also known
as an unstable Adams spectral sequence, for the category ¥om. The operations defined in
§11 for this spectral sequence make for another point of comparison. Loosely, we find that
the operations on the BKSS are in a sense Koszul dual to the operations on the reverse

Adams spectral sequence.

3.5. The smash coproduct

For X; and X5 objects of any algebraic category, for example €, 7€ or HC (to be defined
shortly), we define the smash coproduct X; ¥ X5 to be the kernel of the natural map X; U
Xo — X1 x X5, When X7 = Xo = X, X Y X has a natural action of X5, and we write
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X V2 X for the subobject of invariant elements under this action.
When X; and X5 are objects of sC, taking this strict fiber is in fact homotopically

correct, since the map X1 U Xo — X7 X X5 is always a fibration, and indeed:

Proposition 3.2. For X; and X5 in sC, the natural C-1I-algebra map
(X1 X Xo) — m Xy X m X

is an isomorphism. If X1 and Xs are models in sC, the natural C-I1-algebra map
T X1 U e Xo — me (X7 U X2)

is an isomorphism, and there is an isomorphism of short exact sequences:

0—m X1 Y1 Xog—m. X UmXog ——m Xy X1 X9 ——>0

~| g¢ >

04>7T*(X1 YXQ) 4>7T*(X1 LJ Xg) 4>7T*(X1 X Xg) —0

Proof. The first claim is easy: the forgetful functor is a right adjoint, and =, preserves

products (of vector spaces). Consider the commuting diagram

00— m X1 V1 Xog——m X UmXo ——m X1 Xx mXo——0

Ji =

7T*(X1 \_/XQ) *>7T*(X1 L XQ) *>7T*(X1 X XQ)

in which the top row is a short exact sequence, and the bottom row is just a three term
excerpt of the homotopy long exact sequence of the fiber sequence defining Xy Y X5. If 4
were an isomorphism, the bottom row would also be short exact, and a simple diagram chase
would show that ¢ restricts to the isomorphism we desire.

If X1 and X, are models, the displayed map ¢ is an isomorphism, since both source and
target represent the free C-Il-algebra on generators corresponding to the sphere summands

of X7 and X5 taken together. O

3.6. Cofibrant replacement via the small object argument

The homotopy of an object X of s€ was defined simply by application of the forgetful functor
U®: @ — V, a definition which is tautologically homotopically correct. On the other hand,
in order to define the homology HYX, as the left Quillen functor Q® does not preserve all
weak equivalences, we must perform a cofibrant replacement before applying Q¢. While the

comonadic bar construction B¢ described in §2.3 suffices to define the groups HYX, it lacks
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the structure that we will need at various points in this thesis.

Radulescu-Banu’s innovation [49] was to explain that the cofibrant replacement functor
¢ : s€ — sC constructed by Quillen’s small object argument [48], which by design already
possesses a natural acyclic fibration € : ¢ — id, in fact admits the full structure of a

comonad, with diagonal 3 : ¢ — cc. As explained by Blumberg and Riehl [4, Remark 4.12]:

Proposition 3.3. The endofunctor Q°cK® of sV admits the structure of a comonad, via

the maps
Q%cK® Qi@) Q%ccK® Qe—c@ Q%K Q%K% and Q°cK® Q&Q Q°K® ~id

where 1 denotes the unit of the Q¢ 4 K® adjunction.

The functor ¢ of the small object argument depends on the choice of sets of generating
cofibrations and acyclic cofibrations. It will be helpful in our applications to include in the
set of generating cofibrations the following important cofibrations:

1) the inclusion of 0 into any sphere 85231,...,515
2
3

the cofibration Sf L SS, — Jy v defined in §11.5;
the cofibration Sg — O, defined in §11.7; and

(1)
(2)
(3)
(4) for each cofibration A — B just mentioned, the map A' ® A — Al @ B formed
using the standard closed simplicial model category structure [48, I1.4] on sC.

It will be helpful to have included these maps, because of the following facts about the
small object argument functor ¢X. It is constructed as the colimit of a (transfinite) sequence

of cofibrations:

0 = C()X ClX CQX CgX

and given an element f : A — B of the chosen set of generating cofibrations and a

commuting square

A——sc, X

Js }
B——X

there is a canonical choice of map B — ¢, +1 X making

A——cp X

|

f Cn1X

B X
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commute. Indeed, the map ¢, X — ¢,+1X is constructed by attaching a copy of B along
the image of A in ¢, X, for each such commuting square.

We will use this canonical lift later, and so establish a little notation. There is a function
homgom (S¥, X) — homygom (SY, ¢1 X)
denoted oo — @, natural in X € sC, and which provides a section of
homsgom (S, €X) - homgom (S, X).
We define a to be the canonical lift corresponding to the square

0*>C()X =0

}

S§L>X

Finally, we note that Radulescu-Banu’s construction has a convenient (albeit not crucial)
consequence for the construction of homotopy cofibers in s€. Quillen’s small object argument

actually provides a functorial factorization
X c(g) ==Y

of any map g : X — Y in sC, and in this notation, one might say that we have been writing

¢X as shorthand for ¢2°(0 — X). There is a commuting square

0>—cY

| |

X Yoy

which by functoriality induces a commuting diagram (ignoring the dotted map):

0 ccY —Y oy

fac (

cX > c?(cg) —>cY

Radulescu-Banu’s diagonal § is the dotted map in this diagram, and as it is a comonad
diagonal €.y o 8 = id.y, so that m o § is a section of the acyclic fibration cfac (cg) s Y.

We may define the homotopy cofiber of g as the pushout

cX— o Cfac(

} !

0 —— hocof(g)

cg)

o3



and by virtue of the construction just given:

Proposition 3.4. There is a construction in sC of the homotopy cofiber hocof(g) of a map

g: X — Y, implemented by natural maps
eX % ¢Y — hocof(g).

This is in contrast to the standard situation, where there is at best a natural zig-zag, even

from ¢Y to hocof(g).

3.7. Homology groups and C-H,-coalgebras
There is a commuting diagram

QGCKG

+ +
sV, sV,
T T
’\7_;11 CHefcoalg _;li
1V,

in which we are using Dold’s Theorem (2.4) to define C¢=<?l8 the cofree C-H,-coalgebra
comonad. By Proposition 3.3 and the naturality of Dold’s Theorem, this is a comonad
on \7;”+1. A C-H,-coalgebra is simply a coalgebra over this monad, i.e. any h € V;:l
equipped with a coaction map h — CHC—cdle], atisfying the standard compatibilities.

The homology H X of X € sC is a C-H,-coalgebra with coaction map

(Q%c(n)

Tk e T _
w1 (Q%eX) ™) 1 (QCeex) ) (QCeKCQ8eX) = CHE=oals (1 (0CcX)).

If X ~ K® for some V € sV}, then HX = CHC—codlg(7 (1)), and the coaction map of
HEX is none other than the diagonal map of the comonad.
The comparison maps of §3.3 give the dual of a C-H ,-algebra of finite type a C-H*-algebra

structure.

Proposition 3.5. If V € V and X, X' € HC—coalg are of finite type, then there are natural

isomorphisms:

DCHefcoalgV ~ FH@DV
QH@DX ~D PrH(‘ffcoalg X
D(X x X') DX UDX/;

D(X A X')~DX VDX

where the primitives Prif®=c°8 X qre defined §3.8, and the smash product X A X' in §3.9.
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3.8. The Hurewicz map, primitives and homology completion

For any X € sC, there is a map m,. X — HCX, the Hurewicz map, defined as the composite
T X 2 71, (eX) — m (Q%X).

Indeed, the Hurewicz map provides a coaugmentation of the comonad C¢~¢02lg the natural

transformation a : id — CH¢~c0alg of endofunctors of V;,:l defined by

V 2 (cKTV) — 1,(Q%K°TV) = F™V.
One reading of this observation is:

Lemma 3.6. If X € sC is in the image of K®, then Q°X = U®X, and the Hurewicz map

of X is a section of the composite

HSX = W*QGCX (Q—é)f W*QGX = m.X.
Given that the comonad CH®~c2le has a coaugmentation, we may define the primitives
of a C-H,-coalgebra H as the equalizer (in sV):

priC—coals ([~ F—">CH.
coact

We will briefly defer the proof of:

Proposition 3.7. The Hurewicz map m.X — HCX factors through Pri¢=codls(gCXx)
and if X is GEM, the map m, X — Pri¢=cals(HCX)) is an isomorphism. In particular,
forany V € \7;,:1, PrHefcoalg(C’He_CoalgV) =V,

Radulescu-Banu [49] has constructed a cosimplicial resolution X* of an object X € sC
by GEMs, and defined the homology completion of X to be the totalization X" := Tot(X*®).
This construction is the analogue of Bousfield and Kan’s R-completion functor on simpli-
cial sets [12], a construction that has proven extremely useful in classical homotopy theory.
There is an additional difficulty, however, in constructing the cosimplicial resolution X*,
which is not present in the classical context: since not all simplicial algebras are cofibrant,

the naive cosimplicial resolution (with the coaugmentation drawn dashed)

X****>KGQGX (KGQC)ZX (KCQC)SX

fails to be homotopically correct, and as Q®K® = id, fails to hold any interest whatsoever.
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Radulescu-Banu’s innovation was to explain that the cofibrant replacement functor c :
s€ — sC constructed by Quillen’s small object argument [48] admits a comonad diagonal
B : ¢ — cc (already used in §3.7) and can thus be mixed into the cosimplicial resolution,

making it homotopically correct.

In detail, the diagonal is needed in order to define the coface maps in Radulescu-Banu’s

resolution, the coaugmented cosimplicial object

X*: cX - — - —>cK®Q%X c(K®Q%)%2X c(K®Q%)3X ---.

Instead of simply using the unit and counit of the adjunction respectively, one uses the

composites discussed in §3.7:
c & ce 5% cK®Q% and QCcK® %{ Q°K® — id.

By an application of Dold’s Theorem (2.4), if X — Y is a weak equivalence, so is
X® — Y°® for each s. Both X and Y, being group-like, are automatically Reedy fibrant
(cf. [10, X.4.9]), so that the map of completions X~ — Y~ is a weak equivalence. This

construction is explained and generalized by Blumberg and Riehl [4, §4].

Comments in [4, §4] show that the coaugmented cosimplicial C-H,-coalgebra HEX® is
weakly equivalent to its coaugmentation HSX as a vector space (c.f. §4.1), which starts to
explain the title homology completion. One says that X is homology complete when the map

cX — X" :=Tot(X*) is an equivalence.

In Theorem 4.4 we specialize to the case when C is either the category ¥om of ungraded
non-unital commutative algebras the category Zie” of ungraded restricted Lie algebras, and
prove that the completion X~ is weakly equivalent to X when X is connected. Analogous

results for topological Quillen homology may be found in [18|.

A question analogous to questions studied in [18] and [2010arXiv1001.1556H] is
whether the homotopy category of connected objects of sC is equivalent to the homotopy

category of cosimplicial Q®cK C-coalgebras. We have not investigated this question.

Proof of Proposition 3.7. The maps d°,d' : X° — X! induce respectively the coaugmen-
tation and coaction maps for 7,X° = H®X on homotopy, while d® : X=! — X° induces
the Hurewicz map. The very existence of this diagram then shows that the Hurewicz map
factors through the primitives. The observation that this cosimplicial object has extra code-

generacies when X = K®V (c.f. [4, §4]) completes the proof. O
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3.9. The smash product of homology coalgebras

For X1, X9 € HC—coalg connected homology coalgebras, we define the smash product X1 A
X5 to be the cokernel of the natural map X7 L Xo — X7 x Xo.

The theory changes a little in form after passing from homotopy to homology, and in
order to obtain a result analogous to Proposition 3.2, we must introduce the left derived
smash product in €. For A; and As in sC, the natural map A; L Ay — A; X Ay is a
surjection, and so in general very far from a cofibration. We define the left derived smash
product Ay A% Ay to be the homotopy cofiber of this map. In light of Proposition 3.4, there
are natural maps

c(A1 U Ay) — c(Ay x Ag) — Ap AN A,

and this cofiber sequence induces a homology long exact sequence (c.f. [33, Proposition 4.6]).

The following result and its proof are dual to Proposition 3.2 and its proof.

Proposition 3.8. For X and X5 in sC, the natural C-H,-coalgebra map
HE(X1UXy) «— HSX, UHEX,

s an isomorphism. If X1 and Xo are GEMs in sC, the natural C-H,-coalgebra map
HYX) x H X5 +— HE(X| x X5)

takes part in an isomorphism of short exact sequences:

0<~—HCX| ANH Xy ~— HSX) x HEXo~— H! X1 UH Xy <—0

gﬁ %’r gﬂ\

0<~— HS(X) AV Xo) <—— HE(X) x Xo)=—— HE(X1 U X9)<—0

3.10. The quadratic part of a C-expression

In this thesis, we will often use a method of constructing cohomology operations used by
Goerss in [33, §5], and here we will set up a framework that can be applied to each case. We
continue to suppose that € is an algebraic category, monadic over V, a category of graded
vector spaces, satisfying the assumptions of §2.1.

For V €V, the diagonal map A : V — V @ V of V induces a diagonal map F°V —
FS(Va V)= (FV))“2, and writing i1 and iy for the two summand inclusions F¢(V) —
(F¢(V))"2, consider the map

(FC(A) + iy 4 io) : FCV — (FCV)W2,
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This map factors through (F®V)¥2, and is symmetric. We name this factoring the cross

terms:

cr: FOV — (FOV) V22 (FOV),

as it measures the non-linearity in an expression in F€V. We will give an example in each
of the categories om, Lie and Zie", in each case using subscripts to denote membership

of the first or second copy of V:

Com : cr(vw) = (v1 + v2) (w1 + w2) + viw + vawe = Viws + W1v2;
Lie:  cr([v,w]) = [v1 + v2, w1 + wa] + [v1, w1] + [v2, we] = [v1, wa] + w1, v2;
Lie" - cr(v[2]) = v?] + UE + (v + ’Ug)[Q] = [v1,v9].

For certain categories of interest to us we will define a decomposition map, natural and

symmetric in X;, Xo € C:
je : Q%(X1 Y Xa) — Q%(X1) ® Q%(Xa).

When € = Fom, X1 ¥ Xo =2 X7 ® Xy and Q(X1 Y X)) =2 QX ® QXe, and we choose
the identity map of this object as decomposition map jgom-. In other words, the map jgom
is defined by 122 — 1 ® 22 whenever 1 € X7 and x5 € Xo.

When € = Zie or C = Zie", we define the decomposition map by

T1Qxo, ifr=0,a=2, 21 € X1, 29 € Xo,

]L(n) : [33]_, T 7xa][2r] —
0, otherwise,
where by [z, ,24]*"] we mean the r-fold restriction (r = 0 when € = Zie) of some
bracketing of various z1,...,z, from X; and Xo, with at least one z; must lie in each of X3

and Xs. Any element of the smash coproduct may be written as a sum of such expressions,
so there is at most one map jg,,, satisfying this equation. That this map is well defined is
less obvious, but nonetheless routine.

Finally, we define the quadratic part map que to be the composite
quie : (F@V T (FEV)Y2 L QS((FEV) V2 (FEV)) 2% S2(QCFCY) = SQV) .

Lemma 3.9. Suppose V € V. Then:

(1) quyg,y, is the composite FCOMV —ss SyV -y S2y
(2) qug,, is the composite FZ€V —» A2V 1y §2y

(8) qug;,ris the projection FZ€V —» S2V.
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Proof. These are simple observations, and an example is more useful than a proof: consider

the expression e := u + vw + xy? € F™V where u,v,w,x,y are in V. Then

cr(e) =vjwe + wyve + xlyg + y%:cg, and
que(e) = jzom(cr(e))
:v1®w2+w1®v2+x1®y%+y%®x2
= v @ wy + wy @ vy € SHQEMEEMY),

Parts (2) and (3) are a light modification of a part of Proposition 7.5. O]

In each category of interest to us, the following equation of maps FCFV — S2V will

always be satisfied:

e
qug © iy = qug © €pey +que © Frey,

where 1 and € stand for the multiplication and augmentation of the augmented monad
UCFC. This is another expression of homogeneity in the relations defining €, which states

that if f(g;) is a C-expression in various C-expressions g;(v;;), then

qu(fgi)(vij) = qu(fe(gi))(vij) + e(f)(qu(gi)(vij))-

For an example when C = %om, we specify an expression f(g1,92,93) := g192+9g3 € FCFCV

in expressions g; := v;1V;2 + v;3 € FCV for each i = 1,2,3. Then

qu(fgi)(vij) = qu((vi1v12 + v13)(V21v22 + v23) + (V3132 + v33)) = tr(viz ® vag + V31 @ v32),
qu(fe(gi))(vij) = qu((viz)(vas) + (v3z)) = tr(viz ® ve3), and

e(f)(qu(g:)(viz)) = qu(vsivse + vs3) = tr(vs) ® v3z).
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Chapter 4

The Bousfield-Kan spectral sequence

In this chapter, we will write € for any category of universal graded Fa-algebras satisfying the
standing assumptions of §2.1. The Bousfield-Kan spectral sequence of X € sC is the second
quadrant homotopy spectral sequence (c.f. §2.13) of Radulescu-Banu’s resolution X € ¢sC of
X recalled in §3.8. The key objective of this thesis is to understand this spectral sequence

when € = om.

Our first step, in §4.1, is to identify the Fo-page as appropriate derived functors. Before
we turn to the calculation of these derived functors in later chapters, we consider the con-
vergence target, Tot X =: X". From §4.2 to the end of this section, we will give a proof of
Theorem 4.4 — that the completion X~ is weakly equivalent to X when C is either om or

Zie" and X is connected.

Although Theorem 4.4 alone does not fully resolve the question of the convergence of the
BKSS, we will prove in §15.2 that if X € s@om is a connected object with HZ  of finite
type, the spectral sequence supports a vanishing line at Es, so that there are no convergence

problems whatsoever when X € s%om is connected.

4.1. Identification of F; and Ej

In light of §3.6 and §3.7, applying the functor H® to X yields the monadic cobar resolution
of H°X in the category HC—coalg, obtained by repeated application of the monad on
H(C—coalg of the adjunction

yHe-codle . He—coalg =V, : CHE-0e,

61



In more detail, we have a map of coaugmented cosimplicial objects

ci( fffff > cKeCfecX c(K°Qc%)? X
Q%X - - - - = QK Q%X QCc(K°Q%)?X

and if we abbreviate the monad C'H¢—coalegrHC—coale oy [T@—coalg to C, applying 7, to this

diagram we obtain a cosimplicial Hurewicz map:

T X® : T X ———— — — > 1, X0 e X1
Pr(HSX®): Pr(HSX) - - - = Pr(CHSX) === Pr(C*HSX) == -
HEX®: HEX — — — — - ~ CHSX C?HCX =—F=

The indicated maps are isomorphisms since each X* for s > 0 is a GEM, thanks to Propo-

sition 3.7. In particular, we see that:

[Elx]f o~ (PrHefcoalg(€s+1H*CX))t;
[E;X]; = ((R® Priemeie) HEX),.

1

Corollaries 6.9 and 6.17 and Proposition 3.5 show that

Theorem 4.1. If C is either €om or Zie", and X is connected with Hz X of finite type,
then H3X? is of finite type for each s, and:

[E,X]; = (C*DQABHCHEX)5;
[E,X]; = (HyeHe X))

4.2. The Adams tower

Bousfield and Kan defined the Bousfield-Kan spectral sequence, or unstable Adams spectral
sequence, of a simplicial set in two different ways. Their earlier approach [9] was to define
the derivation of a functor with respect to a ring. This approach constructs the Adams
tower over the simplicial set in question, and lends itself well to connectivity analyzes.
Their latter approach, [12], to give a cosimplicial resolution of a simplicial set by simplicial
R-modules, lends itself more to the analysis of the Fs-page, and is directly analogous to
Radulescu-Banu’s construction described in §3.8.

Since the release of [9] and [12], the relationship between the two approaches has been
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clarified by the introduction of cubical homotopy theory [35]. In this section we will define
the Adams tower of a simplicial algebra using a construction analogous to Bousfield and Kan
in [9], and then to relate it to Radulescu-Banu’s construction using the theory of cubical

diagrams.

For brevity, write K := K® and Q := Q°. For any functor F : s€ — sC, we define
the r*® derivation R, F of F with respect to homology as follows. The definition is recursive,

and again involves repeated application of the cofibrant replacement functor c:

(RoF)(X) == F(cX),

(Rsle)(ncX)

(R.F)(X) := hofib((Rs_1F)(cX) (R 1 F)(KQcX)),

where 71 is the unit of the adjunction ) - K, i.e. the natural surjection onto indecomposables,
and hofib is any fixed functorial construction of the homotopy fiber. These functors fit into

a tower via the following composite natural transformations:

0: <(RSF)(X) — (Rs—1F)(cX) (Ra-15)(9)

(RAF)(Y)).
We have thus constructed a tower

o —> (RyF)X — (RiF)X — (RyF)X = FcX,

which is natural in the object X and the functor F'. The functors R, F are homotopical as

long as F' preserves weak equivalences between cofibrant objects. Employing the shorthand
RsX = (Rsid) X,

we define the Adams tower of X to be the tower

Ry X R X RoX = cX.

For example, (RoF')(X) is constructed by the following diagram in which every compos-

able pair of parallel arrows is defined to be a homotopy fiber sequence.

(RoF)(X)

|

(R1F)(cX) FeceX FcKQceX

! i !

(R F)(KQcX) — FecKQcX — FcKQcKQcX
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In general, (Rp4+1F)(X) is the homotopy total fiber of an (n + 1)-cubical diagram:
(Rn+1F)(X) := hototfib((R; 1 F)X).

See [35], [45] or [43] for the general theory of cubical diagrams. Before defining the cubical
diagram (R ;F)X, we set notation: for n > 0 let [n] = {0,...,n}, and define P[n] =
{S C [n]} to be the poset category whose morphisms are the inclusions S C S’. Then an
(n + 1)-cube in s€ is a functor P[n] — sC, and the (n + 1)-cubical diagram (R%,;F)X :
P[n] — sC is the functor defined on objects by:

1, ifies;
0, ifié¢S,

S+ Fe(KQ)X"e(KQ)X tc---c(KQ)X°cX where x;:=

such that for S C ', the map ((R} 1 F)X)(S) — (R, F)X)(9’) is given by applying
the counit 7 : 1 — K@ in those locations indexed by S\ S.

Radulescu-Banu defines the homology completion of X to be the totalization
X" := Tot(X*) = holim(Tot, (X*)),
and the BKSS to be the spectral sequence of the Tot tower
o — Toty, (X*) — Toty—1(X®) — ---
under ¢X. Our goal in this section is to prove
Proposition 4.2. There is a natural zig-zag of weak equivalences of towers
{Rn+1X},, ~ {hofib(cX — Tot,(X*))},, -

That 1is, the Tot tower induces the Adams tower by taking homotopy fibers, and thus the

spectral sequence of the Tot tower coincides with the spectral sequence of the Adams tower.

As X! equals c¢X, the tower hofib(X~! — Tot,X®) appearing in §2.13 is one of the
towers in Proposition 4.2. This proposition explains the relevance of the Adams tower to
the cosimplicial resolution, and thus its relevance to the BKSS which was defined as the

spectral sequence of this cosimplicial object.

Proof of Proposition 4.2. By the discussion of the Tot tower in §2.13, it will suffice to con-
struct a weak equivalence b} X®* — (RYid)(X) of (n+1)-cubes. The (n+1)-cubical diagram
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hy X*® is defined on objects by

1, ifie s,
0, ifigls,

(hyX*)(S) == c(KQc)* (KQc)X» ' --- (KQc)X*X where x;:=

and the map (h:X®)(S) — (R X*)(S U {i}), for i ¢ S, may be described as follows. Let j
be the smallest element of S LI {n + 1} exceeding 4, so that

c(KQe)Xn -+ (KQc)Xi+1 (KQc)(KQc)Xi—1 - (KQe)X X, if j <n;
c(KQe)Xi-1 - (KQc)X0 X, if j=n+1.

(hp,X*)(5) :=

In the expression for either case, we have distinguished one of the applications of ¢ with an
underline, and the map to (h}X*)(S U {i}) is induced by the composite ¢ — cc — cKQc
of the diagonal of the comonad ¢ with the unit of the monad K@.

We now define maps (h;,X®)(S) — ((R5,1id)X)(S) for S = {jo < j1 < -+- < jr} C
{0,...,n}. The only difference between the domain and codomain is that in (R}, ;id)X)(5),
all n+2 applications of ¢ are present, whereas in (h)X®)(S), only r+2 appear. The required

map is then
/Bn_jrKQBjT_jrfl_lKQBjrfl_jr72_1KQ . KQﬁjl_jO_lKQﬁjoX,

which is to say that we apply the iterated diagonal the appropriate number of times in each
¢ appearing in the domain. As ( is coassociative, this definition is unambiguous, and the

resulting maps assemble to a weak equivalence of (n + 1)-cubes. O

4.3. Connectivity estimates and homology completion
In this section we will make the following connectivity estimates in the Adams tower:

Proposition 4.3. Suppose that C is one of the categories Com or Lie", that X € sC is
connected, and that t > 1 and q > 2. Then there is some f(q,t) > t such that the map
Tq(Ry(q,0X) — mq(R: X) is zero.

Propositions 4.2 and 4.3 together imply the following conjecture of Radulescu-Banu:

Theorem 4.4. If either C = Gom or C = ZLie" and X € sC is connected, then X is naturally

equivalent to its homology completion X".
Proof of Theorem 4.4. The fiber sequences R,1+1 X — ¢X — Tot,X* fit together into a
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tower of fiber sequences. Taking homotopy limits, one obtains a natural fiber sequence
holim(R,X) — ¢X — X"

We need to show that holim(R,X) has zero homotopy groups. Applying [34, Proposition

6.14], there is a short exact sequence
0 — lim' 741 (R, X) — 7y(holim(R, X)) — lim 7y (R, X) — 0.

Proposition 4.3 implies that for each ¢, the tower {m;(R,X)}, has zero inverse limit and
satisfies the Mittag-Leffler condition (c.f. [10, p. 264]), so that the lim! groups appearing

also vanish. O

The application of the small object argument functor ¢ adds to the difficulty of proving
the connectivity estimates of Proposition 4.3. We circumvent the difficulty of working with

¢ by shifting to the standard bar construction B® on sC, which we abbreviation to b.

We define recursively a somewhat less homotopical version RgF' of the derivations RgF"

(RoF)(X) == F(X),

(Rs—1F) (mx)

(fRsF)(X) := ker ((Rsle)(bX) (Rsle)(KQbX))

There are three differences between this definition and that of RsF': here, there is one fewer
cofibrant replacement applied, we use b instead of ¢, and we take strict fibers, not homotopy
fibers. While these functors are not generally homotopical, we define the modified Adams

tower of X to be the tower
O R X e R X s Ry X = X,
where R, X is again shorthand for (Rsid) X, and the tower maps ¢ are defined as before.

Proposition 4.5. There is a natural zig-zag of weak equivalences of towers between the
Adams tower of X and the modified Adams tower of X. In particular, the modified Adams

tower is homotopical.

Proof. Let CR(sC) be the category of cofibrant replacement functors in s€. That is, an object
of CR(sC) is a pair, (f,€), such that f : s€ — sC is a functor whose image consists only
of cofibrant objects, and € : f = id is a natural acyclic fibration. Morphisms in CR(sC) are

natural transformations which commute with the augmentations. For any (f,¢) € CR(sC)
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we obtain an alternative definition of the derivations of a functor F' : s€ — sC:
(R{F)(X) := F(fX), (R[F)(X):=hofib(R]_,F)(fX) — (R[_,F)(KQfX)).

These functors are natural in f, so that a morphism in CR(s€) induces a weak equivalence

of towers. Our proposed zig-zag of towers is:
c: boc: b Vs Rse .
Ry = Rjid +— R.“id — RJid +— Rsb —= Riid = Ry

The maps with domain R%°¢id are induced by the maps ec : boc — cand be : boc — b
and are evidently natural weak equivalences of towers. The map 7o : (Rob) X — (RSid)X
is the identity of bX, and the map Roe : (Rob) X — (R§id)X is € : bX — X. Thereafter,

~vs and Rge are defined recursively:

(Rey1id) X = ker ((Reid) (0X) — (Rsid) (KQbX))
mnduced by (Rse,Rs€)
(Res1b)X = ker ((Reb) (bX) —> (Reb)(KQbX))
incl.
hoﬁb((fRsb)(b)i) L (RD)(KQbX))
wnduced by (Vs,Ys)
(Rb, )X := hofib((R%d)(bX) — (Rbd)(KQbX))

Lemma 4.6 shows that the kernels taken are actually kernels of surjective maps, and by

induction on s, the maps s and Rse are weak equivalences. O

The connectivity result will rely on the observation that any element in the s level of
the modified tower maps down to an (s+ 1)-fold expression in X. In order to formalize this,
when € = Gom, we let P* : s€ — s€ be the “s'" power” functor, the prolongation of the
endofunctor Y — Y® of €, where Y* = im(mult : Y®* — Y). When € = ¥om, we define

P :=T*, the s term in the lower central series filtration (c.f. [13]). Then we have:

Lemma 4.6. Suppose that either € = om or C = ZLie". The functors R, R.b and R, P?

preserve surjective maps and there is a commuting diagram of functors:

Ry - Ro R1 Ro
| | I |
prt e p3 P? id

Proof. As b and P? preserve surjections, we need only check the claims about R,.X for
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X € sC, which is constructed as the subobject

.
R X 1= ker (b""'pb’ : b"X — I KQY X))
i=1
of b" X . For the rest of this proof only we write F' as shorthand for F¢. In dimension n, this
is the following subset of (b"X), := (F"*1)"X,,:

r

(R X),, = [ ker <F<T—i><n+1>nﬁi<n+1> L (FmHYX, — (F“H)T—iKQ(FnH)an) .

i=1

Whichever of ¥om or Zie" we are working with, it is possible to construct monomial
bases for F'V once a basis of V has been chosen. For given n and r, first choose a basis of
X,,; build from it a monomial basis of FX,,; build from this a monomial basis of F2X,,; etc.
Continue until we have a monomial basis of F"»*1) X, = (b"X),. The effect of the map
F=0)(+1), i+ on monomials is either to annihilate them or leave them unchanged,
depending on whether any non-trivial constructions were employed at the ((n+1)i)'" stage.
Thus, the subset (R,X), has basis those iterated monomials in which some non-trivial
construction was used in the ((n + 1)i)"" for 1 <4 < r. The image of such a monomial in
X, lies in P".

To see that R, preserves surjections: if f : X — Y is a surjection, choose a basis
B U B’ of X, for which f maps the B bijectively onto a basis of Y, and B’ maps to zero.
We may continue this pattern at each stage of the construction of iterated monomial bases
of Fr(vt) X and Fr(t1DY, . That is, we may choose a basis C' LI C" of F**+1) X, such
that the monomials in C only involve the elements of B and map under f bijectively onto a
basis of F"("t1Y;, and such that each monomial in C’ involves some element of B’, and so
vanishes under f. This pattern is further preserved in passing to the monomial bases just

derived for (R, X), and (R,Y),, proving the claim that R, preserves surjections. a

We are now able to state and prove the key connectivity result in detail:

Lemma 4.7. Suppose that X € sC is connected, t > 1 and s > 2. If € = %om, then
(R P%)(X) is (s —t)-connected. If C = Lie", then (R P*)(X) is (logy(s) + 1 —t)-connected.

Proof. We will prove this by induction on ¢. The induction step is simple: by Lemma 4.6,

there is a short exact sequence:
0 —— (R P?)(X) ——= (Ri—1P?)(bX) —= (Ri—1 P?)(KQbX ) —— 0.

Now both bX and KQbX are connected, as they have my(bX) = 7, X is zero by assumption,
and mo(KQbX) = Qm.X. By induction we can bound the connectivity of (R;—1P*)(bX)
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and (Ry—1 P*)(KQbX), and the associated long exact sequence shows that (R;P?)(X) has a
connectivity bound at most one degree lower.

For the base case, t = 1, as P*(KQ—) =0 for s > 2:
(R1P*)X :=ker (P°(bX) — P*(KQbX)) = P°(bX).

When € = Zie", a modification [13, 4.3] of a theorem of Curtis [19, §5] states that P*(bX)
is logy(s)-connected. When € = ¥om, we must demonstrate then that P%(bX) is (s — 1)-
connected. For this we use a truncation of Quillen’s fundamental spectral sequence, as

presented in |33, Theorem 6.2]: the filtration
P5(bX) D P (bX) D P2 (bX) D - -
of P*(bX) yields a convergent spectral sequence [E,P*(bX)|), = m,(P*(ba)), with:

N, ((QFombX)2PY, ifp > s;

By = (@) 2
0, ifp<s.

As m(QPmbX) = QP (mebX) = Q%°™(0) = 0, the t = 1 result follows from [24, Satz

12.1]: if V' is a connected simplicial vector space then Vgip is (p — 1)-connected. O

Before we can give the proof of Proposition 4.3, we need the following twisting lemma,
analogous to that of [9]. Before stating it, we note that (RsR;)X and Rs;X are equal by

construction.
Lemma 4.8. The maps R;0 : R, X — R,,_1X are homotopic for 0 < i < n.

Proof. We may reindex the twisting lemma as follows: the maps
Rs0, Rs—10 : R4 X —> Rspp 1 X

are homotopic whenever s,t > 1. Now R4, X is constructed as the subalgebra

s+t
Rept X 1= ﬁ ker (6°H "' : b5 X — BT QLX)

i=1
of the iterated bar construction b*t*X, and for 0 < i < s +t, R;J is the restriction of the
map bleb* i1 psHt X — b T-1 X Proposition 4.9 gives an explicit simplicial homotopy
between the maps b%eb!~! and b5 'ebt. Moreover, the naturality of the construction of
Proposition 4.9 implies that this homotopy does indeed restrict to a homotopy of maps
Rt X — Ropr1 X. O
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Now that we have the twisting lemma, Proposition 4.3 follows:

Proof of Proposition 4.3. By Proposition 4.5, it is enough to prove that for any ¢ > 0 and
t > 1, mg(Ry(q,nX) — mg(Re X) is zero for some f(q,t) > t. Apply R;— to the diagram
of functors constructed in 4.6 and apply the result to X to obtain a commuting diagram of

functors

R¢ R¢ Red
¢ Lot Rt+1X*t>thX

| I

RPIa-tH1x o S RP2X — > RPIX

R nX

By the twisting lemma, 4.8, the composite along the top row is homotopic to the map of
interest, and factors through R, P/(@H)~t+1 X If we choose f(g,t) = 2t+q—1 when € = $om
and f(q,t) = 21971 4+ ¢+ — 1 when € = Zie", then Lemma 4.7 shows that R, P/(@)~t+1X g

g-connected. O

4.4. Iterated simplicial bar constructions

We will now state and prove a useful result on iterated simplicial bar constructions, used
in the proof of the twisting lemma. The result here applies in general in the category € of

algebras over a monad. Establishing notation, for any simplicial object X in €, we will write
d¥, s Xg — Xqo1 and 57, Xg — Xgp1

for the i face and degeneracy maps out of X,. Suppose that G and G’ are endofunctors
of G, that ® : G — G’ is a natural transformation, and that C,C’ € € are objects. Write
[®] : home(C,C") — home(GC,G'C") for the operator sending m : C — C’ to the

diagonal composite in the commuting square

cc—* . qc
Gm\L \[<I>}m ¢/G/ m
GC' G'C’
¢°C’

There is an (augmented) simplicial endofunctor, b € s(C%), derived from the unit and counit

of the adjunction:

<-00,2

id < ®0,0— — — (Fe)1 i—ﬁg(ﬁ 0,0~ (Fe)2 <12 :?i: (Fe)3 ..
’ <022 :

The simplicial bar construction b = B® on sC is the diagonal of the bisimplicial object

obtained by levelwise application of b. That is, for X € sC, bX is the simplicial object with
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(bX), := (F)91X,, and with
iy o= [Dig)dy,

The augmentation € : b — id is defined on level ¢ by
€q = 00,000,1 """ 00,q : (FG)Q+1 —id.

We can now construct the simplicial homotopy needed for the twisting lemma, 4.8.

Proposition 4.9. The natural transformations e, and be from b : s€ —» sC to b : s€C —»

sC are naturally simplicially homotopic.

Proof. Write K = b>X and L = bX for the source and target of these maps respectively.

