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Abstract

Let p be an odd prime and let EO = E
hCp

p−1 be the Cp fixed points of height p − 1
Morava E theory. We say that a spectrum X has algebraic EO theory if the splitting
of K∗(X) as an K∗[Cp]-module lifts to a topological splitting of EO ∧X. We develop
criteria to show that a spectrum has algebraic EO theory, in particular showing that
any connective spectrum with mod p homology concentrated in degrees 2k(p − 1)
has algebraic EO theory. As an application, we answer a question posed by Hovey
and Ravenel [10] by producing a unital orientation MW 4p−4 → EO analogous to
the MSU orientation of KO at p = 2 where MW 4p−4 is the Thom spectrum of the
(4p− 4)-connective Wilson space.
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1 Introduction

Let E be a spectrum equipped with a unit map S0 → E. A sphere bundle V : Z →
BGL1(S) has a Thom spectrum Th(V ) which comes with a unit map S0 → Th(V ).
An E-orientation of the bundle V is a choice of unital map Th(V )→ E. If V can be
written as a pullback of a sphere bundle W : Y → BGL1(S), then there is a natural
unital map Th(V )→ Th(W ) so an E-orientation of W restricts to an E-orientation
of V .

One strategy to understand E-orientations of bundles is to find an E-orientable
bundle that is as universal as possible. We can then show that some other bun-
dle is E-orientable by expressing it as the pullback of this “universal” orientable
bundle. For instance, the map BSU → BGL1(S) is KO-orientable, so any bundle
V : Z → BGL1(S) that factors through the map BSU → BGL1(S) is orientable.
This means that any sphere bundle that comes from a complex vector bundle with
vanishing first Chern class is KO-orientable. Similarly, the map BU [6]→ BGL1(S) is
TMF -orientable so any sphere bundle that comes from a complex vector bundle with
vanishing first two Chern classes is TMF -orientable. The localizations LK(1)KO and
LK(2)TMF are the p = 2 and p = 3 cases of a family of cohomology theories called
higher real E-theories EOp−1. Since BSU = BU [4] is the 4-connective cover of BU
and BU [6] is the 6-connective cover of BU , it is natural to guess that there might
be an EO-orientation of BU [2p]. However, the standard map BU [2p]→ BGL1(S) is
not EO-orientable when p > 3 according to an observation of Hovey [9, Proposition
2.3.2].

We prove that the canonical bundle over the Wilson space W4p−4 is EO-orientable.
The Wilson space W2k is obtained by starting with a p-local even dimensional sphere
and attaching even cells to kill odd homotopy classes [17]. The resulting spaces
have even homotopy groups and torsion free even integral homology groups. Each
Wilson space is an infinite loop space of BP n for some appropriate n, for instance
W4p−4 = BP 2 4p−4 is the (4p − 4)th loop space of BP 2 [17]. The space BU [2p]
has an Adams splitting

BU [2p] ' BP 1 2p × · · · × BP 1 4p−4

= W2p ×W2p+2 × BP 1 2p+4 × · · · × BP 1 4p−4

BU [2p] does not have even cohomology because BP 1 2k doesn’t have even cohomol-
ogy when k > p + 1. We think of the Wilson space W4p−4 = BP 2 4p−4 as an even
replacement for BP 1 4p−4. Hovey and Ravenel [10] computed the Adams Novikov
spectral sequence for the Thom spectrum MW4p−4 of the standard map W4p−4 → BU
through a range and observed that it looked like several copies of the homotopy fixed
point spectral sequence for EO . Because of this, they asked whether there could be
a unital orientation map MW4p−4 → EO . We answer their question by showing that
such a map exists:

Theorem 1.1. Let f : W4p−4 → BGL1(S) be any map. There is an equivalence
EO ∧Mf ' EO ∧W(4p−4)+ of EO-modules, so there is a map of spectra Mf → EO
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which factors the unit map S0 → EO.

As a replacement for an orientation map MU [2p]→ EO we obtain an orientation
map MMU 2p → EO (Theorem 1.4).

Our goal is to prove that certain bundles are EO-orientable. Characteristic classes
determine an easily computed obstruction to orientability. Given a cohomology theory
E and a space Z we say that E-orientability of complex bundles over Z is Chern
determined if the condition that V is an E-orientable bundle over Z is equivalent to
some algebraic congruences on the Chern classes ci(V ) ∈ H2i(Z). If E-orientability
of bundles over Z is Chern determined we can easily determine which bundles over
Z are E-orientable.

Consider the case E = KO . The mod 2 reduction of the first Chern class c1(V ) ∈
H2(Z) determines the η attaching map into the zero cell in Th(V ). Since the zero
cell is split in Σ∞+Z and η is detected in KO∗, a necessary condition for a bundle
V to be KO-orientable is that c1(V ) = 0 (mod 2). This is the only obstruction to
KO orientability visible to Chern classes so a space Z has Chern-determined KO-
orientability if every bundle V over Z such that c1(V ) = 0 (mod 2) is KO-orientable.
An application of a theorem of Bousfield (Theorem 1.8) implies that any even space
has Chern-determined KO-orientability. The space BSU is even and 4-connected,
so this implies that every complex vector bundle over BSU is KO-orientable. This
proves Theorem 1.1 in the case that p = 2 and f factors through BU .

In the odd prime case we have analogously that α1 ∈ π2p−3(EO) is nonzero.
The α1 attaching maps in a space Z are detected by the P 1 action on the mod p
cohomology. This implies that if a bundle V over Z is EO-orientable, we must have
P 1(u) = 0 where u is the Thom class of V in HFp∗(Z). In the case of the universal
bundle over BU , P 1(u) = ψp−1u where ψp−1 is the (p− 1)st power sum characteristic
class reduced mod p. Therefore, if V is orientable then ψp−1(V ) ∈ H2p−2(BU ) must
be divisible by p. Analogously to the case when p = 2, this is the only obstruction
to orientability visibile to Chern classes so a space Z has Chern-determined EO-
orientability if every bundle V over Z with ψp−1(V ) = 0 (mod p) is EO-orientable.
We show that every space with cohomology concentrated in degrees divisible by 2p−2
has Chern-determined EO-orientability. In particular, W4p−4 satisfies this sparsity
condition and is sufficiently connective that ψp−1 lives in a zero group. This implies
the odd prime case of Theorem 1.1 when f factors through BU . The case when
f is a general sphere bundle requires a bit of extra care with terminology but is
fundamentally the same.

Background

Fix an odd prime p. All spectra are implicitly p-completed. Let E = Ep−1 be the
Morava E theory corresponding to the Honda formal group law of height p− 1 over
Fpp−1 . Let m be the maximal ideal of E∗ and let K∗ = E∗/m = Fpp−1 [u±]. The Morava
stabilizer group at height p−1 contains elements of order p. Let G be a maximal finite
subgroup of Gn containing some element of order p. Such a subgroup is unique up to
conjugacy. Let EO = EhG. For an EO-module M write EEO

∗ (M) = π∗(E ∧EO M).

9



A more detailed review of the facts that we need about the Morava stabilizer group
appears at the beginning of Section 3. Bujard [5] has completely classified finite
subgroups of the Morava stabilizer group.

Hopkins and Miller computed the homotopy fixed point spectral sequence

H∗G(E∗)⇒ EO∗

up to some permanent cycles on the zero line. The homotopy of EO∗ for p = 3 and
p = 5 is illustrated in Figure 0-1. We review the facts we need about this spectral
sequence in Section 5.2. A more detailed description appears in section 2 of [13].

Let α1 ∈ π2p−3(S0) be the first nontrivial element of p-primary stable homotopy.
The Toda bracket of α1 with itself p times is

〈α1, . . . , α1︸ ︷︷ ︸
p

〉 = β1.

This Toda bracket is the obstruction to building a (p+ 1)-cell complex with a single
cell in dimension 2k(p− 1) for k ∈ {0, . . . , p} where all attaching maps are given by
α1. The Toda brackets 〈α1, . . . , α1〉 of length l − 1 < p vanish so there is an l-cell
complex with a cell in each dimension k(p−1) where k ∈ {0, . . . , l−1} and attaching
maps α1 when 1 ≤ l ≤ p. Call this complex Xl. The complex Xp is central to the
study of EO theory because EO ∧Xp has a natural complex orientable ring spectrum
structure (Corollary 3.5). We show in Lemma 2.2 that Xl is uniquely determined by
its HFp homology.

Results about Orientations

Say that a spectrum is k-sparse if it only has cells in dimensions in a single congruence
class modulo k. In this section we apply our results to show that certain complex
vector bundles are EO-orientable. We are working at an odd prime so the p-local
map BO → BU is a retract and all of these results apply equally well to real vector
bundles. The only fact from the rest of the paper used here is the following mild
generalization of Theorem 1.1:

Proposition 5.19. Let Z be a (2p− 2)-sparse 2p-connective space. Then every map
Z → BGL1(S) is EO-orientable.

The space MU
hCp−1

4p−4 is (2p−2)-sparse and 2p-connective so Proposition 5.19 implies

that any map MU
hCp−1

4p−4 → BGL1(S) is EO-orientable. The space MU
hCp−1

4p−4 occurs
as the Adams summand of MU 2p. We will now use the Adams conjecture to deduce
that the standard vector bundle on MU 2p is EO-orientable.

Theorem 1.2 (Adams Conjecture). Let l ∈ Zp be a primitive (p− 1)st root of unity.
Let ψl be the corresponding Adams operation. The composite

BU BU BGL1(S)
ψl

J
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Figure 0-1: The homotopy of EO at the primes 3 and 5. The y-axis is the homotopy
fixed point filtration. Most classes in filtration 0 are omitted. The lines indicate α
and β multiplications, the dashes lines when p = 5 indicate Toda brackets 〈α1, α1,−〉
or 〈α1, α1, α1,−〉. The periodicity for p = 3 is 72 and for p = 5 is 800. The Hurewicz
image classes are solid, the remaining classes are open.
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is null.

Since ψl acts as an equivalence on all of the summands of BU other than the
Adams summand W2p−2 = BP 1 2p−2, we get the following form of the Adams con-
jecture which is how we will apply it:

Corollary 1.3. A map X → BU → BGL1(EO) is null if and only if the map
X → BU → W2p−2 → BU → BGL1(EO) is null.

The complex orientation map MU → ku gives a map MU 2p → ku 2p and βp−1 is
a map ku 2p → ku 2 = BU . Composing these gives us a standard map MU 2p → BU .

Theorem 1.4. Let f be the standard map MU 2p → BU . There is a unital map
Mf → EO.

Proof. By Wilson’s thesis [17], there is a splitting MU 2p '
∏

iW2ki . Let A =∏
ki 6≡0 (mod p−1)W2ki and B =

∏
ki≡0 (mod p−1) W2ki so that MU 2p ' A × B. The

map B → MU 2p → BU → W2p−2 is null. The map A → W2p−2 factors through
W4p−4, so that the composite A→ BGL1(EO) is null by Theorem 1.1.

Corollary 1.5. Let V1, . . . , Vp : Z → BU be p zero dimensional virtual complex vector
bundles on a space Z. Let V =

⊗p
i=1 Vi. The structure map V : Z → BU factors

through MMU 2p and so V is EO-orientable.

Proof. Let θ : MU → ku be the complex orientation. This gives a map MU 2 → ku 2.
The MU Chern class cMU

1 ∈ MU 2BU corresponds to a map cMU
1 ∈ [ku 2,MU 2]. By

naturality of Chern classes, θ(cMU
1 ) = cku1 ∈ [ku 2, ku 2], which is the identity map.

