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Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Master of Science in Mathematics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2006

c© Francesca Deserti, MMVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Mathematics
July 31, 2006

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Haynes R.Miller
Professor of Mathematics

Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lori Breslow

Director, Teaching and Learning Laboratory
Senior Lecturer, Sloan School of Management

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pavel Etingof

Chairman, Department Committee on Graduate Students



2



Aspects of learning and understanding in multivariable

calculus

by

Francesca Deserti

Submitted to the Department of Mathematics
on July 31, 2006, in partial fulfillment of the

requirements for the degree of
Master of Science in Mathematics

Abstract

In this thesis we study the processes by which university students solve problems in
multivariable calculus. Our data consists of a series of questionnaires and interviews
with students enrolled in a vector calculus class at MIT. We interpret our observations
in the light of previous research into the acquisition of mathematical knowledge and
understanding.

Thesis Supervisor: Haynes R.Miller
Title: Professor of Mathematics

Thesis Supervisor: Lori Breslow
Title: Director, Teaching and Learning Laboratory
Senior Lecturer, Sloan School of Management

3



4



Contents

1 Introduction and statement of purpose 11

2 Literature review 13

3 Methods 19

3.1 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Analysis of Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Findings 31

4.1 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



5 Discussion 39

5.1 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusions, limitations and suggestions for further research 45

A Pre-Class Survey 47

B Post-Class Survey 51

Bibliography 54

6



List of Figures

3-1 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4-1 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A-1 Pre-Class Survey, page 1 . . . . . . . . . . . . . . . . . . . . . . . . . 48

A-2 Pre-Class Survey, page 2 . . . . . . . . . . . . . . . . . . . . . . . . . 49

B-1 Post-Class Survey, page 1 . . . . . . . . . . . . . . . . . . . . . . . . 52

B-2 Post-Class Survey, page 2 . . . . . . . . . . . . . . . . . . . . . . . . 53

7



8



List of Tables

4.1 What students find helpful in understanding concepts . . . . . . . . . 32

4.2 What students find helpful in understanding how to solve problems . 32

4.3 Importance of the components of the class. . . . . . . . . . . . . . . . 32

4.4 Hours per week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Percentage of attendance . . . . . . . . . . . . . . . . . . . . . . . . . 33

9



10



Chapter 1

Introduction and statement of

purpose

This project started as an attempt to study how students learn in mathematics. In

particular I was interested in the distinction between learning algorithms and learning

concepts, and the role they play together in producing a complete understanding of

the material.

Kannemeyer (2005) explains it nicely:

Expertise in mathematics is dependent on all categories of under-

standing and effective learning of mathematics cannot be based only

on any type of understanding.

These different kinds of understanding are facets of a dynamic process

that sees them impacting on one another, at times reinforcing or even

hindering each other.

Although the boundaries between kinds of understanding are not

considered to be static, the distinctions between them usefully pro-

vide criteria to make judgments about a student’s abilities.

Therefore, I decided to investigate these aspects of learning focusing my attention

on a course offered at MIT in multivariable calculus (18.02). I wanted to see how
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these abilities can and should be developed, in particular looking at the different

aspects of the class: lecture, recitation, personal study, study in group, office hours.

To study these questions I gave the students two surveys and interviewed some of

them, asking to solve a problem with me.

During my research I discovered that the nature of mathematics and the learning

processes have been classified in several ways.

Mathematical understanding has been categorized into conceptual and procedu-

ral, but within conceptual learning some researchers distinguished two stages, calling

them participatory and anticipatory (Tzur, Simon, 2004). Moreover the type of un-

derstanding one achieves has deep impact on the capability of developing operational

and structural conceptions (Sfard, 1991).

Along the way I had to acknowledge the need to clarify which are the abili-

ties/knowledges that we expect the students to have and to analyze how well we do

in teaching what we say is important.
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Chapter 2

Literature review

Many researchers have addressed conceptual and procedural knowledge. To be more

precise, we can find in the literature many classifications and definitions of concep-

tual/procedural knowledge, understanding and thinking. Therefore, we need to state

what we mean by these and to present some of the different theories which the edu-

cational community has agreed upon.

Some of the literature that we’ll discuss is not limited to college level education.

However, we find that the contributions that those authors offer apply to our purpose.

Therefore, we won’t go into details about the contexts of their investigations.

By conceptual knowledge we refer to the ability to identify and apply principles,

knowledge of facts and definitions, and understanding of their meaning.

To have an example to work with, we could consider the fact that regions are

described by inequalities. This is conceptual since one has to know that regions

are characterized by being bounded by a subspace of dimension one less than the

dimension of the space they are immersed in. This implies that the boundary is

expressed by one equation, and then one has to select one side, which corresponds to

the inequality.

