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Abstract

Chromatic localization can be seen as a way to calculate a particular infinite piece
of the homotopy of a spectrum. For example, the (finite) chromatic localization of
a p-local sphere is its rationalization, and the corresponding chromatic localization
of its Adams E2 page recovers just the zero-stem. We study a different localization
of Adams E2 pages for spectra, which recovers more information than the chromatic
localization. This approach can be seen as the analogue of chromatic localization in a
category related to the derived category of comodules over the dual Steenrod algebra,
a setting in which Palmieri has developed an analogue of chromatic homotopy theory.
We work at p = 3 and compute the E2 page and first nontrivial differential of a spectral
sequence converging to b−1

10 Ext∗P (F3,F3) (where P is the Steenrod reduced powers), and
give a complete calculation of other localized Ext groups, including b−1

10 Ext∗P (F3,F3[ξ
3
1 ]).

Thesis Supervisor: Haynes Miller
Title: Professor of Mathematics
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0.1 Notation

We use the following notation extensively in this thesis.

k Fp
M �ΓN cotensor product of Γ-comodules M,N

E[x1, . . . , xn] Exterior algebra k[x1, . . . , xn]/(x21, . . . , x2n)

P [x1, . . . , xn] Polynomial algebra k[x1, . . . , xn]

D[x1, . . . , xn] Truncated height-p polynomial algebra k[x1, . . . , xn]/(xp1, . . . , xpn)

R Coaugmentation ideal coker(k ! R), for a unital k-algebra R

A mod-p Steenrod dual P [ξ1, ξ2, . . . ]⊗ E[τ0, τ1, . . . ]

P Steenrod reduced powers algebra P [ξ1, ξ2, . . . ]

ξn Antipode of the generator usually called ξn (see Notation 4.1.5)

ComodΓ Category of Γ-comodules (for a coalgebra Γ)

Stable(Γ) See Definition 2.1.6

ExtΓ Derived functors of HomComodΓ (see §2.1)

Sp Any symmetric monoidal model for the category of spectra

π∗∗(M) HomStable(Γ)(k,M) (see Notation 2.1.13)

D D[ξ1]

B P �Dk = k[ξ31 , ξ2, ξ3, . . . ] (see Notation 4.1.5)

K(ξ1) colim(B
b10! B

b10! . . . ) as an object of Stable(P )

R b−1
10 ExtD(k, k) = E[h10]⊗ P [b±10]

C∗
Γ(M,N) Cobar complex N

L

C∗
Γ(M,N) as defined in Definitions 3.1.5 and 3.1.11

∆

⊗,
L

⊗,
R

⊗
Diagonal, left, and right comodule structures on a tensor product

(see Definition 3.1.1)

MPASS See Definition 2.2.2

M(n) D-comodule isomorphic to k[ξ1]/ξn+1
1
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Chapter 1

Introduction

The goal of the work described in this thesis is to compute graded abelian groups of

the form

b−1
10 Ext∗P (F3,M)

where:

• P is the mod-3 Steenrod reduced powers algebra F3[ξ1, ξ2, . . . ],

• b10 ∈ Ext2P (F3,F3) is the element with cobar representative [ξ1|ξ21 ] + [ξ21 |ξ1], and

• M is a P -comodule.

The main focus is the case where M = F3: we describe the E2 page and first nontrivial

differentials of a spectral sequence converging to b−1
10 Ext∗P (F3,F3). We also have complete

calculations of b−1
10 Ext∗P (F3,M) for some other comodules M , and a conjecture about

the general structure of these Ext groups. We will begin by explaining the motivation

for this project by situating it within the larger context of chromatic homotopy theory.

Later in this chapter we will give a summary of our main techniques and results.
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1.1 Motivation: chromatic localizations in Stable(P )

This section is structured as follows: first we will describe a class of objects we would

like to better understand (Adams E2 pages), then we will describe an approximation

technique (chromatic localization) that does not seem to immediately apply to the

desired objects of study, and finally we will describe a way to apply the technique to

the objects of study (by re-constructing the machinery of chromatic homotopy theory

within an algebraic category related to Adams E2 pages). None of the work described in

this section is ours; the main ingredients are the nilpotence and periodicity theorems of

Devinatz-Hopkins-Smith and the work by Palmieri about stable categories of comodules.

Unless explicitly stated otherwise, we will work localized at an odd prime p, which will

eventually be specialized to 3, and write k = Fp.

1.1.1 Adams E2 pages

Given a finite p-local spectrum X, there is an Adams spectral sequence

E2(X) = Ext∗A(k,H∗(X)) =⇒ π∗Xp̂

converging to the p-complete homotopy of X. Here A is the mod-p Steenrod algebra

dual k[ξ1, ξ2, . . . , τ0, τ1, . . . ]/(τi)2, viewed as a Hopf algebra, and (as will be the case

throughout this document) Ext denotes comodule Ext. For spectra X of interest, such

as the p-local sphere, the E2 page is more computationally tractable than π∗X: the

E2 page is purely algebraic, and can be computed algorithmically in a finite range.

However, for many X of interest, there is no hope of obtaining a closed-form formula for

E2(X), and its structure encodes deep information about π∗X. Thus, we are interested

in obtaining information about the structure of graded abelian groups of the form

Ext∗A(k,M) for A-comodules M .

Let P = k[ξ1, ξ2, . . . ] be the Steenrod reduced powers algebra, and let E be the quotient

10



Hopf algebra k[τ0, τ1, . . . ]/(τ 2i ). Then there is an extension of Hopf algebras P ! A! E,

which gives rise to a Cartan-Eilenberg spectral sequence

E∗∗
2 = Ext∗P (k,Ext

∗
E(k,M)) =⇒ Ext∗A(k,M).

There is a third grading on this spectral sequence that comes from powers of E which

causes it to collapse at E2. That is, we have Ext∗P (k,Ext
∗
E(k,M)) ∼= Ext∗A(k,M) for an

A-comodule M . So we can revise our goal:

Goal 1.1.1. Study Ext∗P (k,N) where N is a P -comodule.

1.1.2 Chromatic localization

Now we will review chromatic localization from the perspective of Adams spectral

sequence vanishing lines. The main idea is that, given a finite p-local spectrum X, there

is a localization v−1
n π∗X of π∗X that can be seen as an approximation to π∗X in the

sense that v−1
n π∗X is often easier to compute than π∗X and it agrees with π∗X in an

infinite region.

Theorem 1.1.2 (Hopkins-Smith [HS98]). There is a filtration of the category Spfin
p of

p-local finite spectra

Spfin
p = C0 ) C1 ) C2 ) . . .

such that if X is in Cn and not Cn+1, there is a non-nilpotent self-map ΣkX ! X (for

some k) satisfying certain nice properties, which we denote vin. This gives rise to a

non-nilpotent operator vin on every page of the Adams spectral sequence.

If X is in Cn and not Cn+1, we say that X has type n.

Theorem 1.1.3 (Hopkins-Palmieri-Smith [HPS99]). Suppose X is a finite p-local

spectrum of type n. Then E∞(X) vanishes above a line of slope 1
|τn|−1

(which vin acts

11



parallel to), and in the wedge between this line and a lower line of slope 1
|τn+1|−1

, we

have

E∞(X) ∼= v−1
n E∞(X)

where v−1
n E∞(X) = colim(E∞(X)

vin! E∞(X)
vin! . . . ).

Chromatic localization is vn-localization, and this theorem shows that if we know v−1
n π∗X,

we know an infinite amount of information about π∗X. (Of course, since the vn-periodic

region is defined in terms of Adams filtration, we do not learn πkX for any given stem

k.)

Example 1.1.4. The sphere spectrum has type 0, and the first chromatic localization

is v−1
0 π∗Sp̂ = p−1π∗Sp̂ = π∗S ⊗Q. Serre [Ser53] proved that π∗S ⊗Q = π0S ⊗Q = Q.

Theorem 1.1.3 only makes guarantees for vanishing and periodicity in the E∞ page of

the Adams spectral sequence, but in this case we can see this illustrated in E2.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

0

10

20

30

40

50

60

Figure 1-1: E2(S) at p = 3, with line above which this is p-periodic

The vanishing line has infinite slope, and the line drawn in the picture is the line above

which π∗S is p-periodic; the only elements in the p-periodic wedge are powers of the
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class [τ0] representing the map S
p
! S.

Example 1.1.5. The mod-p Moore spectrum S/p has type 1. At odd primes, Miller

[Mil78, Corollary 3.6] showed that

v−1
1 π∗(S/p) = P [q±1

1 ]⊗ E[hi,0 : i ≥ 1]⊗ P [bi,0 : i ≥ 1]

(where q1 = [τ1]) by computing v−1
1 E2(S/p) and showing that the spectral sequence

collapses at E2.

These localizations give information about π∗S: given an element x ∈ π∗(S/p) we can

form an infinite family S ! S/p
vk1! S/p

x
! S (where the first map is inclusion of the

bottom cell), and similarly one studies infinite vn-periodic families in π∗S for higher n.

1.1.3 Chromatic localization in Stable(P )

Chromatic localization, as described above, gives information about homotopy groups

of spectra, not Ext groups. We will describe an algebraic category Stable(P ) and

describe Palmieri’s construction of a partial analogue of chromatic homotopy theory in

this category, such that the analogue of chromatic localization gives information about

Ext∗P (k,M) for P -comodules M , in accordance with Goal 1.1.1.

We will give a fuller summary of the construction and properties of Stable(P ) in Section

2.1, but for now define Stable(P ) as the category whose objects are unbounded cochain

complexes of injective P -comodules, and whose morphisms are chain complex morphisms

modulo chain homotopy. The idea is that it is a modification of the derived category of

P -comodules D(P ), in order for it to be better-behaved for localizations. There is a

functor i : ComodP ! Stable(P ) taking a P -comodule to an injective resolution, and
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the important property is that, similar to D(P ), we have

HomStable(P )(i(M), i(N)) ∼= Ext∗P (M,N)

for M,N in ComodP .

This category has many structural similarities to the homotopy category of spectra

Ho(Sp), and Palmieri [Pal01] proves algebraic analogues of many results in homotopy

theory, including partial analogues of the nilpotence and periodicity theorems mentioned

in Section 1.1.2. Some of these results are summarized in Section 2.3. The analogue

of “homotopy groups”—maps in Ho(Sp) from the unit object to a certain object—is

HomStable(P )(k,X), and if X = i(M), this is Ext∗P (k,M). In the analogue of chromatic

homotopy theory in Stable(P ), the full set of periodicity operators is difficult to

enumerate explicitly, but it contains powers of the May spectral sequence elements

bts =
1
p

∑
0<i<ps+1

(
ps+1

i

)
[ξit|ξ

ps+1−i
t ] for s < t. The corresponding chromatic localizations

have the form b−1
ts Ext∗P (k,M), and (if M has the right analogue of “type” to have

bts-periodicity) they agree with Ext∗P (k,M) in a range of dimensions.

Classically, every p-local finite spectrum X has a unique type n, and only one chromatic

localization v−1
n π∗(X) is defined and nonzero. An object of Stable(P ) might have an ac-

tion of multiple periodicity elements, and the analogue of the Nishida nilpotence theorem

(which says that every element in π∗S(p) is nilpotent except for the multiplication-by-p

map) is much more complicated: for example, at p = 3, Ext∗P (k, k) has an action by at

least two non-nilpotent operators, b10 and b11.

Our main focus in this project is to study the Stable(P ) analogue of Example 1.1.4—

that is, to compute that localization of Ext∗P (k, k) (the Stable(P ) analogue of π∗S) by

the first periodicity operator, namely b10. Slightly more generally, we will discuss the

computation of

b−1
10 Ext∗P (k,M)

for several P -comodules M . This can be thought of as an approximation of Ext∗P (k,M)

14



in the sense that this agrees with its localization above a line of 1
p(p2−1)−1

. We end up

specializing to p = 3; see Section 1.2.1.

1.1.4 Connection to motivic homotopy theory

Another part of the motivation for this project is its potential applications to motivic

homotopy theory; this is part of planned future work.

The element b10 ∈ Ext2A(k, k) survives the Adams spectral sequence and converges to

β1 ∈ π∗S. While β1 is nilpotent (and hence β−1
1 π∗S = 0) by the Nishida nilpotence

theorem, it is non-nilpotent in ExtBP∗BP (BP∗, BP∗), as well as in the homotopy of the

p-complete C-motivic sphere (Smot)p̂. So studying its localization gives topological, as

opposed to purely algebraic, information in the context of motivic homotopy theory.

In particular, there is an element τ ∈ π0,−1((Smot)p̂) in the homotopy of the p-completed

motivic sphere over C such that the realization map from motivic homotopy theory

to classical homotopy theory corresponds to inverting τ . That is, the τ -periodic

part of π∗∗((Smot)p̂) corresponds to classical homotopy theory, and so recent work

on understanding the unique properties of motivic homotopy theory centers around

studying Cτ , the cofiber of multiplication by τ . Gheorghe, Wang, and Xu [GWX] show

that π∗∗Cτ ∼= ExtBP∗BP (BP∗, BP∗), and the motivic Adams spectral sequence for Cτ

coincides with the algebraic Novikov spectral sequence

E2 = ExtP (k,Q) =⇒ ExtBP∗BP (BP∗, BP∗)

where Q = Ext∗E[τ0,τ1,... ]
(k, k).

The element b10 ∈ Ext∗P (k,Q) converges to β1 in ExtBP∗BP (BP∗, BP∗), which acts par-

allel to the vanishing line. So understanding the b10-localization of the E2 page of the alge-

braic Novikov spectral sequence is the first step to understanding β−1
1 ExtBP∗BP (BP∗, BP∗) ∼=

β−1π∗∗Cτ at p = 3. This would be the p = 3 analogue to Andrews and Miller’s

15



computation [AM17] of α−1 ExtBP∗BP (BP∗, BP∗) at p = 2.

1.2 Techniques

1.2.1 Margolis-Palmieri Adams spectral sequence

Our main technique is an Adams spectral sequence constructed in the category Stable(P ):

given a monoid object E in Stable(P ) and another object X satisfying some finiteness

conditions (see Proposition 2.2.5), there is a convergent spectral sequence

E1 = π∗∗(E ⊗ E
⊗s ⊗X) =⇒ π∗∗(X)

where π∗∗(X) denotes HomStable(P )(k,X), and E is the cofiber of the unit map k ! E.

If, in addition, π∗∗(E ⊗ E) is flat over π∗∗(E) (an analogue of the Adams flatness

condition), the E2 page has the form Ext∗π∗∗(E⊗E)(π∗∗(E), π∗∗(E⊗X)). As this spectral

sequence was first studied by Margolis [Mar83] and Palmieri [Pal01], we call it the

Margolis-Palmieri Adams spectral sequence (abbreviated MPASS).

To study b−1
10 Ext∗P (k,M), we apply the MPASS in the case where the monoid object E

is

K(ξ1) := colim
(
i(P �D[ξ1]k)

b10! i(P �D[ξ1]k)
b10! . . .

)
andX = b−1

10 i(M). (In general we use the notation D[x] to denote k[x]/xp.) This satisfies

Adams flatness at p = 3 but not for p > 3 (and the connective version i(P �D[ξ1]k) does

not satisfy Adams flatness at any prime). One reason to expect simpler behavior at

lower primes is that we have

π∗∗(K(ξ1)⊗K(ξ1)) = b−1
10 Ext∗P (k, (P �D[ξ1]k)⊗ (P �D[ξ1]k))

∼= b−1
10 Ext∗D[ξ1]

(k, P �D[ξ1]k)

by the change of rings theorem (Corollary 3.1.10), and the category ComodD[ξ1] is
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simpler at lower primes: every comodule over a height-p truncated polynomial algebra

is a sum of comodules of the form k[x]/xi for 1 ≤ i ≤ p, and there are fewer of these

for lower primes. One illustration of the extra simplicity at p = 3 is that there is a

Künneth isomorphism for the functor b−1
10 Ext∗D[ξ1]

(k,−) only for p = 3.

1.2.2 Different forms of the MPASS

When doing computations with the MPASS as outlined above, we use the fact that

this spectral sequence coincides starting at E1 with the b10-localized versions of the

following two spectral sequences:

(1) the spectral sequence associated to the filtration of the cobar complex C∗
P (k,M),

where F sC∗
P (k,M) consists of elements {[a1| . . . |an]m} such that at least s of the

ai’s are in ker(P ! D[ξ1]);

(2) a generalized version of the Cartan-Eilenberg spectral sequence associated to the

map P �D[ξ1]k ! P .

For (2), recall that there is a Cartan-Eilenberg spectral sequence

E2 = Ext∗B(k,Ext
∗
C(k,M)) =⇒ Ext∗A(k,M)

associated to an extension of Hopf algebras B ! A ! C. We present a similar

construction that can be defined if B is only an A-comodule algebra, instead of a Hopf

algebra of the form A �Ck; we believe that the construction, with this level of generality,

is new. In Section 3.2, we show that the Cartan-Eilenberg spectral sequence for an

A-comodule algebra B agrees with the B-based MPASS in Stable(A). The filtration

spectral sequence (1) is only defined in the case that B is a subalgebra of A of the form

A �Ck, and in Section 3.3 we show that this agrees with the Cartan-Eilenberg spectral

sequence (and hence also the MPASS). This generalizes the classical fact that the

filtration spectral sequence in (1) coincides at E1 with the (classical) Cartan-Eilenberg

17



spectral sequence.

These spectral sequences are useful at different times. Though not ideal for large-

scale computation due to the lack of structure, the filtration spectral sequence is very

concrete and useful for computing differentials in low degrees. The MPASS is useful

largely because of the form of the E2 term (in the case where flatness is satisfied).

From the Cartan-Eilenberg spectral sequence variant we obtain structure such as power

operations in some cases (see [Saw82]).

1.2.3 Twisting cochains

When computing b−1
10 Ext∗P (k, k[ξ

3
1 ]) in Section 6.3, we use a very different technique,

inspired by the theory of twisting cochains, which we feel is worth pointing out here.

The technique applies to computing Ext∗Γ(k, k) for a Hopf algebra Γ, as well as localized

versions of algebras of this form; it is applicable to the case at hand because k[ξ31 ] ∼=

P �k[ξ1,ξ2,... ]/(ξ31)
k and so by the change of rings theorem, we have

b−1
10 Ext∗P (k, k[ξ

3
1 ])

∼= b−1
10 Ext∗k[ξ1,ξ2,... ]/(ξ31)

(k, k).

Suppose we wish to show that b−1
10 Ext∗Γ(k, k)

∼= H∗(Q), where Q is a cochain complex.

The idea is to explicitly construct a map from the cobar complex C∗
Γ(k, k) to Q, and

then show that the resulting map is a quasi-isomorphism after inverting b10. Recall that

C∗
Γ(k, k) is a dga where the algebra structure comes from the concatenation product; thus

it is multiplicatively generated by C1
Γ(k, k). So to construct a map θ′ : C∗

Γ(k, k)! Q∗, it

suffices to construct a map θ : C1
Γ(k, k)! Q1, and then extend the map multiplicatively

to all of C∗
Γ(k, k). However, one also needs to make sure the resulting map is a chain

map, and one can show (see Proposition 6.3.2) that it suffices to check

dQ(θ(x)) =
∑

θ(x′)θ(x′′)
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for all x ∈ Γ = C1
Γ(k, k), where

∑
x′ ⊗ x′′ is the reduced diagonal of x ∈ Γ.

Once the map θ has been constructed, one way to show that θ′ is a quasi-isomorphism

after inverting b10 is to define a filtration on Q∗ such that θ′ is a filtration-preserving

map with respect to the filtration on C∗
Γ(k, k) described in Section 1.2.2. This gives

rise to a map of filtration spectral sequences, and the idea is to use knowledge of H∗Q

to show the spectral sequences coincide.

1.3 Outline and main results

In Chapter 2, we first give a construction of the category Stable(A) that we are

working in, and explain the properties that makes it a desirable setting. We then

give details about the construction of the MPASS, and review several of Palmieri’s

results about the analogues of the nilpotence and periodicity theorems in Stable(A)

and Stable(P ). As was sketched in Section 1.1.3, we use this to motivate our quest to

compute b−1
10 Ext∗P (k, k), by situating it as the most basic chromatic localization in the

category Stable(P ).