Thus, cMU
1 is a section of θ:

MU 2 ku 2
θ

cMU
1

Given a vector bundle Vi ∈ [Z, ku 2] we get an element cMU
1 (Vi) ∈ [X,MU 2]. Multiply-

ing these together gives ΠMU =
∏
cMU

1 (Vi) ∈ [Z,MU 2p]. This gives a factorization
of the structure map V : Z → BU through MU 2p and by Theorem 1.4, V is EO-
orientable.

Corollary 1.6. Let V : Z → BU × Z. Then pV is EO-orientable.

Proof. It suffices to check this on the universal example BU × Z =
∏p−2

i=0 BP 1 2i.
The spaces BP 1 2i are all even so there is a Kunneth isomorphism

p−2⊗
i=0

KU 0(BP 1 2i)
∼= KU 0(BU )

where the map sends a collection of bundles V0, . . . , Vp−2 to their external tensor
product V0 � · · ·�Vp−2. Thus pV = p(V0 � · · ·�Vp−2) = (pV0)�V1 � · · ·�Vp−2. To
check that the external tensor product is orientable, it suffices to show that each of
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the bundles is individually orientable. For i 6= 0, the composite BP 1 2i → BU →
W2p−2×Z is null so the bundles Vi are spherically orientable. The remaining case we
need to check is that pV0 is EO-orientable.

The space W2p−2×Z is (2p−2)-sparse so EO orientations of bundles over W2p−2×Z
are Chern determined. To show that pV0 is EO-orientable, we need to check that
ψp−1(pV0) is divisible by p. Power sum polynomials are additive, so ψp−1(pV0) =
pψp−1(V0).

Corollary 1.7. Let V : Z → BU × Z. Then V ⊗p is EO-orientable.

Proof. Let d = dim(V ) and V = V − d. By Corollary 1.5, V
⊗p

is EO-orientable.

Then V ⊗p = (V + d)⊗p = V
⊗p

+
∑p−1

i=1

(
p
i

)
V
⊗i

+ dp. Since
(
p
i

)
is divisible by p, every

term in this sum is orientable.

We can similarly combine Corollary 1.5 and Corollary 1.6 to see that if V1, . . . ,
Vp are complex vector bundles with dimension divisible by p then V1 ⊗ · · · ⊗ Vp is
EO-orientable.

Outline

Given an EO-module M we get an associated K∗[Cp]-module EEO
∗ (M)/m = π∗(E∧EO

M)/m. This decomposes into a sum of indecomposable K∗[Cp] representations. We
are interested in showing that certain EO-modules M have a splitting that lifts the
decomposition of EEO

∗ (M)/m. Bousfield [4] showed at the prime 2 that many KO-
modules M have such splittings. The following theorem is a much simplified special
case (see also [12, Theorem 1.1]).

Theorem 1.8. Let V1 be the trivial representation of F2[C2] and let V2 be the regular
representation. Say that a KO-module M is even if KU KO

∗ (M) is even and free. If
M is an even KO-module and KU KO

0 (M)/2 ∼= V ⊕k1 ⊕ V ⊕l2 then M '
∨k
i=1 ΣsiKO ∨∨l

i=1 KU where si ∈ 2Z/8Z are appropriate shifts.

Meier [12] partially extended the results of Bousfield to the case of TMF (3), but
TMF (3)-modules are very messy and it is impossible to classify their behavior as com-
pletely as Bousfield classified KO-modules. If M is an EO-module then EEO

∗ (M)/m
is naturally a K∗[Cp]-module. If we let Vl be the length l indecomposible K∗[Cp]
representation, then we have a splitting EEO

∗ (M)/m ∼=
⊕p

l=1 V
⊕ml
l . We show in

Proposition 3.1 that E∗(Xl)/m ∼= Vl as K∗[Cp]-modules, so we might attempt to gen-
eralize Theorem 1.8 to odd primes by saying that if X is an even EO-module and
EEO
∗ (M)/m '

⊕
i∈S Vli then EO ∧X ' EO ∧

∨d
i=1 ΣsiXli . For most spectra this is

far from being true – the case when p = 2 works because the only odd dimensional
homotopy class in KO∗ is ηvi where v is the periodicity element. By contrast, there
are plenty of odd dimensional classes in EO∗. We call an EO-module algebraic in the
case where such a splitting holds:

Definition 5.2. An EO-module M is algebraic if M ' EO ∧
∨

ΣsiXli . A spectrum
Z has algebraic EO theory if EO ∧ Z is algebraic.
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This is closely related to Meier’s notion of a standard vector bundle, see the
discussion on page 25.

As a replacement for the evenness assumption, we consider stronger “sparsity”
conditions on the cell structure of spectra. Inspired by the Adams splitting of CP∞,
we consider (2p−2)-sparse spectra. The homotopy of EO∗ has p−1 different nonzero
stems in degrees 2(p−1)k−1, but the only such stem with a nontrivial Hurewicz image
is π2p−3 which contains α1 (see Figure 0-1). As a consequence, every (2p− 2)-sparse
connective spectrum has algebraic EO theory:

Theorem 5.13. Let Z be a connective (2p−2)-sparse spectrum. Then Z has algebraic
EO theory.

Theorem 5.13 applies to show that Xi ∧ Xj has algebraic EO theory. As a con-
sequence, smash products of algebraic EO-modules are algebraic. Theorem 5.13 can
also be used to show that several naturally occurring spectra have algebraic EO
theory, for instance CP∞ stably splits into a sum of p − 1 spectra which are each
(2p− 2)-sparse, so CP∞ has algebraic EO theory.

The groups EO2pk−1 are zero for all k, so we get a simpler result for 2p-sparse
spectra:

Theorem 5.14. Suppose that M is a 2p-sparse cellular EO-module. Then M is
algebraic. In fact, M '

∨
ΣsiEO. If Z is a 2p-sparse connective spectrum, then Z

has algebraic EO theory.

We observe that K∗[Cp]-free summands of E∗(Z)/m lift to spectrum level splittings
because the E2 page of the homotopy fixed point spectral sequence for EO ∧ Xp is
concentrated on the zero line:

Proposition 5.20. If M is a finite EO-module and π∗(E ∧EO M)/m ∼= ΣsF ⊕ V
where F is a free K∗[Cp]-module on one generator and V is some complement then
M ' EO ∧ ΣsXp ∨M ′ for some EO-module M ′ with EEO

∗ (M ′) = V ′.

For many important spectra, E∗(Z)/m has a large K∗[Cp]-free summand, so
Proposition 5.20 is useful. Unlike the other results in this paper, Proposition 5.20
directly generalizes to E

hCp

k(p−1). We intend to explore the consequences of this higher
height generalization in future work.

As a consequence of our splitting theory, we deduce some closure properties of the
category of algebraic EO-modules. It is clear from the definition that the category of
algebraic EO-modules is closed under sums and retracts. Proposition 5.8 shows that
algebraic EO-modules are closed under “unions”. Corollary 5.24 says that algebraic
EO-modules are closed under smash products. Proposition 5.25 says that algebraic
EO-modules are closed under ith symmetric powers for i < p. Algebraic EO-modules
are not closed under cofiber sequences, though if a map M → N of algebraic EO-
modules induces an injection or a surjection EEO

∗ (M)→ EEO
∗ (N) then the cofiber is

algebraic.
If a spectrum X has algebraic EO theory, it is easy to compute the homotopy type

of EO∧X. Let P (1)∗ ⊆ A∗ be the sub Hopf algebra of the Steenrod algebra generated
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by P 1. Explicitly, P (1)∗ = Fp[P 1]/(P 1)p with P 1 primitive. Let P (1)∗ = Fp[ξ1]/(ξp1)
be the dual quotient Hopf algebra of A∗. If a spectrum X has algebraic EO theory,
the homotopy type of EO ∧X is determined by the P (1)∗-coaction on HFp∗(X). The
indecomposable representations of P (1)∗ are cyclic modules of length at most p. Let
Wl = HFp∗(Xl) be the P (1)∗-comodule of length l.

Theorem 5.6. Let Z be a spectrum with algebraic EO theory. Decompose HFp∗(Z)
into indecomposable P (1)∗-comodules, say HFp∗(Z) ∼=

⊕
i∈T ΣsiWli where T is some

index set. Then EO ∧ Z ' EO ∧
∨

ΣsiXli.

We also use our determination of the Cp action on E∗(Xp) to prove that the
map EhCp → E is Galois. This is a special case of the result due to Devinatz
[6] that EG

h → Eh is Galois for any finite subgroup G of any height Morava E
theory. See [16, Theorem 5.4.4(b)]. We then show that for any EO-module there is
a strongly convergent Adams spectral sequence H∗G(π∗(E ∧EO M)) ⇒ π∗(M). This
is also originally due to Devinatz [6, Corollary 3.4]. Our proof is more explicit and
less technical than the proof of Devinatz but relies on having the spectrum Xp as a
“witness” to the equivalence.

In Section 2, we prove that the spectra Xl are determined by their Fp-homology.
In Section 3, we compute the Cp action on E∗(Xl)/m. In Section 4, we prove that
the map EO → E is Galois. We also show that the relative Adams spectral sequence
based on EO → E is strongly convergent for all EO-modules and has E2 page given
by group cohomology H∗G(EEO

∗ M). In Section 5, we prove a collection of technical
splitting results that can be used to deduce that a spectrum is algebraic based on
its Fp homology. In Section 6, we prove that W2p has algebraic EO theory and that
every sphere bundle over W2p is EO-orientable. In the appendix, we present the facts
about symmetric powers of P (1)∗-comodules that we need for Section 6. None of the
material after Section 5.4 is necessary to prove the results quoted in the introduction.

2 Uniqueness of Xl

We prove that the spectra Xl are uniquely determined by their Fp cohomology.

Lemma 2.1. Let Z = BP2k be a skeleton of BP. Suppose that Y is some other finite
p-complete spectrum such that HFp∗(Y ) ∼= HFp∗(Z) as Steenrod comodules. Then
Y ' Z.

Proof. There is a map Z → BP including the skeleton of BP which gives a per-
manent cycle θ in the Adams spectral sequence Exts,tA∗(Fp,HFp∗(DZ ∧ BP)). Be-

cause HFp∗(Y ) ∼= HFp∗(Z) there is an isomorphism of E2 pages Exts,tA∗(Fp,HFp∗(DZ∧
BP)) ∼= Exts,tA∗(Fp,HFp∗(DY ∧ BP)) using the Kunneth isomorphism. We wish to

show that the element θ ∈ E0,0
2 ASS(DY ∧ BP) is a permanent cycle. Because Z

is even, DZ ∧ BP splits as a wedge of copies of BP and E2ASS(DZ ∧ BP) ∼=
E2ASS(BP)⊗HFp∗(DZ). Both E2ASS(BP) and HFp∗(DZ) are even, so E2ASS(DZ∧
BP) is even. Thus, the spectral sequence collapses at E2 and θ is a permanent cycle.
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We deduce that there is a map Y → BP . Since Y has no homology above degree
2k, the map Y → BP factors through BP (2k) = Z. The factored map Y → Z is an
isomorphism on homology so Y ' Z.

A spectrum Z with the cohomology of Xl can be obtained as the 2(p− 1)(l− 1)-
skeleton of BP , so as a special case we deduce:

Lemma 2.2. A spectrum Y is equivalent to Xl if and only if HFp∗(Y ) ∼= Wl where
Wl = HFp∗(Xl) is the Steenrod comodule Fp{x0, . . . , xl−1} with |xk| = 2k(p − 1) and
Steenrod coaction given by Ψ(xk) = ξ1 ⊗ xk−1 + · · · for k ≥ 1.