But this definition is not enough when we talk about conceptual understand-

ing. What we have in mind in that case is something like the ability to look at

an object from different points of view. Sfard (1991) offers a nice example, follow-

ing Hadamard’s metaphor comparing this idea to what happens in face recognition:
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“pictures . . . preserve their identity and meaning when observed from different points

of view and in different contexts” (Hadamard, 1949).

An example of procedural understanding is comprehending the algorithms. How-

ever it is useful to talk about procedural fluency, which is the ability to carry out the

procedures in a way that is accurate and efficient, but also appropriate to the context

and hence flexible.

Referring to the example above, one has to “translate” the two components of the

region (boundary and interior) into the “algebraic components” of the inequality: the

equation associated with it describes the boundary, and the strict inequality identifies

the interior. This is a fundamental procedural step, necessary to perform the right

computations.

It is evident even in this case that the distinction between conceptual and proce-

dural requires careful attention. At the same time it is of great interest to explore

how concepts and procedures are related.

Of course, there are different types of understanding that one can achieve, and

that can be reflected in the approach towards a task (and this could be referred to

as conceptual/procedural thinking), as well as the capability for developing different

ways to perceive a mathematical notion.

The topic of learning approaches has been addressed by Ramsden (2004). He

introduces the word conception to talk about perceptions of notions, and explains it

as the way a person makes sense of something. He says that “when we talk about

a student understanding something, what we are really saying is if the student is

capable of relating to a concept in the way that an expert does.” It is from this

perspective that he analyses the approaches to learning, pointing out two aspects:

whether the student is searching for meaning (deep/surface approach), and how the

student organizes the task (atomistic/holistic approach). He clarifies:

In practice, these two aspects of approaches are fused together. It makes

no sense to talk about the meaning attributed to something unless one

also talks about how the meaning is constituted. On the other hand, how

a student structures a task cannot be considered in isolation from what
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he or she is intending to structure. (Ramsden, 2004)

He goes further, stating that approaches to learning are not something a student has.

Rather, they represent what a learning task means to the learner. And that might

bear upon the level of understanding achieved. Quality of understanding and learning

approaches are linked one another:

An approach is not about learning facts versus learning concepts: it is

about learning just the unrelated facts (or procedures) versus learning

the facts in relation to the concepts. Surface is, at best, about quantity

without quality; deep is about quality and quantity. (Ramsden, 2004)

In his research he used both interviews and surveys to investigate this topic, and he

explains that while some students stressed memorizing and arranging disconnected

pieces, others engaged in the process of linking together and abstracting personal

meaning.

Many researchers agree that conceptual knowledge increases procedural profi-

ciency, and conversely, that increasing procedural knowledge assists in expanding

conceptual understanding and knowledge. This is usually described as a learning

process in which procedural knowledge is used to manipulate existing concepts (Pi-

aget).

This model has been studied in detail by Anna Sfard, in [5]. Her reaserch is

based on a comparison between historical development of mathematical concepts and

how individual students learn them. The latter is based upon empirical evidence,

psychological studies (pioneered by Piaget) and theoretical arguments, and we are

going to present some of her research here.

We have already introduced the word “conception,” relating it to the way in

which we make sense of something. Sfard uses this word to mean “the whole cluster

of internal representations and associations evoked by the concept”, and introduces

it as a response to the need to deal with abstract entities such as the mathematical

concepts.
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In opposition to the previously presented decomposition of mathematical knowl-

edge, she posits a unified whole in which emerges a dual nature of conceptions, where

the two aspects, structural and operational, are complementary and necessary to each

other.

First of all, we need to stress that what she calls structural conception is very

close to our original idea of conceptual understanding. In fact it refers to the ability

of seeing a mathematical entity as an object, which means “being capable of referring

to it as an object,. . . being able to recognize the idea at a glance and to manipulate

it as a whole, without going into details” (Sfard, 1991), like recognizing the face of a

man.

Operational refers to algorithms and processes, and could be related to our idea

of procedural understanding. Sfard explains (1991) that “interpreting a notion as a

process implies regarding it as a potential rather than actual entity, which comes into

existence upon request in a sequence of actions”, and is therefore very detailed.

She argues that doing things is the only way to get in touch with abstract con-

structions. Therefore, it would be unreasonable to think that a student arrives at a

structural conception without a previous operational understanding. On the other

hand, insight and mastery of procedures “should sometimes be viewed as a basis for

understanding” the underlying “concepts rather than its outcome” (Sfard, 1991). In

her historical review, she points out that “the majority of ideas originated in processes

rather than in objects” even though the “insight necessary for mathematical creation

can hardly be achieved without the ability to ‘see’ abstract objects”.