Noting the formulae

[aiq]Q = [04+i,2¢ © 03 2¢+1] and [5iq]2 = [5q+i+2,2¢+2 © i 2g+1],

we can describe the simplicial structure maps in K and L as follows:

dL [qu]
55; {5lq]

K X
diq [aq-i-z 2¢ © 05 2q+1]d
X
[5q+z+2 2q+2 © 55 2q+1]

We can now state an explicit simplicial homotopy between the two maps of interest. Using

precisely the notation of [40, §5], we define h;, : Ky — Lgy1, for 0 < j < g, by the formula

. . X
hig = [0j41,4+2 0+ 00j1124+1]57,

We first check that these maps satisfy the defining identities for the notion of simplicial
homotopy, numbered (1)-(5) as in [40, §5]. Each identity can be checked in two parts (a)-

(b):
(1) We must check that quthq =hj_ 14 ldzq whenever 0 <1i < j <gq,ie.:
(a) dl-XgHsfq = 53X—1,q—1dz‘,qv and
(b) 0ig10j41,g42 - 0jg1,2g41 = 0j.g+1 - 05,2g—10g44,2¢04,2g+1-
(2) We must check that d¥ g1l g = ]_H g+1Mj+1,4 Whenever 0 < j <g—1, ie.
() 104155 = di1,g15751,4) and

(B) 041410541042 Vjt1.2g+41 = 05t 1,g+10542,04+2  * 0j42,.2g+1-
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(3) We must check that dﬁqﬂhj’q = hj7q,1dfilyq whenever 0 < j <i—1<gq,ie.:

X X _ X X
(a) dig4185 = $5,9-14i-1,¢> and
(b) Vigr10j41,g42 V41,241 = Vjgt,gh1  0541,2g-10g+i—1,2¢0i—1,2g+1-
L _ K . . . .
(4) We must check that sj*, 1h; = hjiq 118, whenever 0 <i < j<g,ie.:
X X _ X X
(2) $ig+157q = Sit+1,¢+157¢> a0d
(B) Siq+10j41,g42 0412941 = 0jit2,g+3 *** 0j4+2,20+35q+i+2,2g+250,2g+1-
L _ K . . . .
(5) We must check that s;’, 1h;, = h; 1851, Whenever 0 < j <i<qg+1,1ie:
X X X X
(a) {11574 = Sjg+15i1,¢> a0d
(B) 8iq+10j41,g42 041,241 = Vjit1,g+3 *** 0j+1,20+38q+i+1,2g+25i—1,2g+1-
Each of these equations follows from the simplicial identities, proving that the hj;, form a
homotopy. Finally, we check that this homotopy is indeed a homotopy between the two

maps of interest:

L _ X X
dy g+1h0,4 = [00,g+101,g+2 - 01,2+1)(dy 441504
= [00,g+100,g+2 * -+ D0,2¢+1]idx,

is the action of €(;x) in level ¢, and similarly,

L _ X X
dq+1,q+1hq,q - [aq+17q+1aq+1,q+2 e 'Dq+172q+1](dq+1,q+18qq)

= [Dq+1,q+1aq+1,q+2 T a(1-1—172q+1]idxq

is the action of bex in level q. O
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Chapter 5

Constructing homotopy operations

5.1. Higher simplicial Eilenberg-Mac Lane maps

In what follows, we will often have a natural map G whose domain and codomain both
support a switch map T, obtained by interchanging tensor factors. Furthermore, we will
so often use the expression TGT that we introduce the shorthand wG := TGT. Although
this notation is potentially ambiguous, whenever we write cGH, for functions G and H, we
mean (cG)H, not o(GH).

Let {Vi} be a higher simplicial Eilenberg-Mac Lane map |26, §3|, i.e. a collection of

maps
Vi: (CURCV)iix — N(U®YV); defined for 0 < k <14

natural in simplicial vector spaces U and V, such that for £ > 0, the identity

Vi_10+0Vi_q, ifk>1,
v, if k=0,

(14 w)Vy, =o" +

holds on classes of simplicial dimension at least 2k, where:

(1) V:CU®CV — N(U x V) is the Eilenberg-Mac Lane shuffle map, also known as the
FEilenberg-Zilber map, a chain homotopy equivalence inducing the identity in simplicial
dimension zero; and

(2) ¢* is the map (CU ® CV); 1, — N(U®V); which vanishes except on Uy, ® Vi, where
its value is just the projection Uy @ Vi, — N(U ® V).

Note that as ¢° commutes with symmetry isomorphisms, so does V.
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5.2. External unary homotopy operations

In this section we recall the definition of certain homotopy operations with domain 7,V for

any V' € sV, implicit in [26, §4] (c.f. [8, 6], [14]) and explicit in [33, §3], using the functions
a+— Vn_z-(a X a), N,V — Nn_H'(SQV).

By postcomposing with the maps SoV — A2V — S2V, we obtain functions from N,V
to Nyii(A2V) and N, ;(S?V).

Proposition 5.1 |26, Lemma 4.1], [33, §3]|. These functions descend to well defined homo-

topy operations:

5?’“ : 7,V — i (S2V),  defined when 2 <i <mn,
Xj’“ ) — 7rn+i(A2V), defined when 1 <7 < n,

XtV — mapi(S?V),  defined when 1 < i < n.

0y

The function N,V — N,(S?V) given by @ — a ® a yields a well defined homotopy oper-
ation JSXt Vo — ﬂn(SQV). These operations are linear whenever i < n. For all n > 0,

the map o : 1,V — m9,(S?V) satisfies

o (@ +7) =0 (@) + 0 @) + L+ T)V(z @y) for o,y € ZN, V.

Proof. Although all of the operations are defined in the cited references, we will be a little

more explicit about the definition of o§**, and the final equation of the proposition.

ext

As described in [33, §3], we might choose to define o§*" using a universal example, for
which the cycle

2® 2z € ZN,(S%K,,) = Fy

is the only possible representative, demonstrating that the formula @ — a ® a yields the
correct (well defined) operation. To check that o&t : 1)V — 7SV satisfies the stated
equation, we need only check that it holds on z1 + 22 € ZNy(Kp @ Kp) = Fo & Fy. But

JSXt(Zl + 2’2) — O’SXt(Zl) — USXt(ZQ) =21 R 29+ 20 21 = (1 + T)V(Zl &® 22),

as V is the identity in dimension zero.

To explain the equation when n > 1, as 0&%(%) := (1 + T)Vo(x @ z), we obtain

n

o (@ +7) — o (@) — 0 (@) = 1+ T)Vo(1 + T)(z @ y)
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and using the symmetry T((1+ T)(z ® y)) = (1 + T)(z ® y) and the fact that ¢° vanishes
on (1+T)(z®y),

1+T)Vo(1+T)z@y) =1+wVe)(1+T)(z®y) =VIA+T)(z®y). O

5.3. External binary homotopy operations

We will now give an account of various natural external homotopy operations, most of
which are binary operations, induced by the Eilenberg-Mac Lane shuffle map V : N, (V) ®
N.(V) — N.(V ® V), which is also known as the Eilenberg-Zilber map. These operations

are well known, but we make a point of giving them the following unified treatment:

Proposition 5.2. There is a natural commuting diagram:

So(mV) —Ym 71, (So V)

yproj | 7« (proj)
A2(m, V) —Y 1, (A2V)
¢incl _ ¢7T* (incl)

S, V) —Y> 1, (S2V)

For cycles x,y € ZN.(V) and z € ZN,(V'), the upper horizontal is determined by

TRQYU— Y,

and the lower horizontal is determined by

ZTRU+YIRTr— V(rRy+y®z) and Z® Z — 02(2).

Proof. During this proof, write 6(], Vo and V, for the upper, middle and lower horizontal

maps. We must demonstrate: that 6(] is well defined; that
ker (7, (proj) o Vir) 2 ker (proj),

so that there is a unique map Vo for which the upper square commutes; and that one

may extend the composite . (tr) o V¢ along the trace map Sy (myA) — S%(m, A) using the

operations o, A simple diagram chase would then reveal that the bottom square must
also commute.

As V is a chain map, it produces a well defined map (m,V)®? — 7, (V®?), and the fact
that V = wV implies that this map descends to a well defined map V.

The kernel of the projection Sp(m.V) — A%(m,V) is spanned by classes of the form
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T ® T, and the image under m,(proj) o %U of such a class equals z ® x which is zero as
x ®x € A’V is zero. This proves the inclusion of kernels.
Finally, to extend the composite ,(tr) o Vy to S2 (m.V'), we simply need the operations

o to satisfy the equations of Proposition 2.7, which are part of Proposition 5.1. O

5.4. Homotopy operations for simplicial commutative algebras

Suppose that A € s€om is a simplicial non-unital commutative algebra, with multiplication
map p : S2A — A. Then by composition with the map m,(u) : m(S24) — 7 A, one

obtains unary operations:
§; i= me(p) 0 65 : 1y A — w44 A, defined when 2 < i < n,

and a pairing
= (1) o V i So(mA) — m, A.

Proposition 5.3 [26]. These operations have the following properties:

(1) the pairing p equips m A with the structure of a non-unital commutative algebra;

(2) the ideal B,,>1 ™A is an exterior algebra;

(3) the ideal @, ~, ™A is a divided power algebra, with divided square given by the top
d-operation, z'_.e. T +— Opx for x € TA;

(4) the non-top operations, §; : 1A — T A for 2 <i < n, are linear;

(5) forx e mA, y € mpA and 2 <i<n

y20i(z), if m=0;

0, otherwise;

6) the 6-Adem relations hold: if 0;6,z is defined, and i < 2j, then
( ) J ) ];

J+s—i—1

L(i+4)/3]
(5o

51(5]'%‘ = Z

>5i+j_555x.
s=[(i+1)/2]

A few comments are in order. Firstly, the proposition distinguishes between the top and
non-top d-operations, as they have rather different behaviour — this will be a recurring
pattern. Secondly, it is not immediately obvious that the §-Adem relations make sense, in
that it is not obvious that every term in the right hand side is defined. This does indeed
happen, by Lemma 5.4 (to follow).
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We may define an associative unital algebra A to be the algebra generated by 9; for

i > 2, subject to relations

L(i+35)/3] its—i—1
5i5j = Z ( . >5i+j355 when 7 < 2j.
=ty ~ 177
We will say that a sequence I = (i, ...,41) of integers i; > 2 is §-admissible if i;,1 > 2i;
for 1 < j < ¢. For any sequence I = (iy,...,i1), write d; for the composite d;, - - - J;,.

This J-Adem relation allows us to write any d; in A as a sum of composites ¢ in which
J is d-admissible. In fact, it follows from [33, Proposition 2.7] that the algebra A has an
admissible basis, consisting of those 67 = d;, - - - §;, with I a d-admissible sequence.

It then makes sense to make the following definition. Suppose that [ is any non-empty
sequence of integers at least 2, and J is a sequence of integers no less than two. Then we will
say that I produces J in A, denoted I Ay , if 7 appears with non-zero coefficient when d;
is written in the d-admissible basis of A. In this case, J must be §-admissible and I must
be d-inadmissible unless J = I.

Proposition 5.3 does not state that m, A is a left module over A, since the d-operations

are not always defined (or even linear). We define
m(I) = maX{(il)a (7’2 - il)? (Z3 — iy — il)v SRR (Zf - il)}v

following the convention that max()) = —oo, for any sequence I of integers i; > 2 (or more
generally, for any sequence of non-negative integers). The intent of this definition is that

the composite d;, by which we mean

oi d; o
1 2 K4
7TnA — 7Tn+7;1A — s — 7Tn+i1+-~~+igAa

is defined if and only if n > m(I). Note that when I is a non-empty J-admissible sequence,
m(l)=1ip—ig—1 — - —1i1 =:e(I),

the Serre excess of I. Moreover, if I is J-admissible, then for any expression d;, - - - §;, « there

is some k with 0 < k < £ such that each of the £ operations d;, - - - 6. are acting as top

—k+1

operations, and each of the remaining ¢ — k are acting as non-top operations.

The following lemma assures us that the 6-Adem relations make sense as they appear in
(6).
Lemma 5.4. If I 23 J, then m(I) > m(J).

Proof. Tt is enough to show this result when I and J are distinct and have length two, in
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light of the evident algorithm for expressing d; in terms of admissible composites. In the
length two case it can be checked directly from the format of the J-Adem relation, and the

inequality is in fact strict (unless I is itself d-admissible). O

Finally, one should note that these operations generate all of the operations in the
category m%om, and that all of the relations between the operations in m7%om are implied
by those presented here. Goerss 33, §2| presents this information as follows. First, he

observes that there is a Kinneth Theorem available:

Proposition 5.5. Suppose that Ay and Az are models in s€om. Then m.(A1UAy), which is
the coproduct of A1 and w,Aos in TCom, may be calculated as the non-unital commutative

algebra coproduct of me A1 and miAs.

After giving the calculation on a single sphere, the homotopy of finite models (which is
the structure defining the category méom) will be determined by this proposition, and the

calculation for a single sphere is the following:

Proposition 5.6 [33, Proposition 2.7|. For n > 0, let v, be the fundamental class in

T, (SE°™). There are isomorphisms of non-unital commutative algebras:

T (S57™) 2 S(€) ] = F [uo];
T (SP°™) = A(6)[01 (1) | I is d-admissible, e(I) < n] forn > 1;
T (S°™) = T(6)[01 (1) | I is d-admissible, e(I) < n] forn > 2.

5.5. Homotopy operations for simplicial Lie algebras

Suppose that L € s.Zie is a simplicial Lie algebra with bracket [,] : AL — L. There are

unary operations
i = m([,]) 0 A 1 L — T4 L, defined when 1 < i < n,
which we write on the right as © — x\;, and a bracket
[,] =m([,]) 0 V:A%(mL) — 7. L.

Alternatively, one can suppose that L € s.Zie" is a simplicial restricted Lie algebra with

bracket [,] : S?L — L, and construct operations:

Aii=m([,]) 0 o, L — 4L, defined when 0 < i < n, and

i .

[a] = 77*([,]) ¢} % : SQ(W*L) — L.
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Proposition 5.7 [13], [20, §8]. For L € s.Zie, these operations satisfy:

(1) the bracket gives m.L the structure of a Lie algebra;
(2) the ideal @, ~, L is a restricted Lie algebra, with restriction given by the top A-
operation, z'.e._a:m = A\ for x € mpL;
(8) the non-top operations, \; : mpL — T L for 1 <i < n, are linear;
(4) forx e m L,y €mpL and 1 <i<n:
[, [z, 9], ifi=mn;

0, otherwise;

5) the A-Adem relations hold: if xA;)\; is defined, and i > 27, then
(5) J J

G 9o

l‘)\]Al = Z ( L )x>\i—j—1—k>\2j+1+k-
k=0

For L € sZie", we may omit ((1)), modify ((2)) to state that the whole of w, L is restricted,

and modify ((3))-((5)) to include \g.

Similar comments apply as for commutative algebras, for example, one needs Lemma
5.8 (to follow) to understand why this unstable relation makes sense.
The well known A-algebra is the unital associative algebra generated by \; for ¢ > 0,

subject to relations

R i ok
)\j>\i = Z < )Ai—j—l—kAZj—{-l—&-k for i > 27.

k
k=0
We say that a sequence I = (ig, . ..,41) of non-negative integers is A-admissible if i;,1 < 2i;
for 1 < j < . For any sequence I = (iy,...,11), if we write Ay for the element A;, --- A,

in A, then the A-algebra has the evident admissible basis, and we may make sense of the
symbol [ A J. Note that the ordering of the generators in A is opposite the ordering for
the 47, to be consistent with the fact that we write the A-operations on mw.L on the right.

Thus, we may think of A\; as the composite operator

ﬂ'nL — 7Tn+7;1L e I 7rn+i1+---+igL7

again defined only when m(I) < n, so that m.L is not a right module over A. We will say,
however, that it is an unstable partial right A-module. Note that when I is a non-empty
A-admissible sequence, m(I) = i1, not the Serre excess, reflecting the observation that when

i, -+ A, is a A-admissible composite, the top (i.e. restriction) operations which appear
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are applied first. The following lemma assures us that the A-Adem relations make sense in

(5)-
Lemma 5.8. If I A J, then m(I) > m(J), and J does not contain zero unless I does.

These operations generate all of the operations in each of the categories 7.%%e and w.%%e",

and the relations presented here are sufficient, as:

Proposition 5.9 (|20, Theorem 8.8 and proof], [13]). For V € V,, choose a homogeneous
basis of V, and construct from it a monomial basis B of A(L)V (such as any choice of Hall
basis). Then:

' T : <
Frtiey _ R, {)\Ib ‘ b € By, I A-admissible with m(I) < t,} and:

I does not contain 0
b € By, I A-admissible with m(I) < t,}

FT¢V =Fy{ Arb
2 { ! ‘ I does not contain 0 when ¢ = 0

” b € By, I A-admissible with m([) < t,
:Fz{)\](bp])‘ t r>0 (1) }

For the sake of interest, we can emulate Goerss’ method of calculating the cohomology
of GEMs in s%om (c.f. §6.6, [32] and [33, §11]) by giving a Hilton-Milnor decomposition
for the calculation of the free Zie-Il-algebra on a finite-dimensional object of V;, using
[50, Proposition 3.1]. For any i > 0, write X'Fy € V, for a one-dimensional vector space
concentrated in homological dimension i. For any finite collection of indices i1,...,4, > 0,

we would like to calculate:
Fr2e(SiFy & - & NnFy) = m F2(Ky, & - @ K;,).

and we obtain a decomposition of m, FZ*(K;, @---®K;, ) as follows. For any monomial b is
the free Lie algebra on {z1,...,x,} and any collection of n vector spaces Ay,..., A,, there

is a corresponding tensor product wy(Ay, ..., A,). For example, one defines
W[zg,21],05) 1= A2 © A1 ® As.
Moreover, for each monomial b there is an evident function
wp(A1, ..., Ay) — FO%(A @ - @ Ay),

given in our example by as ® a1 ® az — [[az, a1], as].
Iteration of the procedure described in [44, §4.3], using the formula of [50, Proposition
3.1], we obtain a Hall basis B of the free Lie algebra on {x1,...,x,}, with the property that
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the resulting map

@ F‘zﬂiewb(Al, ..

LAy — FYA @ -
beB

..@An)

is an isomorphism, natural in Ay,

., Ay. Thus, there is an isomorphism in sV;:

P Fw (K, , -

LK) — PR, @ -
beB

"@Kin)~

Moreover, if we follow [33, §11] by writing jx(b) for the number of appearances of xj, in the
monomial b, there is a homotopy equivalence

wb(Kil, PN 7K1n) ~ KZZ:I Ji(b)ig -

Thus, on homotopy there is a decomposition:

@ Fﬂfi&z(zzzl jk(b)lk)F2 i Fﬂ-jie(zilﬂ?g DD EinIFQ),
beB

under which the fundamental class of a summand on the left maps to the corresponding Lie

bracket of fundamental classes on the right. This proves the first part of Proposition 5.9.
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Chapter 6

Constructing cohomology operations

6.1. Higher cosimplicial Alexander-Whitney maps

Let {D*} be a special cosimplicial Alexander-Whitney map [55, Proposition 5.2|, i.e. maps
D¥: (CR® CS)"™ — C(R®S)! for i,k >0,

natural in cosimplicial vector spaces R, S, with the properties:

(1) dD¥ 4+ D*d = (1 4+ w)D*! for k > 1;

(2) DY is a chain homotopy equivalence inducing the identity in dimension zero;
(3) the restriction of D¥ to C'R ® €78 is zero unless i > k and j > k; and

(4) D* maps C¥R ® C*S identically onto C¥(R ® S).

It is a natural convention to define D¥ = 0 for all k,i € Z, in which case the relation
dD¥ 4+ D¥d = (1 4+ w)D*~! holds for any k.

Maps dual to these are described in detail, under the name special cup-k product, by
Singer in [52, Definitions 1.91 and 1.94|, and were developed originally in [23]. Indeed, we

will use these maps later, and denote them
(DF*: C(U®V); — (CU ® CV)ipy, forik >0,

natural in U,V € sV. The sense in which these maps are dual to the D is captured in the

following commuting diagram (for i,k > 0):

(CDU @ cDV)itk — 2 o(DU » DV

| |

(D(CU ® CV))itk (DC(U®V))!

((DF)*)*
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This is the first instance of a notational convention we will use occasionally in what follows.
We consider the operations DF to be ‘of primary interest’ in this thesis, and so we prefer
not to adorn the symbol D*. However, we would like to have access to operations (D*)* of
which the D¥ are the duals in the sense of the above commuting square, and not the other

way around. So, we use a star as opposed to an asterisk when writing (D¥)*.

6.2. External unary cohomotopy operations

In this section we recall the definition of certain cohomotopy operations with domain 7*U

for any U € ¢V, using the functions
ar— D" a®a)+ D" (a®da), C"U — C"(S9U).

The same arguments as in [52, §1.12] show that

Proposition 6.1. These functions descend to well defined linear operations:
Sk, 1 U — 7"TF(SLU), zero unless 0 < k < n.

If U = DV for some V € sV, then we may use the natural transformation SoD — D.S?

to form the following composite, also denoted Sq¥,,:

Squ t

"DV A"tk DV — " HEFDS?V

This will be part of the process we use shortly to define cohomology operations.

6.3. Linearly dual homotopy operations

Whenever V' € sV has 7w,V of finite type, the linear maps SqlgXt c "DV — 7"tFDS2V
induce dual operators
7. (S%V) — w4 V.

Following [33, §3], one can do much better than just this observation, giving a direct defini-
tion of such operations, valid for any V € sV, whose duals are the Sq* .

Again, the cohomotopy operation SqlgXt is of primary interest, and we prefer to allow it
its standard symbol (albeit with the attached subscript). On the other hand, we are about
to produce a homotopy operation of which it is the dual, so we will use a star and not an

asterisk. That is, for any V € sV, there is an operation
(Sabx)* : mu(S?V) — me iV
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such that the following diagram commutes:

k *) %
7" tkDS2Yy (Bama))” "DV

I

qk t
kS, DV .

In order to define these precursor homotopy operations, Goerss |33, Proposition 3.7]

observes that any element of z € 7,,(S?V) can be written as a sum

x:ZW*(l—FT)(yj@Zj)—l- Z ox(we),
j 0<k<|m/2]

where wy, € m,,—V for 0 < k < [m/2], and y;,2; € mV, and that we may define:
(Sate)* () = wy.

One might only need to determine the operations (Sq¥)* for k < m/2, so that when

m/2

m is even we may ignore the dual of the top operation, (Sq.; )*. In this case, it is more

convenient to rewrite the key equation as:

r=V)+ > oplw),
0<k<m/2

where v € (S?(m V) and wy, € 7V for 0 < k < m/2.

6.4. External binary cohomotopy operations

Again, the arguments of [52, §1.12] imply:

Proposition 6.2. Suppose that U € ¢V. Then there is a pairing
fext : So(m*U) — 7*(SU),

defined by x @ y — D°(x ®1v), with the property that piex (o ® a) = Sq¥ o for a € 7FU.
Unsurprisingly, these bear relation to the homotopy operation V182V — S2m,V,
via a commuting diagram, for any V € sV:

D52V DS,V

! !

Mext

T SoDV <—— Som*DV
We might have denoted v by pa., but decided against the idea.
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6.5. Chain level structure for cohomology operations; the maps
e and e

We will now give generalizations of Goerss’ constructions in [33, §5] which often yield useful
structure on the complexes calculating C-cohomology. Suppose that X € sC is almost free,

with Vs C X, the freely generating subspace. Then for each s, the functor
Home (X, —) = Homy (V;, U°—)

is naturally an Fs-vector space. Writing s = FG(A) : X; — X, U X,, the addition
operation on Home(Xj, —) is given by (f,g) — (f U g) o ps. Now let & be the sum of
((doUdp)yps) and (¢ps—1dop) in the Fa-vector space Home(Xs, Xs—1 U Xs-1). It is completely

formal to check that £ maps to zero in the group
HOIIl@(XS,XS,1 X Xsfl) = Home(XSa Xsfl) X Home(X87X571)7

and thus &, factors through a unique map & : Xy — X5 1Y X,_1. Furthermore, &e enjoys

the symmetry 7&e = e, and it is again formal to verify the analogue of [33, Lemma 5.5]:

Lemma 6.3. When the equation que o jty = que © €pey, + qUe © FCey of §3.10 is satisfied,

the map Q%&e induces a chain map of degree —1 on normalized complexes:
No(QX) — Ny-1 ((QF(X ¥ X))™2).
The composite

v (M(Q°X) T8 N ((QFX Y X)) 55 Na(8%Q°X)) )

is essentially que, in that if v € V, N N, X represents an element of NyQCX , writing dyv =
fwj) for w; € Vi1, we have te(v) = que(f)(w;) € S*(Vsm1).

The typical use of this structure is to define cohomology operations using the external
cohomotopy operations defined above, i.e. natural operations on H§X = 7 (D(Q*B¢X))

defined by the composites:
HI'X @ HI? X P rm oD ($2(QCBEX)) 8 Hpimatl x,
Sq* p
HEx Y% kD ($2(QCBC X)) HEt Y
These operations are the duals of natural homology co-operations, defined using the maps
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of §6.3 and §5.3:

(SZHEX), < mn(S2(QCBEX)) <& HE, X,
S ](:xt * w*
HE(x) ) 1 (S(QEBEX)) £E HE, L (X).

Instead of proving Lemma 6.3, we will prove the more general:

Proposition 6.4. Suppose that  : FCV —s GV is a natural transformation from F€ to

another endofunctor G of V satisfying the condition:
0oy :906FGV+HOFGGV : FCFV — Qv

Write 0 - Q°X, — G(Q®X,_1) for the following

o)

Q°X, =V, % Fov, -5 qvi =5 GQUX, ).

Then dy o =00 (do + dy), and dj o =00 djq1 for j > 1, so that 0 restricts to a degree
—1 chain map on NSQeX — Ns,lQeX and also on CSQGX — C’s,lQeX.

Note that 6 depends on the almost free structure chosen.

Proof. In order to see that d; o 6=0o0 dj4+1 for j > 1, we examine the diagram

d ~
V, —2= FOV,  —= GV, —= GQ°X,
VA Vdi ;i VGQ(d))
Vi —2= FOV, 5 2= QV, s —> GQ°X,
The dotted vertical arrows are available since X is almost free. That the left square com-
mutes is a simplicial identity, and the center square commutes by naturality of 8. In order

to show that dg o 0=0o0 (do + d1), we use the following diagram, which commutes except

for the leftmost square:

Ve — s POV, - GV > G Xy
dibeodoy ew@(eod%) yGleodo) e¢GQ@<do>
Vo1 ——=F"V_ 9 —=GVs_o —= GQ X2
To show that the outer rectangle commutes, it is enough to see that the two composites
V, — F®V,_y are coequalized by #. Using the simplicial identity dodi = dodp, we are
trying to show that Odody + Odpedy and OFC(edy)dy are the same map from Vi to GV, .
Even more, we will show that 8dy + 6dge and 0Fe(edo) are the same map FCV,_1 to GV,_o.
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Starting with an expression f(v;) in various v; € Vi_1, we calculate 0dy f(v;) = 0(fdov;),
Odoef(v;) = O(e(f)(dov;)) and OFC(edy)(f(vs)) = 0(f)(e(dov;)). That these three terms add

to zero was the requirement specified for 6. O

6.6. Cohomology operations for simplicial commutative alge-

bras

Goerss [33, §5| defines cohomology operations, natural in A € s¢om:

P’ = 0 0 Sl : Hify A — H W As and

[7] = 1/}%0771 0 /'LeXt : H%OTTLA ® H(,rgn(‘?mA — Hn+m+1A

Com

He also defines a natural operation S : H%OmA — Hé/omA. Note that as a result of the use

of 1%, .., these operations have a grading shift.
Proposition 6.5 |33, §5|. These operations have the following properties:

(1) the bracket gives Hy, A the structure of an S(.Z)-algebra (with grading shift);

(2) the operation B acts as a restriction defined only in dimension zero, so that for x,y €
H%OmA and z € H, = A:

Bz +y) = Bx) + By) = [z,y], and [B(z),2] = [, [z, 2]];
(3) the self-bracket operation on HY, A equals the top P-operation:
Pz =[z,z] forxze Hy,, A;

(4) if v € HY, A, then P'z =0 unless 2 < i < n;
(5) every P-operation is linear;

(6) there holds the following Cartan formula: for all z,y € Hy, A andi >0,
[z, Py) = 0;

(7) the P-Adem relations hold: if i > 2j, then

o QeGP S N
PipPig = Z ( )Pl+]spsx.

o i
s=i—j+1 J

In this case, (7) does state that HZ, A is a left module over P, the Steenrod algebra for

commutative algebras over Fo of P-algebra. This is the unital associative algebra generated
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by symbols P for i > 0, modulo the two sided ideal generated by P°, P!, and the evident
P-Adem relations.

A sequence I = (ig, ..., i) of integers i; > 2 is P-admissible if i;41 < 2i; for 1 < j < £.
For any sequence I = (iy, ...,i1), write P! for the monomial P --. P in P. It follows from
[33, Theorem I| that P has an admissible basis, consisting of those P/ = P ... Pi with I a
P-admissible sequence. Again, we will say that I produces J in P, denoted I L if, when
Py is written in the P-admissible basis of P, P; appears with non-zero coefficient. In this
case, unless J = I, J is P-admissible and I is P-inadmissible.

We define

m([) = max{(il), (ig—il —1), (ig—iz—il —2), ey (ig—"’—il —E-i- 1)},

for a rather different purpose than in §5.4 and §5.5: although the composite

Pl (Hp A DS gt g PR P ittt g
is always defined, it is forced to be zero (by (4) alone) except when n > m([).

As in §5.4 and §5.5, if a non-empty sequence I is P-admissible, we can identify which
term is largest in the maximum defining 7m(7), and calculate that m(I) = i;. More explicitly,
in a non-vanishing admissible expression P% - .. Pz, for x € 2om A, the only P-operations
that can be a top operation is P".

The following result shows that whenever an expression P’z is forced to be zero by (4)
and we reduce P’z to a sum of P-admissible composites, then (4) forces all of the resulting

summands to be zero.

Lemma 6.6. If I 5 J, then m(J) > m(I), with strict inequality when I and J are distinct
and of length two.

The main theorem of Goerss’ memoir is that these operations generate all of the opera-
tions in the category H%om, and that all the relations between them are implied by those
presented here. In [33, Chapter V|, Goerss shows that the listed operations completely cap-
ture the cohomology of an object K%°™. He proves a Hilton-Milnor Theorem [32], which he
uses in [33, §11] to bootstrap up to a calculation of the cohomology of any GEM in s€om,
namely [33, Theorem I]. The result states that whenever V € V!, is a vector space of finite
type, not only is F?°"V generated by V under the operations of Proposition 6.5, it is as
large as is conceivable given the relations presented. We will present, in Proposition 6.8, a
partial version of his result.

It is interesting to observe that P, the Steenrod algebra for commutative algebras, is in

fact Koszul dual (c.f. [46]) to A, the algebra which possesses an unstable partial left action
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on the homotopy of a simplicial algebra. Indeed, Goerss calculates P as the Koszul dual of
A, using a reverse Adams spectral sequence due to Miller [42] (c.f. §3.4). We will explore

this duality further when we consider the Bousfield-Kan spectral sequence.

6.7. The categories W(0) and U(0)

Suppose that A € s€om is connected, i.e. that m9A = 0. Then H%OmA = Q%" A = 0,
so that the operation 8 can be ignored. This is a convenient by-product of working with
the cohomology of connected objects, although the real reason that we do so is that doing
so avoid completion and convergence problems. If we say that V € V! is connected when
V0 = 0, we may identify the full subcategory of V! on the connected objects with V.

Goerss’ result proves that the monad FH%™ on V! preserves V* (and indeed it is a
general fact that no non-trivial natural cohomology operations decrease dimension). We
will write W(0) for the category of connected €om-H*-algebras, so that the monad F'V(©)
is simply the restriction of FH%°™ to Y+ The way that we will report Goerss’ result here
is to explain how the monad FW(© may be constructed on objects of V1 of finite type.

Let the category of unstable P-modules, denoted U(0), be the category whose objects are
Var—graded P-modules in which P acts with grading ¢ + 1 by everywhere defined maps

Pyt — v

which equal zero unless 2 < ¢ < n. Recall that we have already imposed the P-Adem

relations and set P° and P! to be zero in P.

Proposition 6.7. The monad FY©) may be defined by

FUOV .= (Pa V) /FfP @v | V e V™, m(I) > n}
=(PeV)/F{P v |V eV", m(I)>n, Iis P-admissible}.

Proof. This follows from Goerss’ [33, Theorem I| and Lemma 6.6. O

Now an object of W(0) is in particular an object of U(0). It is also a (degree shifted)
S(Z)-algebra. Thus, there is a natural map

FLOpSE@y — pWOy,

This map is not an isomorphism, but it follows from [33, Theorem I| that it is surjective.

Moreover, our final reading of Goerss’ result is:
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Proposition 6.8. For V € V't of finite type, FWOV € V't is the coequalizer:

coeq ( T@Fs(f)Vﬂ? T@Fs(f)V*»FU(O)FS(i”)V> ’
sbo

where the maps sby and sby are defined on P @ (FSEV)™ by
sbi(Pl@2) = P! @ [z,2] and sho(P'®@z) =P P"®u.

Choose a homogeneous basis of V', construct from it a monomial basis of A(L)V (such as
any choice of Hall basis), and then lift these monomials in the evident way to a collection B
of elements of S(L)V. Then a basis of FVOV s

{P'v | be B, m(I) < |b, Iis P-admissible} .

Corollary 6.9. Suppose that V € V* is of finite type. Then so is FVOV .

The following observations will be useful for the calculation of the cohomology of objects

of W(0).

Lemma 6.10. The monads FYO and FWO) on V't may be promoted to monads on the
category gV, by insisting that quadratic gradings add when taking brackets and double when
applying P-operations.

It is typical to think of V' € VT as an object of gV concentrated in quadratic grading one
when considering FVOV .

An object of W(0) is in particular an object of U(0), and (as all of the P-operations are
linear), we can define a functor Q4 : W(0) — V¢ which takes the quotient by the image

of the P-operations. Moreover:

Lemma 6.11. For X € W(0), the vector space QYO X € V* inherits a (grading shifted)

Lie algebra structure from the bracket of X, yielding a factorization:
QYO = QMH) o QU (W(0) — A(L) — V).

Moreover the composite QU o FWO) equals the free construction F*O).

Proof. One checks that the bracket is well defined in the quotient, and that taking the
quotient by the top P-operation imposes the relation [z,z] = 0, to create a A(.Z)-algebra
from the pre-existing S(.Z)-algebra structure. The final claim follows from Proposition
6.8. O
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6.8. Cohomology operations for simplicial (restricted) Lie al-

gebras

A standard definition of the cohomology of a simplicial Lie algebra L € s.Z%ie or s.Zie" is
presented in [47] as follows. Let UL be the simplicial primitively Hopf algebra obtained
by applying the universal enveloping algebra functor levelwise, or the restricted universal
enveloping algebra functor when working in s.Zie”. Applying the Eilenberg-Mac Lane sus-
pension functor (|47, §2.3], [42, §5] or [40, p. 87]), one defines (using a subscript W to avoid
confusion):

T*DWUL, if x> 0;
H

*
W - .
0, if x=0.

We discuss universal enveloping algebra functors in Appendix A.1. The suspension W
destroys the associative algebra structure but leaves a simplicial cocommutative coalgebra
structure on WUL, with diagonal we denote by A. Homotopy operations for simplicial
cocommutative coalgebras are well known, being the mode of definition of the cup product
and Steenrod operations present in the category X discussed in §1.1 of unstable algebras

over the Steenrod algebra, and can be constructed using Propositions 6.1 and 6.2:

_ k _ * _
Sqt == A* 0S¢k, (F"D(WUL) 2 7tk DS2 (WU L) 25 a"D(WUL));
fi= A 0 ey ¢ (Sa(m*D(WUL))" 2% 77 S,D(WUL) — 7" DS*(WUL) 25 7" D(WUL)).

The operations here make Hyj, L a module over the homogeneous Steenrod algebra discussed
in §1.3, which is the usual mod 2 Steenrod algebra ‘with Sq” set to zero’. That is, the
homogeneous Steenrod algebra is the unital associative algebra A generated by symbols Sq’

for j > 1, subject to the homogeneous Sq-Adem relation:

UL j—k—1 L
Sq'Sq’ = Z < i ok >qu+]kqu for i < 2j.
k=1

We only ever work with the homogeneous Steenrod algebra and the homogeneous Sq-Adem
relation, and so may omit the word homogeneous if we desire.

This algebra is Koszul dual to the opposite of the A-algebra (c.f. 5.5). There is an index
shift in this duality, so that Sq’ corresponds to \;_; for i > 1 [46, §7.1].

In [47], Priddy concentrates on simplicial restricted Lie algebras L, and works out all of
the natural operations on Hj, and the relations between them. Moreover, he gives a spectral
sequence argument showing that the two notions of cohomology are isomorphic, with a shift

in degree arising from the use of W: Hy L= HEZJTL for n > 1.
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For our purposes it is better to work in the framework set out in §6.5, giving an alternative
definition of Priddy’s operations. This alternative definition will fit more readily into the
spectral sequence arguments we intend to make.

For now, let € stand either for .Zie" or Zie. Our definition of the cohomology operations
is:

ext

S k—1 *
Sqt 1= 0 Sqbiy! : HEL =% 71D ($2(QCBOL)) 5 HEth L,
= 08 0 frexs  (SaHEL)" 2% 77 D(S2(QEBEL)) 5 HIL.
We will check the properties of these operations using a spectral sequence argument similar
to Priddy’s, although we will need to give a richer construction of the spectral sequence in

order to extract information about the operations. This work will be deferred until Appendix

A, and will prove:
Proposition 6.12. There are commuting diagrams:

k—1
wéOSqext wéoﬂext

HpL ——=~ H}*FL Hy'L® Hg*L Hyrmetp
ni? A*Osqlccxt n+¢kil ni1+1 J/g no+1 A opiext nﬁ-i?—i&
HY'L HYPHL Hpt'Leo HE 'L HHm 2L

That is, the two definitions of Sq* coincide, as do the two definitions of fu.

Given the use of suspension W, one expects the notion of top Steenrod operation to be
different to that in other settings, and in this context we say that Sq"*! : HgL — H g”HL

is the top operation.
Proposition 6.13 [47, §5.3|. These operations have the following properties:

(1) the product p gives H3L the structure of a commutative algebra (with grading shift);

(2) the squaring operation on HZL equals the top Steenrod operation:
Sq"Hz =2? forze Hg L

(3) if x € HZL, then Sqlz =0 unless 1 < i <n—+1;
(4) every Steenrod operation is linear;

(5) the Cartan formula holds: for all x,y € HSL and i >0,

Saf,(wy) = 421 (Sa"e) (Sa'Fy);
(6) the homogeneous Sq-Adem relations hold, making HZL a left A-module.
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This fact follows from Proposition A.3. We will also use the following calculation:

Proposition 6.14. If € = Zie (as opposed to ZLie"), then Sq* = 0. In particular, for
reHY X, z*=0.