3 The Cp action on E∗(Xl)

Set n = p− 1 for the rest of the paper. We begin this section with a brief review of
the facts we need about the Morava stabilizer group. We then compute the K∗[Cp]
action on E∗(Xl)/m and show that E∗(Xp) is a free E∗[Cp]-module. We will deduce
that EO ∧Xp ' EhCn2 . Since n2 is relatively prime to p, EhCn2 is complex orientable.

Let FmlGrps be the category of pairs (k,Γ) where k is a perfect characteristic
p field and Γ is a formal group over k. The morphisms (k,Γ) → (k′,Γ′) are pairs
consisting of a field homomorphism f : k → k′ and an isomorphism of formal groups
f ∗Γ→ Γ′. The Hopkins-Miller theorem says there is a functor FmlGrps→ E∞-Rings
which sends a pair (k,Γ) to the corresponding Morava E theory E(k,Γ). This implies
that there is an action of the automorphism group Aut(Γ) on E(k,Γ) by E∞ ring
maps. The group Gn = Aut(Γ) is called the Morava stabilizer group. See section 2
of [2] for a nice overview of the Morava stabilizer group.

The Morava stabilizer group of a height n Morava E theory contains elements of
order d if and only if the degree of Qp(ζd) over Qp divides n where ζd is a primitive dth
root of unity. In particular, Qp(ζp) has degree p− 1, so there are p-torsion elements
in Gn if and only if p − 1 divides n. In this paper we study the simplest such case,
when n = p − 1. Let E = E(Fpn ,Γn) where Γn is the height n Honda formal group
over Fpn and let Gn = Aut(Γn) be the corresponding Morava stabilizer group. There
is a Gn-action on E∗(Z) = π∗(LK(n)E ∧ Z) for any spectrum Z by letting Gn act in
the standard way on E and trivially on Z.

There is an isomorphism E∗ ∼= W(Fpn)Ju1, . . . , un−1K. Let m = (p, u1, . . . , un−1)
be the maximal ideal of E∗ and let K∗ = E∗/m = Fpn [u±]. For Z a torsion free
spectrum, E∗(Z)/m ∼= K∗(Z) where K is any Morava K theory corresponding to E.
Let E∗E = π∗(LK(n)E ∧ E). There is an isomorphism E∗E ∼= Homcts(Gn, E∗) where
for g ∈ Gn the evaluation map

E∗E Homcts(Gn, E∗) E∗
∼= evg

is the image of the map

E ∧ E E ∧ E E
g∧id m

16



under the functor π∗(LK(n)(−)).
Let G be a maximal finite subgroup of Gn containing an element of order p.

According to Corollary 1.30 and Theorem 1.31 of [5], any two such subgroups G are
conjugate in Gn and G is abstractly isomorphic to the semidirect product Cp o Cn2

where the action is given by the surjection Cn2 → Cn ∼= Aut(Cp). Let EO = EhG.
For an EO-module M we write EEO

∗ (M) = π∗(E ∧EO M). There is an action of G
on E by EO-automorphisms so this gives a G action on EEO

∗ (M) for any M . We
will show in the next section that for any EO-module is a relative Adams spectral
sequence H∗G(EEO

∗ (M))⇒ π∗(M). Our plan is to use this Adams spectral sequence to
understand M so we will need to compute the E∗[G]-module structure on EEO

∗ (M).
To allow explicit calculation, we compute the K∗[G]-module structure on EEO

∗ (M)/m
and then use Nakayama’s lemma to make the conclusions we need about EEO

∗ (M).
Let ζ ∈ Cp be a generator. There is an isomorphism K∗[Cp] = K∗[ζ]/(ζp − 1) ∼=

K∗[s]/(s
p) where the map sends ζ 7→ s + 1. The coproduct is given by δ(s) =

s⊗ 1 + 1⊗ s+ s⊗ s. Let Vl be the cyclic module over K∗[s]/(s
p) of length l.

Proposition 3.1. E∗(Xl)/m ∼= Vl as K∗[Cp]-modules.

To prove this, we are going to pass from information about the Steenrod coaction
on HFp∗(Z) to information about the Morava stabilizer group action on E∗(Z) through
the BP∗BP -coaction on BP∗(Z) by considering the maps BP∗(Z) → HFp∗(Z) and
BP∗(Z)→ E∗(Z).

If Z is a torsion free connective spectrum then BP∗(Z) is BP∗-free so HFp∗(Z) =
Fp ⊗BP∗BP∗(Z) and E∗(Z) = E∗ ⊗BP∗BP∗(Z). Let φ : BP → E and π : BP → HFp
be the maps induced by the complex orientations of E and HFp.

BP HFp BP∗BP HFp∗HFp

E E∗E = Homcts(Gn, E∗)

π

φ

π

φ

If BP∗(Z) ∼= BP{zBP
i }i∈S, we write zEi = φ(zBP

i ) and zHFp
i = π(zBP

i ) so then
E∗(Z) ∼= E∗{zEi }i∈S and HFp∗(Z) ∼= Fp{zHFp

i }i∈S. For E some cohomology theory,
let IEd (Z) = ker(E∗(Z) → E∗(Z(d))) where Z(d) is the cofiber of the inclusion of the
(d− 1)-skeleton of Z.

Consider the map BP∗BP → A∗. This sends t1 7→ −ξ1. If Z is torsion free and
zHFp

k ∈ HFp∗(Z) has a nontrivial P 1
∗ action P 1

∗ (zHFp

k ) = zHFp

k−2n then

Ψ(zHFp

k ) = 1⊗ zHFp

k + ξ1 ⊗ zHFp

k−2n (mod A∗ ⊗Fp I
HFp

k−2n(Z)).

In this case there are lifts zBP
k , zBP

k−2n ∈ BP∗(Z) and

Ψ(zBP
k ) = 1⊗ zBP

k − t1 ⊗ zBP
k−2n (mod BP∗BP ⊗BP∗ I

BP
k−2n(Z)).

For g ∈ Gn and θ ∈ BP∗BP we can evaluate θ(g) ∈ E∗ using the map BP∗BP →
E∗E = Homcts(Gn, E∗). A strict automorphism g of a p-typical formal group Γ
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corresponds to a certain power series, namely g(s) = s +Γ
∑Γ ais

pi ∈ E∗JsK. Then
ti(g) = ai.

Lemma 3.2. If g ∈ Gn and zBP
k ∈ BPk(Z) has coaction Ψ(zBP

k ) =
∑
θi⊗ zBP

i where
θi ∈ BP∗BP, then g∗(z

E
k ) =

∑
i θi(g)zEi .

Proof. Recall that E∗E ∼= Hom(Gn, E∗) where for each g ∈ Gn there is a commutative
diagram:

π∗(LK(n)(E ∧ E)) Hom(Gn, E∗)

π∗(LK(n)(E ∧ E)) E∗

π∗(g∧idE) evg

π∗(m)

Consider the maps

E ∧ Z E ∧ E ∧ ZΨ

m∧idZ

where Ψ: E ∧ Z = E ∧ S0 ∧ Z → E ∧ E ∧ Z is the unit map in the middle. If we
let Gn act by the standard action on the leftmost E factor and trivially on the other
factors, these maps are Gn-equivariant. Because the left unit map E∗ → E∗E is flat,
there is an isomorphism π∗(E ∧ E ∧ Z) ∼= E∗E ⊗E∗ E∗(Z). Thus, the action of g on
E∗(Z) factors as:

E∗(Z) E∗(Z)

E∗E ⊗E∗ E∗(Z) E∗E ⊗E∗ E∗(Z)

Ψ

g∗

g∗⊗1

m∗

Since m∗ ◦ (g∗ ⊗ 1) = evg under the isomorphism E∗E ∼= Hom(Gn, E∗), we see that
g∗(z) = (evg ⊗ 1) ◦Ψ(z).

We have a commutative diagram:

BP∗(Z) BP∗BP ⊗BP∗ BP∗(Z)

E∗(Z) E∗E ⊗BP∗ E∗(Z)

E∗(Z)

Ψ

Ψ

g∗
evg⊗1

We deduce that g∗(z
E) = (evg ⊗ φ)(Ψ(zBP)) as desired.

Recall that ζ ∈ Cp is a generator. Let v = t1(ζ) ∈ E2n. It is well known that v
is a unit (see for instance [14, bottom of page 438]). Specializing Lemma 3.2 to the
case we care about, if

Ψ(zBP
k ) = 1⊗ zBP

k + t1 ⊗ zBP
k−2n (mod BP∗BP ⊗BP∗ I

BP
k−2n(Z))
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then

ζ∗(z
E
k ) = zEk + vzEk−2n (mod IEk−2n(Z)).

Proof of Proposition 3.1. The spectrum Xl is torsion free so the above discussion
applies. Recall that

HFp∗Xp
∼= Fp{x0, . . . , xp−1}

where |xk| = 2kn. For 0 ≤ k < p− 1,

Ψ(xHFp

k ) = 1⊗ xHFp

k + ξ1 ⊗ xHFp

k−1 (mod A∗ ⊗Fp I
HFp

2(k−1)n(Z))

This implies that in BP∗Xp,

Ψ(xBP
k ) = 1⊗ xBP

k − t1 ⊗ xBP
k−1 (mod BP∗BP ⊗BP∗ I

BP
2(k−1)n(Z))

and the action of ζ on E∗(Xp) is given by

ζ∗(x
E
k ) = xEk − xEk−1 (mod IE2(k−1)n(Z)).

In matrix form when p = l = 5 this looks like:
1 v ∗ ∗ ∗
0 1 v ∗ ∗
0 0 1 v ∗
0 0 0 1 v
0 0 0 0 1


This matrix is conjugate to a length l Jordan block, so E∗(Xl)/m does not split and
hence it is a length l indecomposable K∗[Cp] representation.

In particular, ζ acts trivially on K∗ = K∗(X1) = V1 and K∗(Xp) = Vp is a free
K∗[Cp]-module. By Nakayama’s lemma, we deduce that E∗(Xp) is a free E∗[Cp]-
module.

Corollary 3.3. E∗(Xp) is a free E∗[Cp]-module.

Lemma 3.4. If M is a finite EO-module then M ' (E ∧EO M)hG.

Proof. Let G act on E ∧EO M by E automorphisms over EO . There is a natural
equivariant map M = EO ∧EOM → E∧EOM where G acts trivially on M , so we get
a natural transformation M → (E ∧EO M)hG. When M = EO this is an equivalence
by definition. The functor M 7→ π∗(E ∧EO M)hG is exact, so it follows that this
natural transformation is an equivalence on all finite EO-modules.

Corollary 3.5. EO ∧Xp ' EhCn2

Since n2 is relatively prime to p, EhCn2 is complex orientable.
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Proof. EO ∧ Xp ' (E ∧ Xp)
hG. Now E ∧ Xp '

∨
pE and since E∗(Xp) is a free

E∗[Cp]-module, this equivalence can be chosen to be Cp equivariant, where the action
of Cp on

∨
pE is given by permuting the p factors. It follows that

(E ∧Xp)
hCp '

(∨
p

E

)hCp

' E

and so

EO ∧Xp ' (E ∧Xp)
hG '

(
(E ∧Xp)

hCp

)hCn2

' EhCn2 .