In other words, the ability to see a notion both as a process and as an object is

indispensable for a deep understanding, but “our capability for developing operational

and structural conceptions bears upon the type of understanding we achieve” (Sfard,

1991).

In her research, Sfard reports that many students don’t reach the “object-level” of

understanding. Tzur and Simon (2004) have studied this issue, and suggest that the

“transition from process to object involves two stages of conceptual transformation”

that they call participatory and anticipatory. They argue that “a critical component
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of a conception is an abstracted relationship (anticipation) between an activity and

its effects. Thus an activity both generates and is a constituent of a conception.”

(By activity they refer to any mental process.) Their work describes the development

of a mathematical conception. They identify a first stage, called participatory, in

which “the learners have learned to anticipate the effects of an activity -effect is the

outcome of their activity- and may also be able to explain why the effects derive from

the activity. However, this knowledge is only available to the learners in the context of

the activity through which it was developed.” This “means either that the learners are

engaged in the activity or are somehow . . . prompted to use or think about the activity.

In contrast, at the anticipatory (second) stage . . . a learner independently calls up

and uses a newly formed activity-effect relationship appropriate to the situation at

hand.”(Tzur, Simon, 2004)
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Chapter 3

Methods

We based our study on two questionnaires and on a series of interviews, in which we

asked the students to work on a problem in our presence, and to think aloud about

it.

Their participation was voluntary, anonymous and did not affect the assessment

for the course.

We worked with the students attending a multivariable calculus class at MIT, in

the Spring of 2006. This class consisted of 35 hours in lecture, 26 in recitation, and

each instructors were available for two hours a week for office hours. There were 199

students enrolled in this class.

3.1 Questionnaires

Two questionnaires were given to the students: one at the beginning of the term

(Pre-Class Survey, see Appendix A) and one at the end (Post-Class Survey, see Ap-

pendix B) . They focused on students’ perceptions of their learning, understanding

of concepts and development of problem solving abilities. They were asked to analyze

the different components of the class (recitation, lecture, personal study, office hours,

interaction with other students) and to give opinions on what helped them most.

After the first survey, we grouped the components of the course that could contribute

to learning as follows:

19



PI: Passive Interaction (recitation, lecture)

AI: Active Interaction (office hours, students interactions, one-to-one interaction)

Th: Theory (readings)

C: Connections (with other subjects, pictures)

Pr: Practice (problem-sets, personal study/elaboration)

and used these categories for the Post-Class Survey. This was done in order to narrow

the range of responses and attempt an analysis of their opinions.

Students’ responses to the Pre-Class Survey led us to the conclusion that the

students expected to rely mostly on some sort of passive teaching, as the students

often regard lecture and recitation. In other words, any kind of input that didn’t

require apparent effort (except attention) from the students fell into the category

named Passive Interaction.

Within Active Interaction, we included all those activities in which students par-

ticipation was more marked, or in which each student was somehow helped (or forced)

to actively discuss or ask questions.

We needed a category to collect the set of written sources that the students could

access, and we named it Theory. Internet resources also belong to this category.

Some students also mentioned the usefulness of connections with other subjects

or within the course material, and of visual aids such as pictures and graphs, and

we grouped them together as Connections, interpreting this as the need for different

points of view.

Finally, all those activities regarding personal elaboration, various inputs (like

problem sets) and even just repetition and time to absorb what learned were referred

to as Practice.

Description of Surveys

The main purpose of these surveys was to determine the students’ approach to the

course in terms of the content and the methodologies offered and required.
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The Post-Class Survey was meant to check how their approach changed during

the semester, based on their experience. For this reason the questions asked were

the altered versions of the first three in the Pre-Class Survey. Only the open ended

question was changed in its structure, in the sense that we asked them to choose

among items as we grouped the answers they gave in the Pre-Class Survey (this is

explained in Section 3.1).

3.2 Interviews

Together with the questionnaires, we collected data from a series of interviews with

16 students. Their selection was based on their grades on their first test, since we

wanted to have sample representation of the whole class. We invited about 80 students

distributed over different levels of performance. Sexteen agreed to participate and

each of them has been interviewed once.

Among the students who participated, five got A as final grade, six got B, three

got C and two got D. This is consistent with the distribution of grades over the whole

class.

Seven of these 16 students were males and 9 females. We will refer to each of

them using “he.”

Choice of Problems

Methods of investigation of students’ understanding have been studied by Kan-

nemeyer (2005) in a very systematic way. The aim of his research was to “develop and

assess a system of instruments to investigate students’ understanding in mathematics

based upon the way they answer questions on topics in a first year university course.”