Proof. 1t is enough to prove this for the universal example 2, € H}ieK‘;L%e. The reverse

Adams spectral sequence (§3.4) is of the form
BT = (2, K20y — LK™

The point now is that ngffie, which is just a constant object in s(m.Zie) with value a one-
dimensional Lie algebra in internal dimension n, is actually free as an object of 7.%%e below
internal dimension n 4+ 1. This is simply because there is no Ag operation defined in 7.%%e.
One may thus construct pas-a-pas a simplicial resolution of Kgfie (a process described in
[1]) which in positive simplicial dimension is concentrated in internal dimension at least

n + 1, implying that E5? = 0 when p > 1 and ¢ < n. Moreover, Eg’q = 0 unless ¢ = n,

showing that H"ZT;K;?W = 0. This group contains Sq't,. O
A sequence I = (iy,...,11) of integers i; > 1 is Sq-admissible if 1,41 > 2i; for 1 < j < £.
For any sequence I = (ig,...,41), write Sq! for the monomial Sq* - - - Sq™*. The homogeneous

Steenrod algebra has the expected admissible basis, and we say that I produces J in A,
denoted T 2% J if Sq” appears in the Sq-admissible expansion of Sq’.
We use the function m defined in §5.4, this time noting that the composite
S (A 525 A 555 S8 i

is forced to be zero by (8) alone except when n > m(I) — 1.

If a non-empty sequence I is Sq-admissible, we have
m(I)=e(I) =ig—ig_1— -+ — i1,

the Serre excess of I. We now have enough notation available to describe the category
H Zie", using Priddy’s calculations. The results are similar to those in §5.4 on the category

w%¢om. There is again a Kinneth Theorem:

Proposition 6.15. Suppose that K1 and K3 are finite GEMs in s.Zie". Then H%, Ky and
H%, Ko in HZie" are of finite type, and their coproduct H, (Ki x Ka) in H.ZLie" may
be calculated as the non-unital (grading shifted) commutative algebra coproduct of H, Ky
and H%, +K>.
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Proof. We rely on Proposition 6.12 and the following calculation:

H (K1 x K») == " DWU(K; x K>)
>~ " DW (UK, @ UK>)
>~ " D(WUK; @ WUK)
=~ D(rWUK, @ mWUK>)
D Hiy K1 @ Hiy Ko.

This containment is in fact an equality when Hj3 K1 and Hj, K are both of finite type, in
which case H;—V(Kl x K3) is also of finite type, and the isomorphism is proved. Thus, by
induction on the total number of factors K;?M of K1 and K5, we only need to check that
H K7 s of finite type for any n > 0. This is implied by a calculation of Priddy [47, 6.1]

which we recall in Proposition 6.16. O

After giving the calculation on a single Eilenberg-Mac Lane object, the cohomology of finite
GEMs, and thus the category H.Zie" is determined by Proposition 6.15 and the Cartan

formula. The structure defining w.%%e" is then well understood in light of:

Proposition 6.16 [47, 6.1]. For n > 0, let v be the fundamental class in H'%, (KZ%").

Then, as non-unital (degree shifted) commutative algebras:

HY, (K2 =2 S(F) [Sqlz | I is Sq-admissible, e(I) < n].
Corollary 6.17. Suppose that V € V' is of finite type. Then so is FTZ"V . That is, the
restriction of the monad FHZV on V! to VT preserves objects of finite type.

The case of simplicial Lie algebras mimics that of simplicial commutative algebras: for
Lie algebras, the homogeneous Steenrod algebra acts on cohomology, and is Koszul dual to
the opposite of the A-algebra, which possesses an unstable partial left action on homotopy.

Further material on the cohomology of Lie algebras is deferred to Appendix A.
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Chapter 7

Homotopy operations for partially

restricted Lie algebras

7.1. The categories £(n) of partially restricted Lie algebras

For each n > 0, we will be interested in certain categories of Lie algebras monadic over V!,
with a grading shift. Broadly, a V. -graded Lie algebra is a graded vector space L € V,}
with a structure map AL — L which shifts gradings as follows

Lt+t/+l
Sntsh . ns1+s]

t t/
L ® L,

r —
SnyeeyS1 noS1

If we wished to be precise we could view the Lie operad as an operad in (V,}, ®) such that
ZL(r) = (L5 0

and then a V; -graded Lie algebra would be an algebra over the corresponding monad A (%)
on VI, In our context, the Lie operad arises as the Koszul dual of the commutative operad,
through the constructions in [33, §5], and the use of the operadic bar construction (c.f.
[30, §3]) explains the shift. See [30, §5.3.4] for a discussion of Koszul duality of operads in
positive characteristic. From this point forward we will simply think of such a Lie algebra

as a vector space L € V;' with a map AL — L shifting degrees as described.

A Vi-graded partially restricted Lie algebra is to be a Vi -graded Lie algebra such that
certain graded parts admit a restriction operation. Specifically, there is to be defined a
restriction operation

(_)[2] Lt o — L2t+1

Snyeees 2Sny.-,281

whenever not all of s,,...,s; are zero. We will denote the category of such objects £(n).
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It is monadic over V.I', with an adjunction

FEO) v = g(n) - U™,

n

The monad of this adjunction may be constructed as an appropriately chosen submonad
of N(Z) : V' — V! (with £ shifted as above), containing A(.Z). As such, the free
construction F*™V admits a quadratic grading as in §2.10, which we denote q F*™V.

7.2. Homotopy operations for s{(n)

We will now state precisely how much of the structure given in §5.5 carries over to our new

setting. If L € s£(n), we may restrict the structure map [,] : F*"W L — L to a map
[]: @F*™L — L, with A’2L C S quF*™L C 2L,

where the desuspension acts in the cohomological degree ¢t. Only certain of the external
homotopy operations m,V —s .52V defined in §5.2 factor through 7, X 1quF*™V and
similarly for the operations of §5.3. One readily checks that the operations that factor in
this way are:

o™,V — 7rn+i(§]71q2FL(")V)

)

defined only when 0 <7 < n and i, sq,...,s, are not all zero, and
V: @Ff ) (V) — 1 (quF V).

The resulting operations on 7, L, for L € s£(n), are right A-operations

W*([v})

— (ﬂ8n+1+iL)2t+1 )

Snyyeees Smyeey 281 28n,...,281

(_)/\i : <(7rsn+1L)t s1 o (Wsn+1+i(2_l(12FL(n)L))%t

defined whenever 0 < ¢ < s,41 and not all of 4, s,,...,s; equal zero, and a bracket:
) t t £(n+1) t4+t/+1
L (D) @ L) — (@FEO DDl
v ( FL(H)L)tth’ m([,]) (r L)t+t’+1
*q2 sn+1+S;L+17--~751+s/1 * Sn+l+s’ln+1’~~wsl+s/1 ’

We have written the bracket as a map from (7.L)®? to clarify the degree shift, but nev-
ertheless, the top A-operation, whenever it is defined, acts as a restriction for this bracket.
Indeed, this set of natural operations satisfies the evident modification of Proposition 5.7

(c.f. Proposition 7.1).
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7.3. The category U(n+ 1) of unstable partial right A-modules

For n > 0, let U(n+1) denote the category of unstable partial right A-modules, the algebraic

category whose objects are vector spaces V' € \7:{ 11 equipped with linear right A-operations

Lt 2t+1
(_))‘Z : Vsn+175n,~~-ysl — ‘/Sn+1+i725717-'-7251
defined whenever 0 < i < s,4+1 and not all of 4, s,,...,s; are zero, satisfying the unstable

A-Adem relations of Proposition 5.7(5).

We have shown that an object of 7£(n) is in particular an object of U(n + 1), indeed,
the U(n + 1)-structure on , L consists solely of its non-top A-operations, which are linear

as required.

7.4. The category W(n + 1) of L(n)-1I-algebras

For n > 0, let W(n + 1) denote the algebraic category whose objects are VIH—graded
vector spaces which are simultaneously an object of U(n + 1) and of £(n + 1), such that
the compatibilities of Proposition 5.7 are satisfied. Explained another way, an object of
W(n + 1) is such a vector space with the bracket and all of the A-operations (both top and
non-top) described in §7.2, subject to the compatibilities of Proposition 5.7.

This category has a number of useful properties, following from the calculations of [13],

primarily:

Proposition 7.1. The operations defined in §7.2 generate the set of natural operations on
the homotopy of simplicial objects of L(n) and satisfy the compatibilities of Proposition 5.7.
The category W(n+ 1) is isomorphic to the category £(n) of L(n)-II-algebras. The monad
FWeHD op V;f_H factors as a composite FU" 1) o PEHD) wyith monad structure arising

from a distributive law [2] of monads on 'V, ;.

Proof. All of these facts are easy to prove after observing that, for W € sV a coproduct of
spheres, m,(F*™MW) embeds in 7, (I'(Z)W), which, along with m,(A(Z)W), is described
in Proposition 5.9 (although by A(¥) and I'(.Z) we mean the shifted monads of §7.1). In
order to make this observation, let write Wo for ;> ng_ﬂo, the non-restrictable part of
W. This is actually a sub-coproduct of W, the coproduct of those summands of W which

lie in homological dimension (0, ...,0). There is a commuting diagram of simplicial vector
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spaces, containing two short exact sequences:

0——= FFOW 2 T( W
w T (L) Wo
P AN(2)W

—=0

0— = A(L)Wo -~ T(L)Wo

where o and 3 are inclusions and v and p are epimorphisms. On homotopy groups: [ is
injective (its source and target are well understood), so that p, is surjective. Thus ~, is
surjective (after all, v is an isomorphism in those internal degrees in which its codomain in

non-zero), implying that (py). is surjective. This implies that . is injective, as hoped. [
The following two lemmas are the direct analogues of Lemmas 6.10 and 6.11:

Lemma 7.2. For n > 0, the monads FY"tD) gnd FWO+D op V' may be promoted to

+

monads on the category qV,

by requiring that quadratic gradings add when taking brackets
and double when applying A-operations. The same holds for L(n) for n > 0.

7.5. The factorization Q" o QU™ of QW)

For n > 0, we define

orge U(n+1)
QU = (Wn+1) 5 U(n + 1) Qe Vi)

That is, for X € W(n+1) we may take the quotient by the image of the non-top A-operations
(which are linear, so that this operation is well defined). In fact, it is not hard to see that,
for X € W(n+1), QLD X retains the structure of an object of £(n + 1), so that we may
view QU as a functor W(n + 1) — L(n +1).

Lemma 7.3. Forn >0 and X € W(n + 1), X is in particular an object of L(n + 1), and

the vector space QUMD X retains this structure, yielding a factorization:
QW = QYD o QUMD (W(n 4+ 1) — L(n+1) — V).
Moreover the composite QY1) o FWOH1) eqyals the free construction FE+D),

Proof. Similar to the proof of Lemma 6.11, using the observation from the proof of Propo-

sition 7.1 that 7, (F*MW) C m, (FFEOW). O

This differs from the definition of QU(®) —; £(0), in which one takes the quotient by
all the P-operations. Indeed, the category W(0) differs from the categories W(n + 1) (for
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n > 0) in a number of ways, primarily because W(0) is a category of cohomology algebras
while the W(n + 1) are categories of Il-algebras. If X € W(0) and Y € W(n + 1):

(1) Y is a Lie algebra, while X is only an S(.%)-algebra;
(2) the P-operations on X are always defined and vanish when out of range, while the A

operations are simply undefined when out of range;

(3) the top P-operation is the self-bracket and thus is linear, while the top A-operation is

the restriction and thus a quadratic refinement of the bracket.
Nevertheless, the two regimes share the following common ground:

Corollary 7.4. For all n > 0, there are algebraic categories W(n) and U(n), a forgetful
functor U’ : W(n) — U(n), and a functor Q4™ : W(n) — L(n), such that

UL(n) ° QU(n) — QU(n) o le7 QW(n) — Qﬁ(n) o QU(n) and Qu(n) o FW(n) — FL(n)

7.6. Decomposition maps for £(n) and W(n)

Here we will introduce decomposition maps for the categories £(n) and W(n), and calculate
the resulting quadratic part maps. The definitions are simple enough, and the reader can
verify that each is well defined. For any n > 0, the following formulae define decomposition
maps je : Q°(X YY) — Q°X @ Q°Y:

21 Rz, ifl=0,a=2,21€X, 29€Y,

oy P P, z]
0, otherwise.
) 21 ®z, fl=0,a=221€X,20€Y,
IW(n+1) * [217 e ,Za])\z'l "')\ig —
0, otherwise.
» 2] 21®z, ifr=0,a=221€X,29€Y,
Jomy 21, 2]

0, otherwise.
Proposition 7.5. Suppose V € VI'. Then:

(1) qugy, is the composite FEMY s quFFMY C 252V ;
(2) duyy) is the composite FYOY — FEMY s qu FFY C 252V

Proof. Consider the case W(n + 1) for n > 0. As que vanishes except on quadratic grading
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2, one only checks terms [z, y], 12, and 2); (a U(n 4 1)-operation, not the restriction):

AUy (1) ([, 9]) = dwems ) (21 + 22,91 + yol + [21, 1] + [22, Y2])
= jwm+n) ([21,v2] + [22,31]) =2z @y +y @,

which is precisely the representation of [z,y] in g F*" DV C $(V®?). Similarly, AUyy(n1) (TA:)
vanishes (as U(n + 1)-operations are linear), while quyy, +1)(:c[2]) equals * ® x as desired.

The other cases, including the case of W(0), are barely any different. O
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Chapter 8

Operations on W(n)- and

U(n)-cohomology

. . * *
8.1. Vertical )-operations on HW(O) and Hu(())
We will now define natural homomorphisms for V € V*
0; - (FYOV)H+ Lyt for 2 <i < t.
There are natural homomorphisms into the quadratic grading 2 part of FW©V:

PV — qo(FVOVYHFL for2 <<t
[]: (S2V)! — qu(FYO)t,

and for given m > 1, the degree m, quadratic grading 2 part qg(FW(O)V)m decomposes as

w(FOV)™ = im (V)" L YOV e @ im(vm L g YO,
2<i<(m—1)/2

Moreover, each map P* : VI — qo(F W(O)V)”i+1 appearing in this decomposition is an

isomorphism onto its image, so that for 2 <14 <t we may construct 6; as the composite
. : . : . Pi -1
0; <(FW(0)V)t+Z+1 2% (g WOy ytit B8y piy (2, Vt> .

Here we have projected onto the quadratic filtration 2 part, and then further onto the relevant
summand in its natural decomposition. Note that although P! : V! — qg(FW(O)V)%Jr1 is
a non-trivial linear map when ¢ > 2, its image is entangled with the image of the bracket,

and we are not able to split it off. Thus we are not able to improve on the bounds 2 < i < t.
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Proposition 8.1. There is a linear map 07 : V; — (C’H%m_coalgV)tHH for2 <i <t

natural in V €V, such that the following diagram commutes:

07)"
D ( (CH%”omfcoalg V)t—i-i—l-l)

} B

(FW(O)Dv)t+i+1

DV

Proof. When V is of finite type, as FW(©) preserves vector spaces of finite type, we may
simply define 07 to be the dual of §;. This is natural on vector spaces of finite type, and any

vector space is the filtered colimit of such. O

In fact, whenever ¢ > 2 we may define a non-linear function
9: . V;f N (CH‘gom—coalgV)%Jrl

which completes the collection of functions 87, but not by this method: we use the upcoming
Proposition 11.14 to define this top 6. That we need to do this is a disadvantage of working

with cohomology algebras, as opposed to homology coalgebras.

Proposition 8.2. Suppose that X € sW(0) is almost free, so that we may identify H;V(O)X
with m*DQWO X . Then for 2 <i < t, the chain map 67, of Proposition 6.4 induces a linear
operation

87+ (Hyp) X)i — (Hypioy X)ifiis-

These operations are natural in maps preserving the generating subspaces, and satisfy the
unstable 6-Adem relation of Proposition 5.3((6)).
If X is of finite type, this statement may be amended to include a (potentially non-linear)
operation
of : (H\T\?(O)X)? — (H;V(O)X)%Hrl

induced by the function 67.

For any X € sW(0), the bar construction BV X of X has a natural almost free structure,

so that Proposition 8.2 may be used to construct natural operations on H{;\?(O)X.

Proof of Proposition 8.2. The finite type assumption is needed in order to define the oper-
ation 4}, as it is not induced by a chain map on N,QWO X Instead, it is induced by the

potentially non-linear function
93( . (NO prH%om—coalg DX)t . (Nl pyH%om—coalg DX)2t+1
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induced by the function 6} defined using Proposition 11.14. We will give the proof that
the operations ¢ with 2 < 7 < ¢ are well defined and satisfy the J-Adem relations, in the
cohomological variance. By working with homology coalgebras, and thus avoiding double-
dualization, the proof given below extends to encompass the extra operation ¢, in dimension

zero. This exercise is left to the reader.

The conditions of Proposition 6.4 are satisfied with 8 = ; and G is the identity functor.
The condition
fouy =0oepey +00F ey : FEFV — V

just states that given an iterated expression in F¢FCV | the two obvious ways to produce a
summand of the form P'v under the map p : FCFCV — FCV are the only ways, due to
the homogeneity of the P-Adem relations.

It just remains to prove the 6-Adem relations, which we will do using the technique of
[46], the point being that the algebra of j-operations is Koszul dual to P. For this, we define
a map 0;;, whenever 1 < 25,2 <j<tand 2<i<t+j+1:

0 : ((FW(O)V)t+i+j+2 proj (quE WO Yyttt proj im(P) (Pﬂ)_l Vt) 7

where we have split off the image of P%/ = P*PJ as before. This is possible since neither
PJ nor P’ are entangled with the bracket in these ranges. We may identify QV(©) X, with
Vs, at the cost of replacing dy with € o dgy, as in Lemma 2.6. Define é; to be the composite
Vst1 o, FV; h Vs. This will be the nullhomotopy giving the d-Adem relation. As in the
proof of Proposition 6.4, we have dj, o é; = é;; odyyq for k> 1, and é;; has nullhomotopy
the sum

Gdoé;; + é;‘;(edo + dl) = (Gdoel‘j + eijdoﬁ + eijd())d().

The d-Adem relation will follow from
Gijdo = <6d09i]‘ + Qijdoe + Z(a,ﬁ)g(i,j) 95d09a> FVsp — Vs,

This identity states the following: if V € V{, and f(g) is a nested W(0)-expression with
g € FYOV and f(gr) € FWOFYOV | then if we write dy : FVO WOy — pWOY
for the monad product map, there are only three ways that one may obtain expressions of
the form P'PJv in do(f(gx)): for some k, gr = P'P’/v, and f adds no further operations
to this term; f = P'PJg, for some k for which g, = v is a unit expression; or for some k,
gr = PPv, and f has P%(gx) as a summand. In this last case, after applying dy, we may
need to rearrange the composite P* PPy using the P-Adem relations, and we sum over those

(a, B) producing a summand P°’Plv.
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This shows that the proposed nullhomotopy equals

> (@8) B (i) 05 © Oacs

and as Goerss [33] constructs the P-algebra as the Koszul dual, in the sense of [46], of the
A-algebra, so that («, ) kA (i,7) if and only if (4, 5) 4 (a, ), so that the nullhomotopy
equals the desired sum:

22 6.5)3 () 98 © Oar- ]

The same constructions work in the category sU(0) of simplicial unstable P-modules, the
only difference being that when we define 6;, we need not worry about Lie algebra structures,

and we can define a map
0; : (FMOy )ttt — yt

whenever 2 < ¢ <, so that there is one more operation available on Hﬁ(o) than on H\t\)(o)v
at least in dimensions s > 0.
It will be useful to encode this structure in a definition. Write M, (1) for the algebraic

category whose objects are vector spaces M € V}r with left d-operations

6 M — Mtsj_riﬂrl, defined whenever 2 < i < ¢,

satisfying unstable J-Adem relations analogous to those of (6) in Proposition 5.3.

Proposition 8.3. Suppose that X € sU(0) is almost free. Then the chain maps é; of
Proposition 6.4 give HE(O)X the structure of an object of My (1), natural in maps preserving

the generating subspaces. In fact, My (1) is the category of U(0)-H*-algebras.

See §9 for further discussion of this fact, and Proposition 9.1 for a restatement. It is not
true that H\y;\?(o) is an object of M (1), a fact that we emphasize because H;\?(n) will be an
object of My (n + 1) for n > 1 (under definitions made in §8.2).

In order to give a basis for a free object in M,(1), for a sequence I = (ig,...,i1) of

integers 7; > 2, we use the function
m([) = max{(il), (iz—il —1), (ig—ig—il —2), ce (ig—-”—il — 0+ 1)},

of §6.6, following the convention that max(f)) = —oo, and the notion of d-admissibility from

§5.4: each i; > 2 and 441 > 2i; for 1 < j < /.

Lemma 8.4. ForV € V}F with homogeneous basis B, a basis of FMMV s
{67b | b € By, I 6-admissible with m(I) < t}.
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We will often apply such results as these when V is concentrated in degrees V,°. At this
point we introduce a notational abuse, identifying V, with the full subcategory of Vﬂ_ with
objects concentrated in these degrees. The effect of this will be that we will be able to write

FWOV for Ve V., . Restricting Lemma 8.4 to such cases:

Corollary 8.5. For V € V. with homogeneous basis B, a basis of FM Dy e \7}F 18
{67b | b € By, I §-admissible with m(l) <t} .
. : * *
8.2. Vertical Steenrod operations for Hw(n) and Hu(n) when
n>1

For V € V;'| we will define natural homomorphisms

i (W 2t+1 t
0" : (F (n)V)57L+7j—1,28n71,...,251 — ‘/;n7'-'7517
which are defined for all 4,s1,...,s8, > 0 and ¢ > 1, but are zero except when 1 < i < s,
and not all of i — 1, s,,_1, ..., s1 are zero. These are rather easier to define than in the n =0

case investigated in §8.1, as the monad F W) is a simple composite FY™ F£() of monads

when n > 1. Indeed, there are natural monomorphisms

(_)Ai—l . Vt ) SN (q2FW(n)V)2t+1

SmyeeeyS Sn+1—1,28,_1,...,251
defined only when 1 <i¢<mnand¢—1,s,_1,...,51 are not all zero, and an inclusion
incl : uF MV — quFYMY,

As in the n = 0 case, the images of the listed maps are linearly independent and span

the quadratic grading 2 part of FW(V . We define 6 to be zero unless 1 < i < n and

i—1,8,-1,...,81 are not all zero, in which case we define it as the composite:
. . -1
i. W(n)y,\2t+1 projoproj . ' (Ni-1) t
" : ((F V)sn+i71,25n_1,‘..,281 e O L s )°

One can give exactly the same definitions for the free construction in U(n), producing

functions @¢ ; FU(®)

V — V which are zero under the same conditions as for W(n).
Write M (n + 1) for the algebraic category whose objects are vector spaces M € Vﬁ“
with left Steenrod operations

i Snd1,---,51 Sn+1+1,8n+1—1,254,1,...,251
qu s M, — M2t+1 >
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which are zero except when 1 <i < s, and not all of i — 1,5s,_1,...,81 are zero, and which

satisfy the homogeneous Sq-Adem relations. Note that in an object of M (2), Sq\l, = 0.

In the present case (n > 1) there is no disparity between the unstableness conditions on

W(n)- and U(n)-cohomology, so that the analogue of Propositions 8.2 and 8.3 is:

Proposition 8.6. Suppose that X € sC is almost free, where C stands for either W(n) or
U(n) with n > 1. Then the chain maps 6* of Proposition 6.4 give H{X the structure of
an object of My(n + 1), natural in maps of almost free objects preserving the generating

subspaces. Again, My (n + 1) is the category of U(n)-H*-algebras.

In order to give a basis for a free object in My (n + 1), for a sequence I = (i, ...,i1) of

integers 7; > 1, we define
m(1) = max{(in), (i — i1 + 1), (i — iz — i1 +2), ..., (ig — - —in + (L~ 1))},

Recall that I is Sq-admissible if each i; > 1 and 4,41 > 2i; for 1 < j < /.

Lemma 8.7. ForV € VCLFH with homogeneous basis B, a basis of FMv DV s

if s,—1=---=51=0 then J does not contain 1

{Sq;{b be B;"* ] Sg-admissible with m(J) < sn,} .

Performing the same abuse of notation as in Corollary 8.5:
Corollary 8.8. For V € V'l with homogeneous basis B, a basis of FM Oty ¢ Viﬂ 18

{ngb

b€ B;™*', J Sq-admissible with m(J) < sy,
if s,,_1="---=57=0 then J does not contain 1 |

8.3. Horizontal Steenrod operations and a product for H\t\?(n)

For any n > 0, we will construct operations on the homology H{jv(n) arising from the S(.%)-
algebra structure or Lie algebra structures.

Indeed, suppose that X € sW(n) is almost free. Then QUMX € sL (n) is also almost
free, on essentially the same generating subspaces. Thus, the cohomotopy of QWX =
QM QUM X is an instance of simplicial partially restricted Lie algebra cohomology. Coho-
mology operations of this type are discussed in §6.8 and Appendix A. In the present context,

we have two equivalent definitions, one using ¢,y and one using 1yy(,,), and until Appendix
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A, we will use ¢y, defining operations
. =1 , Brocn .
Sqi <H{;§,(n)(X) Moxg i1 g20Wm) x VW H%%(X)) and

n n ext _ni+n n Yo ni+n
E <le(n)(X) @ Hig (X)) 2% pmidneD g2V x =8 Fig - 2+1(X)>.

In more detail:

Proposition 8.9. Fizn > 0. For X € sW(n), there are natural operations

St ¢ (B X7 — (Hiyy X)5511 9202,

* nt1y-s * n yeeny * n +pn +17 n+ LA +
1 (Higon X )70 @ (i X0t te?t —s (g, X )7 Pttt sttt

with the following properties

(1) the product pu gives H3L the structure of a (grading shifted) S(€)-algebra;

(2) the squaring operation on HZL equals the top Steenrod operation:
Sq* ity = 2? forx e (H{,kv(n)X)f”“’”"Sl;

(3) if x € (H{,"v(n)X)f"“""’sl, then Sq'z = 0 unless 1 < i < spy1 + 1 and not all of
i—1,8p,...,81 equal zero;

(4) if n =0 then Sq' =0, and Sq®x =0 for x € (Iﬂ‘v(o))()f1 with t > 2;

(5) every Steenrod operation is linear;

(6) the Cartan formula holds: for all x,y € HZL and i > 0,
Sai(zy) = i1 (Sd*) (Sq'*y);

(7) the homogeneous Sq-Adem relations hold, making HZL a left A-module.

Proof. Almost everything here follows from Proposition A.3, which demonstrates that the
operations we are discussing here coincide with those defined on HI’%/ (c.f. Propositions 6.12
and 6.13). The same technique used to prove Proposition 6.14 proves the new part of (3).
For (4), when n = 0, (3) shows that Sq'z = 0. On the other hand, to see why Sq?z = 0
when ¢ > 2 is more difficult, especially since we have not determined the category of W(0)-
II-algebras. Nonetheless, as in the proof of Proposition 6.14, we will prove this for the

universal example 1} € H{/‘V(O)KZ\)(O)’t. The reverse Adams spectral sequence (§3.4) can be

(0),

equipped with a quadratic grading if we view the generator of KZV " as lying in quadratic
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grading one, and is of the form

W(0)¢
QL E5Y = qk(Hﬁwm)Kas( e = Qk(HngEg)KlM(O)’t)T

As Sq%f € QQ(H\‘;‘E%)KZ\)(O)J)%_‘_L we need to determine

TI'W(O),t)S

w(0),
Q2(H3W(0)Ko,s o ()t)SH

1
9t+1 and qz(HWW(O)KO,S 2t+1>

and as in the proof of Proposition 6.14, we need to see how far Fo{s!} is from being free in

7W(0). Fortunately, we only need to answer this question in quadratic grading two, and
FYO B, (it }) = m,(SYO) =, (FPOKY),
Now if t > 2, qeFWO Y naturally decomposes as
qQFW(O)V - QQFS(f)V ®PVee- - @PY,
and we calculate, by Proposition 5.6:
Q@ F™O (Fo (L1221 = Fo{dal, Agtl, .. Al

That is, there are two missing A-operations, Ag and Ay, in the functor FS5() and the
presence of the operations P2, ..., P*~! do not effect qo F™V() (Fy{s}) in internal dimension
2t + 1. We now have enough information to proceed as in the proof of Proposition 6.14,
since A2t € quF™VO) (Fg{zg})gi'zl for 2 <k <s. O

For n > 0, write My(n + 1) for the algebraic category whose objects are vector spaces
M € VTFI with left Steenrod operations and a commutative pairing satisfying the conditions
of Proposition 8.9. We have simply shown that Hyj,, takes values in Mp(n +1) — it is
certainly not true that My (n + 1) is the category of W(n)-H *-algebras, as we have also seen
that H3, ., takes values in My(n+1).

Note that the unstableness condition implies that 22 = 0 whenever x € Mt0 0 Indeed

Proposition 8.10. Suppose thatn > 1, and that V € VTFI has homogeneous basis B. Then

FMu( DY s the quotient of the non-unital commutative algebra

be Bt ] Sq-admissible with e(J) < 8,41,
if s,, =--- = s1 =0 then J does not contain 1

S(€) [Sq}{b ‘
by the relation b> =0 if b € B?""’O. Here, e(J) := jy — jo—1 — -+ - J1 is the Serre excess of J.
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Proof. By [47, 6.1], the true free object is a quotient of what we propose. It is in fact equal
to what we propose, because the two-sided ideal in the homogeneous Steenrod algebra A
generated by Sqll1 is spanned by those admissible sequences ending in Sqlll, so that forcing

Sq}lL = 0 in the relevant degrees has no unintended consequences. O

Corollary 8.11. Suppose that n > 1. For V. &€ V' with homogeneous basis B. Then

FMa(rtl)y ¢ \71‘H 18 the non-unital commutative algebra coproduct

b c Bfm---vsl

Sn, - - .,S1 not all zero

S(%) [b

] UA(%) [b ’ be BEMO} .

8.4. Relations between the horizontal and vertical operations

It will be helpful to be able to reduce expressions in the various available operations to a

standard format,
I, Sq}{ké}’kajk when n =0, or [], Sq}{’“Sq\I,’@xk when n > 1,

which is possible, thanks to:

Proposition 8.12. Suppose that z,y € Hyyq)X. If Sq{lx € (H%(O)X)f, then 6Z-VSqflx =0
for2<i<t, and if xy € (H{,"V(O)X)f, then 6 (zy) =0 for2 <i <t.
Suppose that n > 1 and x,y € HyyqyX. Then Sqf,Sq{la? =0 and Sq’ (zy) = 0.

Proof. For the case n = 0, suppose that X € sW(0) is almost free on generating subspaces

Vs. It is enough to prove that the composite

. 9. VW(n _
Ns+1(QW(O)XS+2)t+z+1 LNS(QW(O)XSH)]& W_<>> Ngfl(SQ(QW(O)XS))t 1

is nullhomotopic, using a similar method to that used in the proof of Proposition 8.2. For

any V € \73 , there is a natural composite

(S2V) S (P OV (B V),

whose maps we have labeled o and 3 for convenience. The map B|ip (o) is not a monomor-

phism when i = ¢ — 1 is even, as in this case, for any v € V¥/2,

; _ pipi/2, _ 36/2-2 2(k—i/2)-1\ p3i/2—k pk,, _
P'lv,v] = P'PY?0 = k:i/Z-‘rl( kji/z ) PH/2E Py = 0,

as each expression PFv in the sum vanishes by the unstableness condition. However,

ker (Blim(a)) is contained in ker (quyy(g)), and im(8 o o) does naturally split off as a direct
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summand of (F\S\;l()O)V)tH‘H. We write h; for the composite:

—1

L ((FWO AL P s il B im(a) AUWO) [ (211
i+ (FVOW)HE S (0 @) S s T 82y ).

Identifying Q") X, with V; as in the proof of Proposition 8.2, the nullhomotopy associated

with the composite EZ : (Vs o, FV, N Vs) is the sum
(edoh; + hidoe + hidg)do,
and the relation we seek will follow from the identity
hido = (edoh: + hidoe + auyyo)doth ) : FVis1 — Vi,

as then @ZJW(O)@: = quyy(g)dotido = dol;i + I’Tido. This identity states the following: if V €
V¢, and f(gr) € FYOFYOYV is a nested W(0)-expression in various expressions gj, €
FWYOV  then if we write dy : FWO FWOY — FWOV for the monad product map, there
are only three ways that one may obtain summands of the form P[v1,vs] in do(f(gr)) €
(FWOV )Y+ for some k, g = P'[vy,v9], and f adds no further operations to this term;
f = P'[gk,, gr,], where g, = v and gx, = v2 are unit expressions; or for some k, g = [v1, v2),
and f has P*(gy) as a summand.

For the case n > 0, the proof only becomes easier, the main difference being that in the

corresponding composite:

Ai—q

(@ F M) s (@ FV OV EG V)

W(0)

both o and B[ip (o) are monomorphisms. O

8.5. The categories My, (n + 1)

For n > 1, let My, (n+1) be the following algebraic category, monadic over Vﬁ“. An object
of Myy(n + 1) is a vector space V € V! which is simultaneously an object of My (n + 1)
and of My (n + 1), and in which

Sqf,(acy) =0 and Sqf,(Sq‘}jl(x)) =0 forall z,y e V.

By Proposition 8.12, for n > 1 and X € W(n), H;ﬁv(n)X is naturally an object of Myy(n+1).
We will prove in Corollary 14.7 that for n > 1, My, (n + 1) is the category H%om of W(n)-

cohomology algebras.
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The corresponding facts are not true for n = 0, so we do not even define a category

th(l)'
For any n > 1, the monad FMuw (1) factors as FMu(tl) pMe(nt1) - with the evident

distributive law of monads, and combining Corollary 8.8 and Proposition 8.10:

Corollary 8.13. Forn > 1 and V € V'} with homogeneous basis B, FMu (DY s the

quotient of the non-unital commutative algebra

be B I,J Sq-admissible with m(I) < s, e(J) <41
S(%) Sq}{Sq\I,b if s,—1=---=s51=0 then I does not contain 1
if s,,=---=51=0 then J does not contain 1

by the relation b> =0 if b € B?""’O.

Although we do not define My, (1), it will be useful to have a description of the composite
FMu() pMY(1) - Combining Corollary 8.5 and Proposition 8.10:

Corollary 8.14. For V €V, with homogeneous basis B, FMu() MDY s isomorphic to

the non-unital commutative algebra coproduct

b € By, I non-empty, d-admissible with m(/) < t,

UA B].
J Sq-admissible with e(J) < ¢I, and 1 ¢ J (€)[b]be B

S(%) [sqgayb ‘

For elements by,...,by of B with by, € By, and appropriate sequences Iy, Jy,, we have

N Ji sv v
| thkdlkbk € (FMh(l)FM (I)V)_1+Zk(2uk+ak (tot1))

8.6. Compressing sequences of Steenrod operations

The following theorem creates a model for the convergence of a spectral sequence which we
will discuss in §13. One should think of FMa(+t)V a5 the E.-page of a first quadrant

cohomotopy spectral sequence and FMa(™V as the cohomotopy of the total complex.

Theorem 8.15. Suppose that n > 1 and V € V'y. Then there is a decreasing filtration on

FMaMV - the target filtration, and an isomorphism
f . (FM},V(n+1)V)fn+17~--751 i [EOFM}](n)V]fn-&-lwwsl’

defined by requiring that f(Sqlv) = Sqlv forv € V, that f(wiws) = f(w1)f(w1) for wi,we €
FMuw (DY and that

F(Sajw) = Sa],"™" f(w) for w € (FM(rHUy)ptest,
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Proof. The proposed map f is not a well defined map to F’ Mu(m) Y since the Adem relations
between the Sq;, are not preserved by the proposed map f. Write W (V') for the quotient of
S(€)[A @ FM () V] by the horizontal unstableness relations and Cartan formula, so that
FMu (DY s obtained from W (V') by taking the quotient by the two-sided ideal generated
by the horizontal Adem relations. Then may define a map f : W(V) — F Mu()y Ty
requiring the same of f as of f. There is a decreasing filtration on W (V), given by

= @ @ @we

Sn+41>D Snye.,$120 121

and we define the target filtration on the target by FP(FM(MV) .= f(FPW (V).

The map f fails to descend to a well-defined map FMuw ()Y pMu(®)V/ | because it
does not annihilate the Adem relations. However, we will show that it does send them into
higher filtration, so that f induces a well defined map f as advertised: if w € W (V)"
and ¢ < 27, then

f(Sq Sajw — ALY (75 8d, 7 s )

- k=0 (z+23n 2k

)
= an_l (]zisﬁnfz;gl)

_ qu+2sn +snf(w) 112J (ji—kil)s i+j—k+28nsqﬁ+snf( )
o qu+2snSq]+Snf(w) Zk L(i4+2sn)/2] (]1137;;52]3)8 (i+2sn)+(j+sn)— ksqﬁ?(w)
sn—1 (j+sp—k—1 Sq(1+25n)+(1+8n) kSqﬁf(w)
/

(Sq;l+1+2(sn—k)+ls kw),
which is in filtration s, 41+ 4+ j 4+ 2(sp, + 1 — k) > sp4+1 + ¢ + j (the second equation holds
by simply shifting the dummy variable k, the third by an Adem relation in the codomain).

What remains is to show that f is an isomorphism as in the theorem statement, which
we approach simply by choosing a set of multiplicative generators for both the domain and
codomain. The domain is generated by those expressions Sqﬁng v, for v € V;”°! running
through a basis of V', and appropriate Sq-admissible sequences J and I. The codomain

is generated by expressions Sqﬁ{v, for v € V7o

running through a basis of V, and
appropriate Sq-admissible sequences K. It is a combinatorial exercise in the properties of
admissible sequences to show that these sets of generators are put in bijection by f, and
this bijection sends polynomial generators to polynomial generators and exterior generators

to exterior generators. O

114



Chapter 9

Koszul complexes calculating

U(n)-homology

We will now discuss the Koszul resolutions that one may use to calculate H}f (")X for X a
(non-simplicial) object of U(n) or W(n) of finite type, using Priddy’s technique [46], adapted
to an unstable context, as in [20] and [33, Chapter V].