4 The map EO → E is Galois and the E-based

Adams spectral sequence for EO-modules

Here we present a proof that the maps EO → EhCn2 is a Galois extension. This
is a special case of [16, Theorem 5.4.4(b)] which Rognes attributes to Devinatz [6].
We wanted to prove that EO → E is Galois, but failed to do so. We cite Dev-
inatz for this. We then conclude that the E-based Adams spectral sequence is
strongly convergent for EO-modules and has E2 page given by group cohomology
H∗Cp

(EEO
∗ (M))⇒ π∗(M). The E2 page and convergence of this spectral sequence are

also due to Devinatz [6, Corollary 3.4]. Recall that n = p− 1.

Definition 4.1 (Rognes [16, Definition 4.1.3]). A map R→ S of E∞ ring spectra is
an E-local G-Galois extension for a discrete group G if:

1. G acts on S via R-algebra maps.

2. The natural map i : R→ ShG is an E-equivalence.

3. The map h : S ∧R S → F (G+, S) adjoint to

G+ ∧ S ∧R S S ∧R S Sact∧id mult

is an E-equivalence.

If we let G act on the left S factor on S∧RS and by precomposition on F (G+, S),
the map h is an S[G]-algebra map. If h is an equivalence of spectra, it is automatically
also an equivalence of S[G]-modules.

Definition 4.2 ([16, Definition 4.3.1]). Let R be an E∞ ring spectrum. An R-module
N is faithful if any R-module M such that N∧RM ' 0 is already zero. A map R→ S
of E∞ rings is faithful if S is faithful as an R-module.

Definition 4.3 ([3, Definition 3.7]). Let R → S be a map of homotopy associative
ring spectra. The category of S-nilpotent R modules is the smallest subcategory N
of R-modules such that
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1. S ∈ N

2. If X ∈ N and Y is a spectrum then X ∧ Y ∈ N .

3. If X → Y → Z is a cofiber sequence in R-modules and two of X, Y , and Z are
in N then so is the third.

4. If X ∈ N and Y is a retract of X then Y ∈ N .

R is S-nilpotent if R is an S-nilpotent R-module.

Lemma 4.4. Let R→ S be a map of homotopy associative ring spectra and suppose
that f : ΣdR→ R is a nilpotent self map of R. Then C(f)∧RM is S-nilpotent if and
only if M is.

Proof. If M is S-nilpotent, then ΣdM →M → C(f)∧RM is a cofiber sequence, and
since both M and ΣdM are S-nilpotent, so is C(f) ∧R M . Conversely, suppose that
C(f)∧RM is S-nilpotent. We show by induction that C(f i)∧RM is S-nilpotent for
all i by induction. Suppose that C(f j)∧RM is S-nilpotent for j ≤ i. The octahedral
axiom gives us the following diagram, where the straight lines are all cofiber sequences:

C(f i) ∧RM

Σ(i+1)dM M C(f i+1) ∧RM

ΣidM

ΣidC(f) ∧RM

Σidf

f (i+1)

f i

Since C(f i)∧RM and C(f)∧RM are S-nilpotent, C(f i+1)∧RM is S-nilpotent too.
Because f is nilpotent, f i is null for large enough i. Thus, M is a retract of an
S-nilpotent spectrum C(f i) ∧RM 'M ∨M and so M is S-nilpotent.

Lemma 4.5. Let R → S be a map of E∞ ring spectra and suppose that R is S-
nilpotent. Then the map R→ S is faithful.

Proof. Let M be an R-module such that S ∧R M ' 0. Let C be the category of
R-modules N such that N ∧R M ' 0. C is closed under retracts because if N ′ is
a retract of N then N ′ ∧R M is a retract of N ∧R M and retracts of zero are zero.
C is closed under cofiber sequences because if N1 → N2 → N3 is a cofiber sequence
and N1, N2 ∈ C, then the cofiber sequence N1 ∧RM → N2 ∧RM → N3 ∧RM shows
that N3 ∧R M ∈ C. Lastly, if N ∈ C then (N ∧R N ′) ∧R M ' 0 so N ∧R N ′ ∈ C.
This implies that C contains the category of S-nilpotent R-modules, so R ∈ C and
M = R ∧RM ' 0.

Proposition 4.6. EO is E-nilpotent and EhCn2 -nilpotent. As a consequence, the
maps EO → EhCn2 and EO → E are faithful.
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This is a special case of [6, Theorem 3.3]. Compare [16, Proposition 5.4.5]. In
order to prove this we need the following lemma:

Lemma 4.7. There is a cofiber sequence Σ2n−1Xp → C(β1)→ Xp.

Proof. Let F be the fiber of the inclusion of the bottom cell S0 → Xp. There is a
homology isomorphism HFp∗ F ∼= HFp∗Σ2n−1Xp−1 so by Lemma 2.2 we deduce that
F ' Σ2nXp−1.

Let α̃1 : S2n2−1 → Xp−1 be the attaching map for Xp and let α1 : Σ2n−1Xp−1 → S0

be the fiber of the the inclusion of the bottom cell S0 → Xp. The composition
α1 ◦ (Σ2n−1α̃1) is the Toda bracket 〈α1, . . . , α1〉 = β. The octahedral axiom gives us
the following diagram, where the straight lines are all cofiber sequences:

Xp

S2pn−2 S0 C(β1)

Σ2n−1Xp−1

Σ2n−1Xp

Σ2n−1α̃1

β

α1

Proof of Proposition 4.6. EhCn2 is a retract of E so EhCn2 is E-nilpotent. Lemma 4.7
says there is a cofiber sequence:

Σ2n−1Xp → C(β1)→ Xp.

Smashing this with EO gives a cofiber sequence

Σ2n−1EhCn2 → EO ∧ C(β1)→ EhCn2

so that EO ∧ C(β1) is E-nilpotent. Since β1 is nilpotent, EO is E-nilpotent too.

Theorem 4.8. The map EO → E
hCn2

n is a faithful Cp-Galois extension.

To prove this, we need the following lemma:

Lemma 4.9. Let k be a field of characteristic p, let τ ∈ k[Cp] be the trace element∑
g∈Cp

g, and let f be a vector space map k[Cp] → k. Then the map k[Cp] →
∏

Cp
k

adjoint to the map Cp × k[Cp]→ k given by (g, v) 7→ f(gv) is an isomorphism if and
only if f(τ) 6= 0.

Proof. If V is a d-dimensional k-vector space, a collection of d maps fi : V → k have
product an isomorphism V →

∏
k if and only if the fi generate V ∗, so it suffices to

check that f generates (k[Cp])
∨ as a Cp-representation. Let ζ ∈ Cp be a generator.

Because f(τ) 6= 0 and (ζ−1)τ = 0 we deduce that f is not in (ζ−1)k[Cp]
∨. However,
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(ζ − 1)(k[Cp])
∨ is the unique maximal subrepresentation of (k[Cp])

∨, so f lies in no
proper subrepresentation of (k[Cp])

∨ and f generates (k[Cp])
∨ as a representation.

Proof of Theorem 4.8. Let R = EhCn2 , let n be the maximal ideal of R∗ and let
L∗ = R∗/n. We defined EO → E as the inclusion of the G fixed points, so Cp acts on
R by EO-algebra maps and i : EO → RhCp ' EhG is an equivalence. So conditions
(1) and (2) are satisfied. The map EO → R is faithful by Proposition 4.6.

It remains to check condition (3). It suffices to show that h is an isomorphism
after taking homotopy. By Nakayama’s lemma we can check that h is a surjection
by checking that it is a surjection after quotienting by the maximal ideal of R. Since

π∗(R∧EOR) and π∗

(∏
Cp
R
)

are free R∗-modules of the same dimension, it will follow

that h is an equivalence.
The map h : R ∧EO R→

∏
Cp
R has g component given by the composite

R ∧EO R R ∧EO R R
g∧id m

so we need to show that the sum of the g-conjugates of m : L∗⊗ηL π∗(R∧EO R)→ L∗
is an isomorphism. Since R ' EO ∧ Xp, we have an equivalence of left R-modules
R∧EOR ' R∧Xp. If we let Cp act trivially on Xp, this isomorphism is Cp equivariant.
Consider the following diagram:

R R ∧EO R R

R ∧Xp

ηL

id

m

All maps are R-module maps where R acts on R ∧EO R on the left. The map ηL is
Cp-equivariant, but m is not equivariant for the action of Cp on the left factor. Now
taking homotopy and quotienting by n gives:

L∗ L∗[Cp] L∗e

id

m

where all maps are of L∗-modules and e is Cp equivariant. Let τ =
∑

g∈Cp
g be the

trace element. Since e is an equivariant map from the trivial representation, it must
be some nonzero multiple of the map 1 7→ τ . We deduce that m(τ) is a unit. By the
lemma, we are done.

We wish the following were a corollary:

Not A Corollary 4.10 (Devinatz [6]). The map EO → E is a faithful Galois
extension.

Proposition 4.11. For any EO-module M there is a spectral sequence

HFPSS(M) : H∗G(EEO
∗ (M))⇒ π∗(M)
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and for any connective spectrum X there is a map ANSS(X)→ HFPSS(EO ∧X).

The convergence is [6, Theorem 3.3] and the identification of the E2 term is [6,
Theorem 3.1]. The map of spectral sequences is explained in section 11.3.3 on page
109 of [7].

Proof. The left unit map E∗ → EEO
∗ E is flat, so given an EO-module M there is an

E-based Adams spectral sequence [1, Theorem 2.1]

ExtEEO
∗ E(E∗, E

EO
∗ (M))⇒ π∗

(
L̂EO
E M

)
.

A map of EO-modules M → N is an E-equivalence if E ∧EO M → E ∧EO N is
an equivalence. By Proposition 4.6, this is true if and only if M → N is itself an
equivalence, so for any EO-module, LEO

E M 'M . Proposition 4.6 implies that EO is

E-nilpotent and the canonical maps Id → LEO
E → L̂EO

E are equivalences. By Not A
Corollary 4.10 the Ext group that determines the E2 page of the spectral sequence is
group cohomology, so we can rewrite the E2 page as:

H∗G(EEO
∗ (M))⇒ π∗(M).

The map BP → E induces a map from the Adams Novikov spectral sequence to
the E-based Adams spectral sequence. The E-based Adams spectral sequence for a
spectrum X corresponds to a cosimplicial object with ith term E∧(i+1)∧X where the
face maps are unit maps and the degeneracy maps are multiplication. The map X →
EO ∧X induces a map of cosimplicial objects E∧(i+1)∧X → E∧EO (i+1)∧EO (EO ∧X)
where E∧EO (i+1)∧EO (EO∧X) corresponds to the EO-based Adams spectral sequence
for EO ∧X. Thus, there is a corresponding map of spectral sequences ANSS(X)→
HFPSS(EO ∧X).

There is a particularly convenient description of a minimal Adams resolution:

Proposition 4.12. Any EO-module M has an E-based Adams resolution:

M M ∧Xp Σ|α|M ∧Xp Σ|β|M ∧Xp Σ|α|+|β|M ∧Xp · · ·

5 Splittings

Recall that n = p− 1.

Definition 5.1. A cellular EO-module is an EO-module M equipped with an Atiyah-
Hirzebruch filtration M0 → M1 → · · · → M with M = hocolimMi, such that M0 =∨
j∈S0

ΣsjEO and there are cofiber sequences
∨
j∈Si

ΣsjEO →Mi →Mi+1. A cellular

EO-module is k-sparse for k a divisor of 2p2n2 if all of the suspensions sj used in the
filtration have the same congruence class mod k. A connective spectrum is k-sparse
for k an integer if it has a cell structure with only cells in a particular congruence
class mod k.
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If Z is a connective spectrum then EO ∧ Z is cellular. A cellular EO-module has
an Atiyah-Hirzebruch spectral sequence. If a spectrum Z is k-sparse for k a divisor
of 2p2n2, then EO ∧Z is k-sparse. To show that a connective spectrum is k-sparse it
suffices to check that HFp∗(Z) is concentrated in a single congruence class mod k.