Chapter 3 is devoted to setting up a more general version of the Cartan-Eilenberg

spectral sequence and proving the comparison results mentioned in Section 1.2.2. The

key point, which we explain in depth in Section 3.1, involves two isomorphic ways to

construct the cobar complex: one way produces the familiar cobar differential, and

the other way arises from the cosimplicial object associated to a free-forgetful monad

and has a differential x 7! 1⊗ x. The Cartan-Eilenberg spectral sequence for the Hopf

algebra extension B ! A ! C arises from a double complex C∗
A(k,A) �AC

∗
B(B, k).

Using the usual construction of the cobar complex, C∗
B(B, k) only makes sense if B is a

coalgebra, but if we replace these cobar complexes with the second version, this can

be defined when B is an A-comodule algebra. We show that this coincides with the

MPASS in Theorem 3.2.4. Section 3.3 is devoted to proving the comparison with a
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filtration spectral sequence on the cobar complex, following the classical proof.

In Chapters 4 and 5 we turn to the K(ξ1)-based MPASS for computing b−1
10 Ext∗P (k, k).

In Section 4.2 we determine the structure of P �D[ξ1]k as a D[ξ1]-comodule in order

to obtain an expression for K(ξ1)∗∗K(ξ1) = b−1
10 Ext∗D[ξ1]

(k,A �D[ξ1]k) as a vector space.

For this computation, we work at an arbitrary odd prime. We find that K(ξ1)∗∗K(ξ1)

is flat over K(ξ1)∗∗ at p = 3, and so we specialize to p = 3 going forward. In Section

4.3 we prove:

Theorem. The Hopf algebroid (K(ξ1)∗∗, K(ξ1)∗∗K(ξ1)) is an exterior algebra over

K(ξ1)∗∗ = E[h10]⊗ P [b±1
10 ] on generators e2, e3, . . . where en is in degree 2(3n + 1).

Corollary. The E2 page of the K(ξ1)-based Adams spectral sequence for computing

π∗∗(b
−1
10 k) is

Ext∗K(ξ1)∗∗K(ξ1)
(K(ξ1)∗∗, K(ξ1)∗∗) = K(ξ1)∗∗ ⊗ P [w2, w3, . . . ]

where wn = [en] has Adams filtration 1 and internal degree 2(3n + 1).

Using a degree argument, we show (Proposition 5.1.1) that dr(x) = 0 unless r ≡ 4

(mod 9) or r ≡ 8 (mod 9). Chapter 5 is devoted to computing the first differential.

Theorem. The element w2 is a permanent cycle, and for n ≥ 3, there is a differential

d4(wn) = b−4
10 h10w

2
2w

3
n−1.

The strategy is to use comparison with the MPASS computing b−1
10 Ext∗Pn

(k, k), where

Pn = k[ξ1, ξ2, ξn−2, ξn−1, ξn]/(ξ
9
1 , ξ

3
2 , ξ

27
n−2, ξ

9
n−1, ξ

3
n).

It is not hard to reduce to showing the differential d4(wn) = b−4
10 h10w

2
2w

3
n−1 in this
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simpler MPASS. The main strategy is: (1) compute enough of the E2 page of the

simpler MPASS to identify classes of interest such as wn and b−4
10 h10w

2
2w

3
n−1; (2) show

that b−1
10 Ext∗Pn

(k, k) is zero in the stem of b−4
10 h10w

2
2w

3
n−1 (so it is either the source or

target of a differential); (3) show that it is a permanent cycle and, for degree reasons,

wn is the only element that can hit it. For step (2), we calculate part of b−1
10 Ext∗Pn

(k, k)

using the dual of the May spectral sequence.

We conjecture the following behavior for d8 in the MPASS converging to b−1
10 Ext∗P (k, k):

if d4(x) = h10y and d4(y) = h10z, then d8(x) = b10z. Furthermore, we conjecture that

the remaining differentials in the spectral sequence are zero. In Chapter 6, we state the

following more general conjecture:

Conjecture. Let D = k[ξ1]/(ξ
3
1). There is a functor W : ComodP ! ComodD such

that

b−1
10 Ext∗P (k,M) ∼= b−1

10 Ext∗D(k,W (M))

and W (k) = k[w̃2, w̃3, . . . ] with D-coaction given by ψ(w̃n) = 1⊗ w̃n + ξ1 ⊗ w̃2
2w̃

3
n−1 for

n ≥ 3 and ψ(w̃2) = 1⊗ w̃2.

(Here w̃n = b−1
10 wn.) In the remainder of the chapter, we prove two results that support

this conjecture.

Theorem. We have the following:

(1) b−1
10 Ext∗P (k, k[ξ

9
1 , ξ

3
2 , ξ3, ξ4, . . . ])

∼= b−1
10 Ext∗D(k, k[w̃2, b̃20]) where ψ(w̃2) = 1 ⊗ w̃2

and ψ(̃b20) = 1⊗ b̃20 + ξ1 ⊗ w̃4
2;

(2) b−1
10 Ext∗P (k, k[ξ

3
1 ])

∼= b−1
10 Ext∗P (k, k[h20, b20, w3, w4, . . . ]/h

2
20) where ψ acts trivially

on all the generators.

Compare the conjecture above with the following analogue at p = 2:

Theorem 1.3.1 (Andrews-Miller [AM17, Proposition 4.3]). At p = 2, let h10 = [ξ1]
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and P = F2[ξ
2
1 , ξ

2
2 , . . . ]. Then for a P -comodule M we have

h−1
10 Ext∗P (F2,M) ∼= h−1

10 Ext∗E[ξ1]
(F2,M).

Note that this theorem is much simpler than the p = 3 case we study; this can be seen

in the fact that the p = 2 MPASS collapses.
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Chapter 2

Homotopy theory in the stable
category of comodules

Let (A,Γ) be a Hopf algebroid. This chapter will describe a program begun by Margolis

[Mar83] and Palmieri [Pal01] to study the homotopy theory of Γ-comodules. The

eventual goal is to set up an analogy between Ho(Sp) and a homotopically nice algebraic

category Stable(Γ) into which ComodΓ embeds, such that ExtΓ groups correspond

to homotopy groups in classical homotopy theory. This analogy can be developed to

the point that classical techniques for studying homotopy groups, such as the Adams

spectral sequence, can be imported into Stable(Γ) and applied for the study of Ext

groups. In the first section, we will define the category Stable(Γ). In the second section,

we will discuss the analogue of the Adams spectral sequence in Stable(Γ), which we call

the Margolis-Palmieri Adams spectral sequence. This will be our main computational

tool in the rest of this thesis. In the third section, we discuss the analogue of some

features of chromatic homotopy theory in Stable(Γ), and explain how this fits our

central problem of computing b10 Ext∗P (k,M) into a larger conceptual framework.
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2.1 The category Stable(Γ)

It is a general fact about abelian categories (see e.g. [Sta18, Tags 06XQ], [Sta18, Tag

06XS]) that to any abelian category A one can form the derived category D(A) by

inverting the homology isomorphisms in the category K(A) of chain complexes in A

up to chain homotopy, and there is an isomorphism

ExtiA(X,Y ) := HomD(A)(X,Y [i]) ∼= H i(HomK(A)(X, I
•
Y ))

where I•Y is an injective resolution of Y . In particular, one can apply this to the

category ComodΓ of (A,Γ)-comodules (see [Rav86, A1.1.2] for a precise definition of

this category).

Definition 2.1.1. Define ExtΓ(M,N) = HomD(ComodΓ)(M,N) where M and N on the

right hand side are identified with their image in the derived category. If the context is

clear, we abbreviate D(ComodΓ) as D(Γ).

Our eventual goal is to try to use homotopy-theoretic techniques to study Ext groups, and

D(Γ) is not a bad first guess as a setting for this work. A fair amount of homotopy theory

only depends on the existence of a small number of formal properties of Ho(Sp), such as

the existence of (co)fiber sequences, an invertible suspension functor, and a symmetric

monoidal smash product. Given an arbitrary category with a symmetric monoidal

product (generalizing the smash product) and triangulated structure (generalizing the

(co)fiber sequences of homotopy theory), we are well on our way to at least being able

to write down analogues of many of the major constructions in homotopy theory. The

derived category D(Γ) fits this criterion: the shift functor gives rise to a triangulation,

and tensor product of chain complexes is symmetric monoidal.

In [HPS97], Hovey, Palmieri, and Strickland consider a set of axioms for Ho(Sp)-like

categories, which they call stable homotopy categories, and develop analogues of classical

homotopy theory in this generality.

24



Definition 2.1.2 ([HPS97, Definition 1.1.4]). A stable homotopy category is a symmet-

ric monoidal triangulated category C (such that the symmetric monoidal product is

compatible with the triangulation) along with a set G of strongly dualizable objects of

C such that

LocC(G) ' C, (2.1.1)

where LocC(G) indicates the localizing subcategory of C generated by G—that is, the

smallest thick subcategory that is closed under filtered colimits in C.

Before checking whether D(Γ) fits this definition, however, we note that D(Γ) already

has a problem that needs to be corrected first: while the derived category seems

like a good setting for studying Ext groups, it turns out it is not a good setting for

studying localized Ext groups. In particular, we would like to study groups of the form

x−1 Ext∗Γ(A,M) where M is a Γ-comodule and x ∈ Ext∗Γ(A,A) is non-nilpotent, and

one might hope that x−1 ExtΓ(A,M) = HomD(Γ)(A, x
−1M); this is the same as asking

for the equality

colim
(
HomD(Γ)(A,M)

x
! HomD(Γ)(A,M)

x
! HomD(Γ)(A,M)! . . .

)
(2.1.2)

= HomD(Γ)

(
A, colim(M

x
!M

x
!M ! . . . )

)
where in the sequence M x

!M ! . . . we are identifying M with its image in D(Γ), i.e.

the class in Ch(Γ) represented by a Γ-injective resolution of M . This would hold if the

unit object A were compact, but that is not true in general, and in fact (2.1.2) does

not hold in general, as we show with the following counterexample.

Example 2.1.3. Let (A,Γ) = (k,E[t]), the exterior Hopf algebra on one generator

over the field k. Then ExtE[t](k, k) = P [α] where α is the class in homological degree 1,

and k has injective resolution I = (E[t]
∂
! E[t]

∂
! E[t]! . . . ) where ∂ is the comodule

map taking 1 7! 0 and t 7! 1. In D(E[t]) we have

colim(k
α
! k

α
! k ! . . . ) = colim(I

α
! I

α
! I ! . . . )
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= . . .
∂
! E[t]

∂
! E[t]

∂
! E[t]

∂
! . . . .

This is acyclic, and hence zero in D(E[t]). So the right hand side of (2.1.2) in this case

is zero, and the left hand side is α−1 ExtE[t](k, k) = k[α±1] by definition.

We would like to fix this problem with the derived category and work in a category

such that localized Ext groups can be described as Hom-sets between localized objects.

More precisely, we would like to work in a category A such that:

(1) If M and N are Γ-comodules, then HomA(M,N) = ExtΓ(M,N).

(2) We have x−1 ExtΓ(M,N) = HomA(M,x−1N).

(3) The category A is a stable homotopy category in the sense of Definition 2.1.2.

The correct choice of A is called Stable(Γ); there are three equivalent constructions.

First we need some preliminaries. Given a category C, the Ind construction Ind(C) is

designed to force

HomInd(C)(X, colim
i

Yi) = colim
i

HomInd(C)(X,Yi)

where colimYi is a filtered colimit. More precisely:

Definition 2.1.4. Given a category C, let Ind(C) be the category whose objects are

diagrams F : D ! C where D is a small filtered category, and if F : D ! C and

F ′ : D′ ! C are objects, then

HomInd(C)(F,G) = lim
d∈D

colim
d′∈D′

HomC(F (d), F
′(d′)).

By design, there is a full and faithful embedding C ! Ind(C) such that objects in the

image are compact in Ind(C). This suggests we define Stable(Γ) = Ind(D(Γ)), but

we still need to satisfy (2.1.1). The following lemma provides some intuition for the

definition.
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Lemma 2.1.5 ([BHV15, Lemma 2.15]). If G ⊂ C is a set of compact generators of C,

then

Ind(ThickC(G)) ' LocThickC(G)(G).

Definition 2.1.6 ([BHV15, Definition 4.8]). Let G denote the set of dualizable Γ-comodules,

and let ThickD(Γ)(G) denote the thick subcategory of D(Γ) generated by the image of

G in D(Γ). Then define

Stable(Γ) = Ind(ThickD(Γ)(G)).

It turns out that this is equivalent to the following, somewhat more concrete, construc-

tion:

Definition 2.1.7. Define K(Inj Γ) to be the category whose objects are unbounded

complexes of injective Γ-comodules, and whose morphisms are chain complex morphisms

modulo chain homotopies.

Since D(Γ) is cocomplete, the universal property of the Ind construction gives rise to

a functor Stable(Γ) ! D(Γ), which can be regarded as a left Bousfield localization

functor. The claim is that this functor factors through K(Inj Γ)

Stable(Γ) //

&&

D(Γ)

K(Inj Γ)

99

and the functor Stable(Γ)! K(Inj Γ) induces an equivalence of categories under certain

hypotheses.

Theorem 2.1.8 ([BHV15, Proposition 4.17]). Suppose A is Noetherian, Γ is flat over

A, and every compact object in the image of ComodΓ is in ThickD(Γ)(A). Then there is

an equivalence of categories Stable(Γ) ' K(Inj Γ).
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The conditions on the theorem are satisfied for the Hopf algebroid (R∗, R∗R) if R∗R

is commutative and R is Landweber exact over MU or over the quotient of BP by a

finite regular invariant sequence (see [BHV15, after Definition 4.14]). Examples of R

satisfying this condition include HFp and BP .

There is a third way of thinking of this category:

Remark 2.1.9. Under a niceness assumption on (A,Γ) satisfied by Adams Hopf

algebroids, Hovey [Hov04] constructs the homotopy model structure on Ch(Γ) as a

localization of the projective model structure and shows that its homotopy category

is a stable homotopy category in the sense of Definition 2.1.2. In [BHV15, §4.5] it is

shown that this homotopy category is equivalent to Stable(Γ) as defined above.

Warning 2.1.10. Let A denote the Steenrod algebra, or more generally any algebra

that can be expressed as a union of Poincaré algebras. In [Mar83, Chapter 14 §1],

Margolis defines an enlargement StMod(A) of the category of A-modules that he calls

the “stable category.” Its objects are left A-modules and its morphisms are A-module

morphisms modulo those that factor through a projective module. One might wonder

if this agrees with the dual of the definitions of stable categories of comodules above,

but this is not true in general; see [BK08] for a discussion of the difference between

StMod(kG) and the category K(Inj kG) of chain complexes of injective kG-modules

up to chain homotopy. In particular, StMod(kG) is equivalent to the subcategory of

K(Inj kG) consisting of acyclic complexes.

Theorem 2.1.11 ([HPS97, Theorem 9.5.1], [BHV15, Lemma 4.21]). Under the hy-

potheses of Theorem 2.1.8, Stable(Γ) is a stable homotopy category in the sense of

Definition 2.1.2, and if M and N are Γ-comodules, then

ExtΓ(M,N) ∼= HomStable(Γ)(M,N).
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Moreover, (2.1.2) is satisfied, and hence x−1 ExtΓ(M,N) = HomStable(Γ)(M,x−1N),

because all objects in the image of ComodΓ are compact by definition of Ind.

Remark 2.1.12 (Symmetric monoidal structure). For concreteness, suppose we are

using the K(Inj Γ) model of the stable category of Γ-comodules. If X and Y are objects

of Stable(Γ), it is clear that the symmetric monoidal product X ⊗ Y should be the

tensor product of chain complexes—that is, (X ⊗ Y )n =
⊕

i+j Xi⊗ Yj—but we need to

give it the structure of a chain complex of Γ-comodules. We define the Γ-coaction on

Xi ⊗ Yj to be the diagonal coaction, namely

ψ(x⊗ y) =
∑

x′y′ ⊗ x′′ ⊗ y′′

where the Γ-coaction on Xi and Yj are given by ψ(x) =
∑
x′⊗x′′ and ψ(y) =

∑
y′⊗y′′,

respectively. We write Xi

∆

⊗ Yj to denote this tensor product as an object of ComodΓ

with the diagonal coaction, and write X
∆

⊗ Y for the tensor product of chain complexes

with the levelwise Γ-comodule structure given by the diagonal coaction.

Notation 2.1.13. The idea is that Stable(Γ) behaves enough like Ho(Sp) that we

should be able to port over a large amount of classical homotopy theory for the study

of Stable(Γ). To emphasize this analogy, we adopt the following notation and make the

following observations:

• As k is the unit object in Stable(Γ), write

π∗∗(X) = HomStable(Γ)(k,X)

for an object X of Stable(Γ). We assume that Γ is a graded Hopf algebra, and hence

objects of Stable(Γ) are bi-graded: the first grading in π∗∗ will refer to homological

degree from regarding X as a chain complex in K(Inj Γ), and the second grading

will refer to internal degree. If M is the Stable(Γ) representative of a Γ-comodule,

then πs,t(M) = Exts,tΓ (k,M).
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• As in topology, write X∗∗X = π∗∗(X ⊗X).

• Notice that the analogue of the homotopy groups of spheres in this category is

ExtΓ(k, k) (self-maps of the unit object). In particular, if Γ = A, then this is the

E2 page of the Adams spectral sequence for the sphere, and if Y is a (topological)

spectrum, π∗∗(H∗Y ) = ExtA(k,H∗Y ) is the Adams E2 page for Y . The idea to take

tools originally designed to study (classical) homotopy groups, and construct them

internally in Stable(A) so they can be used to study Adams E2-pages π∗∗(H∗Y ).

In the next section, we will extend this analogy and define a version of the Adams

spectral sequence within the category Stable(Γ). In Section 2.3 we will extend this even

further and talk about analogues of chromatic homotopy theory in Stable(A).

2.2 The Margolis-Palmieri Adams spectral sequence

Let E be a (classical) ring spectrum and X a finite spectrum, and let E be the cofiber

of the unit map S ! E. Recall that the classical Adams spectral sequence

E1 = E∗(E
∧s ∧X) =⇒ π∗XÊ

is constructed by applying π∗(−) to the tower of fiber sequences

X

��

E ∧Xoo

��

E
∧2 ∧Xoo

��

oo

E ∧X

88

E ∧ E ∧X

66

E ∧ E∧2 ∧X

where the fiber sequence

E
∧s ∧X

��

E
∧s+1 ∧Xoo

E ∧ E∧s ∧X

66
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is obtained by smashing

S

��

Eoo

E

??

with E
∧s ∧X on the right.

Proposition 2.2.1. If E∗E is flat as an E∗-algebra, then one can define the structure

of a Hopf algebroid on (E∗, E∗E) as follows:

• The left and right units come from applying π∗ to the maps E ∧ S ! E ∧ E and

S ∧ E ! E ∧ E, respectively.

• The antipode comes from applying π∗ to the swap map E ∧ E ! E ∧ E.

• The counit ε : π∗(E ∧ E)! π∗E comes from applying π∗ to the multiplication map

on E.

• For the comultiplication, note that there is a natural map E∗E⊗E∗E∗E ! E∗(E∧E)

induced by π∗(E ∧E)⊗π∗(E ∧E)! π∗(E ∧E ∧E ∧E) −∧µ∧−
! π∗(E ∧E ∧E). The

flatness condition implies that this map is an isomorphism. Then the coaction on

E∗E comes from the composition

π∗(E ∧ E) α
! π∗(E ∧ E ∧ E)

∼=
 E∗E ⊗E∗ E∗E

where α is induced by the ring spectrum map E ∧ E ! E ∧ S ! E ! E ∧ E ∧ E.

In this flat case, we have

E2 = ExtE∗E(E∗, E∗X).

Definition 2.2.2 ([Pal01]). Given a monoid object (“ring spectrum”) E in Stable(Γ)

and another object X in Stable(Γ), we can define an analogous tower of fibrations

in Stable(Γ) and apply the functor HomStable(Γ)(A,−) = π∗∗(−), obtaining a spectral

sequence with E1 = E∗∗(E
⊗s⊗X) abutting to π∗∗X. We call this the E-based Margolis-

Palmieri Adams spectral sequence for computing π∗∗X, henceforth abbreviated as
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MPASS.