We found Kannemeyer’s framework particularly appropriate to our purpose, so

we decided to follow his recommendation for our interviews. His suggestion is to test

students’ understanding in terms of linkages - that is, how students link together the

knowledge they acquire - by using non-routine questions. In particular, he proposes

choosing problems in contexts that are quite unfamiliar to the students.
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Here we describe the implementation of Kannemeyer’s recommendation. These

are the problems that we used:

Problem 1

Given f : A → R, determine f(A), where

A : 1 ≤ x2 + y2 ≤ 4

and

f(x, y) = x2 − y2.

Problem 2

Describe the region






x2 + y2 + z2 ≤ 9

x2 + y2 ≤ 3z2

and compute its volume.

Problem 3

Compute the average distance from the origin on the region described by:







x2 + y2 ≤ 4

1 ≤ x + y ≤ 2.

3.3 Analysis of Problems

Following Kannemayer’s classification, we decided to focus on three aspects of under-

standing:

Instrumental: refers to the ability to reason and compute (knowing how).

Relational: refers to the ability to justify the reasoning used (knowing why).
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Formal : refers to the use of formal symbolism and notation, which might indicate

either misconceptions or clarity.

This framework includes procedural knowledge (instrumental understanding), which

is recognized as an important part of understanding, and will be further detailed in

order to analyze the data collected from the interviews.

Relational understanding can be further elaborated into three categories:

1. Identification of Goal (IG): interpretation of task and/or plan of action.

2. Identification of Keypoints (IK): specification of markers
signaling progress towards goal.

3. Choice of Procedures (PC): linking of procedural knowledge
to conceptual knowledge.

This classification articulates the process of making the knowledge available in

order to solve the problem. It is worth noticing that the choice of procedures falls into

relational understanding since it includes selection of procedures and how legitimate

those selections are.

Instrumental understanding concerns mostly mastery of algorithms, and is referred

to as Application of Procedures (PA).

We are going now to give a detailed analysis of each problem based on the classi-

fication just explained.

3.3.1 Problem 1

For this problem the Identification of Goal amounts to understanding what the image

of a function is and that it is related to the critical values.1

The determination of the image f(A) requires the following steps (IK):

1. Realize that the image in this case is an interval, so the goal becomes to find

the minimum and the maximum of the function f over the region A;

1The critical values are the values attained by the function at the critical points, which are the

points that either are on the boundary or which make the partial derivatives vanish.
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This step is actually quite complex since the fact that f(A) is an

interval is based on a deeper understanding of the region and some

basic knowledge of topology. In fact one has to recognize that A is

connected,2 and to observe that f is continuous. These conditions

force the image to be connected as well, and since it is a subset of the

real numbers, one can conclude that the image must be an interval.

2. Understand the region, identifying interior and boundary;

-

6

&%
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��
��
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the annulus A: 1 ≤ x2 + y2 ≤ 4
interior : 1 < x2 + y2 < 4

boundary : x2 + y2 = 1 and x2 + y2 = 4

Figure 3-1: Problem 1

3. Find the critical points in the interior and classify them (if any; in this case

there are not);

4. Find the critical points on the boundary;

5. Compare the values that the function takes in these points.

An example of Choice of Procedure (PC) for the search of critical points in the interior

of the region could be the computation of the gradient, while, on the boundary one

could choose between the method of Lagrange’s multipliers or the parametrization of

each portion.

2A region is called connected if it is not decomposable into two disjoint parts

24



3.3.2 Problem 2

Here the problem asks explicitly for two goals: the description of the region and the

computation of its volume. The keypoints (IK) are:

1. Understand that in order to describe the portion of the space given by







x2 + y2 + z2 ≤ 9

x2 + y2 ≤ 3z2

one has to study the region described by each relation, then take the intersection;

2. Split the study of each expression considering first the associated equality then

the inequality. Here, for the first one, the equation

x2 + y2 + z2 = 9

describes a sphere; then

x2 + y2 + z2 ≤ 9

selects the inside. For the second expression,

x2 + y2 = 3z2

gives a cone, and its interior is found by considering

x2 + y2 ≤ 3z2;

3. Understand their intersection;

4. Compute the volume.

The Choice of Procedure (PC) for the last step concerns the appropriate coordinate

system and the integral computing the volume. In fact one could approach this task

by a one-dimensional, two-dimensional or three-dimensional integral. In the first
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case, one sees the region as a solid of rotation (we need to point out though that

this method was not expected to be considered since it involves topics included in

previous classes), thus the volume is computed by

2

∫ 3
√

3

2

0

2πx(
√

9 − x2 −
√

3

3
x)dx

In the second case the region can be seen as bounded by graphs of functions, namely

f1(x, y) =
√

9 − x2 − y2 and f2(x, y) =
√

x2+y2

3
, thus computing the volume as

2

∫∫

x2+y2≤9

(f1 − f2)dx dy.