9.1. The Koszul complex and co-Koszul complex

Write N7 and C, for the chain complexes N Q4 BUWM X and C,QUM™ BU™ X We will
use the convenient bar notation after which the bar construction is named, c.f. [28, §7].

Suppose that n = 0, then the vector space N, is spanned by

|:Piks+"'+k1 A Piks—1+'“+k1+1

Pk ...pil} ,

...‘Pikzﬂq .. PiRpt1

where © € X, the expressions in each of the r spaces are P-admissible, and none of the
spaces is empty (so that k; > 0 for 1 < j < s). Such an expression represents an element
of the repeated free construction QU(") By(n)X >~ (FW0))s X with the requirement that no
space be empty reflecting having taken the quotient by degenerate simplices. In particular,
this expression equals zero unless M (ig, 4...ky---,01) < |Z].

When n > 1, the vector space N, is spanned by expressions

A A

ikl ik1+1 e Aik2+k1 )\Z‘k571+“‘+k1+1 ’ iks+~-+k1 )

x[)\ilm)\

again without empty spaces, and subject to an admissibility condition. However, these
expressions are only defined when every A-operation appearing is defined. That is, if x €

Xﬁmn_’sl, then we require m(ig, +...k;5---,91) < Sp, and for no Ag to appear if s,,_; = --- =
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s1=0.

Each of these complexes admits an increasing filtration, the length filtration, with Fy N
generated by those terms in which ig 4.4, < € for each term, which is to say that there
are at most ¢ generators appearing in the s free constructions in Cy = QU™ u(n =
(FY™)s X Note that Fy_ N7 = 0.

Write E; , for the spectral sequence of the filtered complex N; X, so that Egp is the

s 15 the subspace

FsN; of N=. Priddy [46, Proof of Theorem 5.3] shows that E}’S = 0 for ¢ > s. Thus, the

groups

associated graded complex. As F,_1N; =0, Ej =0 for £ < s, and E?

KU(”)X E! s» equipped with d E;S — Esl—l,s—l

form a subcomplex of N, the Koszul complex, whose inclusion is a homotopy equivalence,

and E, is the preimage of Fs_1N; ; under
d: FsNj — FsN[ .

Rather than determining these groups directly, Priddy works with their duals, K{i(n)X ,
which form a cochain complex with homology Hﬁ(n)X . In fact, Priddy’s theory shows that
the cochain complex U(n)X , the co-Koszul complex, is actually a differential unstable left
module over the same operations as its cohomology H{i(n)X , and indeed that this (partial)
module is free. More precisely, Kg Mx - x , and Kﬂ(n)X is free on the subspace X* of

0 .
Ku(n)X :
Proposition 9.1. Suppose that n > 0, and X is an object of U(n) of finite type. The chain
maps 9i (évl whenn =10) on C.QUM BUM X restrict to the subcomplex K}f(n)X, and induce
an My (n + 1)-structure on Kﬂ(n)X which commutes with the differentials. The inclusion
DX = Kg(n)X C K{jn)X induces an isomorphism ) (DX) — KX - Moreover,
this My (n+1)-structure on Ky induces the My (n+1)-structure on Hy ;)X of Propositions
8.3 and 8.6.

Although it is easier to calculate the co-Koszul complex, we will need to understand the

n)

Koszul complex itself in order to calculate the W(n + 1)-structure of HY™ | For this, we

will introduce a little notation:

Proposition 9.2. Suppose that X € U(0) has homogeneous basis B. Then KE(O)X has
basis

{67*b | b€ B, I 5-admissible with m(I) < t},
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where we define, for any x € Xt and I §-admissible with m(I) < t:

o0 x = Z [Pké

K=1

--~’Pk1} x for x € X1,

If X is of finite type, there is a basis {0} (b*)} of Kﬁ(O)X constructed using the isomorphism
of Proposition 9.1, Corollary 8.5 and the basis {b*} of DX dual to B. The bases {07 (b*)}
and {5y*b} are dual.

The differential of KB(O)X s giwen by the formula:

do7a) = D O (PP2),

K—=1
(kgy...,k2) A-admis.
summing over those K = (ky, ..., k1) such that (ke, ..., ko) is 0-admissible, and yet K AT

Note that the sum defining 67*x is finite, simply because the A-algebra is graded by the

sum of indices. We may assign 67*z = 0 for x € X' and m(I) > ¢, if we wish, since:

Lemma 9.3. If I 3 J, then m(I) > m(J). This inequality is strict if I and J have length
2.

In fact, this lemma ensures that the sum defining 67*x is finite. That is, any K with K Ar
must have m(K) > m(I) §-Adem relations only decrease m. Indeed, we may further restrict
the two sums appearing in this proposition be requiring that m(K) < t in each case, but
this has no effect. Dually, in the co-Koszul complex, the operations ¢} are undefined when

out of range.

Proof of Proposition 9.2. Firstly, we may assume that X is of finite type, as any object of

U(0) is the union of its subobjects of finite type, and the functor K}:L ©

preserves unions.
It is enough to check that 67*b is in fact a member of N, , not just of C,, as then the
collection §7*b will evidently be the dual basis to the §y(b*): in the sum defining §;*b, the
only d-admissible sequence K appearing is K = 1.

Using [46, Lemma 3.2, to check that 6)*b € N, we only need to check that d(67*b) €
F,_1Cs_1. To check this membership condition is to check that 67*b pairs to zero with
im(d* : D(FsNs—1) — D(FsNg)). Priddy’s proof shows that D(F;N;) is spanned by
functionals [(PFs)*|---|(P*)*]b*, which pair with the §}*c according to:

([(Pks)*| e |(Pk1)*]b*) (07%c) = b*(c) - (01 coeff. of o € A written in admissibles) .

However, the image of d*, as determined by Priddy, is spanned by the space of ‘9-Adem

relations’ (see [46, Theorem 2.5 and proof]), and these tautologically evaluate to zero on any
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57D, 0O

The same analysis applies in the n > 1 case. Although we write the bar construction
on the right, we end up with a left action of the homogeneous Steenrod algebra, as the
homogeneous Steenrod algebra is Koszul dual to the opposite of the A-algebra with an index
shift.

Proposition 9.4. Suppose that n > 1 and X € U(n) has homogeneous basis B. Then
Kll(n)X has basis

{Sq;{*b be B, ., J Sqadmissible with m(.J) < s, } ‘

if 8,1 ="-+-=81=0 then J does not contain 1

where we only define

Sq*b = b [y 1l [ Arg—1]
2,

when J and b satisfy the conditions on m(J) and on the appearance of 1 in J. If X is of
finite type, this basis is dual to the {Sqi b*} basis of K{i(n)X constructed using Proposition
9.1, Corollary 8.8 and the basis {b*} of DX dual to B. The differential of Kg(n)X s given
by the formula:

d(Sq’*e) = Sq(ke k2 (), 1),

K37
(kg,...,k2) Sq-admis.
summing over K = (kyg, ..., k1) such that (ke, ..., ko) is Sq-admissible and yet K 547

As part of the omitted analysis, we would use 5.8, and the fact that the A-algebra and the

homogeneous Steenrod algebra are Koszul dual, to show:

Lemma 9.5. If I and J are sequences of non-negative integers (of any length), such that

J % I, then m(J) <m(I), and if 1 appears in J, it must also appear in I.

This implies that all the summands in the above definition of Sq;{*x are indeed defined.

9.2. The W(n + 1)-structure on a Y x

Suppose that X € W(n) for some n > 0. The form of the bases of K™ x given in
Propositions 9.2 and 9.4 imply:

Corollary 9.6. The Koszul complex KE(H)X is naturally a subcomplez of N—QU() BU() x|

There are thus two monomorphic quasi-isomorphisms of chain complexes with homology is

H}f ) x , and we denote their composite j:
IE (KB(H)X C N*—QU(H)BU(n)X C N*—Qu(TL)BW(n)X) )
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The key upshot of Corollary 9.6 is that cycles in the Koszul complex map to normalized

cycles under .

Now HY M X is an object of W(n + 1), since it can be calculated as the homotopy of
QUM BW X ¢ 5L (n), and this structure will be needed for the composite functor spectral
sequences discussed in §12. We will go some way to calculating this structure in this section.
Our method will be to take cycles in the Koszul complex, map them into the large complex
using 7, perform the operations in question, and then homotope the outcome back into the

Koszul complex.

We will need a little notation for elements of the various bar constructions. We will label

(

the s + 1 free constructions in B;N " X with subscripts in angle brackets:

(n) W ()

W)
y oy E

BYmX = p e

( X

so that we can then indicate in which free construction operations are being performed. For
(0)

example, when n =0 and z,y € X, B;N X contains an element

[Ployz: Phyyli-1) = nP'n’e,n’ PIny]

where we write  : id — FW( for the unit of the monad on V; (omitting the forgetful
functor). That is: we apply P’, not to y € X, but rather to 7y, the corresponding generator
of F<1W>(")X . we apply P! to n?z, a generator of Fg)(n)Fm(n)X ; the bracket is taken in the

outermost free construction in B;N (O)X = F& (17;)F 23;(”) FQ’I\;(”)X .

With this notation in hand, the map j is induced by the assignment
[P] - |P"a— P Pt Pl (if n = 0),
iy ] = @A sy N Aoy (> 1)

Before making calculations, we recall the formulae of [20, §8] for the Lie algebra homotopy
operations discussed in §5.5. Let Shy,, be the set of (p, ¢)-shuffles, that is, pairs («, 3) where
a = (op_1,...,a9) and B = (By—1,...,Po) are disjoint monotonically decreasing sequences
that together partition the set {0,...,p + ¢ — 1}. Let s, denote the iterated degeneracy
Operator Sq,_, - Say- Finally, let Sh;-2 denote the subset of Sh;; consisting of those shuffles
(o, B) € Shy; such that ;1 = 2i — 1. The formulae of |20, §8|, for z € ZK,(X) and
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U(n)

w € ZK (X) cycles representing classes Z,w € H, "’ X, are as follows:

[Z,w] is represented by Z [55(32), sa(Jw)](—1y € QUM p+q)X;
(,8)€Shpq

Z)\; is represented by Z [55(32), 5a(92)] -1y € QUM B, )X, (0<i<p);
(cy,,B)EShji2

Z\g is represented by (Z)E1> IS Qu(")B;N ) x, (when defined).

It will be important to understand these sums. Suppose that z € ZK}f(n)X (for n > 1).

Then z may be written as a sum of terms of the form xX; (,_1y - A (0), and

Lemma 9.7. If (Oé, ,3) S Shpq, then Slg(l‘)\il(p,D ce )‘ip<0>) =z - A

i1{ap—1) """ Np(ao) -

We will also need the following consequence of the simplicial identities:
Lemma 9.8. Choose i > 1 and o = (op—1, . - ., ) with ap_1>-->ap=>0.

(1) If neither i — 1 nor i — 2 appear in «, then d;_18o = Sqdy for some o and .
2) If exactly one of i — 1 and i — 2 appears in «, then d;_15, does not depend on which
Y pp p

of i — 1 and i — 2 appeared in .

Proposition 9.9. The 7£(n) bracket H},L(")X®H x Hpiq)X vanishes except when
p =q = 0. The Lie algebra structure on Hg(n)X 1s induced by that on X: if z,w € X

represent Z, W € Hu( )X, then [T, 7] is represented by the cycle [z,y] € ZCo(QWW BWM X).

This theorem shows that H, UX) s trivial in positive dimensions as a Lie algebra, but

nonetheless, the restriction need not be trivial (c.f. Propositions 9.11 and 9.12).

Proof. We will give the proof for n > 1, but it works the same way for n = 0. In fact, when
n = 0 we can ignore all discussion of top and non-top operations.

Use the abbreviation B := QU BY(M) X ¢ s£(n). Then B is almost free on the subspaces
Vs = Fg(n) e F(?—(qu Choose representatives z € ZK},L(n)X and w € ZK;WL)X. For any
(o, B) € Shyg, the elements sgsg(yz) and sosq(jw) of Byig+1 both lie in V441, and it is

only a minor abuse of notation to define:

ai= Y [50858(22), 505a(w)](0) € Cprg1B.
(a,8)EShpq

What we mean here is that the bracket of the elements sgsg(yz) and spsq(jw) of

_ W) W) Win) g W(m) || W) W)
Vorgrs = Fio) " By X CFLy B ™ - iy X = BIWX

is taken in the free construction F 23;(
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Using the simplicial identity dosg = id, we have doa = ) _[s5(2), sa(Jw)](—1), the rep-
resentative given for [Z,w]|. Moreover, we will find that d;a = 0 for i > 0, except when
p = ¢ = 0, in which case dja = [z,y]. Thus, in either case, a is the required homotopy in
CB.

Using the simplicial identity disp = id, we have dia = Y _[sp(32), sa(Jw)] (o). Now for
every pair (a, ) indexing this sum, unless p = ¢ = 0, one of a or 3, say (3, will contain
0. Then by Lemma 9.7, every summand in s,(jz) is in the image of some non-top A;y,
and as [z, y] = 0 whenever )\; is not a top operation, the entire expression vanishes in the

construction FQS;(") .

What remains is to show that d;a =0 for 2 < i <p-+qg+ 1. As d;so = sgd;_1 for i > 2:

dia = Z[sodi_lsg(]z), sodi—15a(Jw)](0)-

For this, we will define an involution p; of the set Sh,,; indexing the sum, for 2 <7 < p4q+1.
If « and 8 do not each contain exactly one of i — 1 and i — 2, then p; fixes (a, ). Otherwise,
pi interchanges the positions of i — 1 and ¢ — 2 in («, 8). To avoid confusion, we note that

Pp+q+1 is the identity, as neither a nor 8 ever contain p + q.

If (e, B) is a fixed point of p;, then one of o and 3, say «, contains neither of i and i — 1.
Then by Lemma 9.8(2), d;—15,(Jw) = sordy(yw) = 0, as yjw € ZN, B. Thus, the summands
corresponding to fixed points vanish. On the other hand, given a shuffle («, ) which is
not fixed by p;, Lemma 9.8?77 shows that the summand corresponding to («, ) equals the

summand corresponding to p;(«, ), so these two summands cancel with each other. O

In order to state our calculation of Ao of HY " X for X € W(0), define

admy (A, t) := {I | I a non-empty d-admissible sequence with m(l) < t}.

Lemma 9.10. There is an injective function T; : admy (A, t) — admy (A, t) given by

I=(ig,... i1) =5 (t+nl + 0, ...,01).

Proof. This is indeed a well defined injective endomorphism of the set adm, (A, ), in that
it preserves admissibility and the condition m(I) < ¢. The claim about m(I) holds by
definition. For d-admissibility, as m([) < ¢,

iy <l—1+dp_ 1+ ---+i1+1t
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which (even) implies the (strict) inequality
2ip < L—+ig+---+i1+t. O

Proposition 9.11. Suppose that n > 0, z € (Z.K;%_’:EX)EHSl and 1 < k < s,41, so that
2z is defined. Then z A = 0 unless n =0 and k = 1.

Whenn =0, k=1 and s1 > 1, A1 may be defined at the level of the Koszul complex as

follows. The generic cycle z € (ZK;LI(O)X)t may be written as a sum
z=3; oy xj, with xj € X' and I; € admy (A, t;) of length s1.
Then Z\1 is represented by the cycle

U(0) \2t+1
Zj (SE]%thj)ﬂfj € (ZK 1 X) v+
Proof. We will first prepare for the calculation of A\; in case n = 0, abbreviating s; to s. Note
that each %, appends the same integer, ¢, to I;. Write e for the proposed representative

> 5&@ )% of ZA1. Our first claim is that e = P<to>so(jz), since

> [Pl ---‘P’ﬂ} = [Pt’PhS

j,K*}(Tt]IJ) j,H—)Ij

e

The first of these two sums a priori contains more terms. However, the extra terms all vanish,
by the unstableness condition. More precisely: if (kst1,...,k1) A ;1 and ksyq # ¢, then
M(kst1,...,k1) > tj, so that [P]‘:S+1 } . -|Pk1] xj = 0. To understand this observation, as -
Adem relations cannot increase m (Lemma 9.3), we may reduce to the case where (ks, ..., k1)

is already d-admissible, ¢ # kgy1, and (ksy1, ks) 4 (t,ksy1 + ks — t), where::

M(kst1y.. k1) > M(ksy1, ks) — (ks—1+1) — -+ — (k1 + 1)
>t ksyr + ks —t) — (ks—1+1) — - — (k1 + 1)
> 2t — (kg1 + -+ k1 + 5)
=2t — (t+is+ - +i1+5) = 1.

where: the two non-strict inequalities are by definition of 77; the strict inequality follows
from Lemma 9.3; the first equation holds as A is graded by the sum of the indices; and the

second equation holds as ¢ is the dimension of 5}J_*a:j.

With this in hand, we return the general case, 1 < k < p and n > 0, our goal being

to produce a nullhomotopy, except when n = 0 and k£ = 1, when we need a homotopy to
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P<tO>so( 72). We proceed as in the previous proof, defining

a:= Z [SOSB(JZ),SOSa(JZ)ko) € Cp+k+1B§§j}...,zsl-

(e,B)€Sh}?
Then dpa is the representative for ZAg, and dja = 0 as in the previous proof (and there is
no analogue here of the special case p = ¢ = 0). Now consider the same involutions p; as
in the previous proof, now acting on Shgr. When 2 < i < 2k, p; preserves Shz,g. When
2k < i < p+k+1, p; is the identity, so preserves Shz,% trivially. Thus, d;a = 0 for all
2 <i<p+k+1with ¢ # 2k, as the summands corresponding to fixed points vanish, and

the cancellations still all occur within the smaller sum

dia = Z [Sodi_lsg(jz),Sodi_lsa(jz)km.
(0, B)€ShiR

To address the question of dgg, we define an alternative involution pog of Shy as follows.
If @ and 8 do not each contain exactly one of 2k — 2 and 2k — 1, then pyy fixes (a, ).
Otherwise, we define por(a, 8) := par(5, ), which is to say that psr swaps everything but
2k — 2 and 2k — 1.

Now the summands in this formula exhibit a symmetry not present in the previous proof:
z is repeated. This symmetry, along with Lemma 9.877, shows that all the summands
corresponding to shuffles not fixed by poir cancel out. When k > 1, the fixed points of po
are only those shuffles in which one of @ and g contains neither 2k — 2 nor 2k — 1, and
the corresponding summands vanish, by 9.8(2), as in previous arguments. When k = 1,
however, por has an extra fixed point, the shuffle ((0), (1)), which fails to differ from its

image under por. In this case, then:

d2a = [Sodlsl(]2)7 SOdlSO(]Z)]<O>
= [s0(32), 50(92)]0)
0, ifn>1,

PZ/O)SO(]Z), if n=0.

That is, if n > 1, this self-bracket vanishes (an object of W(n) for n > 1 is a Lie algebra),
while if n = 0, the self-bracket is equal to the top P-operation, in this case P?.
In sum, we have shown that dya = 0 represents z\;, and that d;a = 0 whenever 1 < i <

p+ k+ 1, except when £k =1, 7 =2 and n = 0, in which case doa = ¢, as hoped. O

Proposition 9.12. Suppose that n > 1, and z € (ZK;i(fl)X)én,...,sl where not all of

Sny .-, 81 equal zero. If sp41 = 0 then ZAg is represented by zAs, € X%ﬁ:l 251 -
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Suppose instead that sp+1 > 0, and consider a cycle

I; u
z = Z] quj*xj < (ZKSn(fl)X)Zn,...,Sl7
for various x; € X and Sq-admissible sequences Ij = (ij,.,,-..,ij1). Suppose further that

for each summation index j, xj\i—1 = 0 whenever i > i;1. Then ZAg = 0.

Proof. Write p := s,11. The same homotopy a as in the previous cases shows that zZAg
is represented by (z)%> = 2,00 when p > 0, and by z);, € X when p = 0, so that
we may restrict to the case p > 0. Then, 2z, (o) is the image of the following element of

ZFy 1Ny QUM BYM X

E = T (M1 || Ay 1 | Ay—1 s, ]
jJ{Zﬁh J 1 p—1

= Z i [Mer—1] [ Meyi—1|Ag—1Aa=1] »
3, K235 (0,8)2% (sn+1,kp)

where the second equation holds by the Koszul duality of the A-algebra and the homogeneous
Steenrod algebra. As homogeneous Sq-Adem relations move Sq-inadmissible sequences to-
wards Sq-admissibility, when p > 2 we have k1 > 7 in each summand, and when p = 1 we
have 3 > ;1 in each summand.

Dualizing Priddy’s work, namely [46, Proof of Theorem 5.3|, gives a sequence of homo-

topies which move this cycle into FpNZf . Indeed, given an expression

e =y Agi-1] [ Ag a1 A im1hg—1 [ Ag i m1 ] [ Agyiim1] € Fpra Ny

with the composite _.—1Ag,.—1 \-admissible), define:
ith th ite A\g,_,_1)\g,—1 A-admissible), defi

P(e) = Yy [)\91_1‘- : '})\gr—l_]-‘)\g'r—ll' : -’)\gp+1_1] . if (gp+1,-- -, 9r) is Sq-admissible;

0, otherwise.

If we further define I" to be zero on FpN;, then I': Ferle+ — FpHN;H may be used as

a chain homotopy to compress F' € ZF,1 N, into ZF, N
(id 4 dI')"E stabilizes to an element of ZF,N, as u — oco.

As we repeatedly apply (id +dI') to this e, because a; > by whenever (b, by) A (ag,a1), the
very leftmost A-operation in any of the expressions that appear is Ap,—1 for some m > g1,
and every term in (id + dI')"e € ZF, N, will be of the form yA,,—1[---] for some m > g;.

Applying these observations in the very specific circumstances of this proposition, along
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with the earlier observation that in the sum defining the cycle £ we always have k1 > ;1

(or B >ij, if 1), one derives that (id 4+ dI')*E = 0, so that E is nullhomotopic. O
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Chapter 10

Operations on second quadrant

homotopy spectral sequences

In this chapter we will produce various external operations on second quadrant homotopy
spectral sequences. That is, for X € ¢sV, we will produce operations from [E, X] to each of
[E,.S2X] and [E,A%2X]

This approach leaves open a number of possibilities. If X € cs%om, then the structure
map i : S2X — X induces a spectral sequence map [E,S?X]| — [E,.X], and so the
external operations induce internal operations on [E, X]. If X is a Lie algebra we may apply
the analogous technique [,] : A2X — X. In §11, we will use these external operations in
another way to produce operations on the BKSS of a commutative algebra or Lie algebra —
the construction will involve a shift in filtration, which is conceivable given that Radulescu-

Banu’s resolution is a resolution by GEMs.

A number of authors have written about spectral sequence operations in a variety of
settings. Singer’s work [52| on first quadrant cohomology spectral sequences will be used
extensively in §13.1, and has been extended by Turner [55]. Perhaps the closest recent
examples are due to Hackney [37] and [36], who works out the operations available on the
homotopy spectral sequence of a cosimplicial Fo- or F,-space respectively, using Bousfield
and Kan’s universal examples [9]. We will be working with cosimplicial simplicial vector
spaces, and so we are able to develop a direct approach, mirroring Dwyer’s work in second
quadrant cohomotopy spectral sequences [25].

Dwyer’s work makes an interesting point of comparison with ours. In both cases: prod-
ucts, Steenrod operations and higher divided powers (as in [25] and §5.4) are produced on
the spectral sequence; one set of operations is not present in the target; the other set of
operations is present in the target, but the unstableness conditions on the target and on Fs

do not agree; and differentials are constructed between the two varieties to simultaneously
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rectify these disparities. Between Dwyer’s theory and the theory presented here, the roles

of the two types of operations are interchanged.

10.1. Operations with indeterminacy

On pages higher than the Es-page, some of the ‘operations’ [E,X] — [E.S2X]| that we
would like to use will in fact fail to be well defined, and in this section we will introduce the
language which we will use in such situations.

We will make use of the notion of a (potentially) multi-valued function f : D — C,
which is just a relation f C D x C' such that for all x € D there exists some y € C for which
(z,y) € f. We may drop the modifier potentially, with the understanding that we do not
insist that a multi-valued function fail to be a function. If a multi-valued function turns out
to be an actual function, we will call it single-valued. For x € D, the set of values of f(x)
is{ye€Cl(z,y) € [}

In all of our examples, D and C will be vector spaces. A multi-valued function f: D —
C' has linear indeterminacy if it is essentially a map D — C/I for some subspace I of C.
That is if there exists a subspace I of C' such that for all x € D, the set of values of f(z)
is a coset of I in C. Such a function is linear if f(x + y) is the sum of the cosets f(x) and
f(y) for all z,y € D. Almost all of the multi-valued functions we encounter are linear, and
all of the exceptions are operations at Fy or Fj or top d-operations (c.f. §10.5 and §11.3).

In this chapter, multi-valued functions will arise in two ways. An operation [E,V] —

[E.S2V] with indeterminacy disappearing by E,» will be an actual function
[E, V] — [E.S*V]/[B,,S*V],

where [B,,»S?V] C [E,S?V] is the subgroup consisting of those elements which survive to

[E,-S5%V] and represent zero there. We view such operations as linear multi-valued functions
[E.V] — [E.S?V],

and the external Steenrod operations that we will define in §10.4 will be examples. On the
other hand, we will define in §10.5 external J-operations which will sometimes be multi-
valued, and will almost always be linear with linear indeterminacy.

10.2. Maps of mixed simplicial vector spaces

For mixed simplicial vector spaces X, Y € ¢sV, we will write C(X®Y") for the double complex
associated with the levelwise tensor product of C(X ® Y), so that C(X ® V)i = X7 @ Y}°.
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We will write C'(X ®, Y') for the double complex with C(X @y Y)j = @y X; @ X
The following vector space maps are given by prolonging D¥, V, V}, and ¢, wherever these

maps are defined, and by zero elsewhere:

(CX@CY)TF — (X @, Y);
V:C(X® Y)] —
Vi C(X @ Y)iy, — C(X®Y);
o C(X@vY)i — C(XQY);

zero unless 0 < k < s)

( (

CX®Y); (no condition)
( (zero unless 0 < k < t)
( (

zero unless k =t > 0)

We have just committed to regarding Vi as zero where it is not defined. This is certainly

not a natural convention, and it has somewhat untidy results, for instance:

Lemma 10.1. Suppose that z € C(X ®y Y)j. Then
(dVi+ Vid)z = (1 4+ w)Viyr + drs1)z
whenever k > 0 and t does not equal either of 2k and 2k + 1.

As discussed earlier, we will write T for any symmetry isomorphism, write “wG” as
shorthand for the function TGT, and whenever we write wGH, we will mean (wG)H. We

will also use the notation
X®2 2,6, X and X®2 25 A2

for the projection onto coinvariants and further onto the exterior quotient. Until §10.5, the
operations that we will produce into each of [E, S X] and [E,A?2X] will be essentially the

same.

10.3. An external spectral sequence pairing fiey

The easiest and most standard of our constructions is that of an external product, using the
chain-level formula

z®@y+— pVD(z @ y).

Both V and D° are chain maps, and filtrations add under VD, and thus:
Proposition 10.2. The map pVD(x @ y) : CX @ CX — CX induces a pairing

Hext - [ErX]f ® [ErX]f’, — [ETSQX]fif’/
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for each r, satisfying the Leibniz formula. For r > 2, this map descends to the symmetric
quotient S»[E, X]. Under the identifications [EoX|; = mimy X and [EyS2X|f =2 mim)Sa2 X,

Lext corresponds to the composite

qe%
Symimy X B (SomY X)) L>) Ty S2.X.

10.4. External spectral sequence operations Sq,,,

Consider the chain-level map:
SQ™ : x+— pV(D* Yz @ ) + D" (2 @ dx)).

We will use these maps to define external Steenrod operations Sqly, the behaviour of which
is rather different on F; than on later pages. Thus, we will state two separate Propositions

that we will prove together.

Proposition 10.3. Suppose that r > 2. The chain level operation SQ"® defines a linear

operation with indeterminacy vanishing by Fo._o:
Sqext [E X] [E SQX]S—H‘

Now suppose that x € [E,X];. Sqiyx = 0 unless min{t,r} < i < s, and this vanish-

ing occurs without indeterminacy. In any case, Sq’ & survives to [EQT_ngX]SH and the

2
ollowing equation holds in [E,._1SoX|5HE2 Y (without indeterminacy):
2r—1 24+2r—2

dar—1(SAlxez) = Salty ! (dy).

The top operation Sqi,x is equal to the product-square pu™*(x @ x), and in particular

has no indeterminacy. As for the only potentially non-zero Sqext operation.:

squarlng

SQ°, ¢ [E, X8 — [E,.So X5 is induced by X SaX.
At Es, there is no indeterminacy, and the operation ngxt corresponds to the composite:

5+1 (o
s Salxs s+i v (V) s+i,_v
mpmy X ' Se(my X)) — " my T my Sa X

The condition min{t,r} < i < s may be replaced with min{t + 1,7} < i < s after
composing with [E,Sa X5 — [E.A2 X5+
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Proposition 10.4. At E;, the chain level operation SQ“° defines an operation
Sqi)xt : [ETX]f — [ETS2X]§£H

which commutes with the differential dy. Suppose that x € [E;X|;. The top operation SqS..x
s+1

oxt £ need not vanish, instead

need not equal the product-square u®™*(x @ x) on Ey, and Sq
equalling p™*(x @ dyx) on Ey. The operations need not be linear and have no indeterminacy.

At least fori > s+ 1, Sqixtx =0. Sq}lla: 18 zero whenever t > 1. Sqﬁx =0 for all t.

Proof of Propositions 10.3 and 10.4. Choose a representative x € [Z,.X]; of the class of
interest. We readily check that SQ“*(z) has filtration at least s + i:

filt(pVD* " (z@z) > s+5— (s —i) = s +1,
filt(pVD* "Mz @dr) > s+ (s+r)—(s—i+1)=s+i+ (r—1).

Thus, we may view SQ"*(z) as an element of [Z,S2X]5;"

shows that

. A straightforward calculation
d(SQ"* () = pVD* N dx @ dx) = SQH 1 (du),
and as x € [Z,X];:
filt(d(SQ"*(2))) > (s +7) + (s +7) — (s —i+1) = (s +1) + (2r — 1),

so that SQ™*(z) € [Z,,_1S2X]5". This demonstrates the survival property, along with the

formula commuting the Sq’,, with spectral sequence differentials.

The next step is to examine the non-linearity of the operation SQ%*, which we do using

formulae analogous to [52, (1.111) and (1.112)]. That is, for z, 2’ € [Z,X];, one calculates

NL(z,2') := SQ"*(z) + SQ"*(2') + SQ"*(z + )
= dpV[D* "2 (z @ d2') + D~ (2 @ 2)] + pVD* "2 (dx @ da').

The first two terms of NL(x, 2") are the boundaries of chains in filtrations satisfying

filt(pVDS " 2(z@da’)) > s+s+r—(s—i+2)=(s+i—r+1)+2(r—2)+1,
filt(pVD* (2’ @x)) > s+s—(s—i+1)=(s+i—r+1)+ (r—2),

so that they vanish in [E, X]5* whenever r > 2. Moreover
filt(pVD* = 2(dz @ dz')) > 2(s+7) — (s —i+2) = s +i 4+ 2(r — 1),
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so that the final term also vanishes in [E, X]5/" when r > 2. When r > 2, this proves that
whatever indeterminacy these operations are subject to is linear, and that the operations

themselves are linear.

To examine the indeterminacy, as a representative of a class in [E, X];, x is only deter-
mined up to boundaries of y € [Z,_; X]{"'T) and elements of [E,_; X]5{. The latter are
irrelevant, as their effect on the value of SQ* is restricted to high filtration. The boundaries

dy are more problematic, but if we define
BC(z,y) == pV[D* "Ny @ y) + D" (y @ dy) + D> (dy © )]
then this chain has boundary

d(BC(z,y)) = pVID* " dy @ y + y ® dy) + D*"“(dy @ dy) + D* " (dy @ dx)]
+pV[0+ Dy @dy+dy @ y) + D (dy @ x + 2 @ dy))
= pV[D* Hdy @ z + 2 @ dy + dy ® dy) + D*~T(dy @ dx)]
= SQ"*(x) — SQ"* (x + dy).

That is, BC(x,y) is a bounding chain for this difference, and

filt(BC(z,y)) > 2(s—r+1)—(s—i—1) = (s+1) — (2r — 3),

so that Sqlyx has indeterminacy vanishing by [Es,._5S2X]5" as claimed. When i = s,
this result may be improved to filt(BC(z,y)) > 2s — (r — 1), as in this case the lowest
filtration summand in fact vanishes — this is one explanation of why the top square has no

indeterminacy.
When i > s + 2, we have SQ*(z) = 0, and even with i = s + 1:

SQS+1’S(1‘) _ ,OVDO(JJ ® dI) c F2s+r7

so that Sqif'z vanishes when r > 2, and Sqiflz = u™*(z @ dix) when r = 1, without

indeterminacy in both cases.

We must also check that Sq’ .z vanishes (without indeterminacy) when i < min{t,r}.
For this we use the filtration preserving operations DEL; to be defined in §10.5. Suppose
Proposition 10.7 states that

d(DEL;_;;1(x)) + DEL;_;41(dz) = SQ"*(x)
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as long as 2 <t —i+1 <t¢+1 (which is satisfied whenever i < t). Moreover, if i < r, then
DEL;_i11(dz) € F¥*" c F***! and DEL;_;41(2) € F¥,

so that this equation states that SQ™*(z) = 0 in [E, X]5;", without indeterminacy.

For the statement about the top operation, one calculates that
SQ**(z) — pVD (z @ z) = pVD(z @ dx) € F?T771,

which exceeds filtration 2s when r > 2.

For the statement about ngxt:r when ¢ = 0, using the specialness assumption:
SQY(z) — pVD*(z @ z) = pVD* T (x ® dx) € F51,
so that (using the assumption that {D*} is special):

SQY¥(z) = pVD?* (2 @ ) (mod F*t1)
= p(¢0 + (1+w)Vo) (2} @y z7) (zf @y 2} € C(X @y X)3)
= poo(ai @y a7) € C(X @5, X)7.

The statements about [E, A2X]5" follow similarly, replacing DEL; with LAM;. O

10.5. External spectral sequence operations §f**
For any k (positive or otherwise) write Dy : (C(X)®C(Y)); — C(X ®Y),;_j, for the map:

Dy(2) = > Vaw*DP(z).

a—pB=r
Lemma 10.5. Ifz € F;C,(X) andy € FyC,(X), then

]D)k(x ® y) € Fmax{s,s’}cn+n’—k(X ® X)

Proof. We may assume that x and y are each homogeneous, with z € X} and y € Yt‘?/. As

{D*} is special, D’(z ® y) = 0 unless 8 < min{s, s'}, in which case

filt(D?(z @ y)) > s+ — B> s+ s —min{s, s’} = max{s,s'}. O
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Lemma 10.6. For all k (positive or otherwise) the equation:
(dDg + Dpd)(2) = (1 4 w)Dpp1 + VwDF 1) (2)
holds when z € (CX @ CX)n with N > 2(k+1). When N = 2(k + 1),

(dDg + Drd)(2) = (1 4+ w)Dpyq + VwDF1 4 >a Paw DR (2).

Proof. We may assume that z is homogeneous, z € (CX @ CX); with N =t —s > 2(k+1).
Choose o and 8 such that a — 8 = k. Then (w®*D?(2)) € C(X ®, Y); "

We will need to apply Lemma 10.1 to calculate, for a — 8 = k:
(dVa + Vad) (@ DP(2)) = (1 + w)Vat1 + Pat1) (0" DP(2)),

but Lemma 10.1 does not apply when ¢t = 2a: + e for e € {0,1}. Fortunately, in that case
DB (2) is zero, so the equation holds by default: after all, if t = 2a-4-e, our assumed inequality

on N implies:
t—e_k>t—e_t—s—2:s—l-2—e>

S
ﬂ_z = 2 2 2 2

After these observations and under our conventions on the V, and D?, all but one of

the following manipulations is totally formal:

(dDy, + Dyd)(2) := Z (dv Ww*D? 4V waDﬁd) (2)

Z

a—pB=k,

= Z((H—w)va +6o)w® ' DP(2) + 3 Vaw(14+w) D’ (2)
a—pF=k+1, a>1 a—p=k+1

Va1 + das1)w* DP(2) + ) Vaw® (14+w) D771 (2)

=k

(dv + Vad)w® DP + Vo (deBJrD*Bd))( )
=k

((1+

a> a—pB=k

Using the identity (1 + w)Vg + ¢o = V for the first equation, and the observation that
(14 w)FwG + F(14 w)G = (14 w)(FG) for the second (with F = V,, and G = w*D?):

(dDy, + Dyd)(2) — VwDF1(2) = Z (((1 + W)V + ¢a)ww?DP + Vo (1 + w)wO‘Dﬁ) (2)
a—p=k+1

=3 ((1+0)(VawD?) + 6aw™1D?) (2)

a—p=k+1
= (4D (2) + X D1
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When the strict inequality t—s > 2(k+1) holds, due to the application of ¢,,, each summand
Paw® T D¥F=1(2) is zero unless t = 2a, but in that case, s = 2a — N < 2(a — k — 1), and
then D**=1(%) vanishes as {D*} is special. O

We will be able to define (sometimes multi-valued) operations (for r > 0):

5?“ B

T

X]] — [E,.8:X];; for 2 <i<max{n,t—(r—1)};
AU B X — [EA?X]E,; for 1 <4 <max{n,t— (r—1)}

using the chain-level maps DEL; : C, X — CyS2X and LAM; : C, X — C.A%2X:

DEL;(z) :=
LAM;(x) :=

p (Dn—i(z @ x) + Dn—j—1(dz @ x));
P (Dp—i(z @ x) + D1 (dz @ x));
where we write n := t — s in each formula. Except when i < 2, we can work just with the
DEL;, as in §5.2. Lemma 10.5 shows immediately that these maps preserve filtration, in the

sense that DEL;(x) € F*C),4,(X ® X) whenever x € F*C, X. Moving forward we will need
a formula for the boundary of DEL;(x):

Proposition 10.7. For 2 <i<t+1 and x € [Z,X];:

SQITLE (), fn+l1<i<t+1;
d(DEL;(z)) + DEL;(dz) = SQ"""*(z) = { pvD%(z @ dz), ifi=mn;

0, if i <mn.
The same equations hold for LAM; in the extended range 1 < i <t + 1.