Remark 2.2.3. The unit map X ! E ⊗X is given by m 7! 1 ⊗m. One can check

that this respects the Γ-coaction since E ⊗X is endowed with the diagonal Γ-coaction

(see Remark 2.1.12).

As in the classical case, if E∗∗E is flat over E∗∗, then we can define a Hopf algebroid

structure on the pair (E∗∗, E∗∗E) analogously to Proposition 2.2.1. In this case, the

MPASS has E2 term

E2 = ExtE∗∗E(E∗∗, E∗∗(X)).

This Adams flatness condition is satisfied in the following common situation.

Proposition 2.2.4 ([Pal01, Proposition 1.4.6]). Suppose f : (A,Γ) ! (A,Σ) is a

map of Hopf algebroids such that Φ := Γ �ΣA is a subalgebra of Γ, and such that the

Σ-coaction on Φ (defined by composing the Γ-coaction on Φ with f) is trivial. Then

(Φ∗∗,Φ∗∗Φ) is flat.

Proof. We have

Φ∗∗Φ = Ext∗Γ(A, (Γ �ΣA)⊗ (Γ �ΣA)) ∼= Ext∗Σ(A,Γ �ΣA)

by the variant of the change of rings theorem in Corollary 3.1.10, and by the hypothesis

about the coaction, this is Ext∗Σ(A,A)⊗ Φ ∼= Φ∗∗ ⊗ Φ.

We will eventually use this machinery in the special case where (A,Γ) = (F3, P ), where

P = F3[ξ1, ξ2, . . . ] is the reduced powers; our ring spectrum E will be b−1
10 (P �F3[ξ1]/ξ31

F3),

which does not satisfy the hypotheses of the above proposition, but will end up satisfying

flatness regardless due to special properties of working in characteristic 3.

In the world of classical homotopy theory, in general the Adams spectral sequence
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converges not to π∗X but to the E-completion π∗(X)Ê. However, in Stable(Γ), a

connectivity argument shows that the inverse limit of the Adams tower is contractible

in most of the cases we care about, and so in these cases the spectral sequence converges

to π∗∗(X). More precisely:

Proposition 2.2.5 ([Pal01, Proposition 1.4.3]). Suppose (A,Γ) is a Hopf algebra where

A is a field. Let E be a ring spectrum satisfying the following conditions:

• πij(E) = 0 if i < 0 or j − i < 0;

• the unit map η induces an isomorphism on π0,0;

• µ∗ : π0,0E ⊗ π0,0E ! π0,0 induced by the multiplication map µ is an isomorphism;

• the homology of the chain complex E is a finite-dimensional k-vector space in each

bi-degree.

Also suppose X is weakly connective: that is, there exists i0 and j0 such that πijX = 0

if i < i0 or j < j0. Then the MPASS converges to π∗∗(X).

Remark 2.2.6. There is an alternate construction of the Adams spectral sequence as

the spectral sequence associated to the augmented cosimplicial spectrum

X // E ∧X
ηR
//

ηL //
E ∧ E ∧Xµoo

//

//
∆ // E ∧ E ∧ E ∧Xoo

oo . . . (2.2.1)

(For more about this approach, see [Lur10, Lecture 8] or [Pet16, §3.1].) This is the

cosimplicial spectrum associated to the monad arising from the free-forgetful adjunction

F : Sp //
oo ModE : U

X � F //E ∧X.

One can obtain a spectral sequence in Stable(Γ) analogously: let E be a monoid object

in Stable(Γ). Then there is a free-forgetful adjunction Stable(Γ) //
oo ModE as above,

where ModE denotes the category of E-modules in Stable(Γ), and the free functor sends

X 7! E
∆

⊗X. The MPASS is the spectral sequence arising from the resulting augmented
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cosimplicial object.

2.3 Nilpotence and periodicity in Stable(A) and Stable(P )

In this section we continue our review of homotopy theory constructions that can

be performed internally in Stable(Γ), focusing on analogues of the nilpotence and

periodicity theorems of Devinatz, Hopkins, and Smith, which form an important part

of the foundations of chromatic homotopy theory. First we state the original theorems,

whose setting is the category Spfin
p of finite p-local spectra for a fixed prime p, and

then discuss partial analogues in Stable(Γ), focusing on the cases where Γ is the dual

Steenrod algebra A or the Steenrod reduced powers P . In the last subsection, we discuss

a relationship between some periodicity operators over Stable(A) and the classical

theory of E2 vanishing lines, and show how our project of computing b−1
10 ExtP (k,M)

for P -comodules M can be viewed in a chromatic framework as the first chromatic

localization in Stable(P ).

Fix a prime p and let Spfin
p denote the category of p-local finite (classical) spectra. The

nilpotence and periodicity theorems are about a collection of ring spectra K(n) for n ≥ 0

with K(n)∗ = Fp[v±1
n ] which detect nilpotent maps, parametrize thick subcategories of

Spfin
p , and describe vanishing lines in Adams spectral sequences.

Theorem 2.3.1 (Nilpotence theorem, [DHS88, Theorem 1], [HS98, Theorem 3]). The

collection {K(n)}n≥0 detects nilpotence:

(1) Given a p-local ring spectrum R, an element α ∈ π∗R is nilpotent if and only if

for all 0 ≤ n ≤ ∞, K(n)∗(α) is nilpotent.

(2) A self-map f : ΣkX ! X (for X in Spfin
p ) is nilpotent if and only if K(n)∗f is

nilpotent for all 0 ≤ n <∞.

(3) A map f : F ! X from a finite spectrum to a p-local spectrum is smash nilpotent
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if and only if K(n)∗f = 0 for all 0 ≤ n ≤ ∞.

There is also a single spectrum BP that detects nilpotence in an analogous sense.

Theorem 2.3.2 (Periodicity theorem, [HS98, Theorem 9]). Given a finite p-local

spectrum X, if K(n)∗(X) 6= 0 and K(n−1)∗(X) = 0 then there is an essentially unique

self map Σ|vp
i

n | : X ! X (for some i) such that the induced map K(n)∗(X)! K(n)∗(X)

is multiplication by vpin (or, in the case n = 0, multiplication by a rational number), and

the induced map K(m)∗(X)! K(m)∗(X) is zero for m > n. We call this a vn-map.

Theorem 2.3.3 (Thick subcategory theorem, [HS98, Theorem 7]). The poset of thick

subcategories of Spfin
p is the system

Spfin
p = C0 ) C1 ) C2 ) . . .

where Cn is the subcategory of Spfin
p generated by the spectra X such that K(n−1)∗X = 0.

We say that X has type n if it is contained in Cn and not Cn+1. This filtration gives

information about the Adams spectral sequence:

Theorem 2.3.4 ([HPS99]). If X has type n, then the E∞ page of the Adams spectral

spectral sequence Es,t
r (X) =⇒ π∗(X) has a vanishing line of slope

1

|τn| − 1
=

1

2pn − 2
.

These theorems touch on deep structure in Spfin
p , and so one does not expect them to

generalize easily to an arbitrary stable homotopy category C in the sense of Definition

2.1.2. In the classical setting, most of the work is in proving the nilpotence theorem, and

the thick subcategory theorem and periodicity theorem follow from it with a somewhat

more formal argument. A version of the thick subcategory theorem in the setting of

stable homotopy categories, assuming the existence of a nilpotence theorem, can be
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found in [HPS97, Corollary 5.2.3], but the hypotheses on the nilpotence-detecting family

are not satisfied in Stable(A); indeed, we will see that the thick subcategory poset is

more complicated than the nilpotence-detecting family.

It is, however, a general fact about stable categories that Adams E∞ vanishing lines are

related to a thick subcategory classification: an object X has an Adams E∞ vanishing

line of a given slope if and only if every object in Thick(X) has a vanishing line of that

slope. (In fact, the proof of Theorem 2.3.4 amounts to proving this assertion, and using

the fact from [HS98, §4] that for every n, the finite type n spectrum constructed by

Smith in [Smi92] has the indicated vanishing line on its Adams E2 page.)

There is a large body of work (see [Mar83], [Pal01], [Pal94], [BH17], [Kra18]) focused

on finding analogues of Theorems 2.3.1–2.3.4 in Stable(Γ) for various Hopf algebroids

(A,Γ) of interest.

2.3.1 Nilpotence, periodicity, and thick subcategory theorems

for Stable(A) and Stable(P )

Recall that the mod-2 Steenrod dual has the form A = F2[ξ1, ξ2, . . . ], and for p > 2 the

mod-p Steenrod dual has the form A = Fp[ξ1, ξ2, . . . ]⊗E[τ0, τ1, . . . ]; for p > 2 recall the

dual Steenrod reduced powers algebra is P = Fp[ξ1, ξ2, . . . ]. In this subsection we will

state theorems and conjectures by Palmieri on the structure of the thick subcategory

poset and a nilpotence-detecting family, and describe how a subset of that family relates

to vanishing lines in Adams E2 pages.

For A at p = 2 and P for p > 2, we have both an analogue of BP and of the collection

of K(n)’s. Recall that an elementary Hopf algebra is a tensor product of Hopf algebras

of the form Fp[x]/x2 and Fp[x]/xp
n for primitive generator x.

Theorem 2.3.5 (Palmieri, [Pal01, 2.1.7, 5.1.5, 5.1.6, 5.1.7(f)], [Pal96a, 4.2, 4.3], [Pal96b,
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§5]). Let p = 2 and let

E(r) = F2[ξr, ξr+1, ξr+2, . . . ]/(ξ
pr

r , ξ
pr

r+1, ξ
pr

r+2, . . . ).

(These are the maximal elementary Hopf algebra quotients of A.) The collection of ring

spectra {A �E(r)F2} detects nilpotence in the same sense as Theorem 2.3.1, except (1)

is an “if” instead of an “if and only if.” Furthermore, let C = A/(ξ21 , ξ
4
2 , ξ

8
3 , . . . ); then

A �CF2 detects nilpotence in Stable(A).

At p > 2, let

Q(r) = Fp[ξr, ξr+1, ξr+2, . . . ]/(ξ
p
r , ξ

pr+1

r+i ).

Then the collection {P �Q(r)Fp} detects nilpotence in a sense made precise in [Pal96a,

Theorem 4.3]. Let C ′ = P/(ξp1 , ξ
p2

2 , ξ
p3

3 , . . . ). Then P �C′Fp detects nilpotence over P in

a sense made precise in [Pal96a, Theorem 4.2].

(The issue with the other direction of (1) is a finiteness issue—there might be infinitely

many elementary quotients.)

Conjecture 2.3.6 (Palmieri, [Pal01, Conjecture 5.4.1]). Let p > 2. Let Q be the

collection of quasi-elementary quotient Hopf algebras of A (see [Pal01, Definition

2.1.10]), which includes the maximal elementary quotients

E(−1) = E[τ0, τ1, . . . ]

E(r) = A/(ξ1, . . . , ξr, ξ
pr+1

r+1 , ξ
pr+1

r+2 , ξ
pr+1

r+3 , . . . ; τ0, . . . , τr).

Then the collection {A �EFp : E ∈ Q} detects nilpotence in Stable(A). Furthermore,

if we write C = A/(ξp1 , ξ
p2

2 , ξ
p3

3 , . . . ) then A �CFp detects nilpotence in Stable(A).

The thick subcategory conjecture below is reminiscent of the classical theorem that the

thick subcategories Cn of Spfin
p are in bijection with the invariant ideals of π∗BP .
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Conjecture 2.3.7 (Palmieri, [Pal99, Conjecture 1.4], [Pal01, 6.7.3]). The thick sub-

categories of finite A-modules are in one-to-one correspondence with radical ideals of

π∗∗(A �CFp) = Ext∗C(Fp,Fp) satisfying a finiteness condition that are invariant under

the coaction of A �CFp. In particular, an invariant ideal I gets sent to the full subcate-

gory generated by finite objects X such that I(X) ⊃ I, where I(X) is the radical of

the ideal {
y ∈ π∗∗(A �CFp) : X

y⊗−
! (A �CFp)⊗X is null

}
.

For y ∈ π∗∗(A �CFp), there is a notion of a “y-map” similar to the classical vn-maps,

though with some technical differences (see [Pal01, Definition 6.2.1, Remark 6.2.2,

Definition 6.2.5, Lemma 6.2.6] for details). The analogue of the periodicity theorem is:

Theorem 2.3.8 (Palmieri, [Pal01, Theorem 6.1.3, Theorem 6.2.4]). Let p = 2 and

let X be a finite object in Stable(A). For every y ∈ π∗∗(A �CF2) that maps to an

A-invariant element of π∗∗(A �CF2)/I(X), X has a y-map that is central in the ring

[X,X]∗∗. Furthermore, the collection of objects containing a y-map (for fixed y) is a

thick subcategory of Stable(A).

The theorem is only proved at p = 2, in part because there is no known classification of

quasi-elementary Hopf algebras, but one can conjecture analogous behavior for A at

p > 2 and for P .

2.3.2 Vanishing lines

Unlike BP∗, the ring π∗∗(A �CFp) is very complicated, which is an impediment to

studying periodicity operators y. The Morava K-theory analogues A �Q(r)Fp and

A �E(r)Fp of Theorem 2.3.5 and Conjecture 2.3.6 are much more tractable, though not

as simple as classical Morava K-theories. In particular, for p > 2 every generator in
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E(r) is primitive in the cobar complex CE(r)(Fp,Fp), and so we have

π∗∗(A �E(r)Fp) = ExtE(r)(Fp,Fp)

= E[hr+i,j : 1 ≤ i, 0 ≤ j ≤ r]⊗ P [br+i,j, vr+i : 1 ≤ i, 0 ≤ j ≤ r].

Moreover, one can show (see [Pal01, Proof of Proposition 5.3.4]) that for every vn and

bt,s with s < t, there are powers vi(n)n , bj(s,t)t,s that lift to π∗∗(A �CFp). In this subsection,

we will discuss spectra that have bts- and vn-maps, and show how this relates to the

classical theory of vanishing lines in (topological) Adams spectral sequence E2 pages.

For s < t, let K(ξp
s

t ) := b−1
ts (A �

D[ξp
s

t ]
Fp) denote the colimit

colim
(
A �

D[ξp
s

t ]
Fp

bts! A �
D[ξp

s

t ]
Fp

bts! . . .
)

and similarly forK(τn) := v−1
n (A �E[τn]Fp), where ExtA�E[τn]Fp(Fp,Fp) = ExtE[τn](Fp,Fp) =

P (vn). Define the indexing set

Z = {ξp
s

t }s<t ∪ {τn}n≥0

and order them by degree s, defined by

s(ξp
s

t ) =
p|ξp

s

t |
2

= ps+1(pt − 1)

s(τn) = |τn| = 2pn − 1.

While the objects K(υ) for υ ∈ Z do not belong to the nilpotence-detecting family

of Conjecture 2.3.6, they look like Morava K-theories in the sense that they are

non-connective spectra with simple coefficient rings: by the change of rings theo-

rem we have π∗∗(K(ξp
s

t )) = b−1
ts Ext

D[ξp
s

t ]
(Fp,Fp) = E[hts] ⊗ P [b±1

ts ] and π∗∗(K(τn)) =

v−1
n ExtE[τn](Fp,Fp) = P (v±1

n ). More importantly, we will see that they detect spectra

with bts- and vn-maps. Say that X is type d if K(υ)∗X = 0 for all υ ∈ Z with s(υ) < d

and K(υ)∗X 6= 0 for (the unique) υ ∈ Z such that s(υ) = d.
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Theorem 2.3.9 (Palmieri, [Pal01, Theorem 2.4.3]). Let X be a finite object in Stable(A)

of type d. If s(ξp
s

t ) = d then X has a non-nilpotent bts-map; if s(τn) = d then X has a

non-nilpotent vn-map.

By Theorem 2.3.8, the collection of all such X forms a thick subcategory, and by

[HPS99], given a vanishing plane in the MPASS E∞ page for one such X, any other

X has a vanishing plane parallel to the first. For every n, Palmieri constructs an

object of Stable(A) with a vn-self map, and shows it has an E2 page vanishing plane

s ≥ −|τn|(s + t) + u ([Pal01, Theorem 4.4.1]).1 Since Adams filtrations are non-

negative and Es,t,u
r converges to πs+t,u(X), this shows that πs+t,u(X) = 0 when 0 ≥

−|τn|(s+ t)+u. This recovers the following classical theorem, which classifies vanishing

lines in (topological) Adams spectral sequence E2 pages, in the case where d = s(τn)

for some n; the construction and analysis of an (algebraic) object of type s(ξp
s

t ) would

give a proof of the other case.

Theorem 2.3.10 (Miller-Wilkerson, [MW81]). Let M be an A-comodule of type d.

Then Exts,tA (Fp,M) = 0 for s > 1
d−1

(t− s) + c for some intercept c.

Remark 2.3.11. In topology, a spectrum has a vn-map for only one n. Here, this is

not the case: for example, at p > 3 the Smith complex V (1) has an E∞ page vanishing

line of slope 1

|τ2| − 1
=

1

2p2 − 2
by Theorem 2.3.4, but has a higher slope vanishing

line 1

s(ξ1)− 1
=

1

p2 − p
in its E2 page, parallel to which b10 acts non-nilpotently. This

illustrates the fact that H∗V (1) has not only a v2-map inherited from topology, but also

a b10-map. One can see this phenomenon even with the unit object Fp in Stable(A): it

has a v0-map inherited from topology, but also a b10-map (see Proposition 2.3.12).

Working over P instead of A, we also have a similar family of “easy” periodicity opera-

tors that come from the nilpotence-detecting families. To compute π∗∗(P �Q(r)Fp) =
1Note that our grading convention for Adams spectral sequences is different from Palmieri’s: we

are using s to denote Adams filtration, t to denote internal homological degree in Stable(A), and u to
denote internal topological degree. If we write Palmieri’s grading as (sP , tP , uP ) and ours as (s, t, u)
then (sP , tP , uP ) = (s, u− t, t).
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ExtQ(r)(Fp,Fp) we note that every generator ξp
j

r+i of Q(r) is primitive in the cobar com-

plex except ∆(ξ2r+i) = ξr ⊗ ξp
r

r+i for i ≥ 1. So we have

π∗∗(P �Q(r)Fp) = Fp[hr+i,0, hr+j,k, br+i,0, br+j,k : 1 ≤ i ≤ r, 1 ≤ j, 1 ≤ k ≤ r − 1]/(h2r+i,0, h
2
r+j,k)

⊗ Ext
(D[ξr,ξ2r+i,ξ

pr

r+i : 1≤i])
(k, k).

Furthermore, I claim br0 is non-nilpotent in π∗∗(P �Q(r)k) = Ext∗Q(r)(k, k) using the

same argument as Proposition 2.3.12, using the comparison Q(r) ! D[ξr]. One can

show, as for A, that powers of the periodicity operators bts lift to π∗∗(P �C′Fp). In

particular, b10 is the operator with the lowest degree, and in the next proposition we

show that Fp has type s(ξ1) as an object of Stable(P ).

Proposition 2.3.12. Let p > 2. The element b10 = 1
p

∑
0<i<p

(
p
i

)
[ξi1|ξ

p−i
1 ] is non-

nilpotent in Ext∗∗P (Fp,Fp) and in Ext∗∗A (Fp,Fp).

Proof. The Hopf algebra maps A ! D and P ! D give rise to graded ring maps

Ext∗A(k, k) ! Ext∗D(k, k) and Ext∗P (k, k) ! Ext∗D(k, k). Since b10 has cobar formula
1
p

∑
0<i<p

(
p
i

)
ξi1 ⊗ ξp−i1 in CA(k, k), CP (k, k), and CD(k, k), these maps take b10 to b10,

and hence take bn10 to bn10 for any n. Since b10 ∈ Ext∗D(k, k) = E[h10] ⊗ P [b10] is non-

nilpotent, so are b10 ∈ Ext2A(k, k) and b10 ∈ Ext2P (k, k).