Finally, in the third case one can compute the volume of a solid

∫∫∫

R

dV = 2

∫

2π

0

∫ π/3

0

∫

3

0

ρ2 sin φ dρ dφ dθ

where R is the region inside the solid.

3.3.3 Problem 3

For this problem one has to remember that the average distance is computed by

1

Area

∫∫

R

f dx dy.

where f is the distance, i.e. f(x, y) =
√

x2 + y2, and the Area (of R) can be computed

either by geometric argument or by the integral
∫∫

R
dx dy.

So the main difficulty is to understand the region R (this would be both IK and

PC), given by






x2 + y2 ≤ 4

1 ≤ x + y ≤ 2,

and that amounts to the following steps:

1. Recognize the necessity to study the two relations one at a time;
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2. Understand the region described by the first expression, by considering first the

associated equality and then the inequality;

3. Understand the region described by the second expression in the same way;

4. Understand their intersection.

Finally, one of the challenges of this problem is to be able to describe this region

(PA), since the numerical choices of the relations lead to non standard values for the

angles involved, so the application of procedures needs some careful work.

3.4 Comments

We discussed the choice of the problems with the course professor, in order to establish

a reference with the material as it has been taught and to the learning objectives of

the class. We present here his analysis of the problems with the difficulties that he

expected the students would have.

3.4.1 Problem 1

The choice of notation was not familiar to the students. In particular, the statement

of the problem relies too much on set theory, which the students haven’t been exposed

to at this point of their education. In particular, he referred to the notations

f : A → R and f(A).

Moreover the step necessary to relate the idea of range to the task of finding max/min

is too distracting. A less intimidating version would be:

Find the max/min of the function

f(x, y) = x2 − y2

27



defined on the annulus

1 ≤ x2 + y2 ≤ 4.

Even this version would be a nontrivial problem since the understanding of subsets of

the plane and their description are still challenging for many students. For instance,

they would find it easier to have the region presented as bounded by the two circles.

For these reasons he would expect 15% of the students to be able to describe the

annulus at the beginning of the semester and maybe 60% by the end of it. Those

percentages would increase to 30% − 80% for the same problem in isolation (this

means when the problem is considered in itself, out of the context that could be a

source of distraction).

3.4.2 Problem 2

Here the main points are:

1. Understand the region;

2. Compute the volume.

The professor stated that the second part is quite standard once the student is

able to describe the region, so the focus should be on the difficulties present in the

first task.

There are two expressions describing two portions of the plane, so the first step is

to understand each of them. In order to do that, one has to split the process by first

considering the associated equality and then examining the inequality. Then one has

to take the intersection of these regions, as prescribed with the notation







x2 + y2 ≤ 4

1 ≤ x + y ≤ 2.
(3.1)

This part relies again on set theory and might look unfamiliar.

For the analysis of each expression in (3.1), the professor would expect most

students being able to split the process, but less than 40% of them to be able to
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understand the region even when solving this problem in isolation (that is when

trying to determine a region expressed by an inequality), even assuming they were

given this task at the end of the semester.

3.4.3 Problem 3

This problem has difficulties very similar to those in Problem 2 regarding the under-

standing of the region, which is indeed expressed as the intersection of two subsets of

the plane. An additional distracting factor could be the choice of numerical values,

but the goal of the problem is to compute

1

A

∫∫

(dist) dx dy.

and most students should be able to set it up.
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Chapter 4

Findings

4.1 Surveys

In order to analyze the data from the questionnaires, we need to specify the amount

of information we received and the way we sorted it. The number of the students

who responded to the Pre-Class Survey and the Post-Class Survey is respectively 146

and 88, out of the 199 students enrolled in the class. For the closed ended questions,

we report the percentage of the occurrence of each answer. For the open ended

questions, where we asked to provide (or select, in the case of the Post-Class Survey)

up to two choices, the percentage refers to the occurrence of that choice among what

the students listed: some of them gave two answers, some only one.

Based on the classification explained above (Section 3.1), we could determine

what the students thought was most helpful in understanding concepts and in solving

problems. For instance, for the understanding of concepts, 44% of what the students

listed in the the Pre-Class Survey reported that methods in the category PI (Passive

Interaction) would be the most helpful, while the percentage in the Post-Class Survey

is 37% for the same category (see Table 4.1).