Proof. We may apply Lemma 10.6 to calculate dD,,—;(z ® z) and dD,,_;_1(dx ® x), since
lt@z|=2n>2n—i+1) and |[dr®z|=2n—1>2(n—i—1+1) wheni> 2.

Note that the first inequality fails when ¢ = 1, which will explain the lack of §$**. We can
work around this difficulty when defining A\{*" (the final step of this proof). Returning to
DEL; for ¢ > 2:
d(DEL;(z)) + DEL; (dz) = pd(Dn_i(x ® ) + Dp_i_1(dz ® x)) + pDp_i_1(dz ® dz)
= p{dD iz @)} + p{dDp i1 (dw © 2) + D1 (d(de 0 2)) }
= p{]]])n,id(x @z)+ (14 wD,_jy1(z®@z) + VoD " Hz @ l’)}

+ ,0{(1 + w)Dy_i(de ® x) + VwD " (dx ® a;)},
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where we used braces to indicate the two applications of Lemma 10.6. Everything cancels
except for pV (D" (z @ z) + D"(x ® dx)) which equals SQ'~""1#(x). We have studied
this expression above, explaining the three cases.

If i = 1, Lemma 10.6 yields an extra term, and if we write x as the sum ) . azg_” of its

homogeneous parts, as {DF} is special, this term is:

P q b DMz @ ) = p(Lpar " @ap ") € S2X.

Although this term need not vanish, its image in A2X certainly does, so that LAM; satisfies
the desired equation. O

Suppose now that z € [E,X]{. In light of the above calculation, when n < i <t + 1,

t—i+1

ext " (x). Thus, we would

the purpose of §&%*(x) will be to support a d;_;1-differential to Sq
not expect to be able to define 6**(x) when ¢ — i + 1 < r; indeed, the following result will

construct §¢**(z) whenever i <t — (r — 1).
t—it1

ext

expect that whenever t —i + 1 < 2(r — 1), §5*%(z) will be multi-valued, but that the set of

values for §§*'(z) will map onto the set of values for Sql it

Moreover, Sq (x) has indeterminacy vanishing by [E2(T71)SQX ];ft_iﬂ, and we should

ext (x) under d;_;j+1. We are not
saying that we expect the indeterminacy of 6**(x) to vanish by a certain page, but rather
that we expect the multiple values of §§**(x) to all fail to be permanent cycles together.

Note that when r < 2, there is no indeterminacy whatsoever in either set of operations.

Proposition 10.8. Suppose that r > 0. The chain-level map DEL; produces a multi-valued

operation
65 B X — [E,S2X];,; defined when 2 < i < max{n,t— (r —1)}.

If r > 1 and i < t then this function is linear with linear indeterminacy. This operation is
single-valued whenever 2 < i < max{n + 1,t+ 1 —2(r — 1)}, and at E1 may be identified
with the operation of §5.2:

ext

sext
™ (X7) == 1 92(X7).

Suppose that r > 1 and z € [E, X|{, and suppose that 63" (x) is defined. Then 6$**(d,x)
is defined and

Sqte;tiﬂ(ﬂﬁ), iti>t—sandr=t—1+1;
dr(s’?xt(x) + 5fxt(dr$) = 'uext(x ® d'r‘x)’ lfz fd t — 3’ s = 0 and r Z 2’

0, otherwise.
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Ifi <max{n+1,t+1—2(r—1)}, so that 6z is single-valued, then 6$**d,x is also single-
valued, and this equation holds exactly. When i >t —s andr =t — i+ 1 the set of values
of the left hand side coincides with the set of values of the right hand side. Otherwise, this
equation holds modulo the indeterminacy of the left hand side.

For r > 1, the only potentially nonlinear operations are
& B X — [By X5, and 07 : [B,X]) — [E,X]9,. (10.1)

They have no indeterminacy and satisfy 6 (x + y) = 684 (z) + 654 (y) + p=™>(z @ y).
The same conclusions hold for LAM;, producing operations A\§**, and the inequality 2 < i

can be replaced with 1 < i in this case.

This proposition necessarily contains rather a lot of information. One upshot that we would
like to point out is that if x € [E, X]§ and t — s > 0, then u™*(z @ z) =0 € [EOOSQX]%le,

because of the differential
dy 1 675 1@ — Sqiqr = ™z @ x).

That is, although u®™*(z ® x) need not equal zero on the Es-page, the Eo-page mimics an
exterior algebra in positive dimension. The fact that this top Steenrod operation has no

t

indeterminacy (c.f. Proposition 10.3) should be compared with the fact that 67* ;= has no

indeterminacy.

Proof. Suppose that x € [Z,X]{. Then Proposition 10.7 shows that dDEL;(z) € F*T"C(S2X)
as long as i < max{n,t— (r — 1)}, so that DEL;(z) € [Z,X]; ;. Proposition 10.8 then pro-
vides the formula for d,068*(z) + 68**(d,z) (modulo whatever indeterminacy we find).

Let us begin with the operations 65 : [E| X — [E;S>X]5, ;. Due to the assumption
that { D¥} is special, for any z,y € F*CX, Dp(2®y) = Viw*D%(x®y) modulo FZ+1 X and
due to Lemma 10.5, we can ignore the horizontal component of the differential dx appearing
in the definition of DEL;(z). The resulting operations have leading term which is almost
identical to the definition of the operations §§** of §5.2, which we already understand well.
The only difference is the w operator that appears, but this does not affect the resulting
operation, by [26, Lemma 4.1|. This calculation at F; also demonstrates the expression
for §5*(x + y) for the operations in (10.1): such an equation is known from §5.2, and as
[E.X]? C [E,X]Y for r > 1, this equation persists for all of the operations of (10.1).

Next, suppose that 2 <i < ¢, and that z,2’ € [Z,X];, and define:

NL/(x,2') := DEL;(z) + DEL;(2) + DEL;(z + 2)
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By a calculation using Lemma 10.6 (similar to the calculation of dH that follows shortly):

d(NL/(z,2")) = dp[Dp—i—1(z @ 2) + Dy—i_o(z @ dz’)]
+ p[Dy_i_o(dz @ dz') + VoD ™™ (z @ 2') + VwD" " (2 @ dz')]

s
t+1)

filtration at least s. The three remaining terms lie in filtration exceeding s as long as i < t.

The terms on the first line are zero in [Z,X] as they are the boundaries of chains of

Thus, whatever indeterminacy these operations are subject to is linear, and the operations

themselves are linear.

We will now examine the extent to which DEL; induces a well defined operation with
domain [F, X]{ for r > 1. We may assume that s > 0, as the operations on E; were shown
earlier to be well defined, and [E,X]) C [E;X]? for » > 1. This implies that ¢t —i >
1 whenever i = n. To examine the indeterminacy in 6z is to examine the difference

DEL;(z) — DEL;(z + dy) for y € [Zr_lX]f:;j_'Ql, and by Lemma 10.6, we have the following

three equations:

Dy i11(y®y) =Dnip1d(y®y) + (14w)Dp_ija(y @y) + VwD "2y @ y);
dDy,—i(dy ©y) =Dy _i(dy @ dy)  + (14w)Dn_i41(dy @ y) + VwD~ "=+ (dy @ y);
dDp—i—1(x @ dy) = Dp_i_1(dz ® dy) + (14+w)Dp_i(z @ dy) + VwD™ " (z @ dy).

(As in the proof of Proposition 10.7, there are extra terms which appear when i = 1, but

they are annihilated by the application of p’.) We define the following chain:
H(z,y) := p(Dp—i—1(z @ dy) + Dp—i(dy @ y) + Dn—i+1(y @ y)),

and note, by Lemma 10.5, that H(x,y) € F*""1C,1;41(S2X). The three equations above
show that
d(H(z,y)) = DEL;(z) — DEL;(z + dy) + T + 1> + T35,

where
Ty := pV(D"™ 2y @y)) € FH=0720-2) cquals zero when i < n + 1;

Ty := pV(D" " Ly @ dy)) € Fort=0=(=2)  equals zero when i < n;

Ty == pV(D' ™(dy @ z)) € FsHit=D equals zero when ¢ <n — 1.

Ast—i>1,T; € F**1 can be ignored. As we have supposed that the operation 6% can be
defined on x, we must have either i < n, in which case T = 0, or i < ¢ — (r — 1), in which

case Ty € F*T! can be ignored. T3 is assured either to vanish or to lie in F**! exactly when
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i <max{n+1,t+1—2(r — 1)}, in which case, we have shown that 6z is single-valued.

In every case we may summarize the situation as follows. There is some H (z,y) € F*~"+!
such that
d(H(z,y)) = DEL;(x) — DEL;(z + dy) + BC(z, y),

where BC(z,y) := T1 + T5 + T3 is an example of the bounding chain appearing in the proof
of Propositions 10.3 and 10.4, so that

d(DEL;(z)) — d(DEL;(z + dy)) = SQ""""%(2) — SQ"""**(z + dy) (mod F*T"2),

t—i+1

and the set of values of 'z maps onto the set of values Sqy

x under dy_;41. O

Proposition 10.9. Suppose that X € (sV)2+, i.e. that X admits a coaugmentation from
some X1 € sV. For2 <i<t—s, the operations 6% : [E, X]§ — [EOOSQX]fL-IH agree
with the homotopy operations 6 : (X 1) — m_si(S2(X 1)), Similarly, the external
pairing at Sa|E. X] — [E, S2X] agrees with V : Somy (X 1) — m.(So(X~1)).

The same conclusions hold for the A; for 1 <i <t —s.

Proof. We will only prove the statement about §$*', as the statement about products is
easier and more standard. We need to show that the following diagram commutes whenever
2<i<n:

200 (X) DEL: 20 (82X)
do dp }
ZC, (X1 ZCn(S2(X 1))

(Vi (282)]

We calculate

DEL;(d)2) := pD,,_i(d)z @ d)2) + pDy_i_1(dYz @ d(d 2))
= oV, " D)2 @ dY2) + pDp_i_1(d)z @ 0)
= pVn-i(dy2z @y diz) = d)(pVn—i(z © 2)),

where we have used the assumption that {D*} is special in both the second and third
equations, and d(d)z) = 0 since z € ZC,,(X!) is a (vertical) cycle, and d equalizes dY and
di. O
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10.6. Internal operations on [E X] for X € cs@om

Suppose that X € csBom is a cosimplicial simplicial commutative non-unital Fe-algebra.

We may define operations:

ext

5 - ([ETX]f RN

r

Q@ F X £ (B, X )
ngt[

Sqf - ([ETX]f E.quFfm X5 £ (B, X]Sﬂ),
w (1B,X); © [B,X) 53 [Ba:Fm X5t 25 [B,X)1)

with the ¢; multi-valued functions, defined when 2 < i < max{n,t — (r — 1)}, and single-
valued whenever 2 < i < min{n + 1, + 1 — 2(r — 1)}, and the Sq¢/ multi-valued functions
with indeterminacy vanishing by Fa,_9, and which equal zero unless min{¢,r} < j <s.
These operations will not be used in rest of this thesis, as they will equal zero in the case
of interest to us, namely when X € cs%om is a GEM in each cosimplicial level. Nonetheless,
we hope they are of some independent interest.
Numerous properties of these operations follow directly from the earlier results, namely

Propositions 10.2, 10.3, 10.4 10.8 and 10.9. In addition, we have

Proposition 10.10. The operations 6; : [E, X]; — [E|X]},; are (the restriction of) the
homotopy operations of §5.4 applied to the homotopy of the simplicial algebra X°. Moreover,
for each s, my X* is a graded commutative algebra (again, c.f. §5.4), and the operations p and
Sq’ on Ey are the standard operations on the cohomotopy of the cosimplicial commutative
algebra 7Y X*. As such, the operations Sq’ make [E,X] is an unstable left module over the
homogeneous Steenrod algebra, and satisfy the evident unstableness condition and the Cartan
formula.

If z € [E; X5 and 2 < i < 2t (so that the 6 operation that follows is defined), then
5S¢’z =0¢ [ElX]gzzl If also y € [Fy X5, and 2 < i < t+1t', then §;(zxy) = 0.

Proof of Proposition 10.10. Everything here is straightforward, and we will present the cal-
culation 6;S¢’z = 0 as an example. Suppose that z € [Z,X]; and 2 < i < 2¢t. This
condition implies that ¢ > 0, and for our current purpose we can assume that x € X/, so
that dyz = 0. Then Sq/,, is represented by the image of D¥ ™ (z @ ) + D* it (z @ dnx)

under the composite
A s+7 (O . . . .
N (NX © N X) N ) NS Noy (X @5, X) 5 N*H Ny (X) 25 N5 Noypa (X),

and Proposition 5.3 states that the final J-operation annihilates products of positive dimen-

sional classes, so that this composite is zero. O
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As a final note here, suppose that X € cs.Zie (or cs.Zie”). We may define operations:

ext

A ([E,,X]f S B

r

Q@F2eX];,, Ly [ErX]eri) )
y_ Sqé ) / H* 1
Pt ([B,X); 258 (B, P2 x)y o (B, X151

[7] : ([ErX]f & [ETX];?/, @) [Erng"%eX]s"‘Sl &) [ETX]S-FS/) :

t+t’ i+t

with the A\; multi-valued functions, defined when 1 < ¢ < max{n,t — (r — 1)} and single-
valued whenever 1 <i < min{n+1,¢t4+1—2(r —1)}. It should be possible to state versions
of all of the above results in this case. The author guesses that the operations P* will form
an unstable left action of the P-algebra (the Steenrod algebra for commutative Fo-algebras,

as in §6.6) but has not worked out the details.

141



142



Chapter 11

Operations in the Bousfield-Kan

spectral sequence

In this chapter we will define operations on the BKSS for an object X € sC whenever C
is any of the categories om, Zie or Lie". We will always write X for Radulescu-Banu’s

resolution of X € sC, the coaugmented cosimplicial simplicial object defined by

x5 = (c(KQ%)*1X),.

11.1. An alternate definition of the Adams tower

We will now give an alternate definition of the Adams tower of §4.2, using the techniques of
[11], which is more suited for the definition of spectral sequence operations in our setting.

For Z € VA+, the category of coaugmented cosimplicial vector spaces, Bousfield and
Kan write VZ for a “path-like construction” [11, §3.1] obtained by shifting Z down and
forgetting the 0'" coface and codegeneracy. That is, (V Z)* := (VZ)**!, and:

((VZ)S L (VZ)S+1) — (Zs+1 dZ_H> Zs+2)

(VZ)* =5 (vZy=1) = (241 25 29)

The unused coface d° induces a map v: Z — VZ in Vo+.
For Y € sV, the standard simplicial path fibration (c.f. [12, p. 82|) produces a con-

tractible simplicial vector space AY € sV by shifting down and restricting to a kernel:
AY, =ker (deg1---dy : Yoy — ).
We forget the 0" face and degeneracy as before, and this time, the unused face map dy
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induces a fibration A : AY — Y.

Each of these constructions can be prolonged to an endofunctor of (s€)*+, endofunctors
which are necessary for a key construction of Bousfield and Kan [11]. Define an endofunctor
R' of the category (s@)™+ of augmented cosimplicial objects in sC, using the pullback (for
W € (s€)2+):

RW —— AVW
s A
W—" e VW

Then one can form a tower in (sC)2+, (writing R” := R' o --- R!):
oo ——= R’W —— R'W —— ROW ——W.

Restricting to augmentations, there is a tower of fiber sequences in sC:

e > (R2W)_1 - (le)—l . (ROW)—I Wt
fae fao fao
(R2W)Y (R'W)Y (ROW)©

Bousfield and Kan [11, §3.3 and §4.2| note that this tower equals the Adams tower {R, X}
when W = X is Radulescu-Banu’s resolution of X € sC. They also explicitly perform the
resulting identification of the Ey-page of the spectral sequence of this tower with Ném W,

using iterates of the connecting map
m(W?) = m (VW) %22 (R'W)*~!

of the fiber sequence (R'W)s~1 —s W*=! — VIW*~! which has the property:

Proposition 11.1 [11, Proposition 5.2|. The following composite involving the connecting

map Oconn induces (for each fixed t) an isomorphism of cochain complexes:
NEmW C NE'm VW %o Ns—l  (RMW).

Note that the inclusion in this theorem can be strict — the subspace Ném;W of C%m,W* is
defined by the vanishing of the maps s°, ..., 5571 : m;W* — mW*~1 while N& 1 (V)51

s—1

is defined by the vanishing only of s',...,s s WS — m W51 as s9 is forgotten in

passing to VIV.
If we declare the spectral sequence an object W € ¢sC to be the spectral sequence of the

tower

i (RPW) ' —— (R'W) ! —— (R'W)~!
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then the spectral sequence of R'X maps to the spectral sequence of X, with a filtration shift,

via the map of towers:

B (R2R19€)_1 . (RlleJC)_l . (RORII)C)—1
- I= I=
e (R3X) (R2x)~! (R'X) " —— (ROX)

That is, there are spectral sequence maps which at F; are isomorphisms of the form
(B, RYX]; —> (B X

Under Bousfield and Kan’s identification of Fq, this isomorphism is the inverse of the com-

posite of Proposition 11.1.
A reasonable goal is to create a natural factorization

R'X

T w

T ) G

of the structure map of X through 4, as X is a GEM levelwise. This will be possible up to a
natural zig-zag, by a construction which uses the structure of Radulescu-Banu’s resolution

specifically.

11.2. A modification of the functor R!

Not only does
(VX)3 = (e(K°Q%)**2X); € es@

have cosimplicial and simplicial structure maps, but there is a cosimplicial simplicial algebra
structure on the object VX obtained by omitting the leftmost replacement c:

(VX); = (K°Q )2 X), € esC.

That is, we do not need the outermost cofibrant replacement in order to define the cosim-
plicial structure maps VX, as in passing from X to VX one discards d°. There is a csC-map

€ : VX — VX which is a weak equivalence in each cosimplicial level. Finally, the composite



is, in each cosimplicial degree, a fibration in sC since it is defined in cosimplicial degree s by

the formula
T=1n:c¢(K°Q%)*"?X — K®Q%c(K®Q%)*+2X.

The object VX has two key advantages: ¥ is a fibration in each cosimplicial level, and VX
is a trivial object in s€ (i.e. it is in the image of K e)_ This second property implies that VX
is an abelian group object in sC in each cosimplicial level, as every vector space is a group
object, and K¢ is a right adjoint. In other words, since all the structure maps in VX are

trivial, they commute with vector space addition. We write
add : VX x VX — VX

for the group operation. Under the identifications arising from Propositions 3.5 and 3.8, the

map add induces the expected abelian group and cogroup structures on HEVX and HEVDC:

HYVX x H'VX — HVX;
H3VX U HVY +— HEVX.

The observation that v is a fibration leads us to define Elx to be the strict fiber

RYX— >0
o I

X" VX

There is a commuting diagram in ¢sC (in which double-headed arrows denote maps which

are fibrations in sC in each cosimplicial level):

0 AVX AVX
| i A(e) $ \
Vl———7X~ VX
fo (i fo
X X X
pullbacks: R'x Fiea RX Pireq R'X

producing a zig-zag of Ei-equivalences between Elx and R'X. In each cosimplicial level,

each of the objects in the top row is contractible, yielding homotopy long exact sequences,
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and the resulting connecting homomorphisms commute:

53 8corm X/
Wt(leX:) < 7Tt+1(VX)

zig-zag ‘ =] ) ’T%
Wt(Rlx) <~ m1(VX)

so that there are isomorphisms of spectral sequences (starting from FEj):
[E,R'X]; — [E,R'X]; <— [E,R'X];

| | |

11.3. Definition and properties of the BKSS operations

Whichever of the three categories of interest C we are working in, there is a factorization

R'x RX——0
7 ig induced by 7 i(s ¢
@FCX —=X Q@ FCX X —LVX

where the composite qaF'°X — VX must vanish as it factors through the structure map
Q2 F*VX — VX, which is zero since VX is a trivial object. We denote by

L: [B,qF®X]; — [EX]7f

the resulting map of spectral sequences. Using the isomorphisms
SQV ~ qZF(@”omV’ A2V ~ qup.,?ier7 S2V ~ q2F$ie7“/’

and the various external spectral sequence operations from [E,.V] to each of [E, S3V],
[E.A%V] and [E,.S?V], we are now able to define numerous spectral sequence operations

on [E,X]; in each case. When C = %om, we define:

égxt

v s % s L s
o ([Erx]t — [Erq2Fex]t+i — [Erx]tiz'1+1) )

A
j—1
Sy

j s s+j— L s+7
Say, <[E’“x]t — [ErQZFexb;r] i [Erxb;zl) ’

s s’ Hex s+s' L s+s’
e <[Erx]t ® [Erx]t’ £ [EquFex]tit’ — [Erx]tit'j-rf) )

with the 6} multi-valued functions, defined when 2 < ¢ < max{n,t — (r — 1)}, and single-
valued whenever i < min{n + 1, + 1 — 2(r — 1)}, and the Sq’ multi-valued functions with

indeterminacy vanishing by Es,_9, and which equal zero unless min{¢,r} < 7 < s+ 1. All
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of the functions that are defined on E5 are single-valued, so it makes sense to state

Proposition 11.2. When C = Gom, under the identification [E,X]; = woyHéom X, the
operations just defined coincide with the W(0)-cohomology operations defined in §8.

We will prove this result in §11.9. It implies that from the Fs-page onward the operations
just defined have the properties cataloged in Propositions 8.2, 8.9 and 8.12 — the 0} satisfy
the §-Adem relations, the Sq{l and p satisfy the properties of such operations on Lie algebra
cohomology, and there is a commutation relation between the §¥ and the Sq;, and p. These
relations persist to relations on the higher pages (modulo appropriate indeterminacy), but
evidently do not hold on Fj.

The following results follow from Propositions 10.2, 10.3, 10.4, 10.8 and 10.9 respectively,

for X € s6om and X € cs€om its Radulescu-Banu resolution:

Corollary 11.3 (of Proposition 10.2). The pairing p satisfies the Leibniz formula. For
r > 2, v descends to the symmetric quotient So[E,X].

Corollary 11.4 (of Proposition 10.3). Suppose that r > 2. The operations

Sq%‘l : [Erx]f — [ETSQIX:]S;Zl
have indeterminacy vanishing by [E2T723C]§ﬁ1 (and thus no indeterminacy at Es). They
are linear maps with linear indeterminacy. Now suppose that and x € [E,X|;. Sqflzn =0
unless min{t,r} < i < s+ 1, and this vanishing occurs without indeterminacy. In any
case, Sqhx survives to [E,,_1X]5/ !, and the following equation in [Ey,_;X]5/32" 7" holds
(without indeterminacy):

dor—1(Sdhz) = Sq[" " (d, ).

The notion of top operation has shifted: Sqfl—Hl’ s the top operation, it equals the

product-square x X x, and in particular, has no indeterminacy. Finally, Sqﬂx =0, Sq%l:v =0

when t > 0, and Sqﬁx =0 when t > 1.

Corollary 11.5 (of Proposition 10.4). At Ey, the operations S}, : [E;X]{ — [Engf)C]gzil
have no indeterminacy, and di commutes with Sqf1 for each i. They need not be linear.
Suppose that x € [E;X];. The top operation Sqfflx need not equal the product-square x X x
on E1, and Sqfr?m need not vanish, instead equalling x X dix on Ey. At least fori > s+ 2,

Sqflm = 0. Finally, ngzv =0, and Sqix =0 when t > 0.

Corollary 11.6 (of Proposition 10.8). Fiz r > 1. The potentially multi-valued function

8 [BE,X)] — [ETDC]fi}H, defined when 2 < i < max{n,t— (r —1)},
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s linear with linear indeterminacy whenever i < t. It is a single-valued operation when
i <max{n+1,t+1—2(r—1)}.
Suppose that = € [E,.X];, and suppose that 6Y (z) is defined. Then ¢Y(d,x) is defined and

Sqffiw(x), ifi>t—sandr=t—i+1;
d.6; (z) + 6] (dyx) = wrx@dyx), ifi=t—s,s=0andr>2;

0, otherwise.

If i <max{n,t+1—2(r—1)}, so that 6}z is single-valued, then &) d,x is also single-valued,
and this equation holds exactly. When i >t—s andr =t —1i+ 1 the set of values of the left
hand side coincides with the set of values of the right hand side. Otherwise, this equation
holds modulo the indeterminacy of the left hand side.

The only potentially nonlinear operations are
0f  [B\X]§ — [EyX]3, and o) : [E,X]} — [E,X]3.

They have no indeterminacy and satisfy 6} (x +y) = 6 () + 6 (y) + p(x @ y).

Corollary 11.7 (of Proposition 10.9). For 2 < i <t — s, the operations &) : [E, X]; —
[EOODC]fLIH agree with the homotopy operations 0; : m_sX — m_s1; X on the target of the

spectral sequence. Similarly, the product at [E_ X| agrees with the product on the target.

It seems likely to the author that this is a complete description of the natural operations
on the BKSS in s%om.

Although we do not use the following operations in this thesis (as we do not consider the
BKSS for simplicial Lie algebras in detail), we note that when € = Zie or € = Zie" there

are operations:

\% s XiBXt C s
A <[E7°X]t — [Eyae ™ X,

B.X)ith)
qa
T

L

—

- |
B,aFe X3 5 (B, X157

r

. s S
Rl (1B,X);

s (IB.X); @ B, X5 2% [E

r

wF X B X))

with the AY multi-valued functions, defined when 1 < i < max{n,t — (r — 1)}, and single-
valued whenever ¢ < min{n + 1,t+ 1 —2(r — 1)}, and the Pg multi-valued functions with
indeterminacy vanishing by Fs,_o, and which equal zero unless min{¢,r} < j <s. We will
not be able to prove a version of Proposition 11.2 in the present work, since we have not
derived a version of §8 for the categories s.Z%e and s.Z%e". Nonetheless, these operations will

satisfy analogues of Corollaries 11.3-11.7.
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The purpose of rest of this chapter is to give the necessary constructions to prove Propo-
sition 11.2, so that in the following, we will work only in the category € = ¥om. However,
the constructions, including of the following two- and three-cell complexes, generalize to the

categories of Lie algebras.

*

res 1nducmg fHG

11.4. A chain-level construction &

Let € = $om. In §6.5, we defined
Ene : B HX — BioHsX Y By Hi X,

and in §8.3 we used this map to define Steenrod operations and a product on HjyoHzX.

We will now construct, at the level of Radulescu-Banu’s resolution, a map

Ehos 1 X° AR ¥ — VP,

res

which, under the isomorphisms of Theorem 4.1 and Proposition 3.8, induces the map &pe

on cohomology:

He (008 AL Xty <l e o)
%'F =
BSHEX V BSHiX <1 Bstlp:x

We will need to abbreviate a little for the sake of compactness. Fix a cosimplicial degree
s. Write X for X%, V for VX*, V for VX*, dots for categorical products, and superscripts

for categorical self-products. There is a diagram

in which we define Zfes to be the composite of the horizontal solid arrows. The sub-diagram
consisting of solid and dotted arrows strictly commutes, and we will define &, to be the
unique map up to homotopy such that the full diagram homotopy commutes, after showing

that the composite ¢(X U X) — V is null. The maps defined here need a little clarification,
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during which we will resume writing cosimplicial degrees:

e, Id) o B+ (c(0%)? =5 ce()2 WY o(e(20)2 - e(0%)2) X9 e((20%)2 - (%))

cladd o ¢) : (e((0)2) D e((Tas—1y2) P a1y = os).

Fortunately, the fact that the diagram (without the dashed arrow) commutes is obvious: the
small triangle commutes by counitality of 3, and the three squares commute by naturality

of € : ¢ — id.

Proposition 11.8. The map Efes induces the map &pe on cohomology, and descends to a

*
res

map : X ALY X — V as suggested by the dashed arrow above. This map induces the map

£5e on homology.

Proof. Under the isomorphisms of Propositions 3.5 and 3.8, if we apply 7*(DQ®(—)) to the

solid maps in this diagram, we obtain (abbreviating Hg to H):

(HX)*?

L2 L2 L2 L2
(H:%C) i) (HX)"*U(HX) d0<—ud0u@£HV) I_IHDC;—SHudOHVI_IHV S HV

HX x HX

One observes that the horizontal composite is the very definition of ;0. We know from
§6.5 that £ e factors through the smash coproduct, which is how we were able to fill in the
dashed arrow on cohomology.

In order to obtain a map &, it is enough to check that the composite ¢(XUX) — V' is
null. However, as V' is a GEM, a map into V is null if and only if it is zero on cohomology.
We have just stated that the map e factors through (HX)2, which is to say that the

composite HV — HX x HX is zero. O

=

res 18 very rich, but it will be important to note that postcomposition with

This map
€ destroys much of that richness. That is, reading off the dotted portion of the above

commuting diagram:

Lemma 11.9. The map ¢ o £, equals the following sum in homgy (¢(X2),V):
(voc(add) o c(€?)) + (Domo€) + (Dom o),

where the m; are the two projections X*? — X.
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11.5. A three-cell complex with non-trivial bracket

Let € = $om, and fix t,t' > 1. There is a map SS Ly S¢ L SS sending the fundamental

class z;+y¢ to the shuffle product of the two fundamental classes in the codomain:
zppy > (V(2e @ 2p)),
where p is the structural pairing in ¥om. Consider the complex J; »» formed as the pushout:

(¢ (¢ ¢
s¢,, —=SEuSE

! I

CSS,, —— Jo

The left vertical is evidently almost free (and thus a cofibration), and thus its pushout, the
map Ste U SS — Jy v, is almost free. The generating subspace Viyy 1 C (Jyp)ire+1 has a
(t+t'+1)-dimensional generator hy 4, the image of the cone class h in (Sg+t/)t+t’+1 (c.f. §2.5).
Moreover, the object J;u is cofibrant, and h;p becomes a cycle in QeJt’t/, since d;h;y = 0
for i > 1, and dohsy := 2444, which we have identified with the decomposable element
1(V(zt ® 2zp)) in passing to the pushout.

The homology long exact sequence shows that H,J;y is three-dimensional, containing
classes z¢, zy and hy ;. Moreover, there is a co-operation A on H, € dual to the S (&) structure

map on cohomology, and we prove:

Proposition 11.10. Under A : Hth’t/ — (SQHth7t/)*,1, hep — 2 @ 2o + 20 @ 2. All

other co-operations on HSJW are zero.

Proof. The representative g has the property that do(g) = u(V(z ® 2/)) and d;(g) = 0 for
i > 0. By Lemma 6.3 and the description of que in §3.10:

ve(g) = que(u(V (2t @ 21))) = tr(V(2 @ 2r))) € (S7Q% v )psvr- O

11.6. A chain level construction of j7

Let € = $om. We can use the cofibration just defined to construct, at the chain level, the

image under

Jie s Pri TN (HY) @ Pr[lC M8 (HZ) — Pr) S S (HY A HZ)

of a tensor product o ® § of spherical homology classes. Abbreviating H® to H and

prtC—coalg ¢, py.
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Proposition 11.11. There is a function
F : homge(SE,Y) x homge(SS, Z) — hom,e(Jyp, (Y x Z)),
natural in 'Y, Z € sC, such that the function
F : homge(S,Y) x homge(S§, Z) — mipwr41(Q%(Y x Z)) = Hfp (Y x Z)
defined by F(a,B) :== HS(F(a, B))(hiy) makes the following diagram commute:

homse (S7Y)x W by gy, @ Pr(HZ )y 2 Pr(HY A HZ)1op1

hom e (S5, 2)
¢F id+T
Hipv 1 (Y x Z) (HY x HZ i1y 41 (HY NHZ)4p41

{A {A
(SQH(Y X Z))t—‘rt’ — (SZ(HY X HZ))t+t’

The south-westerly arrow in this diagram is composite of the tensor product of the maps
Pr(HYY), CHYY — HY(Y x Z) and Pr(HSZ), C H' Z — HE(Y x Z)
followed by (id 4+ T) : (HS(Y x Z))®? — SZHE(Y x Z).
Proof. The value of F on (a, 3) is defined as follows. Construct canonical lifts (c.f. §3.6):
1Y x Z) 1Y x Z)

W/f¢ an W/f¢

0)
——=Y xZ ——=Y xZ
aO)

and then form the commuting diagram

WV (202,)) s (2,0)u(0,8) (

Stegt/ Sg Iil t Cl Yilx Z)
CSG / Jt H#—— = === Y X 7
t+t )
0

The reason that the zero map C'St v — Y X Z makes the outer square commute is that the
vy — Y X Z vanishes, as it sends 24y to u(V((a,0) ® (0,8))) =0€Y x Z.

Corresponding to the right square is a map Jyy — c2(Y x Z), and the composite with
the cofibration co(Y x Z) — c¢(Y x Z) is F(a, ). This function F is evidently natural in
Y and Z, and so then is F’

composite S¢

The required commuting diagram consists of a square, a triangle and a hexagon. The
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square commutes as the horizontal arrows are maps in HC—coalg, and we can see that
the triangle commutes because we understand the HC—coalg structure of H,(J;yp) (and
HE(F(a,B)) is a map of C-H,-coalgebras). As all of the maps in the hexagon are natural,

we may check that it commutes on the universal example alone:
(2t, 2¢r) € home(SY, SY) x hom,e(SY, S%).

That is, it is enough to check that the following hexagon, with a one element set at the top
left entry, commutes:
hur® it —
{(2, 2)} u Pry(HSY) @ Pry(HSS) —— Pryyp 1 (HSY A HSS)

VF Jinc

Hip41(SY x SF) - (HSY x HS{)rr41 = (HSY A HSE ) 4141

2

In this diagram, j7;. and inc are isomorphisms of 1-dimensional vector spaces, so it is enough

to check that r(F'(z, zy)) does not lie in the kernel of proj, i.e.:
’I“(F(Zt, Zt’)) ¢ (HStG U HSS)t—Q—t/—‘rl = Ht+t’+ISS ©® Ht+t/+1SS = O,

yet A(r(F(zt,2¢))) = 2t @2y + 2p @2 # 0, using the commuting square and triangle already
established. O

We record here a useful calculation:

Lemma 11.12. For o : Sg — X% and B : SS — X%, the composite

c(addo(€?))

SEUSS — oy ) el % x) s

equals o U eB. In particular, (c(add o (€2)) o F(a, 8))(uV (2 ® 2)) = fi(V(ea @ €f3)).
Proof. We may calculate the restrictions to the two summands individually, and by symme-

try, we need only consider:

S = Ty o e(am7) “HL o171 8 vt = a0

The composite J; y — c(VX*~L.VX1) equals F(ea, €f), due to the naturality of F. By
definition of F', the composite SY — ¢(VX*~L.VX*™1) equals (ea, 0). The naturality of the

operation o — « finishes the proof. O
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11.7. A two-cell complex with non-trivial P’ operation

Let € = ¥om. In this section, we give a construction of a two-cell complex whose cohomology
has a P’ connecting the two cells. Fix ¢,i with 2 <4 < t. There is a map Steﬂ- — Ste defined
by

Zpyi —— W(Vi—i(2zt ® 21)),

where p is the structural pairing in €. Consider the complex ©;; formed as the pushout:
i —= ¢

/ I

CSfi — O

By the same observations as made in §11.5, this map is a cofibration, and Hf’@t,i has
cohomology spanned by z; and h;; in dimension ¢ + 4 + 1. For dimension reasons, z; is

primitive. On the other hand:
Proposition 11.13. In H;O,;, Pizf = hi ;-

Proof. We will calculate the action of (P7)* and A on h;. By the same methods as in the
proof of Proposition 11.10:

Ye(g) = tr(Viei(z ® 20))) € (S°Q%Oyi) 144,

t

which represents o{*"z;. so that the defining equation

(Ye)s(hei) = 325 (1 + T)(y; @ 25) + o5, ok ((P*)* hei)

degenerates to o;((P*)*hy ;) = o$¥t2. O

11.8. A chain level construction of 07
Let € = %om, and recall the linear maps
0r:V, — (C’H%m_coalgV)tHH defined when 2 < i < ¢t

of Proposition 8.1. After stating Proposition 8.1, we explained that we would define a

non-linear function
0y .V, — (C’H%m_coalgV)QtH defined when 2 < ¢
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using the Proposition 11.14. Thus, in the following proposition, the final statement holds
by definition when ¢ = ¢.

Proposition 11.14. For 2 <i <t, there is a function
G : homgy (K¢, W) — hom,e(Oyi, cKW),
natural in W € sV, and satisfying G(a)(2;) = @, such that the function
G : homyy (Ke, W) — 41 QK W) =: Hyyipr (K°W)
defined by G(a) := H.(G(c))(h) descends to a function
G:mW — HtHH(KGW),
and, whenever 2 <1 <t, G equals the composite
a W Ly oHe—cole iy s B (RO,

Proof. The value of G on « is defined as follows. There is a commuting diagram

e e a
Stg—i o) Sf c1 (-’jW)
CSy,, Opi———— - = KW
\—7//
0

Corresponding to the right square is a map 0;; — co(KW), and the composite with the
cofibration co(KW) — ¢(KW) is G(«). This function G is evidently natural in W, and so
then is GG. In order to check that the resulting function G descends to m:W, suppose that
a1, as € homyy (K, W) are homotopic. Choose a homotopy a : A! ® K; — W between ay
and ag. Using the generating cofibrations included in §3.6 and the same technique as used
to define G(a) produces a homotopy A! ® ©;; — cK®W between G(a1) and G(az).