Remark 2.3.13. This shows that the unit object Fp of Stable(P ) has a b10-map. The

full collection of y-maps acting on Fp is not known; Palmieri conjectures that b11 acts

non-nilpotently, and at p = 3 this follows from a calculation by Nakamura [Nak75,

Proposition 1.1c]. The main goal of Chapters 4 and 5 is to study b−1
10 ExtP (F3,F3), and

by the discussion above, we can think of this as a chromatic localization of the unit

object F3 in the category Stable(P ) with respect to b10, the first periodicity operator

acting on F3.
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Chapter 3

Spectral sequence comparisons

In this chapter we discuss the relationship between three spectral sequences for comput-

ing Ext groups over a Hopf algebra Γ: the MPASS introduced in the previous chapter,

a particular filtration spectral sequence on the cobar complex of Γ, and the Cartan-

Eilenberg spectral sequence. In order to define the third spectral sequence, one needs

to start with the data of an extension of Hopf algebras Φ! Γ! Σ; this then produces

a spectral sequence

E∗∗
2 = Ext∗Φ(k,Ext

∗
Σ(k, k)) =⇒ Ext∗Γ(k, k).

If Σ is a conormal quotient of Γ, then Palmieri [Pal01, Proposition 1.4.9] shows that

the Cartan-Eilenberg spectral sequence agrees with the Φ-based MPASS. However, the

MPASS is more general than this: given any Γ-comodule-algebra Φ—not necessarily a

Hopf algebra—one can study the Φ-based MPASS computing ExtΓ(k, k). In Section 3.2

we discuss a modification of the construction of the Cartan-Eilenberg spectral sequence

that permits it to be defined in this setting, though (as in the case of the MPASS)

more conditions are necessary to show it has the desired E2 term. We show that this

more general Cartan-Eilenberg spectral sequence coincides with the MPASS at E1.

This involves some nuances of the cobar resolution, so we give a careful account of its

construction in Section 3.1.
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Furthermore, it is known [Ada60, §2.3] that the usual Cartan-Eilenberg spectral sequence

coincides with a certain filtration of the Γ-cobar complex that depends on Φ. This

filtration can be defined when Φ is a sub-Γ-comodule-algebra of Γ, and in Section 3.3 we

show that the filtration spectral sequence coincides with the Cartan-Eilenberg spectral

sequence defined in Section 3.2.

Our main interest in this setting comes from our desire to study the b−1
10 B-based MPASS

for computing b−1
10 ExtP (k, k) = Homb−1

10 Stable(P )(k, k), where B = P �D[ξ1]k. In Chapters

5 and 6, we will find each of these three computational tools convenient at different

points, and will make use of their equivalence.

Notation 3.0.1. Given a Hopf algebra Γ and a left Γ-comodule M , we will write∑
m′ ⊗m′′ := ψ(m) and

∑
γ′ ⊗ γ′′ := ∆(γ) for m ∈ M and γ ∈ Γ when there is no

ambiguity which coaction is in play.

We also will need notation for the iterated coproduct Γ
∆n

! Γ⊗n+1 and coaction M
ψn

!

Γ⊗n ⊗M ; we will write
∑
m(1)| . . . |m(n+1) := ψn(m) and

∑
γ(1)| . . . |γ(n+1) := ∆n(γ).

(Note that this notation is well-defined because of coassociativity.)

For example, ∆(γ) =
∑
γ′|γ′′ =

∑
γ(1)|γ(2), and

∑
∆(γ(1))|γ(2) =

∑
γ(1)|γ(2)|γ(3).

We will make extensive use of the following identities, which are part of the definition

of a Hopf algebra.

Fact 3.0.2. Let Γ be a Hopf algebra with antipode c, comultiplication ∆, unit η, and

coaugmentation ε.

(1) (Coassociativity)
∑

(x′)′ ⊗ (x′)′′ ⊗ x′′ =
∑
x′ ⊗ (x′′)′ ⊗ (x′′)′′

(This fact is used to make the notation above well-defined; in that language, this

just reads
∑
x(1) ⊗ x(2) ⊗ x(3) =

∑
x(1) ⊗ x(2) ⊗ x(3).)

(2)
∑
c(x′)x′′ = ε(x) =

∑
x′c(x′′)
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(3)
∑
ε(x′)⊗ x′′ = 1⊗ x

(4)
∑
c(x)′|c(x)′′ =

∑
c(x′′)|c(x′)

3.1 The cobar complex and the shear isomorphism

3.1.1 Constructing the cobar complex

Let Γ be a commutative Hopf algebra over k, N a left Γ-comodule, and M a right

Γ-comodule. The cobar resolution DΓ(N) is a particularly nice Γ-injective resolution

for N ; the cobar complex CΓ(M,N) is the complex obtained by applying M �Γ− to

the cobar resolution. The cohomology of the cobar resolution is ExtΓ(M,N). We

will discuss two isomorphic constructions of the cobar resolution (denoted
∆

D∗
Γ(N) and

L

D∗
Γ(N)), as they are both common in the literature; the isomorphism connecting them

is the shear isomorphism, which we discuss first.

Definition 3.1.1. Let M and N be left Γ-comodules, with coaction denoted by ψ(m) =∑
m′ ⊗m′′ and ψ(n) =

∑
n′ ⊗ n′′. There are two natural ways to put a Γ-comodule

structure on their tensor product M ⊗ N : the left coaction M ⊗ N ! Γ ⊗ (M ⊗ N)

is given by m⊗ n 7!
∑
m′ ⊗m′′ ⊗ n, and the diagonal coaction is given by m⊗ n 7!∑

m′n′⊗m′′⊗n′′. To distinguish these, we write M
L

⊗N for the tensor product M ⊗N

endowed with the left Γ-coaction, and M
∆

⊗N for the diagonal coaction.

For a pair of right Γ-comodules one can analogously define the right and diagonal

coactions, denoted
R

⊗ and
∆

⊗, respectively.

These constructions agree in the following special case:

Lemma 3.1.2 (Shear isomorphism). If M is a left Γ-comodule, there is an isomorphism
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S : Γ
∆

⊗M ! Γ
L

⊗M given by:

S : a⊗m 7!
∑

am′ ⊗m′′

S−1 : a⊗m 7!
∑

ac(m′)⊗m′′

where c is the antipode on Γ. Analogously, if M is a right Γ-comodule, there is an

isomorphism Sc :M
∆

⊗ Γ!M
R

⊗ Γ given by:

Sc : m⊗ a 7!
∑

m′ ⊗m′′a

S−1
c : m⊗ a 7!

∑
m′ ⊗ c(m′′)a.

Proof. We prove just that the pair (S, S−1) are actually inverses; the statement for Sc
is analogous. First we prove that S ◦ S−1 = 1. We have

S(S−1(a⊗m)) = S(
∑
ac(m′)⊗m′′)

=
∑

ac(m′)(m′′)′ ⊗ (m′′)′′

=
∑

ac(m(1))m(2) ⊗m(3)

=
∑

aε(m(1))⊗m(2)

=
∑

a⊗m

where the fourth equality is by Fact 3.0.2(2) and the last equality is by Fact 3.0.2(3).

In the other direction, analogous application of Hopf algebra properties yields:

S−1(S(a⊗m)) = S−1(
∑
am′ ⊗m′′)

=
∑

am′c((m′′)′)⊗ (m′′)′′

=
∑

am(1)c(m(2))⊗m(3)

=
∑

aε(m(1))⊗m(2)

=
∑

a⊗m.
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To define the first version
∆

D∗
Γ(N) of the cobar resolution of N , observe there is a free-

forgetful adjunction

U : ComodΓ
//

oo Modk : F.

The free functor F sends N 7! Γ
L

⊗N with unit n 7!
∑
n′ ⊗ n′′ where the Γ-coaction

on N is written ψ(n) =
∑
n′ ⊗n′′. We can form an augmented cosimplicial object from

the monad FU :

N

'
��

∆

D•
Γ(N) =

(
Γ

∆

⊗N
η2
//

η1
//

Γ
∆

⊗ Γ
∆

⊗Nµoo

η1
//

η3
//

// Γ
∆

⊗ Γ
∆

⊗ Γ
∆

⊗N
µ1oo

µ2oo
. . .

)
(3.1.1)

The codegeneracies µi are multiplication of the ith and (i + 1)st copies of Γ, and the

coface maps ηi are given by insertion of 1 into the ith spot. The second version of the

cobar resolution arises from a second augmented cosimplicial object:

N

'
��

L

D•
Γ(N) =

(
Γ

L

⊗N
ψ
//

∆ //

Γ
L

⊗ Γ
L

⊗Nεoo

∆1 //

ψ
//

// Γ
L

⊗ Γ
L

⊗ Γ
L

⊗N
ε2oo

ε1oo
. . .

)
(3.1.2)

Here the codegeneracies εi come from applying the coaugmentation ε to the ith spot,

and the coface maps ∆i : Γ
⊗n ⊗N ! Γ⊗n+1 ⊗N for 1 ≤ i ≤ n come from applying ∆

to the ith slot; the last coface map comes from the coaction ψ : N ! Γ⊗N .

Remark 3.1.3. If N were a right Γ-comodule, we could have built analogous cosimpli-

cial objects N
∆

⊗ Γ
∆

⊗•+1 and N ⊗ Γ⊗• R

⊗ Γ. To avoid too much notational clutter, we will

use the same notation in these cases: if N is being thought of as a right Γ-comodule,

the symbol
∆

D•
Γ(N) will mean the aforementioned cosimplicial object, and if N is a left

Γ-comodule,
∆

D•
Γ(N) will mean the cosimplicial object in (3.1.1).
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Definition 3.1.4. The (non-normalized) cobar resolution
∆

D∗
Γ(N) is the associated

chain complex of
∆

D•
Γ(N) (that is, the complex Γ

∆

⊗∗+1
∆

⊗ N whose differentials are an

alternating sum of coface maps in
∆

D•
Γ(N)). Similarly, define

L

D∗
Γ(N) to be the associated

chain complex of
L

D•
Γ(N).

Definition 3.1.5. The (non-normalized) cobar complex
∆

C∗
Γ(M,N) is the complex

M �Γ

∆

D∗
Γ(N). Similarly, define

L

C∗
Γ(M,N) =M �Γ

L

D∗
Γ(N).

Remark 3.1.6. The cobar differential most commonly used in cobar computations,

e.g. as in [Rav86, A1.2.11], is
L

C∗
Γ(M,N), not

∆

C∗
Γ(M,N) (and Ravenel’s CΓ(M,N) there

refers to (a normalized version of)
L

C∗
Γ(M,N)). Since the differential in

∆

C∗
Γ(M,N) looks

simpler than the one in
L

C∗
Γ(M,N), one might wonder why we don’t use the former in

computations instead; one issue is that the complication resurfaces when trying to write

down an individual term
∆

Cn
Γ(M,N) explicitly; by contrast,

L

Cn
Γ(M,N) ∼= M ⊗ Γ⊗n ⊗N

is easy to work with. Another reason the
L

Cn
Γ(M,N) version is preferred is that it only

uses the coalgebra structure of Γ.

3.1.2 More on the shear isomorphism

The isomorphism
∆

Dn
Γ(N)

∼=
!

L

Dn
Γ(N) is given by the iterated shear isomorphism:

Sn : Γ
∆

⊗n ∆

⊗M = Γ
∆

⊗n−1
∆

⊗(Γ
∆

⊗M)
S
! Γ

∆

⊗n−1
∆

⊗(Γ
L

⊗M)
S
! Γ

∆

⊗n−2
∆

⊗(Γ
L

⊗Γ
L

⊗M)
S
! . . .

S
! Γ

L

⊗n ∆

⊗M.

We will need an explicit formula for this.

Lemma 3.1.7. The iterated shear isomorphism Sn : Γ
∆

⊗n ∆

⊗M ! Γ
L

⊗ Γ⊗n−1 ⊗M is

given by

Sn : x1| . . . |xn|m 7!
∑

x1(1)x2(1) . . . xn(1)m(1)|x2(2) . . . xn(2)m(2)|x3(3) . . . xn(3)m(3)| . . . |m(n+1).
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The iterated shear isomorphism Snc :M
∆

⊗ Γ
∆

⊗n !M ⊗ Γ⊗n−1
R

⊗ Γ is given by

Snc : m|xn| . . . |x1 7!
∑

m(1)|m(2)xn(1)|m(3)xn(2)xn−1(1)| . . . |m(n+1)xn(n)xn−1(n−1) . . . x2(2)x1.

Proof. We prove just the first statement, as the second is analogous. Use induction on

n. If n = 2 this is true by definition of S. Now suppose Sn−1 is given by the formula

above. We can write Sn as the composition

Γ
∆

⊗n ∆

⊗M
Sn−1

−! Γ
∆

⊗ (Γ
L

⊗n−1 ⊗M)
S
−! Γ

L

⊗ (Γ
L

⊗n−1 ⊗M)

and by the inductive hypothesis the first map sends

x1|x2| . . . |xn|m 7!
∑

x1|x2(1)x3(1) . . . xn(1)m(1)|x3(2) . . . xn(2)m(2)| . . . |m(n).

If we write this as x1|y, then the second map sends this to
∑
x1y(1)|y(2); remembering

that the coaction on y just comes from the first component, this is:

∑
x1x2(1)x3(1) . . . xn(1)m(1)|x2(2)x3(2) . . . xn(2)m(2)|x3(3) . . . xn(3)m(3)| . . . |m(n+1).

Lemma 3.1.8. The iterated inverse shear isomorphism S−n : Γ
L

⊗Γ⊗n−1⊗M ! Γ
∆

⊗n ∆

⊗M

is given by

S−n : x1| . . . |xn|m 7!
∑

x1c(x
′
2)|x′′2c(x′3)|x′′3c(x′4)| . . . |x′′nc(m′)|m′′.

The iterated inverse shear isomorphism S−n
c :M ⊗ Γ⊗n−1

R

⊗ Γ!M
∆

⊗ Γ
∆

⊗n is given by

S−n
c : m|xn| . . . |x1 7!

∑
m′|c(m′′)x′n|c(x′n)x′n−1| . . . |c(x′2)x1.

Proof. Again we only prove the first statement, and again this is by induction on n. If

n = 1, this is the definition of S−1 in Lemma 3.1.2.
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Assume the formula holds for n− 1. Write S−n as the composition

Γ
L

⊗ (Γ
L

⊗n−1 ⊗M)
S−(n−1)

−! Γ
L

⊗ (Γ
∆

⊗n ∆

⊗M)
S−1

−! Γ
∆

⊗ (Γ
∆

⊗n ∆

⊗M)

and by the inductive hypothesis the first map sends

x1|x2| . . . |xn|m 7!
∑

x1|x2c(x′3)|x′′3c(x′4)| . . . |x′′nc(m′)|m′′.

If we write this as x1|y, then the second map sends this to
∑
x1c(y(1))|y(2), which is

∑
x1c

(
(x2c(x

′
3)x

′′
3c(x

′
4) . . . x

′′
nc(m

′)m′′)′
)
|x′′2c(x′3)′′|(x′′3)′′c(x′4)′′| . . . |(x′′n)′′c(m′)′′|(m′′)′′

=
∑

x1c
(
x2(1)c(x3(2))x3(3)c(x4(2))x4(3) . . . c(m(2))m(3)

)
|x2(2)c(x3(1))|x3(4)c(x4(1))|

. . . |xn(4)c(m(1))|m(4)

=
∑

x1c
(
x2(1)ε(x3(2) . . . xn(2)m(2))

)
|x2(2)c(x3(1))|x3(3)c(x4(1))|

. . . |xn(3)c(m(1))|m(3)

=
∑

x1c(x2(1))|x2(2)c(x3(1))|x3(2)c(x4(1))| . . . |xn(2)c(m(1))|m(2).

Here the first equality uses the fact that
∑
c(x′)|c(x′′) =

∑
c(x)′′|c(x)′, the second uses

the fact that c(x′)x′′ = ε(x), and the third uses the fact that
∑
ε(x′)|x′′ =

∑
1|x.

Eventually, we will work in a setting where q : Γ! Σ is a map of Hopf algebras, and

Φ = Γ �Σk. In this situation, we will make extensive use of the following lemma.

Lemma 3.1.9. Let M be a Γ-comodule. Then Γ �ΣM ⊂ Γ
L

⊗ M inherits a left

Γ-comodule structure, and the shear isomorphism S : Γ
∆

⊗ M ! Γ
L

⊗ M restricts

to an isomorphism

Φ
∆

⊗M
∼=
! Γ �ΣM.

The shear isomorphism Sc : M
∆

⊗ Γ ! M
R

⊗ Γ restricts to an isomorphism M
∆

⊗ Φ
∼=
!

M �ΣΓ.
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Proof. First we check that the left comodule structure on Γ
L

⊗M restricts to a comodule

structure on Γ �ΣM . I claim that both squares below commute:

Γ
L

⊗M
ψ⊗1

//

1⊗ψ

��

ψ⊗1

��

Γ⊗ Γ⊗M

1⊗1⊗ψ

��

1⊗ψ⊗1

��

Γ⊗ Σ⊗M
∆⊗1⊗1

// Γ⊗ Γ⊗ Σ⊗M

This comes from coassociativity of Γ, plus the fact that the coaction Γ! Σ⊗ Γ comes

from composing the comultiplication on Γ with the given Hopf algebra map q : Γ! Σ.

An element is an element of Γ
L

⊗M that equalizes the left vertical maps. Given an

element a⊗m ∈ Γ �ΣM (i.e. an element that equalizes the left vertical maps), we need

to show that ψ(a⊗m) lands in Γ⊗ (Γ �ΣM) (i.e. that this element is in the equalizer

of the right vertical maps). This is given by the commutativity of the diagram.

Write Mη for M with the trivial Σ-coaction. Then we have

Φ
∆

⊗M ∼= (Γ �Σk)
∆

⊗M ∼= Γ �Σ(k
∆

⊗M) ∼= Γ �ΣMη.

To show S restricts to a map Φ
∆

⊗M ∼= Γ �ΣMη ! Γ �ΣM , using the same argument as

above it suffices to find a map f such that both of the squares in the diagram below

commute:

Γ
∆

⊗M S //

ψ⊗1

��

1⊗1⊗1

��

Γ
L

⊗M

ψ⊗1

��

1⊗ψ

��

Γ⊗ Σ⊗M
f

// Γ⊗ Σ⊗M

Define f : x⊗ y ⊗ z 7!
∑
x(z′)′ ⊗ y(z′)′′ ⊗ z′′. Checking commutativity of the diagram

uses the fact (from coassociativity of ∆ : Γ ! Γ ⊗ Γ) that
∑

(z′)′ ⊗ (z′)′′ ⊗ z′′ =∑
z′ ⊗ (z′′)′ ⊗ (z′′)′′.

Finally, we show that S−1 : Γ
L

⊗M ! Γ
∆

⊗M restricts to a morphism Γ �ΣM ! Γ �ΣM .
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As before, it suffices to show commutativity of

Γ
L

⊗M
S−1

//

ψ⊗1

��

1⊗ψ

��

Γ
∆

⊗M

ψ⊗1

��

1⊗1⊗1

��

Γ⊗ Σ⊗M
g

// Γ⊗ Σ⊗M

for some g. Take g to be the morphism x ⊗ y ⊗ z 7!
∑
xc(z′)′ ⊗ yc(z′)′′ ⊗ z′′. It

is obvious that the square obtained by taking the leftmost of each pair of vertical

arrows is commutative, but the other square needs to be checked. The bottom left

composition applied to a⊗m is CB :=
∑
ac((m′′)′)′ ⊗m′c((m′′)′)′′ ⊗ (m′′)′′ and the top

right composition is CT :=
∑
ac(m′)⊗ 1⊗m′′. We have

CB =
∑

ac(m(2))
′|m(1)c(m(2))

′′|m(3)

=
∑

ac(m(3))|m(1)c(m(2))|m(4) Fact 3.0.2(4)

=
∑

c(m(2))|ε(m(1))|m(3) Fact 3.0.2(2)

=
∑

c(m(1))|1|m(2) = CT .

The change of rings theorem

Ext∗Γ(M,Γ �ΣN) ∼= Ext∗Σ(M,N)

is a standard result in homological algebra (see, e.g., [CE99, §VI.4]). For future reference

we record the following variant, obtained using Lemma 3.1.9.

Corollary 3.1.10 (Change of rings theorem). Let M be a right Γ-comodule and N a

left Γ-comodule, and let Φ = Γ �ΣN . Then there is an isomorphism

Ext∗Γ(M,Φ
∆

⊗N) ∼= Ext∗Σ(M,N).
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3.1.3 The normalized cobar complex

Finally, we discuss two useful smaller versions of the cobar complex that turn out to be

chain-homotopic to the cobar complex; they are isomorphic to each other, and are both

referred to as the normalized complex.