Given an EO-module M , we get an associated K∗[Cp]-module EEO
∗ (M)/m, which

has a decomposition into a sum of indecomposable K∗[Cp]-modules. We call the
EO-module “algebraic” if this splitting lifts to a splitting of M into the standard
EO-modules EO ∧Xl.

Definition 5.2. An EO-module M is algebraic if M ' EO ∧
∨

ΣsiXli . A spectrum
Z has algebraic EO theory if EO ∧ Z is algebraic.

An algebraic EO-module is evidently cellular. A cellular EO-module M is alge-
braic if and only if the only nontrivial differentials in the Atiyah-Hirzebruch spectral
sequence for M are the d2n differential and the d2n2 .

When p = 3, our definition of an algebraic EO-module is closely related to Meier’s
definition of a “standard vector bundle” [12, Definition 3.9]. In Meier’s nomenclature
a standard vector bundle is an E∗[G]-module that is isomorphic to EEO

∗ (M) for some
algebraic EO-module M .

In Section 5.1, we prove Corollary 5.4 that if M is an algebraic EO-module then
EEO
∗ (M)/m determines M up to lost information about shifts. We show in Theo-

rem 5.6 that if Z is a spectrum with algebraic EO theory, the P 1 action on HFp∗(Z)
determines the homotopy type of EO ∧ Z. We also show in Proposition 5.8 that a
“union” of algebraic EO-modules is algebraic. In Section 5.3 we produce conditions
to check that EO-modules are algebraic. We show in Theorem 5.13 that a 2n-sparse
spectrum has algebraic EO theory and we show in Theorem 5.14 that a 2p-sparse
EO-module is algebraic. In Section 5.4 we prove the results quoted in the introduc-
tion. None of the material after Section 5.4 is necessary to prove the main results
quoted in the introduction.

In Section 5.5 we show that if M is an EO-module such that EEO
∗ (M) is a projec-

tive E∗-module and EEO
∗ (M)/m has a free K∗[Cp] submodule then there is a splitting

M ' EO ∧ Xp ∨ N . In Section 5.6 we prove a formula for the smash product of
algebraic EO-modules and show that algebraic EO-modules are closed under smash
product.

5.1 Determining the homotopy type of algebraic EO-modules

In this section we’ll show that if M is an algebraic EO-module, the splitting of M
can be deduced from the G-module decomposition of EEO

∗ (M)/m, up to some lost
information about shifts. We then show that if Z is a spectrum with algebraic EO
theory, the splitting of EO ∧ Z can be deduced from the P (1)∗-comodule structure
of HFp∗(Z).

If M is an algebraic EO-module then in particular it is torsion free so E2AHSS(M)
is a free EO∗-module.
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Lemma 5.3. Let g ∈ G be an element of order n2. Let v ∈ K∗(S2k+ε) be a generator
for ε ∈ {0, 1}. There is a primitive n2 root of unity ω independent of k and ε such
that g∗(v) = ωkv.

Proof. Let Γ be the Lubin Tate formal group associated to En. Suppose that h ∈ Gn

has power series representation a0s+Gn
∑Gn

i≥1 ais
pi . Let BPP be periodic BP theory so

that BPP∗ BPP parameterizes not-necessarily-strict p-typical power series. Note that
BPP∗ BPP = Zp[v±0 , v1, . . .][t

±
0 , t1, . . .]. Let Z be a spectrum and let z ∈ BPP∗(Z).

Write zK for the image of z in K∗(Z). Suppose that Ψ(z) = tk0 ⊗ z +
∑

i θi⊗ zi Then
h∗(z

K) = ak0z
K +

∑
i>1 θi(g)zKi .

In particular, the element g of order n2 has power series expansion

ωs+Gn

Gn∑
i≥1

ais
pi

where ω is some primitive n2 root of unity. The coaction on a generator v of
BPP∗ S

2k+ε is given by Ψ(v) = tk0 ⊗ v. It follows that g(v) = ωkv.

For s ∈ Z/2n2 write ΣsVl for the K∗[G]-module K∗(Σ
sXl).

Corollary 5.4. Suppose that M is an algebraic EO-module and EEO
∗ (M)/m ∼=⊕

k∈T ΣskVlk as K∗[G]-modules, where T is some index set and s ∈ Z/2n2. Then
M ' EO ∧

∨
k∈T Σ2nskXlk where sk is some particular lift of sk to Z/2p2n2.

So we can use EEO
∗ (M) to determine an algebraic EO-module M up to loss of

information about shifts. We show now that the Atiyah-Hirzebruch spectral E2n page
recovers the full homotopy type of an EO-module.

Lemma 5.5. Suppose that M and N are two algebraic EO-modules, and suppose
there is an isomorphism of bigraded EO∗-modules f : E2AHSS(M) → E2AHSS(N).
Let E2AHSS(M) ∼= EO∗{[xi]}i∈S and suppose that d2n(f([xi])) = f(d2n([xi])) for all
i ∈ S. Then M and N are equivalent.

Proof. An algebraic EO-module M is of the form EO ∧
∨
i∈S ΣsiXli where si ∈

Z/2p2n2 and li ∈ {1, . . . , p}. The lengths and shifts are both determined by the
E2nAHSS(M) – a summand of the form EO ∧ ΣsiXli corresponds to a summand of
E2nAHSS(M) which is an li-dimensional EO∗-module on generators {[x0], . . . , [xi−1]}
with differential d2n([xk]) = α[xk−1] for k > 0 and [x0] a permanent cycle in the
si stem. A decomposition of M into summands of the form EO ∧ ΣsiXli corre-
sponds exactly to a decomposition of E2nAHSS(M) into summands of the form
E2nAHSS(EO ∧ ΣsiXli). It follows that E2nAHSS(M) determines M .

Theorem 5.6. Let Z be a spectrum with algebraic EO theory. Decompose HFp∗(Z)
into indecomposable P (1)∗-comodules, say HFp∗(Z) ∼=

⊕
i∈T ΣsiWli where T is some

index set. Then EO ∧ Z ' EO ∧
∨

ΣsiXli.
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Proof. Pick an integral lift of the map HFp∗(Z)→
⊕

i∈T ΣsiWli to a map HZ∗(Z)→
HZ∗ (

∨
ΣsiXli). This map induces an isomorphism

f : E2AHSS(EO ∧ Z)→ E2AHSS
(

EO ∧
(∨

ΣsiXli

))
.

I claim that for {[xi]}i∈S a basis for HZ∗(Z), we have d2n(f([xi])) = f(d2n(xi)).

Consider the map AHSS(Z) → AHSS(EO ∧ Z). Because Z is torsion free, the
shortest possible Atiyah-Hirzebruch differential is a d2n which is detected by the
P 1 action on HFp∗(Z). Let ρ be the reduction map HZ → HFp. Suppose that
x ∈ HZi(Z) and y ∈ HZi−2n(Z). If P 1(ρ(x)) = cρ(y) where c ∈ Fp is some constant,
then d2n([x]) = cα[y]. Since 1 and α have nontrivial image in EO∗ we deduce a dif-
ferential d2n([x]) = cα[y] in E2nAHSS(EO ∧ Z). Because the map f : HZ∗(Z) →
HZ∗ (

∨
ΣsiXli) was a lift of a map that commutes with P 1, we have also that

P 1(ρ(f(x))) = ρ(f(y)). We deduce that f(d2n([x])) = cαf([y]) = d2n(f([x])). The
hypotheses of Lemma 5.5 are met and we conclude that EO∧Z ' EO∧

∨
ΣsiXli .

Corollary 5.7. If X and Y are connective spectra with algebraic EO theory and
HFp∗(X) ∼= HFp∗(Y ) as P (1)∗-comodules, then EO ∧X ' EO ∧ Y .

Now we show that algebraic EO-modules are closed under “unions.”

Proposition 5.8. Suppose that M1 → M2 → · · · is a diagram of algebraic EO-
modules such that each map Mi →Mi+1 induces an injection

EEO
∗ (Mi)/m→ EEO

∗ (Mi+1)/m.

Then hocolimMi is an algebraic EO-module.

Proof. Write EEO
∗ (M)/m ∼=

⊕
j∈S Vlj as K∗[Cp]-modules. To show that M is al-

gebraic, we need to show that this splitting lifts to a splitting of M . Pick some
summand Vlj of EEO

∗ (M)/m. Because Vlj is finite dimensional, for some i suffi-
ciently large, EEO

∗ (Mi)/m → EEO
∗ (M)/m → Vlj is a surjection. Since the map

EEO
∗ (Mi)/m → EEO

∗ (M)/m is an injection, we deduce that there is a splitting
EEO
∗ (Mi) ∼= Vlj

⊕
W and because Mi is algebraic, this lifts to a splitting Mi '

EO ∧ ΣsjXlj for some sj ∈ Z/2p2n2. This gives a map ιj : EO ∧ ΣsjXlj → M
which induces the inclusion Vlj → EEO

∗ (M)/m. Summing the maps ιj as j ∈ S
varies gives a map from EO ∧

∨
j∈S ΣsjXlj → M which induces an isomorphism

E∗

(∨
j∈S ΣsjXlj

)
/m → EEO

∗ (M)/m. By Nakayama’s lemma, this also induces an

isomorphism E∗

(∨
j∈S ΣsjXlj

)
→ EEO

∗ (M) which implies that there is an isomor-

phism of E2 pages HFPSS
(

EO ∧
∨
j∈S ΣsjXlj

)
→ HFPSS(M). It follows that the

map EO ∧
∨
j∈S ΣsjXlj →M is an equivalence, and hence M is algebraic.
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5.2 A brief review of the homotopy fixed point spectral se-
quence for EO

There is a map ANSS(S0)→ HFPSS(EO) from the Adams Novikov spectral sequence
for the sphere to the homotopy fixed point spectral sequence H∗G(E∗) ⇒ EO∗. Hop-
kins and Miller computed the homotopy fixed point spectral sequence for EO up to
some permanent cycles on the zero line. The E2 page is isomorphic to Fp[α, β, u±] in
positive filtration, where α ∈ (2n − 1, 1) and β ∈ (2pn − 2, 2) are the images of α1

and β1 in ANSS(S0) and u ∈ (2pn2, 0) is a norm class. There are two differentials
d2n+1(u) = αβn and d2n2+1(αun) = βn

2+1 in HFPSS(EO). All other differentials are
generated by these two using the Leibniz rule. The E∞ page has a horizontal vanish-
ing line at filtration 2n2 + 2. The element up is a permanent cycle, which gives EO
theory a 2p2n2 periodicity. The homotopy of EO∗ for p = 3 and p = 5 is illustrated
in Figure 0-1. See the account of this spectral sequence in [13, section 2] for more
details.

5.3 Conditions for an EO-module to be algebraic

For Z a connective spectrum, we use the cellular filtration of Z to get filtrations of
BP∗(Z) and E∗(Z) which gives algebraic Atiyah-Hirzebruch spectral sequences. If Z
is torsion free, this has the following form:

algAHSS(Z) : ExtBP∗BP(BP∗,BP∗)⊗ HZ∗(Z)⇒ ExtBP∗BP(BP∗,BP∗(Z))

algAHSS(EO ∧ Z) : H∗G(E∗)⊗ HZ∗(Z)⇒ H∗G(E∗(Z))

The map ANSS(Z)→ HFPSS(EO∧Z) induces a map algAHSS(Z)→ algAHSS(EO∧
Z). The homology of Xl is HZ∗(Xl) = Z{x0, . . . , xl−1} with xi in degree 2in, so the
E2 page of algAHSS(EO ∧Xl) is isomorphic to

Fp[α, β, u±]{[x0], . . . , [xl−1]}

modulo trace classes.
For a connective spectrum Z, denote by HId(Z) the Hurewicz image of πd(Z) →

EOd(Z).