We were also able to order the different components of the class based on the

importance that the students gave to each of them for their learning (Table 4.3): in

the Pre-Class Survey Lectures got the highest score, followed by Recitations. Then,

in order, Homework, Individual Study, Interaction with Other Students, TA’s Office
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Pre-Class Post-Class
PI 44% 37%
AI 14% 19%
Th 14% 14%
C 6% 2%
Pr 22% 28%

Table 4.1: What students find helpful in understanding concepts

Pre-Class Post-Class
PI 45% 31%
AI 19% 22%
Th 10% 17%
C 1% 1%
Pr 25% 29%

Table 4.2: What students find helpful in understanding how to solve problems

Pre-Class Post-Class
Lectures 1 3

Recitation 2 2
Homework 3 4

Individual Study 4 1
Interaction with Other Students 5 5

TA’s Office Hours 6 6
Professor’s Office Hours 7 8

Tutoring Room 8 7

Table 4.3: Importance of the components of the class.
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Hours, Professor’s Office Hours and Tutoring Room.

The last four components stay in their positions at the end of the semester, but

there is a significant change in the order among the first four: students list as the most

important source for learning Individual Study, followed by Recitations, Lectures and

Homework.

Other data obtained from the surveys were the number of hours expected to be

spent (and then actually spent) per week on each component of the class (Table 4.4)

and the percentage of attendance (Table 4.5), again as anticipated (Pre-class Survey)

and as actually done (Post-class Survey).

Pre-class Post-class
Homework 6.5 5.6

Individual Study 2.6 2.6
Interactions with Other Students 3 2.2

Professor’s Office Hours 0.3 0.2
TA’s Office Hours 0.6 0.6

Tutoring Room 0.8 0.7

Table 4.4: Hours per week

Pre-class Post-class
Lectures 96% 92%

Recitation 93% 87%
Professor’s Office Hours 12% 4%

TA’s Office Hours 21% 19%
Tutoring Room 15% 14%

Table 4.5: Percentage of attendance

4.2 Interviews

4.2.1 Problem 1

Ten students tried to solve this problem, and all of them were confused by the state-

ment because, as explained above, it used unfamiliar terminology. As the professor
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confirmed (cf. 3.4.1), they were not used to writing R for the set of real numbers

or f : A → R for a function f defined on a domain A and taking real values, or

considering the image of such a function and denoting it by f(A).

So I went through all these notions and gave some examples of images of functions.

All but two could draw the picture without problems. The main difficulties they

encountered at this point were the meaning of the equation of the circle, namely that

it is a constraint on the distance, and that it is a property which is true or false for

each point of the plane.

Four students followed the analysis of the domain by an algebraic study of the

function, trying to get information about the image. One used a geometric approach.

Two students ignored the search of critical points in the interior of the region, assum-

ing they were to be found on the boundary. Seven decided to express the boundary

in polar coordinates. One of them extended this procedure to the interior and used

it to find the interval and an explanation of the fact that it was an interval.

In more detail, this student used polar coordinates







x = r cos θ

y = r sin θ

to rewrite the function f(x, y) = x2 − y2 as

f(r, θ) = r2(cos2 θ − sin2 θ) = r2 cos 2θ,

and since the region A is given by







1 ≤ r ≤ 2

0 ≤ θ < 2π

he deduced

−4 ≤ f(r, θ) ≤ 4.

He then argued that the functions r2 and cos 2θ are continuous and the region is
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connected, hence the image has to be connected too.

Another student (the one who used the geometric argument) was able to prove

that the image must be an interval. After showing that −4 and 4 bound the image

(algebraically), he provided a path through the region on which the function takes all

values ranging from −4 to 4. In detail, he observed that on the segment from (0, 2)

to (0, 1) the function is given by

f(x, y) = f(0, y) = −y2, y ∈ [1, 2]

hence its image is [−4,−1]; on the segment from (0, 1) to (1, 1) the function becomes

f(x, 1) = x2 − 1, x ∈ [0, 1]

and takes all values in [−1, 0]; on the segment from (1, 1) to (1, 0) it is

f(1, y) = 1 − y2, y ∈ [0, 1]

so its image is [0, 1] and finally on the segment from (1, 0) to (2, 0)

f(x, y) = f(x, 0) = x2, x ∈ [1, 2]

ranges from 1 to 4. What this student did was reduce the function to more familiar

ones, so he could easily see their behaviour and work with a new concept like the

image.

4.2.2 Problem 2

Four students attempted the solution of this problem, three of them tried to under-

stand the region described by each expression in







x2 + y2 + z2 ≤ 9

x2 + y2 ≤ 3z2

(4.1)
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and had no problem with the sphere. The cone, however, gave them more to think

about. Two of them weren’t able to assign surfaces or regions to equations or in-

equalities, so they needed help figuring out the solid they were asked to compute the

volume of.

The fourth student didn’t have the same approach and tried to determine the

region described by (4.1) by manipulating algebraically the two inequalities, plugging

one into the other, but he couldn’t make use of the information he got. Then I

suggested he look at the equalities first, but still he was unable to figure out by

himself the subset defined by what he found.