Definition 3.1.11. Let A• be a cosimplicial object in an abelian category, with associ-

ated complex A∗. Define the subcomplex NA∗ of A∗ and the quotient complex QA∗ of

A∗ as follows:

NAn =
n−1⋂
i=0

ker(si : An ! An−1)

QAn = An
/ n∑
i=1

im(di : An−1 ! An).

Theorem 3.1.12. There are chain homotopy equivalences NA∗ ' A∗ ' QA∗, and

there is an isomorphism of chain complexes NA∗ ∼= QA∗. (In particular, we can write

A∗ = NA∗ ⊕DA∗ for a contractible complex D∗, such that QA∗ = A∗/DA∗.)

For a proof of this theorem in the dual (simplicial) case, see [GJ09, Theorem III.2.1

and Theorem III.2.4].

Remark 3.1.13. Note that N
L

C∗
Γ(M,N) is just usual normalized cobar complex M ⊗

Γ
⊗n ⊗N ∼= M �Γ(Γ

L

⊗ Γ
⊗n ⊗N). There is a resolution Γ

∆

⊗ Γ
∆

⊗∗ ∆

⊗N of N , but this is

Q(
∆

D•
Γ(N)), not N (

∆

D•
Γ(N)). Instead, by definition we have

N
∆

Dn
Γ(N) =

n−1⋂
i=0

ker(µi : Γ
∆

⊗n+1 ! Γ
∆

⊗n)
∆

⊗N ⊂
∆

Dn
Γ(N)

where µi multiplies the ith and (i+ 1)st factors of Γ.

Since
∆

D•
Γ(N) is defined to be zero in degrees < 0, we have N

∆

D0
Γ(N) = Γ

∆

⊗N .
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3.2 The Cartan-Eilenberg spectral sequence

3.2.1 Classical Cartan-Eilenberg spectral sequence

Let Γ be a Hopf algebra. Given an extension of Hopf algebras

Φ! Γ! Σ

(so in particular Φ = Γ �Σk), a right Γ-comodule M , and a left Φ-comodule N , the

Cartan-Eilenberg spectral sequence for computing CotorΓ(M,N) arises from the double

complex (Γ-resolution of M) �Γ(Φ-resolution of N). If we use the usual normalized

cobar resolutions N
L

D∗
Γ(M) and N

L

D∗
Φ(N), the double complex is

...

��

...

��

. . . // (M ⊗ Γ
⊗t ⊗ Γ) �Γ(Φ⊗ Φ

⊗s ⊗N)
(−1)t1⊗dΦ

//

dΓ⊗1
��

(M ⊗ Γ
⊗t ⊗ Γ) �Γ(Φ⊗ Φ

⊗s+1 ⊗N)

dΓ⊗1
��

// . . .

. . . // (M ⊗ Γ
⊗t+1 ⊗ Γ) �Γ(Φ⊗ Φ

⊗s ⊗N)
(−1)t+11⊗dΦ

//

��

(M ⊗ Γ
⊗t+1 ⊗ Γ) �Γ(Φ⊗ Φ

⊗s+1 ⊗N)

��

// . . .

...
...

(3.2.1)

The signs come from the usual formula for the tensor product of chain complexes, and

satisfy dvertdhoriz + dhorizdvert = 0. The spectral sequence that starts by taking homology

in the vertical direction first has

Es,t
1 = CotortΓ(M, Φ⊗ Φ

⊗s ⊗N)

∼= CotortΓ(M, (Γ �Σk)⊗ Φ
⊗s ⊗N)

∼= CotortΣ(M, Φ
⊗s ⊗N).

where the last isomorphism is by the change of rings theorem. For the spectral sequence

that starts by taking homology in the horizontal direction first, exactness of the functor
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(M ⊗ Γ
⊗t ⊗ Γ) �Γ− gives

E∗,t
1

∼= H∗((M ⊗ Γ
⊗t ⊗ Γ) �Γ(Φ⊗ Φ

⊗∗ ⊗N)) ∼= (M ⊗ Γ
⊗t ⊗ Γ) �ΓH

∗(Φ⊗ Φ
⊗∗ ⊗N)

and by the exactness of the resolution Φ⊗Φ
⊗∗ ⊗N of N , this is concentrated in degree

zero as (M ⊗ Γ
⊗t ⊗ Γ) �ΓN . The E2 page then takes cohomology in the t direction,

obtaining E2
∼= E∞ ∼= CotorΓ(M,N). This implies that the spectral sequence that

starts by taking homology in the vertical direction first also converges to CotorΓ(M,N).

The Cartan-Eilenberg spectral sequence is the vertical-first spectral sequence, and we

have just shown that it has

Es,t
1 = CotortΣ(M,Φ

⊗s ⊗N) =⇒ Cotors+tΓ (M,N).

If Φ has trivial Σ-coaction, then we have Es,t
1

∼= CotortΣ(M,N)⊗Φ
⊗s, whose cohomology

is:

E2 = CotorsΦ(k,Cotor
t
Σ(M,N)).

The spectral sequence converges because it is a first-quadrant double complex spectral

sequence (see e.g. [McC01, Theorem 2.15]).

Remark 3.2.1. The E2 page is independent of the Φ-resolution ofN and the Γ-resolution

of M , but the E1 page does depend on the Φ-resolution of N .

3.2.2 Weakening the hypotheses

The goal of this section is to remove the requirement that Φ be a coalgebra. More

precisely, let Γ be a Hopf algebra and Φ be any Γ-comodule-algebra. The first issue

with defining an analogue of (3.2.1) is that it is unclear what category N should be in,

seeing as there is no such thing as a Φ-comodule. Furthermore, the cosimplicial object
L

D•
Φ(N) can’t be defined, not just for the aforementioned reason but also because the

coface maps are defined in terms of the coproduct on Φ. To remedy this, let N be a
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Γ-comodule, and—because we assumed that Φ is an algebra—we can write down the

analogue
∆

D•
Φ(N) of

∆

D•
Γ(N):

N

'
��

∆

D•
Φ(N) =

(
Φ

∆

⊗N
η2
//

η1
//

Φ
∆

⊗ Φ
∆

⊗Nµoo

η1
//

η3
//

// Φ
∆

⊗ Φ
∆

⊗ Φ
∆

⊗N
µ1oo

µ2oo
. . .

)
.

(3.2.2)

This is a cosimplicial object in Γ-comodules which is quasi-isomorphic to N .

It can also be described in a more natural way. Since Φ is a monoid object in ComodΓ,

we can define the category ModΦ of Φ-modules in ComodΓ. There is a free-forgetful

adjunction

FΦ : ComodΓ
//

oo ModΦ : U

where FΦ(N) = Φ
∆

⊗N . Then (3.2.2) is the cosimplicial object associated to the monad

UFΦ.

Definition 3.2.2. In this context, define the Cartan-Eilenberg spectral sequence to be

the spectral sequence associated to the double complex

(N
∆

D∗
Γ(M)) �Γ(N

∆

D∗
Φ(N)).

The spectral sequence is unchanged starting at E1 if we replace the right-most complex

by a chain-homotopic one, and in Section 3.3 we will find it more convenient to use the

complex
∆

D∗
Γ(M) �Γ (N

∆

D∗
Φ(N)). (3.2.3)

By definition, we have the E1 term

Es,t
1 = CotortΓ(M,N

∆

D∗
Φ(N))
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and it converges to CotorΓ(M,N) as with the usual construction of the Cartan-Eilenberg

spectral sequence.

Remark 3.2.3. If Φ did have a coalgebra structure, we can also define the spectral

sequence in Section 3.2.1, and it is clear that these two spectral sequences are isomorphic

via the shear isomorphism.

3.2.3 Comparison with MPASS

Theorem 3.2.4. Given a left Γ-comodule-algebra Φ and a left Γ-comodule N , the

Cartan-Eilenberg spectral sequence

∆

Es,∗
1 = H∗( ∆

D∗
Γ(k) �Γ(N

∆

Ds
Φ(N))

)
=⇒ Cotor∗Γ(k,N) ∼= Ext∗Γ(k,N)

coincides starting at E1 with the Φ-based MPASS

Es,∗
1 = Ext∗Γ(k,Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N) =⇒ Ext∗Γ(k,N).

Proof. By Theorem 3.1.12, there is an isomorphism of chain complexes N
∆

D∗
Φ(N) ∼=

Q
∆

D∗
Φ(N), so instead of the double complex

∆

D∗
Γ(k) �Γ(N

∆

Ds
Φ(N)) we may use

∆

D∗
Γ(k) �Γ(Q

∆

D•
Φ(N)) = Γ

∆

⊗t+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N).

Let T ∗ be the total complex, defined by T n =
⊕

s+t=n Γ
∆

⊗t+1 �Γ(Φ
∆

⊗ Φ
∆

⊗s ∆

⊗N). Define

a filtration F s on this total complex as follows:

F s0T n =
⊕
s+t=n
s≥s0

Γ
∆

⊗t+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N).

57



For the associated graded we have:

F s0/F s0+1T n = Γ
∆

⊗n−s0+1
�Γ(Φ

∆

⊗ Φ
∆

⊗s0 ∆

⊗N)

H∗(F s0/F s0+1T ∗) = Cotor∗Γ(k,Φ
∆

⊗ Φ
∆

⊗s ∆

⊗N).

By definition, the Cartan-Eilenberg spectral sequence arises from the exact couple

H∗(F sT ∗)

((

H∗(F s+1T ∗)oo

H∗(F s/F s+1T ∗).

66
(3.2.4)

Let Xs denote the image of the complex

Φ
∆

⊗ Φ
∆

⊗s ∆

⊗N
η⊗1

// Φ
∆

⊗ Φ
∆

⊗s+1 ∆

⊗N
η⊗1

// Φ
∆

⊗ Φ
∆

⊗s+2 ∆

⊗N
η⊗1

// . . .

in Stable(Γ) (that is, a complex of injective comodules quasi-isomorphic to the above

complex). Note that the complex represented by X0 is a Γ-comodule resolution for N ,

and hence is quasi-isomorphic to N ; in general, there is a quasi-isomorphism

Xs qis
' ker(Φ

∆

⊗ Φ
∆

⊗s ∆

⊗N ! Φ
∆

⊗ Φ
∆

⊗s+1 ∆

⊗N) ∼= Φ
∆

⊗s ∆

⊗N. (3.2.5)

We can express (3.2.4) as the exact couple arising from applying CotorΓ(k,−) to the

cofiber sequence

Xs+1 ! Xs ! Φ
∆

⊗ Φ
∆

⊗s+1 ∆

⊗N. (3.2.6)

On the other hand, the MPASS comes from the exact couple obtained by applying the

functor ExtΓ(k,−) to the cofiber sequence

Φ
∆

⊗s+1 ∆

⊗N ! Φ
∆

⊗s ∆

⊗N ! Φ
⊗s ∆

⊗ Φ
∆

⊗N. (3.2.7)

in Stable(Γ). There is an isomorphism Ext∗Γ(k,M) ∼= Cotor∗Γ(k,M) for all M , so we

are applying the same functor to the two cofiber sequences. Moreover, there is a map
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of cofiber sequences from (3.2.7) to (3.2.6), and by (3.2.5) this is a quasi-isomorphism;

in particular, the induced map of exact couples is an isomorphism.

3.3 Cartan-Eilenberg vs. filtration spectral sequence

It is a classical fact [Ada60, §2.3] that the Cartan-Eilenberg spectral sequence associated

to the Hopf extension Φ! Γ! Σ computing CotorΓ(M,N) coincides with a filtration

spectral sequence on the cobar complex CΓ(M,N) defined by

F sCn
Γ(M,N) = {m[a1| . . . |an]ν ∈ Cn

Γ(M,N) : #({a1, . . . , an} ∩G) ≥ s}

where

G := ker(Γ! Σ).

As G is an ideal in Γ and the cobar complex C∗
Γ(k, k) is a ring under the concatenation

product, one can say this filtration of C∗
Γ(M,N) =M ⊗ C∗

Γ(k, k)⊗N comes from the

G-adic filtration of C∗
Γ(k, k). In the previous section, we defined a variant of the Cartan-

Eilenberg spectral sequence that makes sense when Φ is an arbitrary Γ-comodule-algebra.

In this section, we will impose the additional condition that there is an inclusion Φ ↪! Γ

preserving the relevant structure, and that we can write Φ = Γ �Σk where Γ! Σ is a

map of Hopf algebras.

Let E∗∗
r denote this filtration spectral sequence, and let

∆

E∗∗
r denote the generalized

Cartan-Eilenberg spectral sequence. We will show that these agree starting at r = 1.

As a double complex spectral sequence can be viewed as a filtration spectral sequence

on the total complex, it suffices to show the following:

Theorem 3.3.1. There is a filtration-preserving chain map

θ :
⊕
s+t=n

(M
∆

⊗ Γ
∆

⊗t+1) �Γ(N
∆

Ds
Φ(N)) −! Cn

Γ(M,N)
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whose induced map of spectral sequences
∆

E∗∗
r ! E∗∗

r is an isomorphism on E1.

Corollary 3.3.2. We have an isomorphism
∆

E∗∗
r ! E∗∗

r for r ≥ 1.

Definition 3.3.3. Define θ̃ as the composition

θ̃ : (M
∆

⊗ Γ
∆

⊗t+1) �Γ(Φ
∆

⊗s+1
∆

⊗N)
Sc⊗S−! (M ⊗ Γ⊗t R

⊗ Γ) �Γ(Γ
L

⊗ Γ⊗s ⊗N)

e
−!M ⊗ Γ⊗s+t ⊗N

where the second map e is defined to be

(m|a1| . . . |at|a)⊗ (b|b1| . . . |bs|n) 7! ε(ab)m|a1| . . . |at|b1| . . . |bs|n.

Define θ to be the restriction of θ̃ to (M
∆

⊗ Γ
∆

⊗t+1) �Γ(N
∆

Ds
Φ(N)).

In Lemma 3.3.6, we will show that this restriction lands in (M
∆

⊗Γ
∆

⊗t+1) �Γ(Γ �ΣG(s) �ΣN),

where

G(s) := G �Σ . . . �ΣG
s

.

We will see that E0,∗
0 (M,N) is easy to describe (and in particular it is easy to show that

θ induces an isomorphism
∆

E0,∗
0 (M,N) ∼= E0,∗

0 (M,N)), and most of the work involves

identifying Es,∗
0 (M,N) (for s > 0) with E0,∗

0 (M,N ′) for a different comodule N ′, in a

way that is compatible with a similar identification for
∆

Es,∗
0 . More precisely, we will

show that there is a map β of chain complexes making the following diagram commute.

(M
∆

⊗ Γ
∆

⊗∗) �ΓN
∆

D0
Φ(G(s) �ΣN)

1⊗S−1 ∼=
��

∆

E0,∗
0 (M,G(s) �ΣN) '

θ // E0,∗
0 (M,G(s) �ΣN)

' β

��

(M
∆

⊗ Γ
∆

⊗∗) �ΓN
∆

Ds
Φ(N)

∆

Es,∗
0 (M,N) θ // Es,∗

0 (M,N)

(3.3.1)

It suffices to show the following:
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(1) θ is a filtration-preserving chain map;

(2) S−1 gives rise to an isomorphism N
∆

D0
Φ(G(s) �ΣN)! N

∆

Ds
Φ(N);

(3) there exists a chain equivalence β making the diagram commute;

(4) θ is a chain equivalence for s = 0.

(1) says we have written down a filtration-preserving map between total complexes,

and (2)–(4) allow us to use the diagram to show that θ is a chain equivalence for all

s ≥ 0. We prove (1) in Lemma 3.3.4 and Corollary 3.3.7, (2) in Corollary 3.3.8, (3) in

Corollary/ Definition 3.3.11, and (4) in Proposition 3.3.13.

Both the structure of the proof and the entirety of (2), the hardest part, are taken

from an argument attributed to Ossa appearing as [Rav86, A1.3.16], showing that

the classical Cartan-Eilenberg spectral sequence coincides with the filtration spectral

sequence under discussion. The only new part we offer is the translation, via iterated

shear isomorphisms, to the generalized Cartan-Eilenberg spectral sequence as defined

in Section 3.2.

Lemma 3.3.4. θ̃ is a chain map
⊕

s+t=n(M
∆

⊗ Γ
∆

⊗t+1) �Γ

∆

Ds
Φ(N)! Cn

Γ(M,N).

Proof. Since S and Sc are maps of chain complexes of Γ-comodules, there is an induced

map on the tensor product of chain complexes

(M
∆

⊗ Γ
∆

⊗∗+1)⊗ (Φ
∆

⊗∗+1
∆

⊗N)! (M ⊗ Γ∗+1)⊗ (Γ⊗∗+1 ⊗N)

and since these are maps of chain complexes of Γ-comodules, this passes to a map on

the cotensor product

(M
∆

⊗ Γ
∆

⊗∗+1) �Γ(Φ
∆

⊗∗+1
∆

⊗N)! (M ⊗ Γ∗+1) �Γ(Γ
⊗∗+1 ⊗N).
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Then θ̃ is formed by post-composing with the map

e : (M ⊗ Γ⊗t+1) �Γ(Γ
⊗s+1 ⊗N)!M ⊗ Γt+s ⊗N

which takes m[a1| . . . |at]at+1⊗b0[b1| . . . |bs]n 7! ε(at+1b0)m[a1| . . . |at|b1| . . . |bs]n. To see

this is a chain map, it suffices to check the following diagram commutes.

(M ⊗ Γ⊗t+1) �Γ(Γ
⊗s+1 ⊗N)

1⊗ε⊗1
//

d double
complex

��

M ⊗ Γ⊗t ⊗ Γ⊗s ⊗N

dcobar

��(M ⊗ Γ⊗t+1) �Γ(Γ
⊗s+2 ⊗N)

⊕ (M ⊗ Γ⊗t+2) �Γ(Γ
⊗s+1 ⊗N)

1⊗ε⊗1
//M ⊗ Γ⊗t+s+1 ⊗N

This requires keeping track of signs: the double complex differential is dΓ⊗1+(−1)t1⊗dΦ,

or more explicitly:

a0[a1| . . . |at]at+1 ⊗ b0[b1| . . . |bs]bs+1 7!
∑
i

(−1)ia0[. . . |a′i|a′′i | . . . ]at+1 ⊗ b0[b1| . . . |bs]bs+1

+
∑
i

(−1)i+ta0[a1| . . . |at]at+1 ⊗ b0[. . . |b′i|b′′i | . . . ]bs+1

and the cobar differential is

a0[a1| . . . |at|b1| . . . |bs]bs+1 7!
∑
i

(−1)ia0[a1| . . . |a′i|a′′i | . . . |b1| . . . |bs]bs+1

+
∑
i

(−1)t+ia0[a1| . . . |at|b1| . . . |b′i|b′′i | . . . |bs]bs+1.

In particular, notice that, on the bottom left composition, the terms corresponding to

a0[. . . |a′t+1]a
′′
t+1 ⊗ b0[. . . ]bs+1 cancel in M ⊗ Γ⊗t+s+1 ⊗N with the terms corresponding

to a0[. . . ]at+1 ⊗ b′0[b
′′
0| . . . ]bs+1.

While θ̃ is not filtration-preserving, we will show that its restriction to (M
∆

⊗Γ
∆

⊗t+1) �ΓN
∆

Ds
Φ

is.

Lemma 3.3.5. The iterated shear isomorphism S : Γ
∆

⊗∗+1
∆

⊗N ! Γ
L

⊗∗+1 ⊗N restricts
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to an isomorphism of chain complexes

S : Φ
∆

⊗∗+1
∆

⊗N ! Γ �Σ . . . �ΣΓ
∗+1

�ΣN. (3.3.2)

Proof. For any Γ-comodule M , by Lemma 3.1.9 the shear isomorphism gives an

isomorphism Φ
∆

⊗ N
∼=
! Γ �ΣN , and iterating the shear map gives an isomorphism

Φ
∆

⊗s+1
∆

⊗N
∼=
! Γ �Σ . . . �ΣΓ

s+1

�ΣN .

Lemma 3.3.6. The iterated shear map S : Γ
∆

⊗s+1
∆

⊗ N ! Γ
L

⊗s+1 ⊗ N restricts to an

isomorphism N
∆

Ds
Φ(N)! Γ �ΣG(s) �ΣN .