Proposition 5.9. Let 1 ≤ l < p and let α(l) ∈ EO2nl−1(Xl) be the Hurewicz image
of the attaching map for the top cell of Xl+1. Then α(l) is nonzero and spans the
Hurewicz image in EO2nl−1(Xl). If k 6= l then the Hurewicz image in EO2kn−1(Xl)
is zero. If l < p, projection onto the top cell Xl → S2n(l−1) induces an isomorphism
HI2nk−1(Xl)→ HI2nk−1(S2n(l−1)).

Proof. Consider the map of spectral sequences ANSS(Xl) → HFPSS(EO ∧ Xl). In
the degree we are considering, HFPSS(EO ∧Xl) only contains elements in filtration
one and in the degree we’re considering ANSS(Xl) contains no elements in filtration
zero, so no filtration jumping can happen and it suffices to understand the image of
the map ANSS(Xl) → HFPSS(EO ∧ Xl). We will first handle the case when l = 1
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and Xl = S0, and then we will use algebraic Atiyah-Hirzebruch spectral sequences to
deduce the case for larger l.

Suppose that l = 1. We have that π2n−1(EO) = Fp{α1}. We want to show that
if k 6= 1 then HI2nk−1(EO) = 0. We will show that this is true on the E2n+1 page
of ANSS(S0) → HFPSS(EO). Refer to Figure 0-1 on page 11 for the E∞ page of
HFPSS(EO) for p = 3 and p = 5. Because the only element of the 0-line of ANSS(S0)
is 1 ∈ π0, nothing else in the zero line of HFPSS(EO) is in the Hurewicz image, so
we need only study positive filtration. The E2 page of HFPSS(EO) is isomorphic in
positive filtration to Fp[α, β, v] where α ∈ (2n−1, 1), β ∈ (2pn−2, 2) and v ∈ (2pn2, 0).
So |α| ≡ −1, |β| ≡ −2 and |v| ≡ 0 (mod 2n). The elements of the E2 page in degree
−1 (mod 2n) are αβinvj. There is a differential d2n(v) = αβn, so all elements on the
E∞ page in degree −1 (mod 2n) are of the form αvj and hence are in the 1-line. I
claim that if j 6= 0 then αvj is not in the image of the map on E2 pages. The only
element of the Novikov 1-line in the degree of αvj is αnpk+1. There is a Massey product
in the Novikov E2 page αnpk+1 = 〈αnpk, p, α1〉 with indeterminacy in filtration greater
than 1. Because the homotopy fixed point spectral sequence contains no elements in
the same stem as αvj in filtration greater than 1, the indeterminacy of this Massey
product maps to zero in the E2 page of the homotopy fixed point spectral sequence.
By sparsity αnpk 7→ 0. It follows that αnpk+1 7→ 0 too, and αvj is not in the Hurewicz
image. This settles the l = 1 case.

Now we use the algebraic Atiyah Hirzebruch spectral sequence to reduce the case
l > 1 to the case l = 1. Figure 0-2 on the next page is an illustration of algAHSS(EO∧
X3). Because the cells of Xl are in degrees congruent to 0 (mod 2n), and because
αβn = 0 ∈ EO∗, the only elements of algAHSS(EO ∧Xl) in degrees congruent to −1
(mod 2n) are those of the form αvj[xi]. By the l = 1 case, the only such elements that
are hit in the E2 page of the map algAHSS(Xl)→ algAHSS(EO∧Xl) are α[xi]. Since
each attaching map in Xl is given by an α, there are Atiyah-Hirzebruch differentials
d2n([xi+1]) = α[xi] so all of these elements are zero in homotopy except for α[xl]. If
l < p, this is a permanent cycle which detects α(l).

Lemma 5.10. Suppose that Y is a connective 2n-sparse spectrum with cells in degrees
0 (mod 2n). Then the map Y → W(2nk) induces an injection

HI2n(k+1)−1(Y )→ HI2n(k+1)−1(W(2nk)).

The map W
(2nk)
(2nk) → W(2nk) induces a surjection

HI2n(k+1)−1

(
W

(2nk)
(2nk)

)
→ HI2n(k+1)−1(W(2nk)).

Thus HI2n(k+1)−1(Y ) is a subquotient of HI2n(k+1)−1

(
W

(2nk)
(2nk)

)
.

Proof. Consider AHSS(EO ∧ Y ). The Hurewicz image HI2(k+1)n−1(S0) is zero unless
k = 0 and HI2n−1(S0) = Fp{α} so the classes in HI2in−1 Y are exactly those detected
by an element of the form α[x] for x ∈ HZ∗ Y . Since the degree of α is 2n − 1, the
degree of α[x] is 2n − 1 + |x|. For α[x] to be in degree 2n(k + 1) − 1, the homology
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Figure 0-2: The algebraic AHSS for EO∗X3 at p = 3

class x should be in degree 2nk. We deduce that every class in HI2n(k+1)−1(Y ) is
detected in Atiyah-Hirzebruch filtration 2nk so that HI2n(k+1)−1(Y ) is a subquotient

of HI2n(k+1)−1

(
W

(2nk)
(2nk)

)
.

Lemma 5.11. Let M = EO ∧
∨
i∈T ΣsiXli be an algebraic EO-module. Suppose that

f :
∨
S ΣsiEO → M is some EO module map such that the homotopy class of each

component ΣsiEO →M is contained in Fp{Σsiα(li)}i∈U ⊆ πs(M) where U ⊆ T is the
subset of i ∈ T such that li < p and si + 2n(li − 1) = s. Then C(f) is an algebraic
EO-module.

Proof. First suppose we are only attaching one cell along a map ΣsEO → M . By
assumption, f∗ ∈ EOsM is some linear combination

∑
i∈U aiΣ

siα(li). If all ai are zero,
then C(f) 'M ∨ Σs+1EO is algebraic. Otherwise, suppose that a1 6= 0 and that for
all i ∈ U such that ai 6= 0, l1 ≥ li. By Lemma 5.12 there is an automorphism φ of M
such that φ−1

∗ (α(l1)) = f∗ and φ−1
∗ (α(li)) = α(li) for i > 1. Then φ ◦ f = Σ2ns1α(l1) so

that
C(f) ' C(φ ◦ f) = EO ∧ Σs1Xl1+1 ∨

∨
i∈T\{1}

ΣsiXli .

We conclude that C(f) is an algebraic EO-module.
Now consider the case where we are attaching multiple cells, say f :

∨
S ΣsiEO →

M . Filter C(f) by picking a total order on S and letting fi be the restriction of f
to
∨
j≤i Σ

sjEO . Then let Ni = C(fi). Note that Ni is the cofiber of the composite
ΣsiEO →

∨
S ΣsiEO → M → Ni−1, and this composite satisfies the hypotheses of

the lemma so Ni is an algebraic EO-module for each i. Since C(f) = hocolimiNi, by
Proposition 5.8 C(f) is algebraic.
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To finish the proof of Lemma 5.11 we need the following lemma:

Lemma 5.12. Fix d an integer and let

X =
∨
i∈S

Σd−2nliXli

where li < p for all i ∈ S. Let U = EOd−1(X) = Fp{α(li)}i∈S′. Filter U by
Ul = Fp{αli | li < l} and suppose that f : EOd−1(X) → EOd−1(X) is a filtered endo-

morphism. Then there is an endomorphism f̃ : X → X that induces f on EOd−1(X).

Proof. The collapse map p : Xl → Σ2nXl−1 sends α(l) 7→ α(l−1). This follows from the
commutativity of the following diagram, where the columns are cofiber sequences:

S2n(l+1)−1

Xl Σ2nXl−1

Xl+1 Σ2nXl

α(l) α(l−1)

p

p

The multiplication by c map c : Xl → Xl sends α(l) 7→ cα(l). If

X =

p−1∨
l=1

Σd−2nl
∨
Sl

Xl,

any block upper triangular matrix of integers represents an endomorphism of X,
and this endomorphism of X induces the corresponding filtered endomorphism of
EOd−1(X).

Theorem 5.13. Let Z be a connective (2p−2)-sparse spectrum. Then Z has algebraic
EO theory.

Proof. By Proposition 5.8 we may argue by cellular induction on Z. If Z has one cell,
the statement is immediate. Suppose that Y is a connective 2n-sparse spectrum with
cells in dimension less than or equal to 2nk. Suppose also that Y has algebraic EO
theory, say EO∧Y ' EO∧

∨
i∈T ΣsiXli and that Z is the cofiber of f :

∨
S S

2nk−1 → Y .
It follows that EO ∧ Z is the cofiber of EO ∧ f .

By Lemma 5.10, HI2nk−1(Y ) is a subspace of HI2nk−1(W2n(k−1)) ∼=
⊕

T ′ Fp[Σ2nkα]
where T ′ ⊆ T is the subset of i ∈ T such that si+2nli = 2nk. Under the isomorphism

π∗(EO ∧ Y ) ∼= π∗

(
EO ∧

∨d
i=1 ΣsiXli

)
, the module HI2nk−1(Y ) is the subspace of

classes of Fp{Σsiα(li)}i∈S where si + 2nli = 2nk, and such that the element α1[x] ∈
AHSS(Y ) that maps to the element of AHSS(EO∧Y ) that detects α(li) is a permanent
cycle. By Lemma 5.11, it follows that C(f) has algebraic EO theory.
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Theorem 5.14. Suppose that M is a 2p-sparse cellular EO-module. Then M is
algebraic. In fact, M '

∨
ΣsiEO. If Z is a 2p-sparse connective spectrum, then Z

has algebraic EO theory.

Proof. It suffices to show that EO2pk−1 = 0 for all k. The 0-line of HFPSS(EO)
consists of the fixed points of the action of G on E∗. Since E∗ is even, so is the zero
line. We need to show that there are no elements in positive filtration in the 2pk− 1
stem on the E∞ page of HFPSS(EO). Recall that the E2 page of HFPSS(EO) is
isomorphic to Fp[α, β, vpm] in positive filtration and that the elements of the E2 page
representing nonzero odd degree homotopy elements are all of the form αβivj where
i < p − 1. These are in degrees |α| = 2p − 3 ≡ −3 (mod 2p), |β| = 2pn − 2 ≡ −2
(mod 2p) and |u| = 2pn2 ≡ 0 (mod 2p). Now |αβi| ≡ −3 − 2i (mod 2p) so if
|αβi| ≡ −1 (mod 2p) then −3 − 2i ≡ −1 (mod 2p) implies that 2i ≡ −2 (mod 2p)
so i = (p− 1) + pk but then αβi = 0 ∈ EO∗.

Proposition 5.15. Let X be a torsion free connective spectrum with cells in degrees
between k and k + 2pn − 2. Suppose that M is a retract of EO ∧ X. Then M has
algebraic EO theory.

In order to prove this, we use the following lemma, which has messier hypotheses:

Lemma 5.16. Suppose that M is a cellular EO-module, say M = hocolimMi and
Mi+1 is the cone of some map fi :

∨
j∈Si

ΣsijEO →Mi where sij ∈ Z/2p2n2. Suppose
that E ∧EO f ' 0. Suppose also that there are integral lifts s̃ij such that for some
k ∈ Z and for all i, j ∈ Si we have k ≤ s̃ij ≤ k + 2pn − 2. Then M is an algebraic
EO-module.