All four students attempted the second part, namely the computation of the vol-

ume. Three could set up the integral: one of them decided to look at the region

as bounded by graphs of functions; the other two preferred the three-dimensional

method and wrote
∫∫∫

dV as iterated integrals by switching to spherical coordinates.

However, one of them couldn’t determine bounds for the variable φ (the angle with

the positive z-axis).

4.2.3 Problem 3

This problem was attempted by only two students. Neither remembered how to

compute the average value of a function, so I provided them with the formula

f̄ =
1

Area

∫∫

R

f dA

asking them what was the function f inside the integral. They both said it was the

distance, but couldn’t write an expression for it, so I had to help them remember how

to compute it.

The computation of the area was discussed with only one of them; this student

noticed some symmetry in the domain, but didn’t really know how to make use of it.

In particular, he was confused about the portion below the x-axis, thinking that the

integral
∫∫

dA over that part would give a negative value.

Both of the students struggled with the description of the region. I suggested
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that they look at the relations one at a time and to consider first the equalities

associated with them. One student needed help recognizing the equation of a circle,

but then both were able to draw the two lines and the circle involved in the picture

(see Fig.4-1).
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Circle : x2 + y2 = 4
lines : x + y = 1 , x + y = 2

Figure 4-1: Problem 3

The student who struggled with the circle guessed at first that it was a parabola,

intercepting the axes at the points (0, 2), (2, 0) and (0,−2). It is of interest to note

that he was able to point out the relevant numerical values of the equation, and this

allowed him to draw the right circle once assured that it was a circle. They were both

able to guess the portion of the plane cut off by these three curves, but weren’t able

to explain precisely why.

Finally, only one student tried to set up bounds for the region, but, even though

the idea behind the computation was correct (fix a value of x in the range present in

the region, then let y vary inside the interval cut by the region), he wasn’t able to

carry on the procedure (offering an example of good PC but weak PA). In particular,

he was confused by having to change the choice of the curves bounding the region

(namely sometimes a line and a portion of the circle, sometimes the two lines) and

the complexity of the computations required (indeed not standard).
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Chapter 5

Discussion

5.1 Questionnaires

The data collected from the surveys are particularly interesting when we compare

the responses that the students gave at the beginning of the semester with what they

said at the end of it.

If we look at the ranking of the components of the class in terms of the importance

the students gave each for their learning, we can note that Lectures, Recitations,

Homework and Individual Study appear in the first four spots in both surveys. In

the Pre-Class Survey they were listed in this order, but the Post-Class Survey showed

that the students indicate Individual Study as the most useful thing, much more

than what they expected. Moreover, they found Recitations were more helpful than

Lectures.

Another result worth noting comes from the open ended questions, where the

students were asked to list two things that help them most in understanding concepts

and the two things that help them most in problem solving. In this case, it is not

the comparison between Pre-Class and Post-Class Survey that attracts our attention.

Rather, it is impressive that almost half of the students indicated, in both cases, an

activity which we have classified as Passive Interaction. This was not the word they

used - they often listed recitation and lecture - but they referred to these things as

to activities in which they were given information and sets of rules and instructions.
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Practice come next, but the numbers are halved.

5.2 Interviews

We believe that visual thinking may help in deciding the appropriateness of a process,

in the choice of procedure and in the identification of keypoints. Visual thinking is

not just the ability to recognize the graph of a function from the equation defining

it. Rather it refers to the approach of solving a problem and involves skills of multi-

ple representation. As Habre (1999) explains: “Visualization is the process of using

geometry to illustrate mathematical concepts.” He continues, “proficiency in visual

thinking requires from the students an ability to understand that algebra and geome-

try are alternatives for expressing mathematical ideas, and that a graph may contain

information needed for a better overall picture of a problem.” (Habre, 1999)

Let’s look at some examples.

In Problem 2, an option was to determine the surface described by

x2 + y2 = 3x2

by taking slices of it. This process usually consists of the following steps:

a) intersection with each of the coordinate planes:

• with the xy-plane:






x2 + y2 = 3z2

z = 0

• with the xz-plane:






x2 + y2 = 3z2

y = 0

• with the yz-plane:






x2 + y2 = 3z2

x = 0
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and/or

b) intersection with a family of parallel planes:

• parallel to the xy-plane:







x2 + y2 = 3z2

z = c c constant

• parallel to the xz-plane:







x2 + y2 = 3z2

y = c c constant

• parallel to the yz-plane:







x2 + y2 = 3z2

x = c c constant

This method relies heavily on a good knowledge of analytic geometry. In fact one

has to be fluent with both the concept of intersection (what it means to intersect

the surface with a plane) and what that implies algebraically (namely that you can

substitute, say z = 0, in the equation of the surface) and geometrically (realize that

you get the horizontal section through the origin).