Proof. It suffices to check the inclusions S−1(Γ �ΣG(s) �ΣN) ⊂ N
∆

Ds
Φ(N) and S(N

∆

Ds
Φ(M)) ⊂

Γ �ΣG(s) �ΣN . For the first inclusion, use Lemma 3.1.8 to observe that

S−1(a|g1| . . . |gs|n) =
∑

ac(g′1)|g′′1c(g′2)|g′′2c(g′3)| . . . |g′′s c(n′)|n′′ (3.3.3)

and for 1 ≤ i ≤ s we have

µi(
∑
ac(g′1)|g′′1c(g′2)|g′′2c(g′3)| . . . |g′′s c(n′)|n′′) =

∑
ac(g′1)|g′′1c(g′2)| . . . |g′′i−1c(g

′
i)g

′′
i c(g

′
i+1)| . . . |n′′

=
∑
ac(g′1)|g′′1c(g′2)| . . . |g′′i−1ε(gi)c(g

′
i+1)| . . . |n′′

which is zero since gi ∈ G (and so gi /∈ k). This shows (3.3.3) is in N
∆

Ds
Φ(N).

For the other direction, let x0| . . . |xs|n ∈ N
∆

Ds
Φ(N) ⊂ Φ

∆

⊗s+1 ⊗N . By Lemma 3.1.7, we

have

S(x0| . . . |xs|n) =
∑

x0(1)x1(1) . . . xs(1)n(1)|x1(2) . . . xs(2)n(2)|x2(3) . . . n(3)| . . . |n(s+2).

(3.3.4)

The goal is to show that each component xk(k+1)xk+1(k+1) . . . xs(k+1)n(k+1) is in G for

1 ≤ k ≤ s. Since Φ is a left Γ-comodule, if x ∈ Φ then ∆j(x) = x(1)| . . . |x(j) and so

x(j) ∈ Φ. By assumption, all of the xi’s are in Φ, and since (3.3.4) involves the iterated
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coproduct ∆i+1(xi) = xi(1)| . . . |xi(i+1) for every i, we have xi(i+1) ∈ Φ. If we could

guarantee xk(k+1) were in Φ, then we would be done (since G = ΦΓ). Instead, we show

that the terms where xk(k+1) = 1 sum to zero.

The terms where xk(k+1) = 1 are:

∑
x0(1)x1(1) . . . xk−1(1)xk(1) . . . xs(1)n(1)| . . . |xk−2(k−1)xk−1(k−1)xk(k−1) . . . (3.3.5)

|xk−1(k)xk(k)xk+1(k) . . . |xk+1(k+1)xk+2(k+1) . . . | . . . |n(s+2).

The assumption that x0| . . . |xs is in N
∆

Ds
Φ(M) implies that xk−1xk = 0 (this is where

we use the fact that k ≥ 1), and hence

0 = ∆k(xk−1xk) =
∑

xk−1(1)xk(1)| . . . |xk−1(k−1)xk(k−1)|xk−1(k)xk(k).

Observing how ∆(xk−1xk) is embedded in (3.3.5), we have (3.3.5) = 0.

Corollary 3.3.7. θ is filtration-preserving.

Proof. This is a direct consequence of Lemma 3.3.6.

Corollary 3.3.8. There are isomorphisms

N
∆

D0
Φ(G(s) �ΣN) = Φ

∆

⊗ (G(s) �ΣN)
S⊗1
−! Γ �ΣG(s) �ΣN

S−1

−! N
∆

Ds
Φ(N).

This gives the left vertical isomorphism in (3.3.1).

Our next task is to define the map β in (3.3.1) and show it is a chain equivalence. Most

of the work for that is done in Lemma 3.3.10; the next lemma is helpful for that, and

the result is summarized in Corollary/ Definition 3.3.11.

Lemma 3.3.9. For fixed s, there is an isomorphism of complexes F s/F s+1CΓ(M,N) =

Es,∗
0 (M,N) ∼= M �ΣE

s,∗
0 (M,Σ) �ΣN .
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In particular, Es,∗
0 (M,N) only depends on the Σ-coaction on N , not the full Γ-coaction.

We will abuse notation by writing Es,∗
0 (M,N) where N has a Σ-coaction and not a

Γ-coaction (specifically, we do this for N = G).

Proof. We begin by showing that F s/F s+1CΓ(M,N) only depends on the Σ-coaction

on N : given x = m[γ1| . . . |γn]ν in F sCΓ(M,N), the term m[γ1| . . . |γn|ν ′]ν ′′ in d(x) is

in F s+1 if ν ′ ∈ G. So, if we write ψ(ν) =
∑
ν ′|ν ′′ for the coaction ψ : N ! Σ⊗N , we

can say that d(x) ≡
∑
m[γ1| . . . |γn|ν ′]ν ′′ in F s/F s+1Cn+1

Γ (M,N).

We have an isomorphism ψ : N
∼=
! Σ �ΣN of Σ-comodules, where the coaction on the

right hand side is σ⊗ν 7! σ′⊗σ′′⊗ν. This shows that the following diagram commutes

Es,t
0 (M,N)

ψ
//

d
��

Es,t
0 (M,Σ) �ΣN

d
��

Es,t+1
0 (M,N)

ψ
// Es,t+1

0 (M,Σ) �ΣN

and so there is chain complex isomorphism Es,∗
0 (M,N) ∼= Es,∗

0 (M,Σ) �ΣN for every

s.

Lemma 3.3.10 ([Rav86, A1.3.16]). The map

δ : Es−1,∗
0 (M,G) −! Es,∗

0 (M,Σ)

m[a1| . . . |as−1]g
� // m[a1| . . . |as−1|g′]g′′.

is a chain equivalence, where
∑
g′ ⊗ g′′ is the image of g ∈ G along the map Γ

∆
!

Γ⊗ Γ! Γ⊗ Σ.

Proof. We introduce a second filtration F̃ s which is defined only on CΓ(M,Γ):

F̃ sCn
Γ(M,Γ) = {m[γ1| . . . |γn]γ : at least s of {γ, γ1, . . . , γn} are in G} 1.

1This is off by one from the grading convention used in [Rav86, A1.3.16].
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There is a short exact sequence of complexes

0! F s/F̃ s+1C∗
Γ(M,Γ)! F̃ s/F̃ s+1C∗

Γ(M,Γ)! F̃ s/F sC∗
Γ(M,Γ)! 0. (3.3.6)

Unlike F , the new filtration F̃ preserves the contracting homotopy on C∗
Γ(M,Γ) given

by m[γ1| . . . |γn]γ 7! ε(γ)m[γ1| . . . |γn−1]γn. So F̃ ∗CΓ(M,Γ) is contractible, and so is

the quotient complex F̃ ∗/F̃ ∗+1CΓ(M,Γ). The short exact sequence (3.3.6) gives rise to

a long exact sequence in cohomology, and contractibility of the middle complex means

that the boundary map

δ : H∗(F̃ s/F sC∗
Γ(M,Γ))! H∗(F s/F̃ s+1C∗+1

Γ (M,Γ)) (3.3.7)

is an isomorphism. We will identify F̃ s/F sC∗
Γ(M,Γ) and F s/F̃ s+1C∗+1

Γ (M,Γ) with the

source and target of the desired map in the lemma statement, and show that δ can be

lifted to a map on chains.

Levelwise, we can write

F̃ s+1Cn
Γ(M,Γ) = F s+1Cn

Γ(M,Γ) + F sCn
Γ(M,G) (3.3.8)

but this is an abuse of notation—as G is not a Γ-comodule, C∗
Γ(M,G) is not a complex

(but we can still talk about Cn
Γ(M,G) ⊂ Cn

Γ(M,Γ) as a sub-module). We will see that

this will cease to be a problem upon passing to the associated graded E0.

For each n, we have

F̃ s/F sC∗
Γ(M,Γ) ∼=

(
F sCn

Γ(M,Γ) + F s−1Cn
Γ(M,G)

)/
F sCn

Γ(M,Γ) (3.3.9)

∼= F s−1/F sCn
Γ(M,G)

F s/F̃ s+1C∗+1
Γ (M,Γ) ∼= F sCn

Γ(M,Γ)
/(
F s+1Cn

Γ(M,Γ) + F sCn
Γ(M,G)

)
(3.3.10)

=
(
F sCn

Γ(M,Γ)/F s+1Cn
Γ(M,Γ)

)/
F sCn

Γ(M,G)

∼= F s/F s+1Cn
Γ(M,Σ).
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While F sC∗
Γ(M,G) is not a complex, Lemma 3.3.10 shows that F s−1/F sC∗

Γ(M,G) is a

complex, and the isomorphisms F̃ s/F sCn
Γ(M,Γ) ∼= F s−1/F sCn

Γ(M,G) and F s/F̃ s+1C∗+1
Γ (M,Γ) ∼=

F s/F s+1Cn
Γ(M,Σ) extend to isomorphisms of complexes. I claim the boundary map

(3.3.7) can be identified as the map

H∗(F s−1/F sC∗
Γ(M,G))

δ
−! H∗(F s/F s+1C∗

Γ(Σ, N))

m[a1| . . . |an]g � //
∑

m[a1| . . . |an|g′]g′′

where
∑
g′|g′′ is the image of g under the right Σ-coaction. As the boundary map, this is

just given by the cobar differential, but in order for m[a1| . . . |an]g to be a cycle, the sum

of all the terms except the one in the formula for δ is in F sCn+1
Γ (M,Γ). Furthermore, I

claim this can be extended to a map on chains:

δ : F s−1/F sC∗
Γ(M,G) −! F s/F s+1C∗

Γ(Σ, N)

m[a1| . . . |an]g � //
∑

m[a1| . . . |an|g′]g′′.

It suffices to show that the image of m[a1| . . . |an]g ∈ F sC∗
Γ(M,G) lies in F s+1C∗

Γ(M,Σ),

and this holds because g′′ is the (s+ 1)st term in G.

Using Lemma 3.3.9, we can write this as a map

Es−1,∗
0 (M,G(s) �ΣN)
= Es−1,∗

0 (M,G) �ΣN

δ
−! Es,∗

0 (M,Σ) �ΣN = Es,∗
0 (M,Σ �ΣN)

∼=
−! Es,∗

0 (M,N)

m[a1| . . . |an]g|ν � //
∑

m[a1| . . . |ang′]g′′ν � //
∑

m[a1| . . . |an|g]ν.

Corollary/ Definition 3.3.11. Iterating δ gives rise to a chain equivalence

E0,∗
0 (M,G(s) �ΣN)

δ
−! E1,∗

0 (M,G(s− 1) �ΣN)
δ
−! . . .

δ
−! Es,∗

0 (M,N)

sending

m[a1| . . . |an]g1| . . . |gs|ν � // m[a1| . . . |an|g1| . . . |gs]ν.
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Let β denote this composition.

It is now easy to see that (3.3.1) commutes. Our final task is to show (4) after (3.3.1);

first we need an easy lemma.

Lemma 3.3.12. Let Γ be a Hopf algebra and M be an Γ-comodule. Then the coaction

ψ : M ! Γ �ΓM is an isomorphism with inverse T : Γ �ΓM ! M sending a ⊗m 7!

ε(a)m.

Proof. First we check that the coaction ψ lands in the cotensor product Γ �ΓM : we need

to check that ψ(m) =
∑
m′⊗m′′ lands in the kernel of ∆⊗1−1⊗ψ : Γ⊗M ! Γ⊗Γ⊗M .

But
∑

(m′)′ ⊗ (m′)′′ ⊗m′′ −
∑
m′ ⊗ (m′′)′ ⊗ (m′′)′′ = 0 by coassociativity.

Next, we check that T is an inverse. We have Tψ(m) = T (
∑
m′ ⊗m′′) =

∑
ε(m′)m′′.

This is equal to m by Fact 3.0.2(3). For the other composition, we have ψT (a⊗m) =∑
ε(a)m′ ⊗m′′. Since a ⊗m is in Γ �ΓM , we have

∑
a ⊗m′ ⊗m′′ =

∑
a′ ⊗ a′′ ⊗m.

Applying ε · 1⊗ 1 to this, we have
∑
ε(a)m′ ⊗m′′ =

∑
ε(a′)a′′ ⊗m =

∑
a⊗m. So

ψ ◦ T = 1.

Proposition 3.3.13. θ induces an isomorphism
∆

E0,∗
1 ! E0,∗

1 .

Proof. First notice that we have an isomorphism

F 0/F 1(M ⊗ Γ⊗t ⊗N) ∼= M ⊗ Σ⊗t ⊗N

since m[γ1| . . . |γs]ν is in F 1 if any of the γi’s are in G. On the other hand, we have

H∗(
∆

E0,∗
1 ) = H∗((M

∆

⊗ Γ
∆

⊗t+1) �Γ(Φ
∆

⊗N)) = Cotor∗Γ(M,Φ
∆

⊗N) ∼= Cotor∗Σ(M,N)

by the change of rings isomorphism. In the rest of this proof we make this isomorphism

more explicit, enough to see that the isomorphism
∆

E0,∗
1 ! E0,1

1 is induced by θ.
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Since the shear map Γ
∆

⊗Γ! Γ
L

⊗Γ commutes with the map Γ⊗Γ
q⊗q
−! Σ⊗Σ, we have

a commutative diagram

(M
∆

⊗ Γ
∆

⊗t+1) �Γ(Φ
∆

⊗N)

1t+2⊗S
��

(M
∆

⊗ Γ
∆

⊗t+1) �Γ(Γ �ΣN)
1⊗qt+1⊗12

//

St
c⊗ε·ε·1
��

(M
∆

⊗ Σ
∆

⊗t+1) �Γ(Γ �ΣN)
∼= // (M

∆

⊗ Σ
∆

⊗t+1) �ΣN

St+1
c ⊗ε·1
��

F 0/F 1(M ⊗ Γt ⊗N)
∼= //M ⊗ Σt ⊗N

Note that the left vertical composition is θ, by definition. The middle horizon-

tal composition is the chain equivalence inducing the change of rings isomorphism

Cotor∗Γ(M,Γ �ΣN) ∼= CotorΣ(M,N). By Lemma 3.3.12, the right vertical map is

St+1
c ⊗ T , an isomorphism. So the bottom left vertical map is a chain equivalence. The

top left vertical map is an isomorphism, so θ is a chain equivalence.
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Chapter 4

The E2 page of the K(ξ1)-based
MPASS

Unless otherwise indicated, henceforth we will work at p = 3, and let k = F3. We also

let D = k[ξ1]/ξ
3
1 throughout.

4.1 Overview of the K(ξ1)-based MPASS

Our goal is to compute π∗∗(b−1
10 k) = b−1

10 ExtP (k, k) using a MPASS based at

K(ξ1) := b−1
10 B where B := P �Dk.

Since B is an algebra, K(ξ1) is a ring object in Stable(P ). At p = 3 we will show that

K(ξ1)∗∗K(ξ1) is flat over K(ξ1)∗∗, and so the E2 term is:

E2 = ExtK(ξ1)∗∗K(ξ1)(K(ξ1)∗∗, K(ξ1)∗∗) =⇒ π∗∗(b
−1
10 k) = b−1

10 Ext∗P (k, k).

This flatness property does not hold at higher primes; this is the main reason this

problem is significantly more tractable at the prime 3.

In Section 4.4 we will show that this spectral sequence converges, and in Section 4.5 we
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will show that Ext∗P (k, k) agrees with its b10-localization above a line of slope 1
23

. The

bulk of the chapter, in sections 4.2 and 4.3, is devoted to determining the structure of

the Hopf algebroid

(
K(ξ1)∗∗, K(ξ1)∗∗K(ξ1)

)
=

(
b−1
10 Ext∗P (k,B), b−1

10 Ext∗P (k,B ⊗B)
)

∼=
(
b−1
10 Ext∗D(k, k), b

−1
10 Ext∗D(k,B)

)
(where the last isomorphism is by the change of rings theorem) in order to determine

the structure of the E2 page. The coefficient ring K(ξ1)∗∗ is easy to compute using the

change of rings theorem:

K(ξ1)∗∗ = b−1
10 Ext∗P (k,B) = b−1

10 Ext∗P (k, P �Dk)

= b−1
10 Ext∗D(k, k) = E[h10]⊗ P [b±1

10 ]

where h10 is in homological degree 1 and b10 is in homological degree 2. It will be useful

to have notation for this coefficient ring:

R := E[h10]⊗ P [b±10]. (4.1.1)

Our goal is to show the following:

Theorem 4.1.1. The ring of co-operations K(ξ1)∗∗K(ξ1) is flat over K(ξ1)∗∗, and

moreover there is an isomorphism of Hopf algebras

K(ξ1)∗∗K(ξ1) = K(ξ1)∗∗ ⊗ E[e2, e3, . . . ]

for generators en in homological degree 1 and internal degree 2(3n + 1). That is, en is

primitive, and K(ξ1)∗∗K(ξ1) is exterior as a Hopf algebra over K(ξ1)∗∗.

Corollary 4.1.2. The E2 page of the K(ξ1)-based Adams spectral sequence for com-
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puting π∗∗(b−1
10 k) is

E∗∗
2

∼= R⊗ P [w2, w3, . . . ]

where wn has Adams filtration 1 and internal degree 2(3n + 1).

Remark 4.1.3. The generator w2 is a permanent cycle, and converges to g0 =

〈h10, h10, h11〉 ∈ Ext∗P (k, k). We will see in Chapter 5 that the other wn’s support

differentials, so it is less easy to see how these generators connect to familiar ele-

ments in the Adams E2 page. One useful heuristic is that wn = 〈h10, h10, hn−1,1〉 over

P/(ξ31 , ξ
9
2 , ξ

9
3 , . . . ).

Remark 4.1.4. As B is a P -comodule algebra, there is a Hopf algebroid (B,B
∆

⊗B)

in Stable(P ), where the comultiplication is given by

B ⊗B
−⊗η⊗−
−! B ⊗B ⊗B ∼= (B ⊗B)⊗B (B ⊗B).

The Hopf algebroid above is given by applying b−1
10 π∗∗(−) = b−1

10 Ext∗P (k,−) to this one.

Notation 4.1.5. We have chosen to define B as a left P -comodule. It can be written

explicitly as F3[ξ
3

1, ξ2, ξ3, . . . ]. To simplify the notation, everywhere in the remaining

chapters of this thesis we will redefine the symbol ξn to mean the antipode of the usual

ξn. Thus, going forward, we will have ∆(ξn) =
∑

i+j=n ξi⊗ξ
pi

j , and B = F3[ξ
3
1 , ξ2, ξ3, . . . ].

4.2 D-comodule structure of B

In this section we work at an arbitrary prime p. We will write k = Fp, D = Fp[ξ1]/ξp1 ,

and B = P �Dk = Fp[ξp1 , ξ2, ξ3, . . . ] (using the convention of Notation 4.1.5). Note that

B is an algebra and a P -comodule, but not a coalgebra. Let ψ denote the D-coaction

B ! D⊗B that comes from composing the P -coaction B ! P ⊗B with the surjection

P ! D.
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Definition 4.2.1. If we write

ψ(x) = 1⊗ x+ ξ1 ⊗ a1 + ξ21 ⊗ a2 + · · ·+ ξp−1
1 ⊗ ap−1

for some ai’s, define

∂(x) := a1.

For example, since ∆(ξn) = 1 ⊗ ξn + ξ1 ⊗ ξpn−1 + . . . we have ∂(ξn) = ξpn−1, and

∂(ξpn−1) = 0. One can show using coassociativity that ak = 1
k!
∂k−1a1. As ξ1 is dual to

P 0
1 in the Steenrod algebra, the operator ∂ : P ! P is dual to the operator P∨ ! P∨

given by left P 0
1 -multiplication. In particular, (P 0

1 )
p = 0 implies ∂p = 0.

Lemma 4.2.2. We have ∂(xy) = ∂(x)y + x∂(y).

Proof. We have

∆(xy) = ∆(x)∆(y) = (1⊗ x+ ξ1 ⊗ ∂x+ . . . )(1⊗ y + ξ1 ⊗ ∂y + . . . )

= 1⊗ xy + ξ1 ⊗ (y∂x+ x∂y) + . . . .

The structure theorem for modules over a PID says that modules over D∨ ∼= D

decompose as sums of modules isomorphic to Fp[ξ1]/ξi1 for 1 ≤ i ≤ p. Dually, we have

the following:

Lemma 4.2.3. Let M(n) denote the D-comodule Fp[ξ1]/ξn+1
1 . Then every D-comodule

splits uniquely as a direct sum of D-comodules isomorphic to M(n) for n ≤ p− 1.