The calculation of G is vacuous when ¢ = ¢, since G was used to define 6. when 2 <i <t
is natural in W € sV, so may be checked on the universal example z; € homgy (K¢, K¢). As

G(z) is a map of C-H,-coalgebras:

v i) #6, 2 <5 < (E+1)/2

hur(z), if j =1.
Moreover, AG(z;) vanishes since i < t. These conditions suffice to identify G(z;), as, by
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construction, G(z;) lies in quadratic grading 2 of the cofree construction:

G(z1) € q2Hyis1(KY) = quCH 08 ), O

11.9. Proof of Proposition 11.2

Let € = ¥om. Proposition 11.2 follows immediately from the following two commutative
diagrams. In each, the bottom row is that used to define the cohomology operations on the
derived functors with which the Fs-page can be identified, and the top composite is that
used to define the spectral sequence operations (after applying N} and using the inverse of

the composite of Proposition 11.1).

The commutative diagrams that follow are necessarily large, and at various points
throughout the following two Propositions and their proofs we will use the following ab-
breviations: X for X*, VX for VX*, VX for VX?, R'X for Elfxs, H for HS, m, for ¥, Q for

Q¢ and Pr for Prf¢-coals,

Proposition 11.15. There is a commuting diagram (writing t =t +t'):

-1 8Conn v I/VvVs
my (X%) @ mp (X°) ! (a2 F°X%) m (B X°) =—=— 7, (VX?)
zig-zag ‘ = ’Tg
= | hur®? Wf(Rlxs) 9conn ﬂzz_i_l(vxs)
%\Lhur®2
s s ];_Ie s — s 5;16 S
Pri(HX®) ® Pry(HX®) — Prep 1 (HX® A HX?) Pri (HVX?)

Proposition 11.16. Whenever 2 < i <t there is a commuting diagram

v 6$Xt v H v (pl v V4
%l/hur®2 comt Ei/hur®2
0*
Pry(HX®) — e (CHE=CO (Pr(HX®)))psi41 —— HE, 1y X° —— Pros1 (HVX?)

Proof of Proposition 11.15. It will help to modify and augment this diagram a little. Indeed,
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for each cardinality one subset {(c, 8)} C home(SY, X) x homye(SS, X), there is a diagram:

\V * ) 8conn Y7
{(a, )} ——— m(@F®X) — > m(R X) <=2 743 (VX)
" ®2 " sLF o ol
Jtre o(hur®?) T4+1 (QV:X:) = )71g-zag
A
_ 5;1(9 T« (Qe)
Pri 1 (HX A HX) ~~ Pri1 (HVX)
_X T Qgres
(HX 7 HX)u 1 ———mes1Q(cof) L, QU ——— Hy1 VX
(HDC X HX){_H S 7Tt+1QC(x X fX;) e

Although all of the arrows in this modified diagram have already been defined, we’ve dec-
orated some of them for emphasis. It will be enough to check that for each (a, ), this
modified diagram commutes, since the collection of such («, 8) will exhaust all of the pure
tensors in m(X) ® 7 (X). What we need to prove is that the large rectangle consisting of

wavy and solid arrows commutes.

The composite of the dotted maps equals the composite of the wavy maps, by results
above. That is, Proposition 11.11 states that the two composites {(a, )} — (HXAHX) 41
are equal. The content of Proposition 11.8 is that the small triangle and square at the bottom
of the diagram each commute, and the two composites Prey i (HX A HX) — Hiy VX are

equal. Finally, the two composites Priy 1 (HVX) — my1(VX) are equal, by Lemma 3.6.
Thus the image of («, 5) under either the wavy or the dotted composite equals the image
of hyy € m1(QJry) under the composite

Qi 87 Qe(xx x X) L5 QU 25 QUX = VX,

which, by Lemma 11.9, decomposes as the sum of the three maps v o c(add) o c(€?) o F(a, 3)
and Dom oeo F(a,f3) for i = 1 and 2. The composite 71 o € o F(a,3) : Jppv —> X, by

construction of F, is the (dashed) map out of the pushout in the diagram:

V(2t®z41)
x H t i all0
Cst \J_/> X
0

Now h; 4 is in the image of the map C’Ste — Jy ¢, and so maps to zero under the dashed

map to X. Similarly, the composite 73 o € o F(a, 3) vanishes on hiy . Thus, the image of
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(a, B) under the dotted composite is represented by
A := (Toc(add o €?) o Fa, B))(hey).

Consider the following commuting diagram:

3 addoe? ] —
how € Q20D Ge(oe x )2 Do P gvxs A
$ F (0% $ C(as 052 $ o 7”
how € Joy — 0 xo0) LT P pxs 4
d do
oy F(a,8) o) c(addoe?) ¢

V(24 ® 2) € Ty — o (X x X) X3 (V(@ © b))

The element h; ;€ Ny, (J; ) may been used to populate the whole diagram as shown. To
understand the images of h; ¢ at either end of the bottom row, note that dohyy = pV(2:®z2v)
by construction, and Lemma 11.12 states that under the maps of bottom row, uV(z; ® zy)
maps to 11(V(ea @ €3)).

The data in the bottom right corner of this diagram demonstrates that Oconn A € Wt(ﬁlf)C)
is represented by m(V(ea ® ;B)), which suffices, as o ~ ea and B ~ €. O

Proof of Proposition 11.16. Choose a representative o € hom,e(SY, X). Then, setting W =
QX*! in Proposition 11.14, we obtain a map G(ea) : ©;; — X such that (6 o hur)(«) is
represented by

(U0 Glea))(hei) € Nfyipr (V).

We populate the following commuting diagram using the element h;; € NY ;1 (0y;):

v é(ea) v v v 1/ Val
hi,i € Nt+i+1@t,i - Nt+i+1x —— Nt+i+1(vx) > (no G(EQ))(ht,i)
doy Gty

uVi—i(zt @ zt) € ZNY O

ZNY X3 pVi—i(ea ® ea)

Here, the value of dyhy ; is known by definition of ©; ;, and the fact that G(ea)(z) = e allows
us to calculate (G(ea) o dp)(he;). Finally, in order to calculate deonn (0 o hur)(a), we find
a preimage under Ny, ; X SN Ny ;41 VX of the representative (1o G(e))(hy,;), and then
apply the differential dg. We may use the preimage G (ea), which maps to uV;_;(ca ® ear) €
Ntv+.ﬁlx under dy. This is homotopic to uV;_;(a ® «), which represents ud$** (). O

)
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Chapter 12
Composite functor spectral sequences

It will be important for us to identify the derived functors H;V(O)X = D(L*QW(O)X) for
X € W(0), in order to determine the FEs-page of the BKSS for a connected simplicial
commutative algebra. More generally, we will now present a spectral sequence whose goal
is to calculate H\j\?(n)X for X € W(n). This will be a CFSS analogous to Miller’s spectral

sequence in [42, §2|. The factorization of QW™ we will use is of course
U(n) L(n)
QW = (W(n) CL L) LS v,f)

There is an added challenge in this context — indeed, the available factorization of QW)
is through a non-abelian category. Thus, the standard technology for CFSSs does not
apply, and we must use Blanc and Stover’s methods [3|. They observe that the left derived
functors L,QU(™ X are calculated as the homotopy groups of a simplicial object in L(n),
namely QU BW™) X and as such, they have the structure of a L(n)-II-algebra. That is,
they form an object of W(n+1). After verifying that the functor QU™ satisfies the requisite

acyclicity condition (indeed it preserves free objects), one may apply [3, Theorem 4.4]: there

+

is a spectral sequence, with E, € V5,

(B2 X! = (H ) (L. QU)X ) — (H™)X)!

Sn42;---,51 Sn+42;--,51

If UV W — U is the forgetful functor, resulting from the fact that an object of W(n) is

in particular an object of U(n):

ops n . . U(n
Proposition 12.1. For X € sW(n), the groups L,QY ™ X are isomorphic to H*( )U&NX,
the U(n)-homology of the object of sU(n) underlying X.

Proof. We may take X to be almost free in sW(n), and calculate L,QU"X simply as

QUM X . Then X, viewed as an object of sU(n), is levelwise free, but potentially not
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almost free. We need to show then that W*Qu(")X does indeed calculate H. E (n)X whenever
X € sU(n) is levelwise free, which is to say that the map QUWBYM X — QUMW X is a
weak equivalence in sV. For this, QU™ BUM X is the diagonal of the bisimplicial vector
space Qu(”)B;l (n)Xp, and we use the spectral sequence arising from filtering by p. As X is
levelwise free, the E'-page is isomorphic to the chain complex Np(Qu(")X ), concentrated in
q=0. O

We will prefer to work with the dual spectral sequence, which has F, € VTFQ:
[ X2 = (Hiy)) (X720 = By iy X

These two spectral sequences are respectively the homotopy and cohomotopy spectral se-
+

o+, with which we will need to work directly. Indeed, in

quences of a certain object of ssV

§12.1, we will define a comonad ¢ on s£(n), and, for X € W(n), we will use the object
1%
QM BYL € 55V where L := QU BWM X € sL(n).

The identification of £ follows from Lemma 3.1 and Propositions 12.1 and 12.2.
Before we do, we will recall Blanc and Stover’s constructions, and imbue them with

certain extra structure that will be reflected in the spectral sequence.

12.1. The Blanc-Stover comonad in categories monadic over

[Fo-vector spaces

Fix an algebraic category €, monadic over a category of graded Fo-vector spaces V. As
we are working over a category of vector spaces, rather than a category of graded sets, we
can find further structure on the following comonad on sC defined by Blanc and Stover.
While they use the notation ‘W’ in [3] and ‘¥ in [54], we will use the symbol ‘¢’ to avoid

notational confusion. In our context, Blanc-Stover’s comonad ¥, applied to L € sC, is the

pushout
[Isespn(e) Syomn — Lsesph(e) Sz
y:CS—L x:S—L
! |
[sesph(e) CSy GL
y:CS—L

The subscripts are just notation to distinguish multiple copies of S and C'S for each sphere
S € sph(C). The top horizontal map sends the sphere Sy, isomorphically onto itself. The
left vertical map is the coproduct of copies of the inclusion n : § — CS. The effect of

taking this pushout is to modify the coproduct S, of spheres by attaching the cone on S,

162



once for each nullhomotopy of = € L.

It will be useful to write h, for the image in N,¥L of h € N,CS,, and similarly, z, for
image in ZN,94L of z € ZN,S,. Indeed, recalling the discussion in §3.1, the data of S €
sph(€C) with a map S — L is equivalent to the data of a homogeneous normalized cycle of L,
and similarly, S € sph(€) with a map C'S — L is equivalent to a homogeneous normalized
chain of L which is not in dimension zero. From this viewpoint, if we write hg(ZN,L) for
the homogeneous normalized cycles and hg(N>1L) for the homogeneous normalized chains

of L not in dimension zero, the pushout may be written as

Hyehg(N21L) de - Hzehg(ZN*L) S

| |

Hyeng(ns,z) €5 gL

We will now show that ¢ L is homotopy equivalent to a coproduct of spheres. Indeed,
let
hg(BN,.L) = im(d :hg(N>1L) — hg(ZN*L)),

and choose a section f of the surjection d : hg(N>1L) —» hg(BN.L). Then 4L contains a

contractible subobject, the pushout

erhg(BN*L) Sg —> Hmehg(BN*L) S

| /

erhg(BN*L) CSf(a) Co
whose inclusion is a cofibration. Then
GL/Co == | ] CS,/S | U | | Se
y€hg(N>1 L)\im(f) x€hg(ZN.L)\hg(BN.L)

where we have written ‘A/B’ for the pushout of a cofibration B — A along the map
B — 0, using the cofibrations Cp — ¢L and mn : S — CS,. As C'S/S is isomorphic to
the sphere of one dimension higher than S (consider the construction of §2.5), this shows

that ¢4 L is homotopic to a coproduct of spheres.

The promised comonad structure maps € : 4L — L and A : 9L — 9°L are deter-

mined by:
€(he) =z, €(zy) =y, A(hg) = hp,, and A(zy) = 2., for € Npy1L and y € ZN, L.
We would like to find a subspace of m,(% L) which freely generates it as a C-II-algebra. Even
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better, we have the following rendition of an observation used in [3, Proof of Theorem 4.2].

We give the proof since we will need to be explicit about some parts of it in what follows.

Proposition 12.2. For L € sC, m.(BYL) is an almost free (monadic over V) simplicial

C-II-algebra weakly equivalent to m, L.

This differs from the observation in [3, Proof of Theorem 4.2], in that we show that all the
structure maps of TF*(BgL) € smwC except for dy preserve vector spaces of generators, rather

than sets of generators.

Proof. That the augmentation to 7. L is a weak equivalence follows from Stover’s result [54,
2.7]. The only change from Blanc-Stover is that 7,(BY L) is almost free over the category
V, rather than the category of pointed sets.

During this proof, for any set A we will write Fo{A} for the vector space generated
by the symbols a for a € A. Suppose that M € sL(n). There is a natural map d, :
Fo{hg(N>1 M)} — Fa{hg(ZN,.M)}, and a natural monomorphism « : ker (d,) — m(4 M),
defined by

a(z1 — x) = hay — hay, for x1,22 € N>1 M with doy = dzs.

Moreover, there is a natural map (3 : Fo{hg(ZN.M)} — m.(4M) (which is not monomor-
phic) defined by
B(z) =z, for x € hg(ZN.M).

From the above expression for ¥M/Cy, one sees that im(a) and im(/) are linearly inde-
pendent subspaces of 7. (4 M), and that 7, (4 M) is free on im(«) @ im(5). Moreover, if
M — M’ is a map in sL(n), then the generating subspaces are preserved by the induced
map mGM — T GM'.

Applying this analysis to m,BYL € sn@, every face and degeneracy map except for
so and dp preserves the generators. In order to check that sy preserves generators, we
must see that the comonad diagonal of ¢ sends the subspaces im(ay) and im(fz) into
the subspaces im(ayy) and im(fByr). That im(f8r) maps into im(fSyy) is immediate. For
im(ar), the image of hy, — hy, under the diagonal is hp, — hp, , which is in im(agy ), since
dhg, = Zdz, = Zdgy = ANy - O

12.2. A chain-level diagonal on the ¢ construction
We have seen, for M € sC, that m,(4 M) is a free object in wC. As such, there is a diagonal
One T (M) — T (GM) Un (G M).
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In this section, we will describe how (¢ is the map on homotopy induced by a morphism
g GM — GM UG M in sC, and construct a map & related to the map &,¢ of §6.5.
In order to construct a map ¢, each S € sph(C) equals S = FCK for some K as in §2.5

(with indices omitted), and we construct a commuting diagram:

A

s—* .s5us K KoK
m Wnuzn b lvi Fe t \l/ln \Lml_lzn
CS - CSLICS Y APPIYME £ 10 ok AL 0K @ CK

The maps 1 and @9 can then be applied respectively to all of the sphere and cone classes
appearing in Y M. To understand the effect of py on homotopy, it is enough to identify
where the generators of m, (4 M) are sent in m, (4 M) U m (4 M), which is easy. The theory
of this map mimics that presented in §6.5, as intended, and we list some of its properties

here, with proofs omitted.

Lemma 12.3. Y M is naturally a (strict) commutative cogroup object, having comultiplica-
tion map pg, counit map 0 : YM — 0, and inverse map id : YM — G M. In particular,

hom(¥ M, —) takes values in Fa-vector spaces.
Writing B for the group operation on homge(4 M, M'), we have the following:

Lemma 12.4. For maps f,g: 49 M — M’ we have
QY(fBg) = (Q°f +Q%) : Q°(9M) — Q°M".

Proof. Tt is enough to check that Q%(pg) : Q*(Y M) — Q¥ (Y MUY M) equals the diagonal
map Q%(YM) — Q%(GM) ® Q%(4M). For this, Q% converts all the colimits involved in
the construction of M to direct sums of simplicial vector spaces, and Q%p; and Qs are

both precisely the diagonal map. O

Now let &, denote the following composite:
&y GEM L2 (9202 8 (g2
where a,b : 9>M — (4 M)“? are the composites

a: 92M 4o (92 M) 2 s (g M)2
b: G2M — > (YM) —2 > (4 M)-2

Thanks to Lemma 12.5, £ factors through the smash coproduct, defining a natural map
Ly GPM — (G M)*2.
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Lemma 12.5. The composite 4> M g, (GM)2 — (GM)*? is zero.

Proof. This follows from the observation that both composites (id U 0)éy, and (0 U id)&y
equal € : 9°M — G M. O

The desired property for £ is then the following lemma (involving the natural isomor-

phism ¢ of Proposition 3.2, and the almost free structure given in Proposition 12.2).

Lemma 12.6. For L € sC, we have (i o &e) = m«(€y), i.e. a commuting diagram:

(B D))

T e

(m(BY L))"

7.(BYL)

Proof. In view of the short exact sequences of Proposition 3.2, this is equivalent to (io,¢) =
() : m(G°H L) — 7. ((95L)“?), which holds as (i 0 gre) = T« (). O

Lemma 12.7. (d;)"%¢y = &ydiiq fori > 1, and (do)*éy = (Eydo) B (€ydy), so that the
map Q%&y induces a degree (—1,0) bicomplex map:

N.N.(Q°BYL) — NN (Q¥((BYL)™))sp—1,5: -

Sn+42,Sn+1

As in §6.5, we will use the composite double complex map

vy 1= JemeQ MWey : NINIQWBIL)SH,  — NINI(S*(QWBYL));

Sn425+ Snt+2—1,8n41,...,51

in what follows.

12.3. Quadratic grading

We will say that an object X € C, where C is any of W(n), U(n) or £L(n), is quadratically
graded if the underlying vector space of X is equipped with a quadratic grading such that
the action map F®X — X preserves quadratic gradings (i.e. is a map in qV;F). Recall that
FC is in fact a monad on qV;", by Lemmas 6.10 and 7.2. There are evident categories of
quadratically graded objects in these three categories, which we write as ¢W(n), qU(n) or

qL(n), and the various homology and cohomology functors can be enriched to functors
HS : 5(q@) — qV;,, and HE:s(q€) — qV7iH.

Similarly, the categories My (n + 1) and My (n + 1), in which Hyy(, takes values, can both
be enriched in this way, and if X € qW(n) then Hyy X 1s an object of qMy(n + 1) and
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qMy(n + 1), and HYX is an object of qW(n + 1).
Thus, if X € ¢W(n) then the CFSS

¢ Snf2seeeyS * U(n Sm42yeeesS * Sn-2yee0yS

[E;gX]t 250581 _ ((Hw(n+1))(H*( ))X)t 281 [EOHW(n)X]t +250+51

has both E5 and target quadratically graded. Because all of the cohomology and homotopy
operations constructed in §§5-8 are formed at the chain level using quadratic operations, it

is not hard to check
Proposition 12.8. If X € qW(n) then the CFSS is quadratically graded:

% Snt-2seeesS * U(n Sn-2yeeeyS * Sn-2yeeeyS
Q[ BY XJ;2" = q(Hiyg ) (HE ) X)7 20 = qu B Higy X157

12.4. The edge homomorphism and edge composite

For X € sW(n), the spectral sequence

[BY X]02 = (Hg)) (L) X)702 = (B Hiy X] 2"

has edge homomorphism
(Hiygu X7 [ Hig XI5 2 [EL X0 € (B X]pooon
which we may compose with the inclusion
(B X[t = (D(QUOT D HI X)) () X5
to form the edge composite:
(Hypy X )g ™0™ — (Hyjy X))y

Proposition 12.9. Suppose that n > 1. Then the edge composite commutes with the vertical

Steenrod operations of Proposition 8.6:

X)S,L+1,...,Sl Say (H;v(n)X)sn+1+1,sn+i71,23n,1,...,251

(H* t 2t+1

W(n)
\Ledge comp. ) ¢edge comp.
Sq? i
* Spg1,e04,51 v % Sn+1+1,8n+1—1,25,_1,...,251
(Hu(n)X)t = (HU(n)X)ZH-l

Setting n = 0, suppose that 2 < i < t. The same composite commutes with the §V-operations
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of Propositions 8.2 and 8.3:

oY N
(Hy(0)X)i — = (Hio) X)iia
¢edge comp. \Ledge comp.
(Hij0)X)i ——= (Hyy X)itia

Proof. For this proof, we will suppress the ‘(n)’ notation, as the proof is the same for all
n > 0. We will also suppress all internal gradings, and write * for the grading s,41. The

edge composite is dual to
dh _
HYX = m(QV|BYX]) = niml(Q“ B Q"B X|) ¢— m(Q"|B"X|) = H}'X.

Abbreviating further by setting D := QY|BWX| and C := Q*BYQ%BYX|, the map z_
sends the class of x € ZN,D to z; € WBWZC. This assignment does not produce a well
defined map w,D — N(})ITI'::C, as if y € ZN,D represents the same class as x, z, need

v

not equal Z; in N(l)lw*C': we only know that Z,—, = 0 € Ng‘ﬂ}:C. Fortunately, the element

Zep—zy — Zza_y € N{IW;’C provides a homotopy between z,—, and 2z, — z, in Né‘Tr;’C:

h —_— h
dy (zzm_zy — zzwfy) =2y — 2y — Zz—y, and d (zzx_zy — zzl_fy) = Zg—y — Zg—y = 0,

so that the map z_ is well defined.

We may model the final isomorphism as follows. Write U&V : W — U for the forgetful
functor. For any V € V;, there is a natural inclusion F4V — U&N FWV in the category U,
adjoint to the inclusion V. — FWV. This morphism yields an inclusion of bar constructions,
a weak equivalence |BYUUY X| — UY|BWX| in sU. Suppressing the forgetful functors, for
X € W, we have a weak equivalence QU|BYX| — QY|BYX| inducing the isomorphism.
Our conclusion is then that the entire composite HYX — HWX is the map on homotopy

induced by the composite
QUBYX| — QYBYX| —» Q"B x|,

and the operations we are considering are easily understood in relation to this map. O

12.5. An equivalent reverse Adams spectral sequence

It happens that the CFSS recently defined actually coincides with an instance of Miller’s
reverse Adams spectral sequence used Goerss [33, Chapter V| (c.f. §3.4). This seems to the

author to be somewhat of a coincidence, as in [33|, the reverse Adams spectral sequence
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appears for quite different reasons than in the present work. We continue using Blanc
and Stover’s resolution, for two reasons. Firstly, that resolution more closely reflects out
intention in constructing the spectral sequence in question, and secondly, the techniques we

use here may be generalizable to other contexts in which the Blanc-Stover resolution is used.

Proposition 12.10. The CFSS applied to X € sW(n) coincides with the reverse Adams
spectral sequence applied to L := QU BWn) X ¢ sL(n).

Before proving this fact, we should remove any confusion about the convergence targets of

these spectral sequences. Indeed, the reverse Adams spectral sequence has target
T DB WL = DR L = 7 DQVM BV X = Hy X,

where the isomorphism follows from the same acyclicity condition needed to define the CFSS.

Thus the targets coincide, as hoped.

Proof. We will use the Dwyer-Kan-Stover E? model structure on the category ss@, which

originated in [27] for bisimplicial sets, and is reinterpreted for objects of ss€ in [3, §4.1.1].

Viewing L as a constant object in ss£(n), each of Blf (n)Lq and BY L admits an E?-weak
equivalence to L. Moreover, each is cofibrant. Indeed, BY L is cofibrant by construction,

while we must check that Bﬁ (n)Lq is M-free, in the sense of 3, §4.1.1].

For this, we use Lemma 2.3. That is, for each ¢, the horizontal simplicial object
(B}f (n)Lq)p,q = B;f (n)Lq has an obvious structure of almost free simplicial (in p) object,
and the generating subspaces are preserved by the vertical simplicial maps. Thus, Lemma

2.3 yields decompositions
h h
V=im(Vyor =5 V) @ @im(V,o 23 V) @ (V0 NEBEOL,).

To show that V), is M-free, we need to decompose each V) into a coproduct of objects
K! € sV

St Ly +, up to homotopy, and ensure that the degeneracies are induced up to

homotopy by sphere inclusions. The decompositions of V), just provided make this a simple
task. Suppose that V,_; already has chosen decomposition as a sum of objects ng R
up to homotopy. Then if we choose such a decomposition of V, N N;Bﬁ (n)Lq, and use the

h .
i

p inclusions s;' : V,,_1 — V), to induce decompositions of the other summands of V), using

the decomposition of V},_1, we have the decomposition up to homotopy that we need.

Now, by factoring the map 0 — L by a cofibration followed by an acyclic fibration

B — L in the F» model structure, we can form the solid maps in a diagram in which each
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object ‘B’ is cofibrant:
< Bﬁ (n)Lq

B
AN
(\¢~
BYL ——=1L

By the lifting axiom (of cofibrations against acyclic fibrations) we can find the dotted maps,

weak equivalences making the diagram commute. The theory presented in [27] then explains
that the three resulting spectral sequences coincide. The spectral sequence arising from
Bﬁ (n)Lq is the reverse Adams spectral sequence of L in s£(n), and that arising from BY L

is the CFSS of X € sW(n). O
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Chapter 13

Operations in composite functor

spectral sequences

Singer [52] developed a useful theory of products and Steenrod operations in the first quad-
rant cohomology spectral sequence arising from a bisimplicial cocommutative coalgebra.
Goerss used this theory in [33, §14] in his calculation of the category H%om. In the appli-

cations we have in mind, the bisimplicial object

will not be a coalgebra. Instead the situation will resemble more the situation of §6.5, where
there was a linear map e : Q°X* — S?(Q®X*™1) for any almost free object X € sC, but

certainly not a coalgebra map.

The lack of an underlying coalgebra structure will not stop us from applying Singer’s
techniques after we make the appropriate modifications. The idea is to externalize Singer’s
operations, so that for every bisimplicial vector space V', there are various external operations
of type:

[E,V] — [E.S?V] (' >r) and S[E, V] — [E,.S*V],

(which we will discuss shortly) compatible at Fo, with external operations of type:

H*(D(TV)) — H*(D(TS?*V)) and SoH*(D(TV)) — H*(D(TS?V)).

When V is in fact a bisimplicial cocommutative coalgebra, one recovers Singer’s theory by

composing with the map of spectral sequences induced by the coproduct:
[E,.S*V] — [E,V].
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In §10.1 we discussed spectral sequences with indeterminacy, and multi-valued functions.
They reappear in Singer’s theory, as some of the operations are constructed as (actual) linear
functions [E,.V] — [E,»S?V] between different spectral sequence pages. Such an operation
is equivalent to an external operation [E,V] — [E,.S?V] with indeterminacy r’ which also

satisfies a survival property.

13.1. External spectral sequence operations of Singer

We now summarize some key aspects of Singer’s work in [52], in particular Theorems 2.15,
2.16, 2.17 and 2.22, and Proposition 2.21. Fix V € ssV with a (horizontal) augmentation

dﬂ : V. — V_4. The key construction is that of chain level operations:
Sk D(TV) — D(TS?V)

inducing external operations as in the bottom row of the following diagrams:

T (D(V-1)) Semy (D (Vo)) Som*(D(V_1)) === m*(D(S?V_1))
| . | | |
H™(D(TV)) Sdex H™FD(TS?V)) Sy H*(D(TV)) 2% H*(D(TS?V))

The top rows are the operations arising from the singly (vertically) simplicial object V_q,
as in §6.2. Singer studies the effect of S* on filtration in detail, determining that it induces
the following operations. For all p,q > 0 and all » > 2, there are well-defined vector space

homomorphisms:

Sdby : [EVIPT — [B,S2VPtE, if0<k<g;
Sals : [E VP4 — [Bpy o SPVPHE=02, ifg<k<q+r-2
Sy 1 [E VP9 — [Bop_o SPVPHE—024, ifqg+r—2<k;

which commute with the differentials (in the appropriate, somewhat complicated sense, c.f.
[52, Theorem 2.17|), and an external (not ‘exterior’) commutative product operation which

satisfies the Leibniz rule:
fext : [ER VPP @ [E, VP22 —; [ETSQV]p1+p2,q1+q2_

Note that the second and third operations are from E, — E,/, sometimes with ' > r,
which is to say that these operations have indeterminacy disappearing by FE,, and the

implied survival property.
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Those operations with domain [E;V] have no indeterminacy, and we reindex them as

follows:

S et = Saly : [B2VIPY — [ERSPVIPaTE . if0 <k < g,
Squ,ext =0, if k> q,
S eyt = SqltF (B, VP — [E,S2VIPTR2 i 0 < k.

ext

Under the identification [E;V]P? = nP7d(DV), the operations Sq{ieXt are obtained by ap-
plying 7 to the linear maps of §6.2:

S k
TI(DV) 22 70k (5,DV) —s 70TF(DS?V).
On the other hand, the operation Sqﬁ,ext equals the composite:

k
21 T (texe)

Sq¢
T riDV —% ﬂﬁ+k(527r$DV ﬂ'ﬁ+k7r\2,q52DV — ﬂﬁ+k7r\2,qD52V,

and the pairing pexs : So([F2V]) — [E25?V] equals:

SPrEtDV e (S, DY) S e g, DYy rt DSV

These operations on Fy determine the operations at each E,., r > 2. The operations
Sq](;fXt commute with differentials as appropriate. Finally, the SqlgXt stabilize to well defined
maps on F, and there is a commuting diagram
Sdfiy 2 +k
(B VPt (B S2V P4

\Lg \Lg

k
Sqext

[EoH*(D(TV))|P1 —== [Eo H*(D(T'S?V))|P1+%
whenever 0 < k < ¢, and a commuting diagram

St 21/1p+k—q,2
[Exc VP4 [EooSeV]PTi=0:24

J/% =

[EoH*(D(T'V))]P SL@*L [Eo H*(D(TS?V))ptk—a2a

whenever ¢ < k (which summarizes also Singer’s computation of how the Sq¥,, interact with

the filtration on cohomology).
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13.2. Application to composite functor spectral sequences

In order to use Singer’s constructions in the present work, we will use the map of double

complexes:

Yy = jomy © Q°Mey : Nppi Ng(QXWBY L) — N,N(S2(Q“™BYL)). .,

to define a spectral sequence map

[ByS2(QE0 Y Lot (WL [ xp oo,

We then define internal spectral sequence operations

Sq* = 5 0 Salis! + [EY XJPosms s [BY XL (0 < k1<),
S : k—q,2q,25m,...,2

Sq* —¢wosqext '[E%X]qu 81—>[Ef+k a— 1X]]23:r+1q oo T (q<k-1<qg+r—2),
) k 72 72 oy 72

Sq = o Salish : [EY X0ttt — [By X[ E et (g4 2 <k - 1),

which at Fo we may write (dropping internal degrees) as:

Say = 15 0 Sl = ¥ 0 Saig + BB — BYTHTTLifo<k-1<q,

th—ngthext Pl o SqiiFTl . ERY —y phtR2a if0<k—-1<np.
Similarly, we define a pairing:

— oy CTEY Y 1P d5SnsS1 G 1050 80558 @ 1P+ +1,g+q sn+s),,...51+5)
B= 1/’% O Mext * [Er X]t " ® [Er X]t’ — [E X]t+t’+1

The reader might now guess the key results:

Theorem 13.1. At E> = H, (n+1)H Un )X the operations th and i defined here are equal

to the My, (n + 2)-operations of the same name defined on W(n + 1)-cohomology in §8.3.

Theorem 13.2. At Fy = H{j\](nH)H (n)X the operations qu defined here are equal to the
M (n + 2)-operations of the same name defined on W(n + 1)-cohomology in §8.2.

Theorem 13.3. At E = [EOH%(H)X], the operations Sq* are compatible with the My (n +
1)-operations of the same name defined on W(n)-cohomology in §8.5.
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13.3. Proofs of Theorems 13.1-13.3

Proof of Theorem 13.1. This proof relies on a commuting diagram, in which we employ the
notation L = QU BWM X € sL(n), and abbreviate using £ = £(n) and W = W(n + 1).

@ NP (y)®2 .
h L nY 2 h AW @ 2
(NFrYQ“BYL)® (NPQWmyBYL)®
Dp—k+1 * Dp_k+1 .
}f h )Vq\ £ o @2 N£(7®2) b ’VT)( vh v )®2
Ny (MEQEBIL)®?) —=—— Npyy 1 (Q"mBYL)*?)
NE(D9)*)
Nb 7Y ((QFBYL)%?) b
™ (e )} N o)
Ny QCB7L O NLQYTYBYL

All of the horizontal maps are the isomorphisms of Lemma 3.1. By [52, Theorem 2.23|
(summarized in §13.1), the left hand vertical composite is that used to define the horizontal
operations Sqﬁ on Fs. On the other hand, the right vertical was used in §8.3 to define the
My (n + 2)-operations on the W(n + 1)-cohomology groups with which the FEs-page can be
identified. Thus, if the diagram commutes, we are done. If we replace the maps (Dﬁ)* in

the top square with (Dg)*, the same proof applies for u.

What remains is to prove that the bottom square commutes. It may be expanded into

the eight maps in the outer square of the following larger commuting diagram:

W:((QﬁngrkL)@Z) (W;/QﬁngrkL)@Q (wazngrkL)@
(D9)* ®2
2o . Jiw
TYQU(@P L) Y2) < Wy (9r+rL) 2) <L QW((mvgriir) )
m Qe | }@¥ry(eq) @ (ew)
W:Qﬂgp-I-k—HL v QWﬂ.¥gp+k+1L = Qwﬂ.zgp—i-k-‘rlL

The bottom left square commutes by naturality of «, while the bottom right square is
an instance of Lemma 12.6. What remains is to check that the hexagon commutes. For
notational convenience, write A = @PT*L € sL, br : A®2 — A”2 for the L-bracket, and
br: (7Y A)®? — (7Y A)*2 for the W-bracket on homotopy.

The source in the hexagon is then Q" ((7¥ A)*?), the smash product being the coproduct
in W = 7L of two copies of 7YA. Any element of QW ((7YA)*?) can be represented by a
sum ., br(Zy ® y) + E, with the xj, (resp. yi) representatives of elements Ty, in the first
(resp. second) copy of 7y A and, E a sum of at least three-fold brackets of elements in the

two copies. This extra term E is annihilated by both jy and 7Y (5) o v 0 QW(i), so can be
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ignored. One calculates:

(9% 0 jiw) (O, br(Tk @ Tr) + E) = Y4 Tk @ Ui

On the other hand, the map Q"W (i) is induced by the Eilenberg-Mac Lane map shuffle map

Vi as in Proposition 5.2, and

el g 7y 20 ¥ (e) (DO~
Yopbr(@E @Tr) = D br(Ve(ze @ yk)) = Do p (Ve @ yk)) —= >4 Tk © Uk

The last mapping follows from the fact that (DY)* o V, = id, as {D*} is special. O

Proof of Theorem 13.2. We again employ the notation L = QUWBWn X ¢ sL(n), and
abbreviate using £ = £(n) and W = W(n+1). Further, write B for the object B)¥V7Y L € sW.
Write V;, for the subspace (FW)™ C B of generators, and V! =V, NN2B. For each m > 0,
write F,,B for the m-skeleton of B (c.f. §2.6), which is almost free on subspaces F,, Vi, C V.

i—1
v,ext

We must identify the operations Sqﬁ, = 1)y 0 Sq with the W-cohomology operations
Sqi defined in §8.2 using the maps 6. However, the €' are defined on the bar construction,
while 17 is defined on the Blanc-Stover resolution. In order to make the comparison, we

will need to choose a sufficiently explicit weak equivalence of resolutions of 7} L in sW

x:B — n¥(BYL).

In order to define y, we recursively define its restriction to the skeleta F,,,B. Lemma 2.3
implies that in order to extend a (horizontal simplicial) map Xm_1 : 1B — 7Y (BYL)
to a map xm, @ FinB — 7T¥(B€¢L), we need only to specify the values of x,, on V.. That

is, we only need to choose a lift in the diagram

Vi - -~ Nhav(BYL)
b b
ZNh _ BX"L ZNB  2v(BYL)

However, in order to actually carry out this process, we will need to record some chain level

information, and we will construct maps into NYB? L, rather than just =Y BY L.

It is best to view the domain and codomain of the proposed map x as augmented
(horizontal) simplicial objects, and start by defining x_; to be the identity of 7yL. Then
for m > 0, we will recursively construct functions x,,, : V,,, — ZN} BffLL, with the property

that im(Y,,) is contained in the span of the classes z,, for w € ZNYBZ | L, so that there is
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a commuting diagram:

v —X»  ZNYBYL
Xm\L y
NhmYBYL mYBY L

In order to do this, one may choose a basis of V), and then for each basis element v € V! |

choose a W-expression e for dgv, so that
dbv = e(s) w;) € ZNE B is a W-expression in various s> w; € V,
0Y — a; ) m—1 p v a; ] m—1,

with w; € Véj for integers n; < m — 1 and degeneracy operators sq; : V,{j — V1. Then,

from the cycles sgjinj (wj) € ZNYB? _|L, form a cycle
¢ P (s, Xn, (W) € ZNY(By, L),

using the explicit formulae of [20, §8] (which is a normalized cycle, as these formulae preserve

the normalized subcomplex), so that

P (55, X, (0)) = € (55X, (w))) € 7 (Bif_1L)
= e (sh,xn, ()

= Xm_1(dbv) € ZN2 7Y (BYL).

Our definition of ,,(v) is

Xm('U) = Zerep(slgtjynj (wj)) S ZN:B;!;L

To check that the class of X,,(v) in 7Y (BZ L) is in fact in NhaY(BYL), for 1 <i <m (c.f.
[54, Lemma 2.7]):

d??m(v) = zd?flerep(sgjynj (wy))” and d?—lerep(sngnj ('LU])) = d?71Xm—l(d(})1fU) =0.

By construction of the comonad ¢, di'y,,(v) must itself be null. Thus ¥,, does induce a

map Xm : Vy, — NEaY(BYL), completing the construction of .