Proof. We argue by cellular induction. Suppose that Mi is an algebraic EO-module,
say Mi ' EO∧

∨
t∈T ΣstXlt . We need to show that the cone of fi :

∨
j∈Si

ΣsijEO →Mi

is algebraic. It suffices by Lemma 5.11 to show that the homotopy of each component
map fij : ΣsijEO →Mi lies in the subgroup of πsij(M) generated by Fp{Σstα(lt)}t∈T ′
where T ′ ⊆ T is the subset of t ∈ T such that st + 2n(lt − 1) = sij and lt < p. By
assumption, fij is detected in AHSS(Mi) by some element θ[x] where θ ∈ EO∗ and
x is some cell of Mi such that the image of θ under EO → E is zero. We also know
that |x|+ |θ| = sij and that k ≤ |x|, sij ≤ 2pn− 2. It follows that 0 ≤ |θ| ≤ 2pn− 2.
The only element of the kernel of EO∗ → E∗ in these degrees is α. We deduce that
fij is detected in the necessary subspace. By Lemma 5.11, Mi+1 is algebraic.

Proof of Proposition 5.15. There is a cellular filtration of EO ∧X where each cell is
in dimension between k and k + 2pn − 2. Thus EO ∧ X satisfies the hypotheses of
Lemma 5.16. Because X is torsion free, E ∧ X(i) splits as a sum of E-theories, so
each attaching map fi :

∨
Si

Σi−1EO → EO ∧X(i−1) → EO ∧X(i) must be zero on E
theory.

Now let M be a retract of EO ∧ X and let Mi be the corresponding retract of
EO ∧X(i). Since E ∧X(i) splits as a sum of E-theories, and E ∧EO Mi is a retract of
E ∧ X(i), it follows that E ∧EO Mi does too. Thus, the attaching maps to form Mi
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from Mi−1 must be in the kernel of π∗(Mi−1) → EEO
∗ (Mi−1). The dimensions of the

cells of M are still in the range from k to k + 2pn− 2, so M satisfies the hypotheses
of Lemma 5.16 as well and M is an algebraic EO-module.

5.4 Orientations

Here we give proofs of the theorems quoted from this section in the introduction. At
this point these arguments are straightforward.

Lemma 5.17. Let Z be a space and suppose that every spectrum Y with HFp∗(Y )
isomorphic to HFp∗(Z) as P (1)∗-comodules has algebraic EO theory. Then EO-
orientability of complex bundles over Z is Chern determined.

Proof. Suppose that V is a complex bundle over Z with ψp−1(V ) = 0 (mod p). We
need to show that V is EO-orientable. Since ψp−1(V ) = 0 (mod p), HFp∗(Th(V )) ∼=
HFp∗(Z) as P (1)∗-comodules. By hypothesis, this implies that both Th(V ) and Z
have algebraic EO theory and by Corollary 5.7 EO∧Z and EO∧Th(V ) are homotopy
equivalent so V is orientable.

Theorem 5.18. Let Z be a (2p− 2)-sparse space. Then EO-orientability of complex
bundles over Z is Chern determined. In particular, let ψp−1 be the (p − 1)st power
sum polynomial over Z. Then a complex vector bundle ξ over Z is EO-orientable if
and only if ψp−1 ≡ 0 (mod p).

Proof. Theorem 5.13 says that the hypothesis of Lemma 5.17 is satisfied.

Proposition 5.19. Let Z be a (2p− 2)-sparse 2p-connective space. Then every map
Z → BGL1(S) is EO-orientable.

Proof. W4p−4 is (2p− 2)-sparse so both Th(f) and Σ∞+W4p−4 are (2p− 2)-sparse. By
Theorem 5.13 we deduce that they have algebraic EO theory. If u is the Thom class
in HF∗p(Th(f)) then for connectivity reasons, P 1(u) = 0 so the Thom isomorphism
respects the P (1)∗-module structure. The theorem follows by Corollary 5.7.

We immediately deduce:

Theorem 1.1. Let f : W4p−4 → BGL1(S) be any map. There is an equivalence
EO ∧Mf ' EO ∧W(4p−4)+ of EO-modules, so there is a map of spectra Mf → EO
which factors the unit map S0 → EO.

5.5 Free E∗[Cp] summands of EEO
∗ (M) lift to summands of M

We can split off copies of EO ∧Xp from an EO-module M without assuming that M
is sparse or induced:

Proposition 5.20. Suppose that M is an EO-module. The map

π0 EO–Mod(E,M)→ HomEEO
∗ E(EEO

∗ E,EEO
∗ (M))
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given by f 7→ π0(E ∧EO f) is an isomorphism, natural in M . If M is a finite module,
the map

π0 EO–Mod(M,E)→ HomEEO
∗ E(EEO

∗ (M), EEO
∗ E)

given by f 7→ π0(E ∧EO f) is an isomorphism, natural in M . If M is a cellular EO-
module and EEO

∗ (M) ∼= EEO
∗ ΣεE⊕V ′ where V ′ is some E∗[G]-module and ε ∈ {0, 1},

then M ' ΣεE ∨M ′ for some EO-module M ′ with EEO
∗ (M)′ = V ′.

Both the statement and proof would apply if we replaced the map EO → E with
any Galois extension of rings.

Proof. There is a relative Adams spectral sequence

ExtEEO
∗ E(E∗, E

EO
∗ (DEO(E) ∧EO M))⇒ π∗(DEO(E) ∧M).

Because E is a finite EO-module, there is an equivalence

DEO(E) ∧M ' EO–Mod(E,M)

and because EO → E is Galois, Rognes 6.4.7 says that DEO(E) ' E.

Because EEO
∗ E is E∗-free, there is a Kunneth isomorphism

EEO
∗ (E ∧EO M) ∼= EEO

∗ (E)⊗E∗ EEO
∗ (M).

The EEO
∗ E coaction on EEO

∗ E is free, so we see that EEO
∗ (E∧EOM) has a free coaction

too. It follows that the spectral sequence is concentrated on the zero line and

π∗EO(E,M)→ HomEEO
∗ E(E∗, E

EO
∗ E ⊗E∗ EEO

∗ (M))

is an equivalence. Because EEO
∗ E is self dual,

HomEEO
∗ E(E∗, E

EO
∗ E ⊗E∗ EEO

∗ (M)) ∼= HomEEO
∗ E(EEO

∗ (E), EEO
∗ (M)).

Since EEO
∗ (M) is projective as an E∗-module, there is also a relative Adams spec-

tral sequence

ExtEEO
∗ E(EEO

∗ (M), EEO
∗ (E))⇒ π∗ EO–Mod(M,E).

Because EEO
∗ E is a cofree comodule over itself, this is concentrated on the zero line.

It follows that the Adams spectral sequence collapses and the edge map

π0 EO–Mod(M,E)→ HomEEO
∗ E(EEO

∗ (M), EEO
∗ E)

is an isomorphism.

If M is cellular and EEO
∗ (M) ∼= E∗Σ

sXp ⊕ V ′ then there is a map f : E → M .
Since E is compact, f factors as a map f (k) : EO ∧ Xp → M (k) where M (k) is any
sufficiently large skeleton of M . Since skeleta of M are finite, each f (k) splits which
implies that f splits.
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Proposition 5.21. Suppose that Z is a spectrum with E∗(Z) a free E∗-module and
there is a splitting HFp∗(Z) = ΣsWp⊕U as P (1)∗-comodules. Then there is a splitting
EO ∧ Z ' ΣsEO ∧Xp ∨M where M is some EO-module.

Proof. Consider the subquotient Z
(s+2n2)
(s) of Z. Because 2n2 ≤ 2pn − n, Propo-

sition 5.15 says that Z
(s+2n2)
(s) has algebraic EO theory. Since HFp∗

(
Z

(s+2n2)
(s)

)
=

ΣsWp ⊕ U ′ there is a splitting EO ∧ Z(s+2n2)
(s) ' ΣkEO ∧Xp ∨ EO ∧ Z ′. This implies

that
E ∧ Z(s+2n2)

(s) ' E ∧EO EO ∧ Z(s+2n2)
(s) ' ΣsE ∧Xp ⊕ E ∧ Z ′,

so E∗

(
Z

(s+2n2)
(s)

)
∼= E∗(Σ

sXp) ⊕ E∗(X) as E∗[G]-modules. Thus E∗(Σ
sXp) is a sub-

quotient of E∗(Z) and E∗(Σ
sXp) is a free E∗[Cp]-module so the quotient map is split.

It follows that E∗(Σ
sXp) is a submodule of E∗(Z). By [8, Lemma 1] E∗[Cp] is injec-

tive over itself relative to E∗. All of the modules involved are free E∗-modules, so
the inclusion E∗[Cp] → E∗(Z) is split as an E∗-module. By definition of relatively
injective, it follows that E∗[Cp] → E∗(Z) is also split as an E∗[Cp]-module. We de-
duce that E∗(Z) ∼= E∗(Σ

sXp) ⊕ E∗(Z
′). By Proposition 5.20, there is a splitting

EO ∧ Z ' EO ∧ Σs′Xp ∨M ′ where s′ ≡ s (mod 2n2) and EEO
∗ (M ′) ∼= E∗(Z

′). By
comparing Atiyah-Hirzebruch spectral sequences as in the proof of Theorem 5.6 we
see that s′ ≡ s (mod 2p2n2).

5.6 A formula for the smash product of algebraic EO-modules

Recall that P (1)∗ = Fp[t]/(tp) with ∆(t) = t⊗ 1 + 1⊗ t, so that P (1)∗ is dual to the
subalgebra of the Steenrod algebra generated by P 1. Let Wl be the indecomposable
P (1)∗-comodule of length l. The following lemma indicates how tensor products
decompose:

Lemma 5.22. Given 1 ≤ r ≤ s ≤ p,

Wr ⊗Ws =
r⊕

i=c+1

Σ2r−2iWp ⊕
c⊕
i=1

Σ2r−2iWs−r+2i−1

where

c =

{
r if r + s ≤ p

p− s if r + s ≥ p

and the first sum is empty if r + s ≤ p.

Proof. According to [15, Theorem 1], if Vl is the length l representation of K∗[Cp],
replacing Wl with Vl everywhere in the formula gives the tensor decomposition for
Vr ⊗ Vs. By Lemma A.1, this suffices.

In other words, to decompose Wr ⊗Ws, first apply the corresponding sl2 decom-
position rule for irreducible sl2-modules of dimension r and s:

Wr ⊗Ws = Wr−s+1 ⊕ · · · ⊕Wr+s−1
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When l is larger than p, there is no indecomposable P (1)∗ comodule named Wl. If
Wp+l shows up in the list for l > 0, then replace Wp+l ⊕Wp−l with W⊕2

p . This gives
the decomposition rule.

Corollary 5.23. Let 1 ≤ r ≤ s ≤ p and let c be as in Lemma 5.22. Then:

EO ∧Xr ∧Xs ' EO ∧

(
r∨

i=c+1

Σ2r−2iXp ∨
c∨
i=1

Σ2r−2iXs−r+2i−1

)
.

Proof. Xi ∧ Xj is 2n-sparse so by Theorem 5.13 Xi ∧ Xj has algebraic EO theory.
Apply Theorem 5.6 to Lemma 5.22.

Corollary 5.24. If M and N are algebraic EO-modules, then so is M ∧EO N .

Proposition 5.25. Suppose that M is an algebraic EO-module and i < p is an
integer. Let Symi

EO(M) = M∧EO i
hΣi

be the ith symmetric power of M relative to EO.