Note that M(0) ∼= Fp and M(p− 1) ∼= D.

The goal of this section is to prove the following proposition.

Proposition 4.2.4. Define the indexing set B to be the set of monomials of the form
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∏n
j=1 ξ

ej
ij

such that 1 ≤ ej ≤ p− 2, and for X ∈ B, write xj(X) := ξ
ej
ij

and ej(X) := ej.

Then there is a D-comodule isomorphism

B ∼=
⊕
X∈B

n⊗
j=1

M(ej(X))xj(X) ⊕ F

where F is a free D-comodule and M(e)ξei := Fp{ξei , ∂ξei , . . . , ∂eξei } ∼= M(e).

If e ≤ p − 1 then M(e)ξen is a sub-D-comodule of B with dimension e + 1. By the

Leibniz rule (Lemma 4.2.2) we have

M(e+ pf)ξe+pf
n

= Fp{ξenξpfn , ∂(ξen)ξpfn , . . . , ∂e(ξen)ξpfn } =M(e)ξen ⊗ Fp{ξpfn }

for e ≤ p− 1. For any collection of ei ∈ N, define

T (ξe1n1
. . . ξednd

) :=M(e1)ξe1n1

∆

⊗ . . .
∆

⊗M(ed)ξednd
. (4.2.1)

This is a sub-D-comodule spanned (as a vector space) by monomials of the form

∂k1(ξe1n1
) . . . ∂kd(ξednd

). Clearly, B =
∑

monomials∏
ξ
ei
ni

∈B

T (ξe1n1
. . . ξednd

), but this is not a direct sum

decomposition—any given monomial appears in many different summands. To fix this,

we will study the poset of T (X)’s, and find that B is a direct sum of the maximal

elements of that poset.

Notation 4.2.5. Define the notation

〈∏
i≥1

ξeii ;
∏
i≥2

ξfii

〉
:=

∏
ξeii

∏
ξpfii−1.

(These are not formal products; they only make sense if ei = 0 = fi for all but

finitely many i.) For example, we have 〈X ; 1〉 = X for any monomial X, and

〈1 ; ξn〉 = ξpn−1 = ∂(ξn). Expressions
〈∏

i≥2 ξ
ei
i ;

∏
i≥2 ξ

fi
i

〉
represent elements of

B ⊂ P , and conversely every element of B has a representation of this form (note that
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ξp1 = 〈1 ; ξ2〉). Monomials in B do not have unique expressions of the form 〈X ; Y 〉:

for example,
〈
ξpn−1 ; 1

〉
= 〈1 ; ξn〉.

Lemma 4.2.6. There is a bijection

{monomials in B} !
{〈∏

i≥2 ξ
ei
i ;

∏
i≥2 ξ

fi
i

〉
: ei ≤ p− 1

}
. (4.2.2)

Say that a bracket expression is admissible if it is of the form on the right hand side.

Proof. Given a monomial, the admissible bracket expression is the one with the greatest

number of terms on the right-hand side.

Lemma 4.2.7. If X is a monomial with admissible bracket expression
〈∏

ξeii ;
∏
ξfii

〉
and Y is a monomial in T (X), then Y (up to invertible scalar) has admissible expression〈∏

ξei−cii ;
∏
ξfi+cii

〉
for a set of ci ≥ 0 that are zero for all but finitely many i.

The idea is that Y is obtained from X by moving terms from the left to the right.

Proof. If e ≤ p− 1 then we have

∂i(ξen) =
e!

(e− i)!
ξe−in ξpin−1.

By definition, X =
∏

i≥1 ξ
ei+pfi+1

i where e1 = 0, and

Y =
∏

∂kiξ
ei+pfi+1

i =
∏

(∂kiξeii )ξ
pfi+1

i =
∏ ei!

(ei − ki)!
ξ
ei−ki+pki+1

i ξ
pfi+1

i

=
〈∏ ei!

(ei − ki)!
ξei−kii ;

∏
ξki+fii

〉
using the fact that ∂ξpi = 0. So we can take ci = ki in the lemma statement.

Definition 4.2.8. For monomials X and Y , write X ≥ Y if Y ∈ T (X).
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It is easy to check that this makes the set of monomials into a poset, and that X ≥ Y

if and only if T (X) ⊃ T (Y ).

Lemma 4.2.9. Suppose W is a monomial with admissible bracket expression 〈
∏
ξeii ;

∏
ξfii 〉.

Let W̃ = 〈
∏
ξcii ;

∏
ξdii 〉 where ci = min{ei + fi, p − 1} and di = fi − (ci − ei). Then

W̃ is the maximal object ≥ W .

Proof. Let X be an arbitrary monomial, written in its unique admissible bracket

expression. Then X ≥ W if and only X can be obtained from W by moving terms in

W from the right to the left side of the bracket expression. Note that W̃ is the bracket

expression obtained by moving as many terms to the left as possible while still keeping

the resulting expression admissible. This implies W̃ is maximal.

Define an equivalence relation on monomials where X ∼ Y if X̃ = Ỹ .

Lemma 4.2.10. There is a direct sum decomposition B ∼=
⊕

eq. class
reps. X

T (X̃).

Proof. I claim that T (X̃) = Fp{Y : X ∼ Y }; this follows from the fact that, by

definition, T (X̃) is generated by Y such that Y ≤ X̃. So the direct sum decomposition

comes from partitioning monomials into their equivalence classes.

Let I be the set of admissible bracket expressions X such that X̃ = X. By Lemma

4.2.9 we have the following.

Lemma 4.2.11. I is the set of admissible bracket expressions
〈∏

ξeii ;
∏
ξfii

〉
such

that ei ≤ p− 1 and if ei < p− 1 then fi = 0.

Lemma 4.2.12. If X = 〈
∏
ξeii ;

∏
ξfii 〉 is an admissible expression, there is an iso-

morphism of D-comodules T (〈
∏
ξeii ; 1〉) ∼= T (X).
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Proof. By Lemma 4.2.7, every Y in T (X) has a bracket expression obtained from X by

moving terms from the left to the right, so the right hand side of the bracket expression

for Y is divisible by
∏
ξfii , and so Y is divisible by u := 〈1 ;

∏
ξfii 〉 =

∏
ξpfii−1. So

multiplication by u gives a map T (〈
∏
ξeii ; 1〉)! T (X), and moreover from the above

description of Y ∈ T (X) it is easy to see that this is a bijection. Finally, since ∂(u) = 0,

this is an isomorphism of D-comodules.

Lemma 4.2.13. If X = 〈
∏
ξeii ;

∏
ξfii 〉 is an admissible expression such that ek = p−1

for some k then T (X) is a free D-comodule.

Proof. By definition, we have T (X) =
∆⊗
M(ei)ξeini

, and M(ek)ξeknk

∼= M(p− 1) ∼= D by

assumption. Rearranging terms and using the shear isomorphism, we have T (X) ∼=

D
∆

⊗
∆⊗
i 6=kM(ei)ξeini

∼= D
L

⊗
∆⊗
i 6=kM(ei)ξeini

, which is free.

By Lemmas 4.2.12 and 4.2.13, we have:

Corollary 4.2.14. If X = 〈
∏
ξeii ;

∏
ξfii 〉 is an admissible bracket expression in I

such that fi 6= 0 for any i, then T (X) is free as a D-comodule.

Proof of Proposition 4.2.4. From Lemma 4.2.10 we have B ∼=
⊕

X∈I T (X), and by

Corollary 4.2.14 there are free D-comodules F and F ′ such that

B ∼=
⊕

〈X ; 1〉∈I

T (〈X ; 1〉)⊕ F =
⊕

〈X ; 1〉∈I

T (X)⊕ F

∼=
⊕

〈X ; 1〉 s.t.
ei(X)≤p−2

T (X)⊕ F ′

=
⊕
X∈B

T (X)⊕ F ′

∼=
⊕
X∈B

∆⊗
i

M(ei(X))xi(X) ⊕ F ′.
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We conclude with a useful lemma that simplifies checking relations in certain b10-local

Ext groups of interest.

Lemma 4.2.15. Let I(n) = (ξpn1 , ξ
pn
2 , . . . )B. Then I(p − 1) is contained in the

free part of B according to the decomposition in Proposition 4.2.4. In particular,

if x ∈ Ext∗P (k, P �DI(p− 1)) then x = 0 in b−1
10 Ext∗P (k, P �DB).

Proof. Consider an arbitrary monomial q = ξ
(p−1)p
n X in I(p−1). If X has an admissible

expression
〈∏

ξeii ;
∏
ξfii

〉
then q has an admissible expression

〈∏
ξeii ; ξp−1

n+1

∏
ξfii

〉
.

By Lemmas 4.2.10 and 4.2.13, it suffices to show that q̃ =
〈∏

ξcii ;
∏
ξdii

〉
satisfies

ck = p−1 for some k. Using the formula for q̃ in Lemma 4.2.9, we have cn+1 = p−1.

Corollary 4.2.16. Let I(n) be as in Lemma 4.2.15. If x ∈ Ext∗P (k, P �D(P �DI(p−

1))), then x is zero in b−1
10 Ext∗P (k, P �D(P �DI(p− 1))).

4.3 Hopf algebra structure

Convention 4.3.1. Unless indicated otherwise, we will work at p = 3 in this section

(and everywhere hereafter in this thesis). The reason for making this simplification is

the simplicity of the structure of ComodD and the Künneth formula (Lemma 4.3.5),

which imply that K(ξ1)∗∗K(ξ1) = b−1
10 ExtD(k,B) is flat (in fact, free) over K(ξ1)∗∗ =

b−1
10 Ext∗D(k, k). All of these points are discussed in Section 4.3.1.

4.3.1 Vector space structure of K(ξ1)∗∗K(ξ1) at p = 3

Using the shear isomorphism (Corollary 3.1.10), we have

K(ξ1)∗∗K(ξ1) := ExtP (k,K(ξ1)∗∗K(ξ1)) ∼= b−1
10 ExtP (k,B

∆

⊗B)
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∼= b−1
10 ExtP (k, P �DB) ∼= b−1

10 ExtD(k,B).

The main result of the previous section allows us to write

b−1
10 Ext∗D(k,B) ∼= b−1

10 Ext∗D(k,
⊕

ξ
e1
n1

...ξ
ed
nd

ei≤p−2

d⊗
i=1

M(ei)ξeini
⊕ F ) (4.3.1)

∼=
⊕

ξ
e1
n1

...ξ
ed
nd

ei≤p−2

b−1
10 Ext∗D(k,

d⊗
i=1

M(ei)ξeini
)

at all primes.

There is a formula that allows us to decompose the tensor products
⊗

M(ei) into a

sum of the basic comodules M(n), but in general it is rather complicated:

Theorem 4.3.2 (Renaud, [Ren79, Theorem 1]). At all primes,

M(r)⊗M(s) ∼= (r − c)M(p− 1) +
c∑
i=1

M(s− r + 2i− 2) for c =

r if r + s ≤ p

p− s otherwise.

At p = 3, however, the only D-comodules are M(0) = k, M(1), and M(2) = D, and it

is easy to see directly that M(1)⊗M(1) ∼= D⊕Σ0,|ξ1|k. (Here we use bigraded notation

for the shift for consistency with viewing these objects in Stable(D), so Σ0,|ξ1| denotes

a shift of 0 in the homological dimension and |ξ1| in internal degree). In particular,

k{x, ∂x} ⊗ k{y, ∂y} ∼= k{xy, ∂(x)y + x∂(y), ∂(x)∂(y)} ⊕ k{∂(x)y − x∂(y)}.

After inverting b10, free comodules become zero, and the only basic types of comodules

are M(0) = k and M(1).

Remark 4.3.3. We will repeatedly use the fact that Ext∗D(k,D) is a 1-dimensional
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k-vector space in homological degree 0 and zero otherwise, and for i ∈ {0, 1}, Ext∗D(k,M(i))

is 1-dimensional in homological degree ≥ 0. As b10 is the generator of Ext2D(k, k),

we have b−1
10 Ext∗D(k,D) = 0, and b−1

10 Ext∗D(k,M(i)) is a 1-dimensional k-vector space

in every dimension. Furthermore, for any D-comodule M , the localization map

Ext∗D(k,M)! b−1
10 Ext∗D(k,M) is an isomorphism in homological degree > 0.

Lemma 4.3.4. In Stable(D), we have an isomorphism

b−1
10M(1) ∼= Σ−1,2|ξ1|b−1

10M(0).

Proof. A representative for M(1) in Stable(D) (i.e., an injective resolution for it) is

0 ! D
∂2
! Σ0,2|ξ1|D

∂
! Σ0,3|ξ1|D

∂2
! Σ0,5|ξ1|D ! . . . , and so b−1

10M(1) := colim(M(1)
b10!

Σ2,−|b10|M(1)! . . . ) is represented by

· · ·! Σ0,−|ξ1|D
∂
! D
hom.deg.0

∂2
! Σ0,2|ξ1|D

∂
! Σ0,3|ξ1|D ! . . . .

Similarly, b−1
10M(0) is represented by

· · ·! Σ0,−2|ξ1|D
∂2
! D
hom.deg.0

∂
! Σ0,|ξ1|D

∂2
! Σ0,3|ξ1|D ! . . . .

and so there is a degree-preserving isomorphism b−1
10M(1)! Σ−1,2|ξ1|b−1

10M(0).

(At arbitrary primes, the formula b−1
10M(n) ∼= Σ−1,(p−1)|ξ1|b−1

10M(p − 2 − n) holds for

the same reason.) Therefore, if M is a D-comodule, then b−1
10M ∈ Stable(D) is a sum

of shifts of the unit object k ∼= M(0). Remembering that Stable(D) was constructed

so that HomStable(D)(k, b
−1
10M) = b−1

10 ExtD(k,M), we obtain the following Künneth

isomorphism:

Lemma 4.3.5. If M and N are D-comodules, then

b−1
10 Ext∗D(k,M ⊗N) ∼= b−1

10 Ext∗D(k,M)⊗ b−1
10 Ext∗D(k,N).
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This only works at p = 3, and is the essential reason we have made the simplification of

working at p = 3.

Applying this to (4.3.1) we have the following.

Corollary 4.3.6. We have an isomorphism

b−1
10 Ext∗D(k,B) ∼=

⊕
monomials
ξn1 ...ξnd

b−1
10 Ext∗D(k,Σ

−d,2|ξ1|kξn1 ...ξnd
)

where Σ−d,2d|ξ1|kξn1 ...ξnd
is the copy of Σ−d,2d|ξ1|k isomorphic to

⊗d
i=1M(1)ξni

under

Lemma 4.3.4. In particular, K(ξ1)∗∗K(ξ1) = b−1
10 Ext∗D(k,B) is free over K(ξ1)∗∗ =

b−1
10 ExtD(k, k).

So b−1
10 ExtD(k,B) has R-module generators in bijection with monomials of the form

ξn1 . . . ξnd
(where ni 6= nj if i 6= j). Now we will be more precise in choosing these

generators.

Lemma 4.3.7. Suppose N is a D-comodule algebra with sub-D-comodules k{x, ∂x} ∼=

M(1) and k{y, ∂y} ∼= M(1).

(1) The image of Ext1D(k, k{x, ∂x}) in Ext1D(k,N) is generated by e(x) = [ξ1]x −

[ξ21 ]∂x.

(2) We have

e(x) · e(y) = b10(y∂x− x∂y)

in the multiplication Ext∗D(k,N) ⊗ Ext∗D(k,N) ! Ext∗D(k,N) induced by the

product structure on N . In particular, e(x)2 = 0.

(3) If the multiplication map embeds k{x, ∂x} ⊗ k{y, ∂y} in N injectively, then

b−1
10 Ext2D(k, k{x, ∂x} ⊗ k{y, ∂y}) ⊂ b−1

10 Ext2D(k,N) is a 1-dimensional vector

space with generator e(x) · e(y).
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Since ExtiD(k,M) = b−1
10 ExtiD(k,M) for i > 0, note that this also gives a generator of

b−1
10 Ext1D(k,N).

Proof. Since Ext1D(k,M(1)) is a 1-dimensional k-vector space, for (1) it suffices to show

that e(x) is a cycle that is not a boundary. Indeed, since dx = [ξ1]∂x and d(∂x) = 0,

we have d(e(x)) = −[ξ1|ξ1]∂x+ [ξ1|ξ1]∂x = 0, and e(x) is not in d(C0
D(k, k{x, ∂x})) =

d(k{x, ∂x}).

For (2), we use a special case of the cobar complex multiplication formula in [Mil78,

Proposition 1.2]:

Fact 4.3.8. The multiplication C1
D(k,M)⊗ C1

D(k,N)! C2
D(k,M ⊗N) is given by

[ξ]m⊗ [ω]n 7!
∑

[ξ ⊗m′ω](m′′ ⊗ n).

Thus the product C1
D(k,N) ⊗ C1

D(k,N) ! C2
D(k,N ⊗ N)

µ
! C2

D(k,N) takes [ξ]m ⊗

[ω]n 7!
∑

[ξ ⊗m′ω]m′′n. Using this formula, we have:

e(x) · e(y) = [ξ1|x] · [ξ1|y]− [ξ1|x] · [ξ21 |∂y]

−
[
ξ21 |∂x

]
· [ξ1|y] +

[
ξ21 |∂x

]
· [ξ21 |∂y]

[ξ1|x] · [ξ1|y] =
∑

[ξ1|x′ξ1]x′′y = [ξ1|ξ1]xy + [ξ1|ξ21 ](∂x)y

[ξ1|x] · [ξ21 |∂y] =
∑

[ξ1|x′ξ21 ]x′′∂y = [ξ1|ξ21 ]x∂y[
ξ21 |∂x

]
· [ξ1|y] =

∑
[ξ21 |(∂x)′ξ1](∂x)′′y = [ξ21 |ξ1](∂x)y[

ξ21 |∂x
]
· [ξ21 |∂y] =

∑
[ξ21 |ξ21(∂x)′](∂x)′′∂y = [ξ21 |ξ21 ]∂x∂y

d([ξ21 ]xy) = 2[ξ1|ξ1]xy − [ξ21 |ξ1](∂x)y − [ξ21 |ξ1]x∂y − [ξ21 |ξ21 ]∂x∂y

e(x) · e(y) + d([ξ21 ]xy) = [ξ1|ξ21 ](∂x)y + [ξ21 |ξ1](∂x)y − [ξ1|ξ21 ]x∂y − [ξ21 |ξ1]x∂y

= b10((∂x)y − x∂y)
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For (3), note that there is a decomposition of D-comodules

k{x, ∂x} ⊗ k{y, ∂y} µ
!∼=

k{xy, x∂y, (∂x)y, (∂x)(∂y)}

= k{xy, (∂x)y + x∂y, (∂x)(∂y)} ⊕ k{(∂x)y − x(∂y)}

and since Ext∗>0
D (k,D) = 0, the quotient map

b−1
10 Ext2D(k, k{x, ∂x} ⊗ k{y, ∂x}) ∼= b−1

10 Ext2D(k, k{x∂y − (∂x)y})

is an isomorphism. By (2), e(x) · e(y) is a generator of the latter Ext group.

Lemma 4.3.9. Suppose N is a D-comodule algebra with sub-D-comodules k{x, ∂x} ∼=

M(1) and k{y} ∼= k.

(1) The image of Ext0D(k, k{y}) in Ext0D(k,N) is generated by y.

(2) We have

e(x) · y = [ξ1]xy − [ξ21 ](∂x)y = y · e(x).

(3) If the multiplication map embeds k{x, ∂x} ⊗ k{y} in N injectively, then e(x) · y

is a generator of the 1-dimensional vector space b−1
10 Ext1D(k, k{x, ∂x} ⊗ k{y}).

Proof. (1) is clear. (2) follows from the cobar complex multiplication formulas

C0
D(k,M)⊗ C1

D(k,N)! C1
D(k,M ⊗N) m⊗ [ξ]n 7! [ξ](m⊗ n)

C1
D(k,M)⊗ C0

D(k,N)! C1
D(k,M ⊗N) [ξ]n⊗m 7! [ξ](n⊗m).