Recall that the operations of §8.2 are the maps induced on cohomology by the degree -1

endomorphism 6 of the chain complex N} (QWBWrYL):
0" Ny (QUBYTIL)IEL ., ae — Ny (QVBYTILY s, -

If we write V = Q*BY L for the double complex yielding the spectral sequence, our goal is

177



sro when 7 = 1’7 J

to identify these operations with the spectral sequence operations
» -1 Sa et 2 +i-1 Yy +1,g+i—1
Uiy 0 Sty ¢ ([BVIPT =5 B8PV Pati=t 25 [y jprtaint)
using the equivalence QWy in sV induced by y and the isomorphism ~:

QWX : (QWBWWIL % QWW:(B%) SN WI(V))

The composite 1z, oSqV ext Das been identified as the dual of the composite in the bottom

row of

v 91 v
p+1(QWBW L)q-i—z 1 N;E(QWBWT‘-* L)q
1Q%x . (Sl 1@
¢ v v ext v
Ny (miV) T NP (Y S?V)grio N7V

so that it is enough to prove that this diagram commutes for 1 < i < gq.

Given the equations in §6.3 defining the operations (Sqf,;;(t)*7 it will suffice to show that

the composite
(@B T L) gtio Y ( QU BY D)o Y (n)S?QFBY L) i
equals the sum of the composite

(QW p+1 T yL)gti-1 —> (SQQWBWW L)gti1

T (SR QUB D i1 D (rYSPQUBY L) i

and those composites, for 1 <i < ¢,
@B L)gyi1 2 (QUBYm L) T3 (rQUBY L)y ™3 (r)S*Q“ BY L)gui 1,

that are actually defined (these fail to be defined when ¢ = 1 in internal degrees satisfying

Sp=---=51 =0).

By Lemma 2.5, we may represent any homology class of interest by an element E =
>k Uk, where the v, € V) b1 are elements of the basis chosen while defining y. We wrote

each vy, as a W-expression ey in various uy; € Vj:

v = ex(uny) € (Vyrn)grion € FVV,
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so that div = ey (ux;), and defined x(vy) by the formula

X(Uk) = Ze;cepx(ukj) :

That each x(ug;) is a sum of the classes z, implies that
Yy (x(vr)) = qug (e”) (x(urj))-

Taking qu L(e};ep) extracts the part of ezep corresponding to the quadratic grading 2 part

of ex, in quFW. That is, we may write e, € FWVp as

ex = quyg(er) (urg) + Y1 <icq M1 (07er) (urg) +w € FPV,

where w € FWVp is the quadratic grading # 2 part of ey, if we view quyy(ex) € SQVP as an

element of FVV,, via the inclusion FX"*DV, — FWOHDY. “and then

g (c(0n)) = ang (V(am(en)) (cluny)) + D2 i1 (0er) (x(un))
= V(aquyg(er)) (x(ury) + > oi1(0ex) (x(ury)
— (% o SQ(wa) oy + Z 0i_10 QWX o Qi) (vg).

We were able to discard the application of qu, as its argument already has quadratic grading

2. This formula is exactly what we needed to check in order to use the equations in §6.3. [

Proof of Theorem 13.3. Write L = QUWBWM X € s£(n), £L = L£(n) and W = W(n) (not
W(n +1)). We only need to show that the diagram of chain complexes

T (QCBYL) 2= T, (S2(QBY L))
d8¢’6 d(})‘\Le
Non(QFL) —2~ N,y 1 (S2(QL))

commutes up to homotopy (recall that 14 reduces filtration by one). The augmentation

maps di are induced by the augmentation of ¢:
e: (NINY(Q*BYL) = NYQ“YL —— NYQ*L).
We may understand NYQ*% L using the pushout square of chain complexes (obtained by
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applying NY o Q* to that defining 4):

Gayehg(NZlL) IE‘2{Z'aly} - @:}cehg(ZN*L) Fo{z:}

|

NYQ 4L

69yehg(NZlL) FQ{hya zdy}

which shows that NYQ*%L is the following complex (with differential hy — Zd(‘)’y):

NYQ*9L = @ eng(no, 1) F2lly} © Dpengzn. 1) Folze}
We will use the notation
L= Q"B X = Ff \F -+ Fy Xy
so that we may write the basis elements of N,,Q*Z2QYBWX in the form

Zf( 1)(g(0 (h(l )) and hf( 1>(g (h§i22))7

where the h;,;, are various elements of F<1> F(% 1>Xm, each g;, is a W-expression g;, (hiyi,)
in certain of the h;,;,, and finally, f is some L-expression in the various g;,. For brevity we

will write kf<71)(g<0 (h$1) ) for either of 2y (i (h{1), )) and hf<71>(g11 (h41) ))-

1119 1119 1119

A chain homotopy ® : T, (Q*BYL) — N, (S?(QVBWX)) is constructed as follows.
Let ® be zero except on NENY (Q*BYL) = N Q*94QUBW X, where it is defined by

kg g0 ), y) > ane(F)(a (hi).

This definition makes sense (and yields a non-trivial map) because f is an operator in

QUFY = F*. The chain map d® + ®d is a sum of three terms:

(a) do®: NENY (QBYL) % (SQ(Q‘L)) 4y N1 (S2(QL))
(b) ®od’ : NENY(QBYL) L5 NO (QLB@L) 25 Nno1(S%(QFL))
(c) @od: NNy, (Q°BYL) %5 No (Q5BL) %5 Nypoa (S2(QL))

We calculate

(do®)(ks(gmn ) = d(que (f) (g (Rf,))
= qug () (gir (h{3),))
aue (f)(e(gin) (h{Y])),
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(the last equation holds as we calculate in S?(Q*L)), and

Ok, o) 1), if K’ stands for ‘A7,
(q)odv)(k;f(g(0>(h<1> ))) f(g 1)( 1122))

11 1119 . . N

®(0), if ‘k” stands for ‘2,

= que(f(gi,))(R%,) (in either case).

By the equation of §3.10, the sum of these two terms is qug (ef(gs,)) (A} ), which is exactly

112

the formula for (’(pw @) 6)(kf(gl(;)> (h%?@)))

It remains to show that ®od® coincides with e®2o01)yy. These two maps are only non-zero
on the graded part NP'NY _(Q*BYL) C Q*%*L of T,,(Q*B? L), and an element therein is

a linear combination

K:=>_k
2 ei (sogig ks, o0 nn )
7*0 fJ’OgﬂoZl 710112

which satisfies the equation d¥(K) = 0, i.e.:

(K = > k:ej fm)( Jzogﬁg”h%zm) =0in Np_1Q*¥9L.
There is a map

Np1Q 9L C Fofhg(Np-1L)} ® Fo{hg(ZNm_1L)} — Npy_1S?Q“L
defined on generators using the function

Ny L C FEFVYym 1 x L8 g2(pWym—1x =~ G204,
This map sends d?(K) = 0 to
5 au (€5 (Fio) (e 9300 AMiniy ) = 0

which by the equation of §3.10, gives an equation in N,,_1S2Q*L

E] qug (ej(e(fjlo))) (Sajio g‘§[7,)021 §102122> - Z] qug (6(63)(f]30)) (Sajlo g‘]<7,011 §%01112)

The proof is completed upon noting that the left hand side of this equation equals (¢®2 o
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Yg)(K), while the right hand side equals (® o d")(K). We calculate:

(6®2 © wg)(K) = 6®2 (Zj qug (ej) <So‘jio kfji091<%n h%n@))

= 525 4 (65) (Seiy i) 90 i)

= 5 aue(e5(e(fiia))) (Sasig 0% b, ) = LHS,
and

d"K) = .e~(s kg )
() = 225 €5 (SosioRaiugoffh il

: v L
= Z] 6(6]') (Saji() kf]log§g311h§131112) (ln Nm—lQ gL)
O (d"(K)) = > €lej) (quL(sz'o)(sajiog}?gilhﬁgim)) (relevant s, are id)

= > aug(e(e;)(fiio)) (Saﬁog](?gilh%ili?) = RIS

To explain further the third equation, note that N;’n_lQL%L is spanned by the classes k...,
and none of their degeneracies. Thus, all of the degeneracies sq; i, ppearing in the second
line that have not already been annihilated during the application of € must be the identity.

Thus, they can be carried harmlessly through to the end of the calculation, as shown. [
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Chapter 14

Calculations of W(n)-cohomology and
the BKSS FE»-page

In this section, we will calculate the value of H%(n)X for certain objects X of W(n) of finite
type. In each subsection, we will write V{,;) = DX, so that X has underlying vector space
dual to V,,) € V. In fact, we will reinstate the upper asterisk for linear dualization, writing

DV, = V(Z), and recursively define:
Viern) i= Hio Vi and Vi, = HEEVE for | >
(k+1) "= (k) V() A0 Vigyr) == Hao V(g 10T K =1

In this way, for each k > n, V(’,‘C+1

which itself has the structure of an object of M, (k+1). Having all of this data will allow us

) is an object of W(k+1), vector space dual to V{41 € Vl_frl,

to draw conclusions about H{jv(n) V(“;L), using, for each k > n, the (k+ 1) composite functor

spectral sequence:

k+1)ys yeeyS * * s yeeyS * % \Ska2+Sk41,SkysS
[Eé i )]tk+2 = (HW(k+1)V(k+1))tk+2 = (H\/\z(k)v(/rc))tk+2 bR,

The first CFSS, which calculates H{/FV(O) from H\j\?(l)v will appear in §14.5.

14.1. When X € W(n) is one-dimensional and n > 1

Let X =V, € W(n) be a one dimensional object of W(n), dual to a one-dimensional vector
space V() € V'}, with non-zero element v € (V(n))rf«”Sl Write v* € Xgn,...,sl for the non-
zero element of X. As every W(n)-operation changes degrees, X is necessarily trivial. We
distinguish two cases: when v is restrictable and when v is not restrictable. Recall that v is

said to be restrictable when v[? is defined, i.e. when S, ...,S; are not all zero.
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Proposition 14.1. For each k > n,

n)s

‘/(k:) — FMv(k’)FMv(kfl) . FMV(TH*I)‘/(

and V(*,;) is a trivial object of W(k).

Proof. The proof is by induction, with the case k = n simply our standing assumptions.
If the statement holds for V(y), then Proposition 9.4 shows that the Koszul complex cal-
culating V(;41) has zero differentials, as V3 has trivial W(k)-structure, so that Vi 1) =
FMV(]"H)V(k). This has trivial W(k 4 1)-structure, by the results of §9.2. O]

Our next step is to calculate, for k¥ > n, the groups:

[E§k+1)]5k+270»5k7---,51 . * )Sk+27075k7---751 ~ (Hsk
¢ =

= (H;V(k+1)v(k+1) t 22{/(2))?,--.751_

L(k)

The isomorphism shown here follows from the observation that in dimension s;y; = 0, an

object of W(k + 1) is nothing more than an object of £L(k). More precisely, consider the

+

1 Vz given by

functor —g : V

(YO)Zk,...,sl = Yot,sk,...,sl-
Then —¢ induces a functor —g : W(k + 1) — £L(k), such that, for all Y € W(k + 1):
(FYE(Y)o = FEO(Yp) and (QMFVY)o 2 Q“M(Yy),
so that (QW(+D) BWE+D Yy = (Q*K) BL(K YY) for any Y € sW(k + 1), and thus:
Proposition 14.2. Suppose that Y € sW(k + 1), where k > 0. Then

* 707 [RRES} ~ (IT°k+2YV \Sks
(Hypgppn)Y )20t 22 (H 5 Yo ) iF .

Returning to the calculation at hand, we may identify a part of the Fs-page with the
Chevalley-FEilenberg-May complex of Appendix A.3:

Proposition 14.3. For each k > n, there is an isomorphism of commutative algebras:
BP0 o DXV

When v € V) is restrictable, DX’(V(Z)) = S(€)[Viw)l, the free non-unital commutative
algebra. When v € Vi, is not restrictable, V() = Fo{v} is one-dimensional, and D)_('(V(”,;))

is the one-dimensional exterior algebra A(%)[v]. In either case, for each individual value of
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the grading t, the group
@ [E§k+1)]fk+270,8k,m,81

Sk+2,5ks--+»S1

1s finite-dimensional.

Proof. The only further observation necessary to prove this isomorphism is that if v € V() is
restrictable, every element of the trivial partially restricted Lie algebra V{3 is in restrictable
degree, and that if v € V{;,) is not restrictable, each V3, is one-dimensional, concentrated
in non-restrictable degree. For the finiteness property, one simply notes that the V) have

such a property, and that there is a degree shift in the algebra structure. O

Consider the diagram:

* U(n) 1 * U(n+1)q -«
HW(n+1)H* ‘/(n) HW(n+2)H* ‘/(n—&-l)
H* V* Zgn/H H* ! v <gn/-ﬁ H* ! v
Win) Y (n) Win+1)V(nt1) W(nt2)V(n+2)
’Fpn ¢Pn+1 ﬁpnm
FMhV (n+1)‘/'(n) Fth (n+2) ‘/(n—i-l) Fth (n+3) ‘/.(n+2)
I f/ I 7 I
FMh(n+1)‘/'(n+1) n+1 FMh(n+2)‘/'(n+2) n+2 FMh(n+3)V'(n+3)

For each k > n, the map py, is induced by the inclusion V() = H\(/)V(k)V(Z) - H\f\?(k) V(}"c) (which
exists as Vy, is trivial) and the FMue(k+1)_gherations defined on H{‘/‘V(k)v(k). (Note that pg
is a graded map, since the effect of these operations on dimensions is the same in its domain
and codomain.)

The double arrow g1, representing the convergence of the (k+1)%* CFSS [Eékﬂ)] =
H;V(k)V(Z)’ is in truth shorthand for the function

[EgHD e [EOH%(k)V(Z)]fM%“’Sl

so that g1 may only be defined on the permanent cycles within [Eékﬂ)], and lands in the

associated graded of H;V(k)V(*I;).

Similarly, we employ the double arrow fj.1 as shorthand for the function of Theorem
8.15, which is defined on the entirety of FMh(k+2)FMV(k+2)‘/(k+1), but whose true codomain
is the graded object Ey(F Mh(k“)V(kH)) associated with the target filtration defined in
Theorem 8.15.

Theorem 14.4. For each k > n, im(pgy1) consists of permanent cycles and py, preserves the
target filtrations, so that it is possible to form the composites gx+1 © pr+1 and Eo(px) © fr+1-
These composites are equal, and moreover, py is an isomorphism. In particular, for k > n,

the (k + 1)t CFSS collapses at Es.
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Before giving the proof, we remark that in some dimensions, pj is already known to be

an isomorphism:
Proposition 14.5. For k > n, pi ts an isomorphism in dimension s; = 0:

L (FMh(k+1)FJV[V(k+1)Vv(k))ik+1,07sk71,m,81 i (H%(k)V&))fml,oyskqw,sl.

Proof. In this dimension, py factors as

(FMh(k+1)FM (k-i-l)v( ))5k+105k LyeeyS FMn(k+1) My (k+l)‘/'(0))5k+110 3Sk—15051

FJVEh(lc—i—l V(O))Sk+1,0 }Sk—15e++581

12

DX ’((m Jo))ytr et

* Sk+1,0,8k—1,---,51
Hy0) Vi)t

1

=
=
(
(

Here, we are viewing V(k) the subspace of V() in degree sy = 0, as an object of Vlfl
in order to apply FMv(+1) The inclusion FMh(k“)FMV(kH)V(%) C FMh(k“)FMV(kH)V(k)
restricts to the identity in degree s; = 0, explaining the first equation. The second equation
is similar: any non-trivial My (k + 1)-operation lands outside degree s = 0. The first
isomorphism follows from Corollary 8.11, which ensures that F Mh(’”l)V(%) is a quotient of
the polynomial algebra on V(g), and indeed, the same quotient as DX’ (D(V(?C))) The second

isomorphism is Proposition 14.3, since (V(’]‘C))O = Vi) O

Proof of Theorem 14.4. For each k > n, we will use the diagram

W(k)v(k)TH Wik+1)H V() o Hygy Vi < . Vi
gl ; et I
FMh(k"f‘].)FMv(k'-i-l)‘/(k) _& W(FMV(k+1)‘/(k)) ~ J1 FMV(k+1)Wk)

where W(FMV(k+1)‘/(k)) is the object introduced in the proof of Theorem 8.15, so that there

is a quotient map

W(FMV(k‘-l—l)‘/(k)) — FMh(k+2)FMV(k+2)FMV(k+1)‘/(k).

Here, the maps ji,jo are the evident inclusions of generators, while the maps g, i1, 72 are
the inclusions arising because V(3 is trivial.

We may define
c:= (pr 07k+1 °J1): FMV(HI)V(k) — H%(k)V(Z),
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without the need to pass to any associated graded objects. By construction of f 11, C s
induced by the inclusion ig and the M, (k + 1)-structure of Ho060)V iy
The edge composite is the composite of a surjection, a monomorphism my, and an

isomorphism mg (with inverse i, ):

oo

* * * * ~ m k+1 m * *
Hyyiy Vi — [EoHyy Vi ® = [EETVY 25 [E{U T Hy ) Vi -

Moreover, ¢ is a section of the edge composite, since both maps are compatible with M, (k +
1)-structures (Proposition 12.9), and their composite is the identity on V(3 C FMV(k+1)‘/(k).
In particular, the edge composite is a surjection, so that m; is an isomorphism. That is,
every class in im(41) is a permanent cycle. Singer’s work (c.f. §13.1) then shows that im(pg41)

consists of permanent cycles, as permanent cycles are preserved by the FMu (5+2)_gperations
on [Eékﬂ)].

Any section of Hyy, Vi) — [EC(,ISH)]O = [Eékﬂ)]o will realize, up to filtration, the
restriction of gg11 to [E&H_l)]o C [E£§+1)], so we choose

0, m * * o~ My (k+1 c * *
By iy — Hyw Vi = F R Hy0) Viy-

In particular, gx11 © pgi1©J1 = ggr1 091 = comeg 0i] = ¢, up to filtration. More precisely,

Jk+1 © Pr+1 © J1 equals the composite
POV =5 Higoo Vi — [BoHyou Vi1

Now the target filtrations on the domain and codomain of py, are induced by the filtrations on
the domain and codomain of pi41 by cohomological dimension sii2, and pr41 is a graded
map. Thus, for any w € FpW(FMV(k“)V(k)), we must see that pg(fy,q(w)) coincides
with gg+1(pk+1(w)) modulo Fp+1H;V(k)V(’};), as this will prove both that py preserves target
filtrations and that gx11 0 pr+1 = Eo(pk) © fr+1. However, this coincidence follows from the
fact that ¢ = ggy1 © pps1 © j1, as W(FM"(’“H)V(;C)) is generated by im(j;) under FMuv(k+2)_
operations, and the definition of f 11 is modelled on the interaction of g1 with these

operations, as studied by Singer (c.f. §13.1).
What remains is to show that the maps p; are isomorphisms. Suppose that
Tk € [Eék)]fzﬂws’f = (Hikv(k)v(fc))fzﬂms’f-
Now z ;) is detected by some permanent cycle z (1) € [Egkﬂ)], which is detected by some
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permanent cycle x 9y € [E§k+2)], and so on, giving a sequence of elements

oy € (BN = (g Vi dor 2

where s, + sl =s. tand sf =s ' for 1 <i<r—1andr>k.

We will say that z(;) has iterated filtration at least (s’,ii;, sZig, sﬁii, ...) whenever a se-

quence of such classes z(,) exists, and partially order the set of possible iterated filtrations
lexicographically. Then z(,) only determines z ;) modulo elements of Ej () of higher iterated
filtration.

Simply because these gradings are always non-negative, it is inevitable that s = 0 for
some 7 > k, so that by Proposition 14.5, x(,y = pyy(, for some y(,y € FMh(’”H)FMV(”“)V(r).

Moreover, one only needs to examine finitely many sequences of gradings, each of the form
r 0 r r k k h k _.r r r r
(894150587 15+ Spy1s Sk - -+, 87) Where sy = s + 50+ 50 0+ + Spy

This, along with Proposition 14.3, shows that (H%(k)V(’};)):I’:“’W’SIf is finite dimensional for
each given value of ¢.

By the commutativity established above, z() = pk frt1 - fr—1f(y(r)), modulo higher
iterated filtration. As this congruence holds in a group which is finite dimensional for each
given t, this establishes the surjectivity of pg, and that every one of the spectral sequences
is degenerate. Thus, we have shown that all of the maps g; are in fact isomorphisms, or

rather that in the following commuting square, for any k > n, gi+1 is an isomorphism:

Uk 1 o
H Vi

* * Ik+1 *
[EOHW(k) Vv(k)] o HW(k+1)

Eo(px) | Y
[EOFMh(kH)V(kH)] fk;l FMh(k+2)FMV(k+2)FMV(k+1)V(k)

For each k, py, is injective if and only if Ey(pyg) is injective. This holds by repeated application
of the snake lemma, using the fact that pj is surjective, and the observation that for any
given value of the grading ¢, the group (FMh(k“)V(k_,_l))t is finite dimensional, so that the
filtrations of both the domain and codomain of pj are eventually zero in each degree t. More
specifically,

Pk - (FM’(HI)V(k+1))?H’m’Sl — (Hiv(k)v(’il))fk“wsl

is injective if and only if
IO AN TR " % 1Sk 10>k 1,SknyS
Eo(pr) : [EOFMh(k+1)‘/(k+1)]tk+2 kit [EOHW(k)‘/(k)]tk+2 b

is injective whenever s}, 12t S}, 41 = Sk+1. As in the argument for surjectivity, in order to
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check that all the pg are injective, we now only need to check that every map

s ™
0,s 0,s EH

Ml My S: ) ;_ 7"'757‘ Pr * * S: ’ r—1
(PO Ny )t P (Hy ) Vi) !

is injective, which is part of Proposition 14.5. O

14.2. A Kiinneth Theorem for W(n)-cohomology

This is an opportune moment to prove:

Theorem 14.6. Suppose that X, Y € W(n) are of finite type, with n > 0. Then
Hyg(n) (X X Y) = Hyp (g (X) U Hygipyy (Y),

where the coproduct is of non-unital commutative algebras.

Proof. This follows from the Kiinneth Theorem (6.15) adapted to s£(k), and the observation
U(k)

that H,V(Z x Z') = Y ® 7 Hy(k)Z’, using the techniques of the proof of Theorem
14.4. O
Theorems 14.4 and 14.6 together imply:

Corollary 14.7. For n > 1, the category Myy(n + 1) is the category HW(n) of W(n)-H*-

algebras.

14.3. A two-dimensional example in W(2)

In this section, we suppose that T' > 1, and let X = Vé) € W(2) be the two-dimensional

object of W(2) spanned by non-zero classes

v5 € (Vizy)g1 and vi € (Vi5))55"™

such that vf = vi\g = (vg)!?, and with all other operations trivial.

Proposition 14.8. For all k > 2, V(’Z;) s two-dimensional, spanned by

vy € (V(}Z))g 01 and vy € (V(Z))(Q)TJF(%Q?

with vi = (v)P the only non-trivial operation.

Proof. An induction as in the proof of Proposition 14.1, using the fact that at each stage,

the only non-trivial A\-operation is a top operation, and thus does not yield a differential in
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K}f(k)V(k). One also uses Propositions 9.9, 9.11 and 9.12 to calculate the W(k + 1)-structure

of Vix41) at each stage. O

Proposition 14.9. For each k > 2,

* * s 10,8k 5404581 AU s £ \SkyeesS1 U s P
(HW(k-&-l)V(k-g-U)tkH koSl ny (HLIZZ)Q‘/(k))tk 1o (S(%)[U%] L A() [wo] )5+ 5051

These groups are zero unless s = --- = sg = 0.

Proof. One performs this calculation in the Chevalley-Eilenberg-May complex DX’ (V(};)),
which by Proposition A.9 is the differential graded algebra Fa[vg, v1] with differential

d(vg) = (/)2 =0, d(v1) = &/v1)? = 3. O
By a greatly simplified version of the proof of Theorem 14.4:

Corollary 14.10. For each k > 2, (Es 11)){"">™*"7" is zero unless sgy1 = -+ 52 =0,

so that the spectral sequence Ey (r11) = H;V(k)‘/(::) collapses, and in particular,

HypyVis) = S(%)[v7] U A(E)[wo)-

14.4. An infinite-dimensional example in W(1)

In this section, we suppose that S,7 > 1, and let X = V?*

1) € W(1) be the infinite dimen-

sional object of W(1) spanned by non-zero classes

o € (Val; T for j >0,

such that v; 1= v;/\l for j > 0, and all other operations are trivial.

U

Proposition 14.11. The Koszul complex K, (I)V*i) has basis

(
{Sq‘{*(v;) | j >0, J is Sq-admissible, m(J) < S+j and 1 ¢ J}
and all differentials zero except for:
Sq\(,”’“""?’m*(vj) N Sq\(/z‘g,,..,ig)*(v;rl)'

Proof. The basis given for the Koszul complex is just a reading of Proposition 9.4, but we
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must think a little about the differentials. As A; is the only non-zero operation:

J K,k
asate) = Y SalteRir),
(keyk2,2)39
(Kg,-..,k2) Sq-admis.
Consider a sequence (ky, ..., ko,2) corresponding to a summand of this formula. Supposing
that £ > 2 and Sq\’f2 Sq?, is not Sg-admissible, it follows that ks is either 3 or 2, so that Sq\’fz’ Sq?,
is either zero or Sq3Sql. As J does not contain 1, and the two-sided ideal in A generated
by Sq%1 is spanned by those admissible sequences ending in Sqﬁ, it cannot happen that
(key. .. k2,2) 54 7. Thus, the only summand appearing is that in which (ky, ..., ke,2) = J,

confirming our description of the differential. O

Proposition 14.12. When S > 2, V(*;) = Hy(l)V(ﬁ) 1s the subquotient

Fqy {ng*(v;) ‘ j >0, Jis Sq-admissible, m(J) < S+ jand 1,2¢ J }

Fy {Sqi*(v;) ’ j > 1, J is Sq-admissible, m(J) < S+ j and 1,2,3 ¢ J}

of K}f(l)V("{). Equivalently, V(g is the subquotient of FM"(2)V(1) in which we restrict to the
sub-My (2)-object generated by the elements

{007 ng,’l)l, Sq:\s;vlv ngv27 Sqi”?a Sq\2/U37 Sq\?;vi‘]) .. }

and in which we set Sq?,vj to zero for all j > 0. As an object of W(2), Vé) 18 trivial.

Proposition 14.13. When S =1, Vé) = Hg(l)V(ﬁ) 18 the subquotient

Fy {ng*(vj) ’ j >0, Jis Sq-admissible, m(J) < S+ jand 1,2¢ J }

F, {Sq‘vl*(v;f) ’ j>2, Jis Sq-admissible, m(J) < S+ j and 1,2,3 ¢ J}

of Ky(l)V(’i). Equivalently, Vi) is the subquotient of FM"(Q)V(U in which we restrict to the
sub-My (2)-object generated by the elements

{vo,v1,Sq3v2, Sqiva, Sq2vs, Sq3vs, . ..}

and in which we set Sq?,vj to zero for all j > 1. As an object of W(2), V(’g) admits a single
non-zero operation, Ao : vy — v}, and so decomposes as the direct sum of Fo{vg, vy} with a
trivial object D(V(’2)), dual to V(’Q), the subquotient of FMV(2)V(1) i which we restrict to the
sub-My (2)-object generated by {Sq2v2, Sqiva, SqZvs, Sabvs, . ..} and set Sq2v; to zero for all
Jj=2.
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Proof of Propositions 14.12 and 14.13. For any S > 1, taking the homology of this differen-
tial provides the formula for Vé), and dualizing provides that for V(). In order to determine
V(’g) as an object of W(2), note first that 9.9 and 9.11 show that all operations are zero except
perhaps for \g. Consider the operation Ay applied to a cycle of the form Sq;,]*(v;f) € KE(I)V(E)
with J # 0 (so that 1,2 ¢ J). As J ends in an integer no less than 3, and as A; is the only

non-zero operation in V("i), the second part of Proposition 9.12 implies that Sq;,f*(v;))\o =0.

In the case J = (), Proposition 9.12 states that (Sq@*(v}‘)))\o € V{5, Is represented by
(Sq@*(v;’»‘)\gﬂ)), which is zero unless j = 0 and § = 1. Thus the only non-zero operation on

Vé) is vgAo = v} in the case S = 1. O

Theorem 14.14. The spectral sequence H;V(Q)Vé) = H{jv(l)V(’;) collapses, with

FMh(3)FMV(3)V'(2), if §>2;

I

[E§2)] = H\% 2 VE
@7 PO POV U S(@) 2 UA®) 0], i S = 1.

(2
Proof. The calculations of [Eg)] follow from Theorems 14.4 and 14.6, Propositions 14.8,
14.12 and 14.13 and Corollary 14.10. What remains is to prove the collapsing result in each

case.

Suppose that S > 2. The first point is to observe that the generators vy and Sq‘%vj
(j = 1) of Vi) under My (2)-operations are all permanent cycles in (H;;](Q)V(Q))Sj**. For
vy € [EéQ)]%OS , this is obvious. It is less obvious for Sq?,vj (j > 1), which has only one
opportunity to support a differential:

3 (2)70,1,2+5+j da (2)12,0,2+5+j
Sqyvj € [E; ]2j+1(T+1J)_1 — [Es ]2j+1(T+1])—1‘

Fortunately, this target group is zero, due to the constraint that s, = 0. To see this, note

that this group is spanned by three-fold products of classes in [Eéz)]go*, namely:

2,0,35+71+j2+73

e oy (2)
0}, V), V55 € [Ey ](2j1+2j2+2j3)(T+1)717

and if this target group is non-zero, these indices must coincide. In order that 2/*! equals
271 4 272 4 273 it must happen that j1,j2, 73 equal j,j — 1,5 — 1 (in some order), but then
245+ 7j =354 41+ jo + js implies that S+ j = 2. This is impossible, as S > 2 and j > 1.

Next, we can derive that ngvj is a permanent cycle for all Sq-admissible J and j > 0

such that J has final entry 3 when j > 0. For this, we will use Proposition 12.9, that there
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is a commuting diagram:

Sq? P
(H\tv v )52781 v (H;;\? V* )82+1751+1 1

COREC)) (1) " (1) 2t+1
¢edge hom ¢edge hom
(B By e
H . H
59,8 Say so+1,51+i—1
Vi)™ (Vie))ari™ "

As we have shown that the classes vy and Sq?,vj (j > 1) are all permanent cycles, they are
in the image of the edge homomorphism. Then this diagram shows that all of Vy) is in
the image of the edge homomorphism, so that every element of V(y) is a permanent cycle.
Finally, as Fy is (freely) generated by V(o) under the My, (3)-operations, and we understand
how these operations interact with the differential, this shows that the spectral sequence

collapses.

Suppose instead that S = 1. Then rather that having generators vy and Sqv; (j > 1) as
before, Fy has generators v, v and Sqv; (j > 2). Note that Sq2v; = 0 when S = 1. That
vi € [Ef)]}l’jgfg cannot support differentials is obvious, while for 5 > 2, the same degree
argument as before shows that Sqf’,vj is also a permanent cycle. The same argument with
the edge homomorphism shows that every element of V('Q) is a permanent cycle, so Es is again

generated by permanent cycles under the My, (3)-operations, completing the proof. O

Corollary 14.15. If S > 2, then H%(I)V(”i) is isomorphic, as a vector space in V2, to the
subquotient of FMh(Q)FMV(Q)V(l) generated by the elements

{vo, Sq2v1, Sqdv1, Sq2va, Sqva, SqZvs, Sqivs, . . .}

and subject to relations generated by Sqgv; = 0 for all j > 0. Under My (2)-operations,
H, V(’i) is generated by v, Sqi’;vl} ngv% etc.

Va) € V%r is isomorphic, as a vector space in V2, to the commutative

(1)
If S =1, then Hy,

algebra coproduct

(1)

subquo U S(%)[vf] U A(%)[va,

where v¥ € (HE, V" 1’222 ., and subquo is the subquotient of FMx@) FM@)V, gener-
1 w(1) ¥ (1)/22(T+1)-1 1)
ated by the elements

{SqZv, Sqdvs, Sq2us, SqPvs, . . .}

and subject to relations generated by Sq?,vj = 0 for all j > 2. Under this isomorphism,

H;jv(l)V(*i) is generated by vo, v}, Sqva, SqSus, et cetera, under the My, (2)-operations.
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Proof. Suppose first that S > 2. Consider the elements

v € (V(2))0T’S> Sqlvo € (‘/(2))5(??1;; (j>2), and Sqjv; € (‘/(2));EET(?F_E1)_1 (i >1).

These elements span (V(Q))B’* and (1/(2))1’*, and can all be distinguished by their internal

degrees, so the restrictions
(o Vi) — (B30 = (Vig) 2™, (o) Vv — [By7101 = (Vg2
of the edge composite (c.f. Proposition 12.9) are isomorphisms. We write
he (Vig)d™ @ (Vig))a™ — Hyp) V(i)

for the injection obtained by adding their inverse maps. Use the basis of V(y) arising from
Propositions 14.12 and 8.8 to extend h to a vector space map H : Vig) — H{/“V(l)V(”i) by the
rule H(Sqlxz) = SqlH(z). Although H is not a map in My(2), it does induce the vector
space isomorphism required for the proposition.

Suppose instead that S = 1. The same argument produces a map subquo — H\’;\?(l)Va).
The difference is that we must find candidates for v3 and vg in H{j\)(l)Va). We send vg to
the unique non-zero element of (H{'/‘V(l)X/("i))gil and v? to the unique non-zero element of
(Hiy oy Vi )irs O

MY W))arrn-1-

14.5. The Bousfield-Kan FEs-page for a sphere

Let X =V, € W(0) be a one dimensional object of W(0), dual to a one-dimensional vector
space V(g € \73, with non-zero element 1 € (Vigy)7. Write 1* € X T for the non-zero element
of X.

As every W(0)-operation changes degrees, X is necessarily trivial. Moreover, it is
quadratically graded, by setting +* € q;X”. By Proposition 12.8, the first CFSS will admit
a quadratic grading.

Recall the function T7 : admy (A, T) — adm (A, T) of §9.2. In view of the strict in-
equality derived during the proof of Lemma 9.10, it need not be true that I = Tf_l_j (Tj415---,1%1)
whenever I = (ig,...,i1) € admy (A, T) satisfies (ij41,...,%1) = Tr(ij,...,491). Neverthe-

less, we may use ¥ to decompose adm; (A, T). Define:
admif(A,T) =admi (A, T) \ im(Tr : admy (A, T) — adm (A, 1)),
the set of sequences in admy(A,T) not in the image of Ty, so that we may decompose
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admy (A, T') as the disjoint union

adm (A, T) = | | {1,%01,%531,...}.
I€adm* (A,T)

Proposition 14.16. V(j, := HE(O)V(B) has basis {1*} L {07** | I € adm(A,T)} and all

W(1)-operations trivial except for A1, which is defined (only when ¢(1) > 1) by

A
o7 = ot

Thus, as an object of W(1), V(’;) decomposes as a direct sum

Fo{e*} @ @ Fy {5}’*(2”\{) | j > 0} )

I€adm™ (A,T)

Proof. The basis of the Koszul complex was described in Proposition 9.2, and the Koszul

differential is zero as X is trivial. The A-operations were calculated in Proposition 9.11. [

Now we have put considerable effort into calculating H%(U of each summand in this

decomposition: Theorem 14.4 proves that
Hiyy (F2{1°}) = 0O PO (B (1)) = A(%)(1),
while Propositions 14.12 and 14.13 calculate
Hygy (]F2 {(5}’*1*))\{ | j > 0}) for I € adm'" (A, T).

)

With a view to calculating the first CFSS, we catalogue a collection of generators of [F.

under the My, (2)-operations. The fundamental class 1 € q1 [Eél)]%o is an exterior generator

(arising in Theorem 14.4). Moreover, for all T € adm'"(A,T), there are further generators,

arising in Corollary 14.15:
v 1)70,41
8%1 € qger [ES )]T+n1+u (14.1)
v 1)71,2+41+5 . .
Sqf’,é@ilz € Qoi+e1+j [Eé )]21++1(Tijnl+él+l)—l (when 7 > 1, but not j =4I =1), (14.2)

v Hy,
(0%,-1)% € A (B8 13 r pr ers1) 1 (when ¢ = 1), (14.3)

where they are referred to as v, Sqf’,vj and v? respectively. Note that this final generator,

(0%, 2)2, has the same degrees as the generator Sqiééy 1 that is missing when j = £1 = 1.
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Theorem 14.17. The first CFSS collapses at Es:
1 * * * *
EM] = HyyyViiy = Hyy)V(0)-

Proof. The fundamental class is a permanent cycle, so to prove that the spectral sequence

collapses, it is enough to show that no classes

1)70,e1 1)q1,2+4£1+5
T € qoer [Eé )]T+nI+U Or Y € Qor+ei+j [Eé )]2j+1(T+]nI+ZI+1)—1
can support a differential, I a non-empty d-admissible sequence.