Then Symi(M) is algebraic and

EEO
∗
(
Symi

EO(X)
)
/m = Symi

(
EEO
∗ (X)/m

)
where the right hand side is the symmetric power in K∗[Cp]-modules.

It follows that the formula for symmetric powers of K∗[Cp]-modules determines
the symmetric powers of EO-module. Corollary 2.7 of [11] gives a generating function
for these symmetric powers which we quote as Theorem A.5.

Proof. Using the binomial formula for the symmetric powers of a sum, the theorem
reduces to the case of M = EO ∧Xl. In this case Symi

EO(EO ∧Xl) = EO ∧Symi(Xl)
so we need to show that Symi(Xl) has algebraic EO theory. If E is a spectrum
with trivial G action and X has a G-action, then E ∧ XhG ' (E ∧ X)hG, so there
is a homotopy orbit spectral sequence HΣi

∗ (E∗(X
∧i
l )) ⇒ E∗

(
Symi(Xl)

)
. Since i is

p-locally invertible and there is a Künneth formula, we deduce that E∗(Symi(Xl)) =
Symi(E∗(Xl)) and HFp∗

(
Symi(Xl)

)
= Symi (HFp∗Xl). Because Xl is 2n-sparse, so

is Symi (HFp∗Xl) and thus Symi(Xl) is 2n-sparse and has algebraic EO theory.

6 W2p has Algebraic EO theory

As a fun application of our theory, we show that W2p has algebraic EO theory.

Theorem 6.1. Let W2p = BP 1 2p. Suppose Y is any space with

HF∗p(Y ) ∼= HF∗p(W2p).

Then Y has algebraic EO theory.

We deduce:

Corollary 6.2. EO orientability of bundles over W2p is Chern determined.
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We first need to compute HF∗pW2p as a P (1)∗-module.

Lemma 6.3. As a P (1)∗-module, HF∗p(W2p) = Fp[cp, cp+n, cp+2n, . . .] with the P (1)∗-
module structure:

P 1(ci) = (i+ n)ci+n

This implies that
Fp{cp, cp+n, cp+2n, . . .}

is a P (1)∗ submodule of HF∗p(W2p) and so HF∗p(W2p) = Sym(Fp{cp, cp+n, cp+2n, . . .}).
Furthermore Fp{cp, cp+n, cp+2n, . . .} is the free P (1)∗-module on the generators cp+pnk
for all k.

Proof. According to [17], the cohomology of W2p is as indicated as an Fp-algebra.
There is a map of spectra φ : BP 1 → ku including an Adams summand. Call the
splitting map ρ. These induce maps between the loop spaces of BP 1 to the loop
spaces of ku. Because φ(v1) = βp−1

1 we have a commutative diagram of infinite loop
spaces:

W2p BP 1 2p ku 2p

CP∞ ×W2p BP 1 2 ku 2 = BU

φ

v1 βp−1

φ

ρ

By [17, main theorem], BP 1 2 ' CP∞×W2p so the map Y2p → BP 1 2 is a retract of
spaces and the vertical dashed map exists. Thus, the map W2p → BU is a retract and
we get a surjection HF∗p(BU) → HF∗p(W2p). Since W2p is 2p-connective, this factors
through HF∗p(BU)/(c1, . . . , cn) where HF∗p(BU) = Fp[ci]. In HF∗p(BU) we have the
formula:

P 1ci = ciψn − ci+1ψn−2 +− · · · − ci+n−1ψ1 + (i+ n)ci+n

Because ψi ∈ (c1, . . . , cn) for i ≤ n, we deduce that P 1(ci) = (i+ n)ci+n.

The last input we need for this is Corollary A.8 which computes the following
symmetric powers formula:

Symk(Wp) =

{
W d
p p - k

W1 ⊕W d
p p|k

If M = Fp[Cp]{x1, . . . , xd} is a free Cp-module then the trivial summands in
Sym(M) are generated by (xk11 · · ·x

kd
d )p.

A Symmetric Powers of P (1)∗ Modules

In this appendix, we show that the representation rings of Fp[Cp] and P (1)∗ are
isomorphic, that the symmetric powers are the same for each, and discuss a formula
for the symmetric powers.
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For A a Hopf algebra, let Rep⊗(A) be the representation tensor category of A and
let R(A) be the representation ring.

Lemma A.1. Let Vl be the length l cyclic module over Fp[Cp] and let Wl be the length
l cyclic module over P (1)∗. The map φ : R(Fp[Cp]) → R(P (1)∗) sending Vl 7→ Wl is
an isomorphism of representation rings.

There is no lift of φ to a functor because that would imply an isomorphism of
Hopf algebras Fp[Cp] ∼= P (1)∗ by Tannakian reconstruction.

Proof. It is clear that φ is an isomorphism of the underlying graded abelian groups,
where the tensor product is forgotten. We need to show φ respects decompositions
of tensor products. By direct computation, it is not hard to show that V2 ⊗ Vl ∼=
Vl−1 ⊕ Vl+1 for 1 < l < p so V2 tensor generates the category of Fp[Cp]-modules (see
[15, Theorem 1]). This implies that V2 is a generator for R(Fp[Cp]). To check that
a map is a ring homomorphism, it suffices to check that f(xy) = f(x)f(y) for x and
y each pair of elements in a generating set. In this case, our generating set has one
element, so it suffices to show φ([V2]2) = φ([V2])2. The formula is given by

φ([V2]2) = φ([V1] + [V3]) = φ([V1]) + φ([V3]) = [W1] + [W3] = [W2]2 = φ([V2])2

Let Aq be the Hopf algebra Fp[q, t]/(tp) with the coaction ∆(t) = t⊗1+1⊗t+t⊗t.
Let Rep⊗q-free(Aq) be the full subcategory of Rep⊗(Aq) spanned by representations that
are free as Fp[q]-modules. Consider the following diagram of Hopf algebras:

Aq

Fp[Cp] P (1)∗

θ1 θ0

The algebras A1 and A0 are specializations of Aq: A1 = Aq/(q − 1) = Fp[Cp] and
A0 = Aq/(q) = P (1)∗. It is fun to note that this diagram is the kernel of Verschiebung
on the following diagram of formal groups:

ku ku∗(CP∞)

KU HFp KU ∗(CP∞) HF∗p(CP
∞)

Lemma A.2. The map θ∗1 : Rqf (Aq)(Aq) → R(A1) induced by tensoring down along
Aq → A1 admits a section α such that θ0 ◦ α = φ.

Proof. We set α(Vi) = Ui. Since V2 generates R(A1), it suffices to check that
α([V2]2) = [U2]2. Let {x1, x2} be a basis for U2 so that the action is given by
t(x1) = x2. Then U2 ⊗ U2 has basis {x1 ⊗ x1, x1 ⊗ x2, x2 ⊗ x1, x2 ⊗ x2}. The
vector x1 ⊗ x2 − x2 ⊗ x1 is fixed and generates a U1. On the other summand
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t(x1⊗ x1) = x2⊗ x1 + x1⊗ x2 + qx2⊗ x2. Also, t(x2⊗ x1 + x1⊗ x2) = 2x2⊗ x2. The
matrix representation on {x1 ⊗ x1, x2 ⊗ x1 + x1 ⊗ x2, x2 ⊗ x2} is given by:1 0 0

1 1 0
u 2 1


Basic linear algebra shows that this is conjugate to a length 3 Jordan block, so
{x1 ⊗ x1, x2 ⊗ x1 + x1 ⊗ x2, x2 ⊗ x2} ∼= U3. Thus, U2 ⊗ U2

∼= U1 ⊕ U3 and so
α([V2])2 = [U2]2 = [U1] + [U3] = α([V1] + [V3]) = α([V2]2).

Theorem A.3. Let F be a not necessarily multiplicative, not necessarily additive
natural transformation from the identity functor on the category of tensor categories
to itself. For any tensor category C, F gives a map of sets R(F ) : R(C) → R(C).
Then the following diagram commutes:

R(A1) R(A0)

R(A1) R(A0)

φ

R(F ) R(F )

φ

We are only going to apply this when F is one of the functors Symn. In that case,
it says that φ : R(A1)→ R(A0) is homomorphic for Symn. I would like to say that φ
is an isomorphism of Λ-rings, but neither the domain nor the codomain is actually a
Λ-ring.

Proof. Suppose that V ∈ Rep⊗(A1), that U ∈ Rep⊗(Aq) and W = φ(V ) ∈ Rep⊗(A0).
Suppose that F (U) has indecomposable decomposition

⊕n
i=1 aiUi. Then because F

is natural and φ commutes with ⊕,

F (V ) = F (θ1(U)) = θ1(F (U)) = θ1

(
n⊕
i=1

aiUi

)
=

n⊕
i=1

aiVi

and likewise

F (W ) = F (θ0(U)) = θ0(F (U)) = θ0

(
n⊕
i=1

aiUi

)
=

n⊕
i=1

aiWi

We see that φ(F (V )) = F (φ(V )) so φ is homomorphic for F as desired.

We still have the issue of computing symmetric powers for Fp[Cp]-modules. Hughes
and Kemper [11] compute the symmetric powers for Fp[Cp]-modules. They have the
following results:

Lemma A.4 ([11, Lemma 2.3 and Theorem 2.4]). Let K = Fp and let RKCp be
the representation ring of Fp[Cp]-modules. The ring RKCp is generated by V1, . . . , Vp.
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Define
R(Fp[Cp])[µ] = R(Fp[Cp])[t]/(t2 − V2t+ 1).

Then µ is invertible,

Vn =
µn − µ−n

µ− µ−1
=

n−1∑
j=0

µn−1−2j

and R(Fp[Cp])[µ] ∼= Z[µ]/f(µ) where

f(x) =
(x− 1)(x2p − 1)

x+ 1
.

Theorem A.5 ([11, Corollary 2.7]). Let σt(V ) ∈ R(K[Cp])[µ]JtK be the generating
function

∞∑
d=0

(Symd V )td.

Then

σt(Vn+1) =
n∏
j=0

(1− µn−2jt)−1 (mod tp)

Theorem A.6 ([11, Theorem 2.11]).

Symr+p Vn ∼= Symr Vn ⊕ V ⊕dp

Together, we can use these to compute the case that we need:

Theorem A.7.

Symk Vp =

{
V d
p p - k
V1 ⊕ V d

p p|k

Proof. Let R = R(Fp[Cp])/(Vp). In R we want to show that

Symk Vp =

{
0 p - k
V1 p|k

In R(Fp[Cp]), Vp = µp−µ−p

µ−µ−1 and µ is a unit, so it is equivalent to quotient by
µ2p−1
µ2−1

. This divides the polynomial f(µ) = (x−1)(x2p−1)
x+1

so R ∼= Z[µ]/g(µ) where

g(x) = x2p−1
x2−1

= Ψ2p where Ψ2p is the cyclotomic polynomial. Thus µ is a primitive
2pth root of unity in R and ψr(µ

p, . . . , µ2−p) = 0 for 1 ≤ r < p. Theorem A.5 says
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the generating function for Sym(Vp) is given by

σt(Vp) =

p−1∏
j=0

(1− µp−2jt)−1 (mod tp)

=

p−1∑
i=0

hi(µ
p, . . . , µ2−p)

and some multiple of nhi is generated by the ψi. We deduce that some multiple
nhi(µ

p, . . . , µ2−p) = 0 and because R is torsion free this implies hi = 0. Hence,
Sym(Vp) = 1 (mod p, Vp). By Theorem A.6, we are done.

Combining Theorem A.3 and Theorem A.7 gives:

Corollary A.8.

SymkWp =

{
W d
p p - k

W1 ⊕W d
p p|k
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