In Problem 1, a visual approach could be based on the knowledge that

z = x2 − y2

is a hyperbolic paraboloid, or at least that the origin is a saddle point for the function

f(x, y) = x2 − y2.

This would give an insight about the graph of the function over the annulus

1 ≤ x2 + y2 ≤ 4, so one could guess where the minima and the maxima were, or
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maybe just visualize that they were on the boundary.

But visual thinking could help in a much deeper way, even if one doesn’t remember

the graph of that function. In fact, the step from the conception of the image of a

function as a set of points and its visualization as a subset of the real numbers is

what allows the connection with the search of critical points.

An analysis of the interviews conducted in this study reveals that only a small

number of students demonstrated a confidence in visual thinking, showing that this is

not an approach they are familiar with. It seems more common for them to rely solely

on algebraic manipulation, usually revealing a lack of knowledge of the corresponding

geometric meaning of their computations.

Over all, we could observe some difficulty with multiple representation in general,

with the striking exception of a remarkable insistence on searching for symmetries.

Indeed, the students were always looking for them, and this was certainly due to a

specific curricular choice made by the professor.

However, they were often unable to carry on with the procedure or to explain

what they were doing and why. It was a common mistake, for instance, to forget the

multiplicative factor after reducing to a portion of the region.

This weakness in procedural knowledge was not limited to this context. Almost

everybody made computational mistakes, but some of them might have felt pressure

due to the unfamiliarity of the problem or even to the uncommon circumstance of

explaining how they were solving a problem to someone else.

Some habits of thought were common to most of the students. First of all, they

seemed very reluctant to use the material just learned, usually trying to use knowledge

from previous classes, even high school, rather than looking for tools introduced in

the course they were attending. Only after being prompted to go through the list of

topics presented in class, could they point out (and sometimes explain and/or use)

the one they needed in order to solve the problem. It is remarkable though that

occasionally some of the methods they came out with were not standard and quite

efficient. It seems that they don’t appreciate the power of the tools they’re learning.

Most of the students were reluctant to make deductions. Their approach mostly
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relied on memory and often consisted of arranging disconnected pieces.

Finally, we could observe that the students usually don’t have a strategic approach:

with very few exceptions, they set up no frame - that is they don’t have a plan of

action. This was particularly evident in the difficulty they had in identifying the goal

of their problem and the key points that would lead them to the solution (IG and IK

in our classification, see Section 3.1).
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Chapter 6

Conclusions, limitations and

suggestions for further research

Our research has shown many weaknesses of the students. However, we have to ac-

knowledge that the choice of the problems proposed was particularly challenging. In

part this was on purpose, as an attempt to realize the conditions described by Ken-

nemayer, as introduced in Section 3.2. It is also true though, that the unfamiliarity

of the type of question and of the notation produced a situation in which students

tended to rely too much on terminology. This was not necessary, and it resulted in

an inefficient research tool.

Moreover, the purpose of our study changed a bit along the way, mostly in order

to follow the lead of the data. Initially, we were trying to determine in which parts

of the class different abilities are developed. We ended up analyzing whether some

abilities were developed.

We think, though, that the results are of great interest.

From our discussions, it appears that students look for general lists of steps to

do to solve the problem, without really trying to understand why. The result is that

their procedures and approaches are not very flexible.

Let’s examine the difference between the expert and the novice, in any field of

knowledge:

45



Experts are more likely than novices to recognize meaningful patterns of

information ([8]).

and

Experts’ abilities to reason and solve problems depend on well-organized

knowledge that affects what they notice and how they represent problems.

Experts are not simply general problem solvers who have learned a set of

strategies ([8]).

These strategies are what the students aimed for, instead of the transfer of exper-

tise. As Ramsden says, “What students learn is associated with how they go about

learning it. Approaches are related to how much satisfaction students experience in

their learning.“Students who did not get the point [of the text] were not looking for

it”.(Ramsden, 2004)

Of course, if this is the attitude towards learning that the students have, it might

be also because the instructors don’t put enough attention to the aspect of transfer.

It would be of great interest to investigate what the instructors see as their edu-

cational purpose, and whether the students get what they aim to transfer. Also, it

would be useful to determine where this kind of approach that the students have has

originated, and how can it be corrected.
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Appendix A

Pre-Class Survey

The following two pages show the questionnaire given to the students at

the beginning of the semester.
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Figure A-1: Pre-Class Survey, page 1
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Figure A-2: Pre-Class Survey, page 2
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Appendix B

Post-Class Survey

The following two pages show the questionnaire given to the students at

the end of the semester.
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Figure B-1: Post-Class Survey, page 1
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Figure B-2: Post-Class Survey, page 2
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