To see this, all one needs to have learned about the entire Fs-page is that it is a sub-

quotient (in which ¢2 = 0) of the polynomial algebra on symbols

Ao B 1)14B+nA,2¢A(nB—(B+LC
th qu 581 € (otA+eB+eC [Eé )]QZA-:;B (T+£an+gc+1),)1a
in which B is Sg-admissible, B does not contain 1 or 2, if C' is empty then so is B, and if B
is empty then so is A. These conditions imply that nB — 2¢B > 2t8 — 1.
If for > 2 there is a differential d,- supported by ¥, then d,y must be a sum of products

of N > 1 such classes. The generic such monomial may be written as:

N Q. AkQq Bk v ()1 (BR+nAg)+N—1,5 24k (n By —£ By +LCy)
[Ti=1 Say, *Sqy 5CkZ € Ay~ glAy +EBy +LCy, [E5 ],1+Z AR B (T4l £C,+1)

in which £Cy = 0 for at most one k. We derive the following constraints:

S2(¢Bj +nA;) >4 — N, (14.4)

logy(N) + & S°p [0Ag + €By + £Cy] > 1+ 01 + j, (14.5)

A4 01 +j =3, By +nAg] + N — 1+ 3, [24%(nBy, — (B, + (Cy)] (14.6)
logy(N) > 37, ((2%4% — ) C, + [(2%% (nBy, — €By) — +By) — % (CAL)]) - (14.7)

The inequality (14.4) is just the requirement that r > 2, while (14.5) results from the
observation that d, preserves the quadratic grading and the convexity of the exponential
function. Equation (14.6) holds since the total degree of the differential is one, and (14.7) is
derived by rearranging the sum of (14.4), (14.5) and (14.6). (14.7) is a very strong inequality,
since the expression 2¢4% (nBy, — (By,) — %ZBk is at least 2¢Br — %, and nBy — By > 2 if
(By, # 0. Thus, in (14.7), each expression in square brackets is always non-negative, is at
least 2 — % when ¢By, # 0, and exceeds 2 — % if /By, > 2 or fAg # 0.

When N =1 or N = 3, logy(N) < 2 — %, so that (14.7) implies that £B; = 0 for all

k, violating (14.4). When N < 2, logy(N) < 2 — %, so that (14.7) implies that ¢By, # 0
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for at most one k, with /By = 1, violating (14.4). When N > 4, all but at most one of the
summands (2% — £)0C), in (14.7) is at least 3, and as 2(N — 1) > logy(N) when N > 4,
(14.7) is violated. Thus y € E3 is a permanent cycle.

Performing the same calculations for d,x, we find that the inequality (14.7) is unchanged,

while (14.4) is replaced by
S (¢By, +nAg) >3- N. (14.8)

The argument is unchanged when N =1 or N > 4, while if 2 < N < 3 we may still draw
the same conclusions from (14.7). When N = 2, we may assume that By = 1 and ¢By = 0,
and although (14.8) is not violated, (14.7) is violated as ¢C; # 0. When N = 3, we must

have £C), = 0 for each k, and the following equations must be satisfied
01 —1=10C 4+ LCy + 0C5, 2T = 2tC1 4 9fC 4 ofCs

As in the proof of Theorem 14.14, these equations imply that £Cy, £Co, £C5 equal €1 — 1,41 —
2,41 — 2, in some order. The first equation then implies that /I = 2, implying that ¢/C} = 0

for more than one k, which we have prohibited. Thus x € Fs is a permanent cycle. O

This theorem has the following corollary, stated in this form due to potential hidden

extensions:

Corollary 14.18. Suppose that X = S%°™ for T > 1. Then the BKSS Es-page [E4X] =
Hy0) (HZ,,. X) is isomorphic, as a vector space in V., to the My (1)-subquotient of FYn() pMv(1) £33

Gom,

generated by the fundamental class v and the elements

{072, Sqﬁd‘z’%ﬂ, Sqﬁdzyz, Sqﬁéé%lz, Sqﬁ&‘z’%lz, ...pfor I e admif(A,T),

and subject to relations generated under My(1)-operations by

{Sq} 6y, Sq? %%Jz, Sqiéégﬂ, Sqﬁééglz, ...} for T € adm™™ (A, T).
Proof. This follows from the collapsing of the first CFSS, our knowledge of the generators 1
and (14.1)-(14.3) of [Eél)], and a few observations in the low-dimensional cases.

When ¢ = 0: in FMu(1) pM(1) {1}, by unstableness of the horizontal Steenrod operations,
Sqﬁz =0, Sqf’lz =0 and ¢? = Sqlllz = 0, so that ¢ contributes no more to this subquotient
than it did as an exterior generator of [Egl)].

When £1 = 1: in FM0) FMM ) the generators (14.3) satisfy (5%’:TIZ)2 = Sq%ér}ﬂz, and

taking the quotient by Sqﬁ&%T ;¢ ensures that these generators produce no more material
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in FMuM M) ) than the polynomial algebras arising in the S = 1 case of Corollary
14.15. O

14.6. An alternative Bousfield-Kan F/-page

We will now suggest a somewhat artificial F1-page for the BKSS for a sphere X = S?"m for
T > 1, but one that will be motivated by the conjectures and calculations of §16. Define:

adm(As1,s) ;= {J | J a Sq-admissible sequence with m(I) < s+1, 1 ¢ J};
adm™ (As1,s) ;= {J | J a Sq-admissible sequence with e(I) < s, 1 ¢ J};
adm(A,T) := {I | I a ¢-admissible sequence with m(I) < T} .

The difference between adm (A, T') and admy (A, T') is just that we have removed the require-
ment that I be non-empty. The following lemma explains the sense in which adm™ (A1, s)

is the subset of irreducible sequences in adm(Ax1, s).

Lemma 14.19. There is an injective function &; : adm(As1,s) — adm(Asq,s) given by
T =Citye s 1) 25 (s 40+ 1,750, j1).
Moreover, adm™ (A1, s) = adm(As1, s) \ im(S,), and
adm(A>1,8) = | jeadmir(as,,5) {1 s, &2J,...}.

The proof is similar to that of Lemma 9.10, but the outcome is a little different. Indeed,
Lemma 14.19 shows that if a M} (1)-expression Sq}{aj contains a top Steenrod operation,
then all of the Steenrod operations following it are also top operations.

Define

(14.9)

I, € adm(A,T), Ji € adm(As1, 4],
) = B {1 s | 4 6T e € oo ()

(Jk,_[k) 75 (Jk”Ik’) unless k' = k
and define a differential on [E]X] by:
(14.10) setting dy2 = 0;

(14.11) requiring that d; distributes across the monomials in (14.9) according to the Leibniz

rule;
(14.12) requiring, for = € [B{X];, that Sq{ ™z = xdx and Sqﬂaz =0forj>s+2

(14.13) requiring, for x € [E{X]7, that dlsq{lx = Sq{]dlm;

198



: quiring, for z € [E]X]{, that di0;x =
0y drx + Sqﬁx, if2<i=t;

(14.15) enforcing the equation §YSq] = 0;
(14.16) enforcing the Sq-Adem relations and the identity Sqi = 0;

(14.17) whenever a summand in the image of d; violates the requirement that the factors

ng’“ 07, ¢ be unique, applying the unstableness condition

(Saj*0%,1)* = S 1 "4}, 2.

Note that (14.12), (14.16) and (14.17) imply that 2> = 0 and Sq?2 = 0. The key point is

that we do not want the differential to be determined by manipulations such as:

all(S<1?152122,10,5,2)1)“:’7 dl((52122,10,5,2)2)2)“:” 2(0(52,10,5,2))(d10(52,10 5,2y2) = 0,

which is why the phrasing of (14.11) and (14.17) is so restrictive. Indeed, when we define
in §11 operations on the Bousfield-Kan spectral sequence, the top Steenrod operation will
not equal the product square at Fp, but only at Es, and we are mimicking this behaviour
in our definition of [E{X].

Let us calculate the proposed differential applied to a generator Sqﬂd}’z of [E1X] with
I # 0. Suppose that I = (ig,...,i1), with 6 acting as a top operation at precisely the

indices @ = ap,...,a;. Then we calculate,

d1Sqj 6}2 = Sqj d16}2

_ n J 2

o Zm:l thééél ----- iam+1)sqh52/iamfl ----- ir)"

_ Sq}{Sqﬁéz’mihwil)z, d;,, a top operation, 2,3 ¢ J, I > 2
0, otherwise.

The first equation holds by (14.13), and the second holds by (14.10) and (14.14). To explain
the third equation, all of the n summands vanish by (14.15), except perhaps for the m =n
summand, which need not vanish when a,, = iy;. Even this summand may still vanish, as
(14.16) implies that Sq}‘{ Sqf1 vanishes unless it is already Sq-admissible.

Although the definition of this complex seemed complicated, the differential ends up
being quite simple. Indeed, one deduces that, writing J = (jes,...,J1):

if J € adm(As1,s) is non-empty and 2,3 ¢ J, then (jos,...,71,2) € adm™(As1,s — 1).
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From this, we conclude that if J is non-empty:
Sqi 8y is a cycle if and only if T € adm™* (A, T) or J contains 2 or 3, (14.18)
and if J is empty but I is non-empty:
SY is a cycle if and only if T € adm'™ (A, T). (14.19)

Recall that adm!™ (A, T)) contains all of the length one sequences (i) for 2 < i < T'). We
+

can combine all of this information into the following observation, valid for any I, J:
Sqj 0} is a cycle if and only if I = ) or T € adm™™ (A, T) or J contains 2 or 3.  (14.20)

The determination of the homology of [E]X] will follow from a generalization of this cal-
culation made in §16.2, in particular Proposition 16.3. While the calculations in §16.2 are
contingent on Conjectures 1 and 2, the statements are independent of these conjectures

insofar as they apply to [E]X]. As a result, we can state the following:

Corollary 14.20 (of Proposition 16.3). The homology of [E1X] is isomorphic, as a vector
space, to [EyX] as calculated in Corollary 14.18.

Proof. The isomorphism of vector spaces H,[E;X] — [E,X] sends the class of one of
the cycles Sqjd¥2 of (14.20) to the element Sqj/§}s of the subquotient of FMn(1) pMv(1) £y}
identified in Corollary 14.18. Proposition 16.3 provides a basis of H,[E{X] which can be
compared directly with that of the subquotient. O
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Chapter 15

A May-Koszul spectral sequence for

W(0)-cohomology

15.1. The quadratic filtration and resulting spectral sequence

Suppose that X € sW(n) for n > 0, and write QBX € sV, for the simplicial bar construction
calculating Hrv(n)X:
(QW(n)BW(n)X)S o~ (FW(n))sXS.

We may view the vector space UV X as being quadratically graded, concentrated in
quadratic grading 1, and as explained in §12.3, the monad F W) may be promoted to a
monad on qV;!, so that QBX is quadratically graded in each simplicial degree individually.
We derive from these gradings the quadratic filtration, the following increasing filtration
of N.QBX € ch V}:
FnN.QBX = Py, a V. QBX.

This definition is the direct analogue of Priddy’s definition [46]. It appears difficult to use
his techniques to calculate, say, H%(O)H%OmS;‘f"m directly, as the bar construction in W(0)
grows so much faster than the bar construction in a category of modules, and the resulting
spectral sequence is not degenerate. Nonetheless, the quadratic filtration is in finite in each

internal degree:

Lemma 15.1. Suppose that n > 0, X € sW(n), and k > 0. Then for any sg,...,s1 >0
andt>1,

(Foe-1 NLQBX)L, o = (N.QBX)

S1 Sky.--yS1°

Proof. This follows from the observation that every possible unary (resp. quadratic) op-
eration increases t by at least one and doubles quadratic gradings (resp. adds quadratic

gradings). It is obvious in dimension ¢t = 1, as there can have been no non-trivial operations
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applied in this dimension (the grading ¢ is always non-negative). The full statement follows

by induction on t. O
Moreover, there is an isomorphism
[E°N,QBX] = N, QWM pWm gWnyWin x
of chain complexes, so that:

Proposition 15.2. The cohomotopy spectral sequence of the quadratic filtration is a strongly

convergent spectral sequence, the May-Koszul spectral sequence:
(BN, QBX]}™ " 2 G (Hiyy KU X555 (Hy X5
If 1 X 1is of finite type, the E1-page may be rewritten as:
[BYKNLQBX]} - 2 g (F0D (i, X))
which reduces when n > 1 to:
[EME N, QBX] ™1 o (FMe (mH DD (7, X)) 3mene1

Notes that all of the spectral sequence operations defined in §8 respect the quadratic filtration
— the unary operations double quadratic filtrations while the pairing operations sum then.
We leave it to the interested reader to derive the resulting theory of operations in the May-

Koszul spectral sequence from this fact, for any n > 0.

15.2. A vanishing line on the Bousfield-Kan FEs-page

It is possible to obtain by the following method a vanishing line of slope 4/5 whenever 73 X

is of finite type. In the interest of brevity however, we prove only the following:

Theorem 15.3. If X € sGom is connected (with m,X not necessarily of finite type) then
the BKSS admits a vanishing line on Es of slope 1 and intercept 0:

[EyX]); =0 whenever s> 1-(t—s).
Proof. We will prove that the right derived functors
((RS PrH%’om—coalg)W)t
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have such a vanishing line for any W € H%om—coalg with Wy = 0. Any such W is the
union of its finite-dimensional subobjects, as all of the structure maps in W(0) increase the
degree t, so it is enough to prove this Proposition for finite-dimensional W. Then, by passing

to duals, it is enough to produce a vanishing line in the isomorphic vector space
H;V(O)DW
This group is calculated by the May-Koszul spectral sequence whose Fi-page is given by
(B Qm(H%(O)KW(O)UW(O)DW)f-

Now KWOUWODW decomposes as a product (for various T; > 1):

ng(o)le X oo X K&N(O)rTN

)

so if we can prove that
(H*)j = (H%(O)ng(o)’T)f =0 whenever s>t —s,

the same will be true for H%(O)DW by Theorem 14.6. However, we have already calculated
these groups in Corollary 14.18, and found that (H*)§ is spanned by the image of « € (H*)%
under various M, (1)- and My, (1)-operations. All of these operations preserve the half-plane

specified by s < t — s. O

203



204



Chapter 16

The Bousfield-Kan spectral sequence

Com
for ST

For any T > 1, let X = S%°™ so that we may write [E,X] for the Bousfield-Kan spectral
sequence of the sphere Sg"m. In this chapter we will give conjectures which will allows us
to construct a complete system of differentials in [E,X], that would explain the convergence

of [E5,X] (whose underlying vector space was calculated in Corollary 14.18) to
T (SE™) 2 A(6) 02 | T € adm®(A, T)].
Here 12 € WT(S;‘ZOT”) is the fundamental class (c.f. Proposition 5.6), and we write

adm®(A,T) := {I | I is d-admissible, e(I) < T'}.

16.1. Some conjectures on the FEi-level structure

In order to construct all of the differentials needed, we will assume from this point on:

Conjecture 1. [t is possible to modify the definitions of the spectral sequence operations i,
Sq{1 and 6} defined in §11.3 in order that the Sq-Adem relations and the relations 52’8(1{1 =0
hold on Ey (without compromising the existing properties of these operations summarized in
Proposition 11.2 and Corollaries 11.3-11.7).

That is, we will replace the operations defined in §11.3 with their conjectural counterpart
(without no change of notation).

Recall the alternative Bousfield-Kan FEj-page defined in §14.6, written [E{X];. There
was already a map of vector spaces [E{X] — [E;X] in V) defined by

[E1X] > HkN:1 ng’“é}’kz — H,]ﬁvzl Sqi{’“&}’kz € [E,X],
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and using the conjectural definitions of the operations on [E;X], it is a map of chain com-
plexes. Indeed, we may calculate the differential in [E;X] exactly as we calculated in §14.6.
Thus, there is an induced map [E{X| — [E,X] (where we write [E,X] for the homology of

the chain complex [E'X]). From now on, we will also assume:
Conjecture 2. The induced map [EX] — [EyX] is an isomorphism (of vector spaces).

This conjecture is not so unreasonable, since by Corollary 14.18 there is an isomorphism
of vector spaces [F{X] — [E,X] given by mapping an element of [E5X] to the element of
[E,X] of the same name, under the calculation of [E,X] given by Corollary 14.18. In any

case, we assume no more than the stated conjectures.

16.2. The resulting differentials

We will now analyze the differentials d, applied to the various terms Sq}‘{ 072. Define functions
lnye:adm(A,T) — {0,1,2,...}
which evaluate on a sequence I = (i, ...,i1) as follows:
)=l n(I)=di1+ -+ el) =4 — 41— —11 =24 —n(l).

Define a function
a:adm(AT) —7Z

by a(I):=4(I) —1— (e(I) —T). Now write G for the set of (J,I) involved in the definition
of [E1X]:
G:={(J,I)| I €adm(A,T), Je€adm(As1,4(I))}.

We may decompose G into three subsets:

{(0, )] I €adm®(A,T)},
{(J;1) € G\S° | J = (ery,---» 1), £(J) =0 or a(l)+3—j1 <0},
{(J,1) €S\ S| J = (jetsys---»31), €(J) > 0 and a(I) +3 — j; > 0}.

g°:
g
9// .

Every class 6)2 for (0, I) € §° is a permanent cycle. On the other hand, we will prove:

Proposition 16.1. Assuming Conjectures 1 and 2, there is a bijective map g : § — §”
such that if g(J,I) = (J',I') then there is a differential d, : Sqj 6Y1 — Sq}‘{lé}’,z.

The class dr¢ is a permanent cycle if I € adm®(A,7). On the other hand, using

Conjecture 1 we may mimic the calculation of dlsq}‘{é‘[’z made in §14.6. We find that if
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I € adm(A,T) \ adm®(A, T), o5z survives to E, ()41, at which point
da(ry1 : 10— Say 25,4, (16.1)

where we write I~ for the sequence (ig( H—1s--- ,i1) obtained by removing the outermost
entry of I.
For an element J € adm(Ax1,s) with J = (jy5),...,J1), and any n > 2 — j; we will

write ®,,J for the sequence
Oy = (o) + 2, oo + 20, 51 + ) € adm(Asy, s +n).
Then there is a differential, obtained by applying Sqi{ to the dg (1) -differential (16.1):
Aot a(r)41 ° Sqil 670 — Sqf““ﬂSqﬁ(IHZéIw = Sqfépz,
where JT := (jo5) + 2UN=1a(I),. .., jo + 2a(I), 51 + a(I),a(I) 4 2). We define the map g
to send this (J,I) to (J*,I~) whenever (J,I) € §'.

Proof of Proposition 16.1. Firstly, we should check that g is well defined. Suppose first that
J = (. Then we must have e(I) > T, so that

a(I)+2=0I)—1— (e(I) = T) +2 < £(I7) +1,

a condition required for JT to have any chance of lying in adm(Ax1,£(17)). After this
initial check, it is easy to check the condition required of m(J"). Thus, (J,I) € G\ G°. We
must also check that a(I7)+3 — (a(f) +2) > 0, i.e. that a(I7) —a(l) > —1, which reduces
to the tautological condition e(I) > e(I~). Thus g is well defined.

The injectivity of g is obvious, but we must check its surjectivity. Suppose for this

purpose that (J,I) € §”, so that a(I)+3—j; > 0. We will begin by producing a differential
dj—1: 671 — Sq{fé}’z

with I a d-admissible sequence (ig(py41,%(1), - --,%1). For this, we need e(I") > e(I) (to
ensure admissibility of ™) and a(I") = j; —2, but we are otherwise unconstrained, as j; > 2,

and the demand a(I™) > 0 will ensure that the additional &; is defined. Focusing on

o(I)+1
the constraint a(I) = j; — 2:

(IT)—1—(e(IT)=T)=j1 -2 < e(I") —e(I) =a(I) + 3 — j1,
but we have assumed that a(I) + 3 — j; is non-negative, so we have no difficulty satisfying
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this constraint.
Now we use the sequence ®_,+)J~ where J~ := (jys),- - -, j2), producing the required
differential

g1ty J
doen-1q(r+)11 = Sa, “T7 v — Sa;dre,

as long as either J~ is empty or a(IT) +3 — (jo — a(I™)) < 0. If J~ is non-empty, then
the second condition reduces to the condition that the concatenation ®,;+)®_qr+)J~ *

(a(I'") 4+ 2) be Sq-admissible, but this concatenation is J itself. O

Proposition 16.2. Assuming Conjectures 1 and 2, the differentials given in Proposition
16.1, along with those arising from them by taking products and applying the Leibniz formula,
are a complete set of differentials for the BKSS for this sphere.

Proof. Although the E,-page of the spectral sequence is not an exterior algebra for any
finite r, we are working in a spectral sequence of commutative Fo-algebras. As such, the
differential is not sensitive to the difference between the polynomial algebra S(%)[z] and
the exterior algebra A(€)[x, x, 4,25 ...] where 2y is placed in the dimension of z2'. In
this setting, the upshot is that the F,-page is isomorphic as a chain complex to an infinite

coproduct of exterior algebras, starting with

(Bl = || A%)[Sai*dy, 4.
(J,I)€S

We rely on the properties of the Steenrod operations to allow us to deal with terms of the
form x x . Whatever the explanation, the differentials given in Proposition 16.1 are enough

to eliminate all summands except for

W= | AT,
(0,1)eGe

which really is isomorphic as an algebra to the target ﬂ*(Sgom). O]

Filtering the sets §’ and §” by the length of the differentials associated with their ele-

ments, so that
S = (L 1) € § | it g(1T) = (J',T') then n(J) + (') > n(]) + (T) + }.
and G; := im(g|g, ), the proofs of Propositions 16.1 and 16.2 also prove:

Proposition 16.3. Assuming Conjectures 1 and 2, there is an isomorphism of chain com-
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plexes, forr > 2:

E]= || AM@)Sapardu || A@)Sarer U || A%)[Sapksr,al.
(J,1)€S (J,1)ES!, (J,1)esy

Moreover, the complete calculation of the BKSS for a finite connected model in s€om
now follows simply by taking the coproduct of non-unital differential graded algebras at each

page, with the appropriate grading shifts, for example:

[ (S‘fom L Sﬁ”om)] ~ [ S‘Fom} [ Sﬁﬂom].
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Appendix A

Cohomology operations for Lie

algebras

In this appendix, we will prove that Priddy’s definitions of cohomology operations for sim-
plicial (restricted) Lie algebras coincides with our own. There are three settings which we
are interested in: the categories s Zie, s.Zie" and sL(n) for n > 0. We will work in the third

setting in this appendix, as the proofs in the other two cases are strictly simpler.

A.1. The partially restricted universal enveloping algebra

For the following discussion, we will need one last category of graded vector spaces, V, , an

object of which is simply the direct sum of an object V' of VI and a vector space ‘/()?},0:

v=vl,op P V. .V

t>1 sp,...,51>0

Denote by A(n) the following category of graded augmented associative algebras. An object
of A(n) is a graded vector space A € V, such that Ay }.70 = F9(1) is one-dimensional,

spanned by the unit of an associative unital pairing

t q t+q+1
Asn7..~781 ® Apn,m,m } Asn+pn,---781+p1‘

That is, A(I _1”70 is not part of the data of A, but only a graded piece added to hold the unit.
Such an algebra is certainly augmented, and the augmentation ideal may be viewed as a

forgetful functor I : A(n) — £(n), which sends A to the partially restricted Lie algebra

t>1 sn,...,s12>20
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t

with bracket [z,y] := xy — yx, and restriction operation z/? := 22 whenever z € A

and not all of s,,...,s] zero.

The composite forgetful functor A(n) N L(n) — V| has a left adjoint, none other
than the free associative algebra functor FA™) (also known as the tensor algebra functor).
The multiplicative unit 1 is placed in A(I .1._70, as is appropriate given the grading shift.
Moreover, the functor I has a left adjoint, U’, the partially restricted universal enveloping
algebra functor, with U’ L obtained as the quotient of F4(™) L by the two-sided ideal generated
by any [z,y] — zy — yz and by 212 — 22 with z of restrictable degree. Indeed, there is a

composite of adjunctions

FL(n) U’
Vi =—= £(n) == A(n),
forget

showing that U’ o F*(™ =~ pAM) - Ag in the non-restricted and fully restricted case, U'L is
naturally a Hopf algebra, having diagonal defined by the requirement Az = 1@z + 2z ® 1
forx € L CU'L, and:

Lemma A.1 (PBW Theorem). If L € L(n), then there is a natural increasing filtration
of U'L, the Lie filtration (by powers of (1) @ im(L — U'(L))), and the associated graded
algebra is naturally isomorphic to Fo[Lo|® E[L], where L = Lo® Lg is the decomposition

of L into the sum of its subspaces of in non-restrictable and restrictable degrees respectively.

Here, Fo[—] and E[—] denote the (shifted, unital) polynomial and exterior algebra func-
tors respectively, which differ from S(%) and A(%) only by the addition of the unit in
(Fg[—])a}"o and (E[—])glo The unit 1 ® 1 of this tensor product is in (Fa[—] ® E[_])(I,l,,,m

as the product has a +1-shift in the cohomological dimension.
Lemma A.2. The prolonged functor U' : sL(n) — sA(n) preserves weak equivalences.

Proof. Suppose that L — L' is a weak equivalence in s£(n). The Lie filtration makes
Cy(U'L) — C.(U'L') a map of filtered commutative differential graded algebras, so there
is an induced map of the resulting spectral sequences. By Lemma A.1, the E%-page of
the spectral sequence for U’'L is the differential graded algebra C,(F2[Lo] ® E[Lxo]). By
Dold’s Theorem (2.4), the E'-page is a functor (determined by the results of §5.4) of 7. (Lo)
and m.(Lzo). As the induced maps m.(Lo) — m(Lg) and m(Lzo) — mi(Ll,,) are

isomorphisms, the map of spectral sequences is an isomorphism from E*. O

A.2. The proof of Proposition 6.12

In this section we will demonstrate Proposition A.3, which is stated for partially restricted
Lie algebras L € s£(n), but can be reinterpreted for objects of s.Z%e or s.Zie" as necessary.

From this result, Propositions 6.12 and 8.9 follow.
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Let L € s£(n) be almost free on a fixed choice of subspaces V,, C L,. We will use a
bisimplicial model for WU'L:

B, := B,U'L, = (U'L,)%? € 55V,

which in each simplicial level p is the standard simplicial bar construction for calculation of
TorV'F» (Fy, Fy) (c.f. [46, §1]). There are natural equivalences

C,|B| ~ Tot(C.C,B) = Bar(C,.U'L) ~ C,WU'L,

so that 7*D|B| = H: L. Here, we have written Bar for the bar construction of [28, §7], and
the final equivalence is the homomorphism of |28, Theorem 20.1|. What is a little less well
known is that there is a natural weak equivalence of simplicial coalgebras underlying this
equivalence of chain complexes, given in [15, Theorem 1.1]. A simple construction of such a

map |B| — WU'L is, in simplicial level n:
dy@dP @ @d": (U'X,)®" — UX,1®---®U'Xy,

where we use the conventions of [42, §5] to define W.

As such, the operations defined by Priddy on Hjj, correspond, under this equivalence,
to those that we define on 7*D|B| by the formulae

k A*
Sq* : (7"D[B| X mn D S2B| 2B £mHhD|BY);

A*
pi: (S2(m*D|B|) % 7*S,D|B| — 7*DS?|B| =2 7*D|B}).

where Ag is the bisimplicial cocommutative coalgebra diagonal:

lﬁ

A)

Agp : <B(U’L) B{UL®U'L)=2BU'L)® B(U’L)) :

Thus, we may forget the functor W, and restrict our attention to the object B with this

coalgebra map. We are also going to use the simplicial chain complex Q € schy 'V, :

QM L,, ifx=1;
Q.. :=  Fo{1}, if x = 0;

0, otherwise.

with zero differentials in each simplicial level. Of course, we mean that 1 € (Qq ). oy

There is a map of simplicial chain complexes r : NYBy, — Q,,, defined in level p by the
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identification NyB, = Fa{1} = Q, and the composite:
NYB, = IU'L, —» IU'L,/(IU'L,)* = Q*™L,.
Proposition A.3. The composite
N, |B| ~ Tot(NFNYB) - Tot(N'Q,,) = F, & ©N, Q"L

is a weak equivalence of chain complexes under which the operations on 7w*D|B| defined
using Ag correspond to the operations Sq* = Yr(n) © Sqlgx_t1 and p = tPrp) © Hext ON
T (D(Q*™ML)) =: Hy L.

We will prove this proposition using the external spectral sequence operations of §13.1
in the spectral sequence of B. By FEs, the only interesting non-zero entries of this spectral
sequence lie on the horizontal line ¢ = 1, so that Singer’s operations will prove very un-
interesting without modification. Our method will be to perform such a modification by
using the chain homotopy h (defined shortly) to shift the horizontal operations one higher
in filtration. The shifted homotopy operations will preserve the line ¢ = 1, and will abut to
operations on Fo, that satisfy the same relations as those on |B|. As the abutment filtration
is trivial, they must satisfy the same relations at E5. Finally, we will note that what we
have produced at Ejs is the definition of the Steenrod operations from §6.8.

As L is levelwise free, the evident map F' A(”)Vp — U'L,, is an isomorphism for each
p, and we define a vertical homotopy h : NYB, — N B, by the following formulae (in
which the v;; are taken to be in V}, C L, C U'Ly):

he : NYBU'L, — NJ,,BU'L,

[viy [ - - [vig s [0i Vi oy - - T = [vi |- Jvgg [vigyy -1+
—_————
length 1 bars ['Ui1| R ”Uz'q] — 0.

This homotopy is of the same type as that used in §8, §9 and [46, Proof of Theorem 5.3|, and
commutes with all of the horizontal simplicial structure except df}, so that dhhq + hqdh =
dBhgy + hydb.

Lemma A.4. Under the map (Id + hy_1d" + d*hy) : NYBU'L, — NYBU'L,,
[Viy <=+ |-+ | v ] — 0 unless r = ¢ = 1, in which case

[Uil] — [UiJ'
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Lemma A.5. The composite

(Dy

NENZB 25 NENY(B @ B) 24 NB(NYB @ NYB) 5 NY(Q,, © Qu))

vanishes except on terms [x|y| with x and y generators of Ly, which have image z @ y.

Proof. A generic element of the domain is a sum of terms [z -+ xr|y1 - - - ys], with z1,..., 21
and y1,...,ys in V, C L,. This element maps under Ag to the following sum, taken over
all sequences of exponents ay,...,ar,b1,...,by € {0,1}:

yi —by ,..y}]—bJ ENZ}:N%’(B@B),

al CLI
Z {xl :

and (DY)* annihilates all terms except for those in which all a; are 1 and all b; are 0, leaving

b 1- 1-
yl . ‘yf}@)[xl a1.”xl ar

[@1--21] ® [y y1] € NJ(NYB® NYB).
Finally, » ® r annihilates this term unless I = J = 1. O

Lemma A.6. The composite

v v ( v) v v ®T
Nh 1N1B Nh N (B B) — Np+1(N1B®N1B) - p+1(Q.1 ® Q1)

vanishes except on terms [xy| with x andy generators of L,11, which have image x@y+yR.

Proof. A generic element of the domain is a sum of terms [z;---zj], with z1,...,27 in

Vp+1 € Lptq. This element maps under Ag to

Sl o] ]

As {DF} was chosen to be a special k-cup product, (D1)* acts as the identity in this case.

Finally, » ® r annihilates this term unless I = 2 and a1 # as. O

Lemma A.7. There is a commuting diagram.:

dBhpykthnyk_1dh (D9)*oAp
N3+kN1VB 0 N}er NJB N}L’M_I(N{’B ® NYB)
¢ ¢r®r
QM (&(n)) Je(n)
N};JerL(n) —N +k 1QL(n (L v L) N};Jrkq(QL(n)L & QL(H)L)

Proof. Write LHS = (r @ r) o (DY)* o Ap o (dgh + hdf)) and RHS = 4,y or. Consider first
an element e = [vjvg - - vy] of N7}ll+kaB with b > 2. By definition, r vanishes on such an
element, so that RHS(e) = 0. Lemma A.5 states that the map (r @ r) o (D%)* o Ag vanishes
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except on expressions of the form [u|w]| for u,w € V,1x_1. However, the expressions of
this form appearing in dih(e) coincide with such expressions in hdg(e), so that there is a
cancellation, and LHS(e) = 0 as hoped.

Next, consider an element [v] of N}, , NYB. As h[v] = 0, and in light of Lemma A.5,
LHS([v]) equals the quadratic part of div, after writing div as an expression in elements of

Vitk—1. This is exactly the description given in Lemma 6.3 of RHS([v]) = ¥5() (v). O]

Proof of Proposition A.3. Fix a cocycle a € D(N,Q*™L). Then a may be viewed an a
permanent cocycle in [Z, D(Q,,)]™! in the spectral sequence obtained by dualizing Q,,,.
Singer [52, (2.14)] defines an operator S* on the total cochain complex of a bisimplicial
coalgebra which induces the cohomology operation Sq]gxt. We will apply the chain-level
operator S* to the class r*a € [Z, B]™!. As « is a permanent cycle, d(r*a) = 0, and

Singer’s expression simplifies to:

SF(r*a) == ABK, 1 1¢(r*a®r*a) =Ty + T, where:
Ty = ARDODPH I g(%a  *a) € D(N,,_, Ny B)
Ty := A DYTDI T p(r*a @ r*a) € D(NL, ,NYB).

Our method will be to compress each of these terms into filtration one higher, using the
cochain homotopy h* : D(NFNYB) — D(NENY B). Using Lemma A.4:

(Id + d"B* + h*d")Ty = 0 and (Id + d*h* + h*d")T, = 0.

The first equation holds as (Id + hd¥ 4+ d"h) is zero on NyB. For the second equation, on
NyYB, (Id + hd" + dVh) is the projection onto terms of the form [v], yet Lemma A.6 shows
that the composite

((r@r) o (T(Dy)"T) o (Dy)* o Ap) : Ny yyNYB — Ny 1 (Qu © Qui)

vanishes except on terms of the form [vw] (recall that r commutes with the horizontal
simplicial structure).

As d"h* 4 h*d™ increases filtration, we have compressed S*(r*a) to the filtration n + k
expression (d"h* + h*d")Ty, modulo even higher filtration. The commuting diagram of

Lemma A.7 is the left square in a larger commuting diagram:

DO *6ARO dhh hdh Dn+1*k *
NgMva(B“) Bo(dht, }L1+k_1(N1VB ® NYB) % NENYB @ NENYB
¢7’ w ¢T®T (D7L+17k)* iﬂ”@’l"
NMLQHML Y NP (QF ML QUML) - NRQU L @ NEQHML
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Now D(NPQ*™ L @ NPQ*(™ L) contains the cocycle ¢(a ® a), and pulling ¢(a ® o) back
to D(N7};+kN{’B) along the lower composite yields r*wz(n)Sq’gﬁl(a). Pulling back along the
upper composite yields the Fs representative of the shifted version of Singer’s operations.
Both spectral sequences collapse at E5 and induce trivial filtrations on their shared target, so
that understanding the shifted operations at Fs is equivalent to understanding the operations
on 7*D|B|, which we do: they equal Priddy’s operations on m*WU'L [47, §5]. As r* is an Fa-

equivalence, this proves the result. A simple modification proves the result for pairings. [

A.3. The Chevalley-Eilenberg-May complex

Suppose that M € L(n) is a partially restricted Lie algebra of finite type (not simplicial).
One can define a differential coalgebra, the Chevalley-Filenberg-May complex, to be the
subcoalgebra X'(M) := E[Mp] ® I'[M_o] of the divided power Hopf algebra I'[M] with its
usual coalgebra structure (c.f. [39, p. 141]), graded as follows. The Hopf algebra I'[M] is to
be V;f 1-graded, with product and divided square operations
F[M];Sm---,é‘l ® F[M];/,Si”-~,5’1 — F{M];i;ill,swrsg,.--,81+S’1’
72 F[M];,sn,...,sl — F[M]%;ill,an,...,2517
generated by the subspace
I[M]: = M!

0,8n,...,51 SpyyeeyS10

and we define X’(M) to be the coaugmentation coideal of the subcoalgebra spanned by

those expressions

Yo (Y1) - Ve (Ym)  (With y1, ..., ym € M homogeneous)

for which r; < 1 when y; € My (ie. y; € M(’im’o). The coalgebra structure map and
differential are the restriction to E[Mg|®I'[Mo] of those given in [39, p. 141] (after tensoring
the formula [39, (6.19)] down to a formula on X (M), which kills the first term X, f;y:).

This differs by a shift from the standard definitions, given in [16] in the unrestricted
setting, and given in [39] in the restricted setting. It also differs from those definitions in
that we have taken the coaugmentation coideal. Correspondingly, X'(M) is a shift of the
homology (in the sense of [46]) of the associated graded algebra appearing in the partially
restricted PBW Theorem, Lemma A.1.

Now let L = B*M™M € s£(n). Using the equation [B| = Be(U'M) of simplicial coal-
gebras and May’s injection [39, Theorem 18 and (7.8)] of X’(M) into the bar construction,
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there are maps:

SX'(M) — N.Bo(U'M) ~ Tot(N2NYB) - Tot(N'Q,,) = Fo{1} ® EN,Q*"L.

Now the first map, after the suspension ¥ shift homological degree, is a degree preserving
map of differential coalgebras, both of which only have a shift in the cohomological degree
t. In light of this discussion, Proposition A.3 implies Proposition A.8 (in which we move
back into the notation S(%’) and A(%) for the non-unital commutative and exterior algebra

monads).

Proposition A.8. HZ(n)M may be calculated, as a non-unital commutative algebra, as

the cohomology algebra of the differential graded algebra D(X'(M)), where D(X'(M)) is the

non-unital commutative algebra D(X'(M)) = A(€)[DMp] U S(€)[DMyo). This algebra is

V’iﬂ—gmded, generated by its subspace
(DX = (DM,
and has grading shifted product

D(X’(M))f’sn’""sl ® D(X/(M))g/,sil,...,s’l N D(X,(M))fifl)’jll,sn+s;l,...,sl+s’l'
Recall that the coproduct A LI B of non-unital commutative algebras is the direct sum
A® (A® B)® B.
We are particularly interested in the case that M is trivial as a Lie algebra, but may still
have non-zero restriction. In this case, the restriction is in fact a linear map, and we may
write §/— : DM — DM for its dual (a map which we consider to be everywhere defined,

but necessarily equal to zero on My). Examination of [39, (6.19)] shows:

Proposition A.9. If M has bracket zero, then the differential on the cohomological dif-

ferential graded algebra D(X'(M)) is defined on generators « € DM C D(X'(M)) by the

formula

a— (Ba)?
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