For (3), note that k{x, ∂x} ⊗ k{y} = k{xy, (∂x)y}. Note that (∂x)y = ∂(xy). From

Lemma 4.3.7, b−1
10 Ext1D(k, k{xy, ∂(xy)}) is generated by e(xy) = [ξ1]xy − [ξ21 ]∂(xy) =

e(x) · y.
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Definition 4.3.10. Define en := e(ξn) as the chosen generator of b−1
10 Ext1D(k,M(1)ξn).

Lemma 4.3.11. Under the change of rings isomorphism

b−1
10 ExtD(k,B) ∼= b−1

10 ExtP (k, P �DB)

the image of e(x) in Ext1P (k, P �DB) has cobar representative

[ξ1](1|x)− [ξ21 ](1|∂x) + [ξ1](ξ1|∂x) ∈ P ⊗ (P �DB).

Proof. The change of rings isomorphism ExtD(k,M) ∼= ExtP (k, P �DM) works as

follows: since P is free over D, the functor P �D− is exact, and so given an in-

jective D-resolution M ! X• for M , the complex P �DM ! P �DX
• is an injective

P -resolution. So we have ExtiD(k,M) ∼= CotoriD(k,M) = H i(k �DX
•), which agrees

with ExtiP (k, P �DM) ∼= CotoriP (k, P �DM) = H i(k �P (P �DX
•)) ∼= H i(k �DX

•).

In particular, ExtP (k, P �DB) can be computed by applying k �P− to the resolution

P �D CD(k,B) =
(
P �DB ! P �D(D ⊗B)! P �D(D ⊗D ⊗B)! . . .

)
. (4.3.2)

By Lemma 4.3.7, e(x) has representative [1|ξ1]x− [1|ξ21 ]∂x ∈ D⊗D⊗B in the D-cobar

resolution for B, and so its representative in (4.3.2) is 1|1|ξ1|x− ·1|1|ξ21 |∂x.

But we wanted a representative in the cobar complex CP (k, P �DB), so we will write

85



down part of an explicit map from the P -cobar resolution for P �DB to (4.3.2):

P �DB

��

P �DB

��

P ⊗ (P �DB)

��

f0
//

��

P ⊗B

��

P ⊗ P ⊗ (P �DB)
f1

//

��

P ⊗D ⊗B

��

P ⊗ P
⊗2 ⊗ (P �DB)

��

// P ⊗D
⊗2 ⊗B

��

...
...

By basic homological algebra, the map f ∗ exists and is unique, so to find f 0 and f 1

it suffices to find P -comodule maps that make the first two squares commute. In

particular, one can check that the maps

f 0(a|b|c) = ε(b)a|c

f 1(a|b|c|d) = ε(c)a|b|d

make the diagram commute, and z := [1|ξ1](1|x) + [1|ξ1](ξ1|∂x) − [1|ξ21 ](1|∂x) is an

element of P ⊗ P ⊗ (P �DB) such that (k �Pf)(z) = e(x).

4.3.2 Multiplicative structure

Proposition 4.3.12. The summand

b−1
10 ExtdD(k,M(1)ξn1

⊗ . . .⊗M(1)ξnd
) ⊂ b−1

10 ExtdD(k,B)

is generated by the product en1 . . . end
.
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Proof. Since

b−1
10 ExtdD(k,

⊗
M(1)ξni

) =

Σd,0 b−1
10 Ext0D(k,

⊗
M(1)ξni

) d is even

Σd−1,0 b−1
10 Ext1D(k,

⊗
M(1)ξni

) d is odd,

it suffices to show that b−1
10 Ext0D(k,M(1)ξn1

⊗. . .⊗M(1)ξnd
) is generated by b−d/210 en1 . . . end

when d is even, and b−1
10 Ext1D(k,M(1)ξn1

⊗. . .⊗M(1)ξnd
) is generated by b−(d−1)/2

10 en1 . . . end

when d is odd. We proceed by induction on d. The base case d = 1 is by definition.

Case 1: d is even. The tensor product M(1)ξn1
⊗. . .⊗M(1)ξnd−1

is isomorphic to M(1)⊕

F for a free summand F . By Lemma 4.3.7, b−1
10 Ext2D(k, (M(1)ξn1

⊗ . . .⊗M(1)ξnd−1
)⊗

M(1)ξnd
) is generated by e(x)·end

where e(x) is a generator of b−1
10 Ext1D(k,M(1)ξn1

⊗. . .⊗

M(1)ξnd−1
). By the inductive hypothesis, we can take e(x) = b

−(d−2)/2
10 en1 . . . end−1

. So

then b−1
10 e(x)end

= b
−d/2
10 en1 . . . end

is a generator for b−1
10 Ext0D(k,M(1)ξn1

⊗. . .⊗M(1)ξnd
).

Case 2: d is odd. In this case, M(1)ξn1
⊗ . . .⊗M(1)ξnd−1

is isomorphic to k ⊕ F for a

free summand F . By Lemma 4.3.9, b−1
10 Ext1D(k, (M(1)ξn1

⊗ . . .⊗M(1)ξnd−1
)⊗M(1)ξnd

)

is generated by y · end
where y is a generator of b−1

10 Ext0D(k,M(1)ξn1
⊗ . . .⊗M(1)ξnd−1

).

By the inductive hypothesis, we can take y = b
−(d−1)/2
10 en1 . . . end−1

.

Recall we defined R = b−1
10 ExtD(k, k) = E[h10]⊗ P [b±1

10 ].

Corollary 4.3.13. There is an R-module isomorphism b−1
10 Ext∗D(k,M(1)ξn1

⊗ . . . ⊗

M(1)ξnd
) ∼= R{en1 . . . end

} where the generator en1 . . . end
is in degree d.

Corollary 4.3.14. The map R⊗E[e2, e3, . . . ]! b−1
10 Ext∗D(k,B) is an isomorphism of

R-algebras.
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4.3.3 Antipode

The antipode is the map induced on Ext by the swap map τ : B
∆

⊗B ! B
∆

⊗B.

Recall (see Lemma 3.1.9) there is a shear isomorphism SM : B
∆

⊗M ! P �DM sending

a⊗m 7!
∑
am′ ⊗m′′. It has an inverse S−1

M : a⊗m 7!
∑
ac(m′)⊗m′′. In order to be

able to apply Lemma 4.2.15, we now obtain an explicit formula for the induced map

τ ′ := SB ◦ τ ◦ S−1
B : P �DB ! P �DB. This map is:

B
∆

⊗B τ // B
∆

⊗B

SB

��

P �DB

S−1
B

OO

τ ′ // P �DB

∑
xc(y′)|y′′ � //

∑
y′′|xc(y′)

_

��

x|y
_

OO

∑
y′′ · x′c(y′)′|x′′c(y′)′′

Using coassociativity we have

τ ′(x⊗ y) =
∑

y′′ · x′c(y′)′|x′′c(y′)′′

=
∑

x′y′′c((y′)′′)|x′′c((y′)′) Fact 3.0.2(4)

=
∑

x′y(3)c(y(2))|x′′c(y(1))

=
∑

x′ε(y(2))|x′′c(y(1)) Fact 3.0.2(2)

=
∑

x′|x′′c(y). Fact 3.0.2(3)

Since (K(ξ1)∗∗, K(ξ1)∗∗K(ξ1)) is a Hopf algebroid, the antipode is multiplicative, so to

determine it, it suffices to show:

Proposition 4.3.15. We have:

(1) c(h) = h

(2) c(en) = −en.

Proof. The antipode is given by the map τ ′∗ : Ext∗P (k, P �DB) ! Ext∗P (k, P �DB)
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induced by τ ′, defined so that τ ′∗([x1| . . . |xs]m) = [ξ1| . . . |xs]τ ′(m). Since h = [ξ1](1|1) ∈

Ext1P (k, P �DB), we have c(h) = τ ′∗(h) = h. For (2), we need an explicit formula for

the antipode in the dual Steenrod algebra:

Fact 4.3.16 ([Mil58, Lemma 10]). asdfasdf Let Part(n) be the set of ordered partitions

of n, `(α) the length of the partition α, and σi(α) =
∑i

j=1 αj be the partial sum. Then

we have:

c(ξn) =
∑

α∈Part(n)

(−1)`(α)
`(α)∏
i=1

ξp
σi−1(α)

αi
.

In particular, if n ≥ 2 then c(ξn) ≡ −ξn + ξ1ξ
p
n−1 (mod P

p2

P ) and c(ξpn−1) ≡ −ξpn−1

(mod P
p2

P ).

Recall (Notation 4.1.5) that we have defined ξn to be the antipode of its usual definition,

so here we have ∆(ξn) =
∑

i+j=n ξi ⊗ ξp
i

j . (Since the antipode is a ring homomorphism,

the formula in Fact 4.3.16 is the same in either case.)

Combining this antipode formula with the formula for en in Lemma 4.3.11 we have:

τ ′∗(en) = τ ′∗([ξ1](1|ξn)− [ξ21 ](1|ξ3n−1) + [ξ1](ξ1|ξ3n−1))

= [ξ1](1|c(ξn))− [ξ21 ](1|c(ξ3n−1)) + [ξ1](ξ1|c(ξ3n−1) + 1|ξ1c(ξ3n−1))

= [ξ1](−1|ξn + 1|ξ1ξ3n−1 + 1|A)− [ξ21 ](−1|ξ3n−1 + 1|B)

+ [ξ1](−ξ1|ξ3n−1 + ξ1|C − 1|ξ1ξ3n−1 + 1|D)

= −en + [ξ1](1|A+ ξ1|C + 1|D)− [ξ21 ](1|B)

for A, B, C, and D in P
9
P = I(3). By Lemma 4.2.15 these terms are zero in b10-local

cohomology, and c(en) = τ ′∗(en) = −en.

Corollary 4.3.17. We have ηL = ηR; that is, the Hopf algebroid (K(ξ1)∗∗, K(ξ1)∗∗K(ξ1))

is, in fact, a Hopf algebra.
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Proof. One of the axioms of a Hopf algebroid is c ◦ ηR = ηL. Since ηL is just the

inclusion of R into b−1
10 Ext∗D(k,B), its image is invariant under the antipode c.

4.3.4 Comultiplication

To define the comultiplication map b−1
10 ExtP (k,B

∆

⊗B)! b−1
10 ExtP (k,B

∆

⊗B)⊗2, first

consider the maps

ExtP (k,B
∆

⊗B)
α∗−! ExtP (k,B

∆

⊗B
∆

⊗B)
β
 − ExtP (k,B

∆

⊗B)⊗ ExtP (k,B
∆

⊗B)

where α∗ is the map on Ext induced by α : B⊗2 ! B⊗3 with α : a⊗ b 7! a⊗ 1⊗ b, and

β is defined as the map in the factorization

ExtP (k,B
∆

⊗2)⊗ ExtP (k,B
∆

⊗2) Künneth //

**

ExtP (k,B
∆

⊗2
∆

⊗B
∆

⊗2)
−⊗µ⊗−

// ExtP (k,B
∆

⊗3)

ExtP (k,B
∆

⊗2)⊗ExtP (k,B) ExtP (k,B
∆

⊗2)

β

55

(4.3.3)

It follows from the shear isomorphism ExtP (k,B
∆

⊗M) ∼= ExtD(k,M) and the Künneth

isomorphism for b10-local cohomology over D (Lemma 4.3.5) that β is an isomorphism

after inverting b10, and we define the comultiplication map on b−1
10 ExtP (k,B

∆

⊗B) by

∆ := β−1 ◦ α∗.

In particular, flatness ofK(ξ1)∗∗K(ξ1) overK(ξ1)∗∗ implies that (K(ξ1)∗∗, K(ξ1)∗∗K(ξ1))

is a Hopf algebroid using the definitions of comultiplication, antipode, counit, and

unit above. In a Hopf algebroid, the comultiplication is a homomorphism, and so to

determine ∆ explicitly it suffices to determine ∆(en). We prove this in Proposition

4.3.19. Lemma 4.3.11 gives an expression for en in Ext1P (k, P �DB), so we prefer to

calculate ∆ : b−1
10 ExtP (k,B

∆

⊗ B) ! b−1
10 ExtP (k,B

∆

⊗ B)⊗2 after composing with the
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shear isomorphism; that is, there is a commutative diagram

b−1
10 ExtP (k,B

∆

⊗B)
α∗ //

(SB)∗
��

b−1
10 ExtP (k,B

∆

⊗B
∆

⊗B)

((1⊗SB)◦SB⊗B)∗
��

b−1
10 ExtP (k,B

∆

⊗B)⊗2β
oo

SB⊗SB

��

b−1
10 ExtP (k, P �DB)

α′
∗ // b−1

10 ExtP (k, P �D(P �DB)) b−1
10 ExtP (k, P �DB)⊗2β′

oo

and we will show that α′
∗(en) = β′(1⊗ en + en ⊗ 1) in b−1

10 ExtP (k, P �D(P �DB)). (We

have chosen to use an extra application of the shear isomorphism on the middle term

in order to apply Corollary 4.2.16.)

Lemma 4.3.18. If a ∈ ExtP (k, P �DB) has cobar representative [a1| . . . |as](p|q), we

have

α′
∗(a) =

∑
[a1| . . . |as](p|q′|q′′)

β′(1⊗ a+ a⊗ 1) = [a1| . . . |as](
∑
p′|p′′|q + p|q|1)

in ExtP (k, P �D(P �DB)).

So to check that a is primitive after inverting b10, it suffices to check

∑
[a1| . . . |as](p|q′|q′′)− [a1| . . . |as](

∑
p′|p′′|q + p|q|1) = 0 (4.3.4)

in b−1
10 ExtP (k, P �D(P �DB)).

Proof. By definition, α′ is the map induced on Ext by the composition

P �DB
S−1
B // B

∆

⊗B
−⊗η⊗−

// B
∆

⊗B
∆

⊗B
SB⊗B

// P �D(B
∆

⊗B)
P �DSB // P �D(P �DB).

On elements, we have:

x|y � //
∑

xc(y′)|y′′ � //
∑

xc(y′)|1|y′′ � //
∑

xc(y′)(y′′)′|1|(y′′)′′

� //
∑

xc(y′)(y′′)′|((y′′)′′)′|((y′′)′′)′′ =
∑

x|y′|y′′
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where the last equality is a coassociativity argument similar to the one at the beginning

of Section 4.3.3. That is, we have α′(x⊗ y) =
∑
x⊗ y′ ⊗ y′′, which implies

α′
∗([a1| . . . |as](p|q)) =

∑
[a1| . . . |as](p|q′|q′′).

The map β′ comes from the bottom composition in

ExtP (k,B
∆

⊗2)⊗2

(SB)∗⊗(SB)∗

��

Künneth // ExtP (k,B
∆

⊗2
∆

⊗B
∆

⊗2)
(−⊗µ⊗−)∗

//

(SB⊗SB)∗
��

ExtP (k,B
∆

⊗3)

(SB⊗B)∗

��

ExtP (k, P �DB)⊗2 Künneth// ExtP (k, (P �DB)
∆

⊗ (P �DB))
γ∗
// ExtP (k, P �D(P �DB)).

We will only give an explicit expression for β′ on elements of the form 1 ⊗ a and

a⊗ 1, where 1 denotes the unit 1⊗ 1 ∈ Ext0P (k, P �DB) and a = [a1| . . . |as](p⊗ q) ∈

ExtsP (k, P �DB). In [Mil78], there is a full description of the Künneth map K on the level

of cochains, but here all we need are the maps K : C0
P (k,M)⊗Cs

P (k,N)! Cs
P (k,M⊗N)

and K : Cs
P (k,N)⊗C0

P (k,M)! Cs
P (k,M ⊗N). The former sends m⊗ [a1| . . . |as]n 7!

[a1| . . . |as](m ⊗ n) and the latter sends [a1| . . . |as]n ⊗ m 7! [a1| . . . |as](n ⊗ m). In

particular, K(1 ⊗ a) = [a1| . . . |as](1|1|p|q) and K(a ⊗ 1) = [a1| . . . |as](p|q|1|1) in

ExtsP (k, (P �DB)⊗ (P �DB)).

To determine β′, it remains to determine the map γ : (P �DB)⊗(P �DB)! P �D(P �DB)

induced by −⊗ µ⊗−. This is accomplished by calculating the effect of shear isomor-

phisms as follows:

(B
∆

⊗B)⊗ (B
∆

⊗B)
−⊗µ⊗−

// B
∆

⊗3

SB⊗B

��

(P �DB)⊗ (P �DB)

S−1
B ⊗S−1

B

OO

P �D(B
∆

⊗B)
P �DSB // P �D(P �DB)
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∑
xc(y′)|y′′ ⊗ zc(w′)|w′′ � //

∑
xc(y′)|y′′zc(w′)|w′′

_

��

x|y ⊗ z|w
_

OO

∑
xc(y′)(y′′)′z′c(w′)′(w′′)′

⊗(y′′)′′z′′c(w′)′′ ⊗ (w′′)′′

=
∑
xz′|yz′′c(w′)|w′′

� //
∑
xz′|yz′′|w.

That is, γ(x|y ⊗ z|w) =
∑
xz′|yz′′|w, which implies

β′(1⊗ a+ a⊗ 1) = γ∗K(1⊗ a+ a⊗ 1)

= γ∗([a1| . . . |as](1|1|p|q + p|q|1|1))

= [a1| . . . |as]γ(1|1|p|q + p|q|1|1)

= [a1| . . . |as](
∑
p′|p′′|q + p|q|1).

Proposition 4.3.19. The element en is primitive.

Proof. We need to check the criterion (4.3.4) for a = en. Recall we had the formula

en = [ξ1](1|ξn)− [ξ21 ](1|ξ3n−1) + [ξ1](ξ1|ξ3n−1) ∈ C1
P (P �DB)

from Lemma 4.3.11. It suffices to check that α′
∗(en) − β′

∗(1 ⊗ en + en ⊗ 1) is zero in

b−1
10 ExtP (k, P �D(P �DB)). Using Lemma 4.3.18 we have:

α′
∗(en)− β′

∗(1⊗ en + en ⊗ 1) =
(
[ξ1](1|∆ξn)− [ξ21 ](1|∆ξ3n−1) + [ξ1](ξ1|∆ξ3n−1)

)
−

(
[ξ1](1|1|ξn + 1|ξn|1)− [ξ21 ](1|1|ξ3n−1 + 1|ξ3n−1|1)

+ [ξ1](1|ξ1|ξ3n−1 + ξ1|1|ξ3n−1 + ξ1|ξ3n−1|1)
)

= [ξ1]
∑
i+j=n

2≤i≤n−1

1|ξi|ξ3
i

j − [ξ21 ]
∑

i+j=n−1
1≤i≤n−2

1|ξ3i |ξ3
i+1

j + [ξ1]
∑

i+j=n−1
1≤i≤n−2

ξ1|ξ3i |ξ3
i+1

j

But all the remaining terms in the difference are in CP (P �D(P �DI(3))) so by Corollary

4.2.16 they are zero in b10-local cohomology.

Putting together Lemma 4.3.14, Proposition 4.3.15, Corollary 4.3.17, and Proposition
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4.3.19, we have the following:

Theorem 4.3.20. The map R⊗E[e2, e3, . . . ]! b−1
10 Ext∗D(k,B) is an isomorphism of

Hopf algebras. That is, the Hopf algebroid (K(ξ1)∗∗, K(ξ1)∗∗K(ξ1)) is an exterior Hopf

algebra over R on the generators e2, e3, . . . where en has internal degree 2(3n + 1).

4.4 Convergence

The convergence argument will only rely on the form of the E1 page of our spectral

sequence. Recall B = P �Dk and K(ξ1) = b−1
10 B. By the definition of the MPASS

(Definition 2.2.2), we have Es,∗
1 = b−1

10K(ξ1)∗∗(K(ξ1)
⊗s
) = b−1

10 ExtP (k,B ⊗ B
⊗s
). By

the change of rings theorem, this is b−1
10 ExtD(k,B

⊗s
).

Proposition 4.4.1. The b10-localized K(ξ1)-based MPASS

Es,∗
1 = b−1

10 ExtD(k,B
⊗s
) =⇒ b−1

10 ExtP (k, k)

converges.

The proof is a slight modification of [Pal01, Proposition 4.4.1, Proposition 4.2.6].

We use the following grading convention: x ∈ Es,t,u
1 is an element in ExttP (k,B ⊗B

⊗s
)

with internal degree u. Note b10 ∈ E0,2,12
1 .

Lemma 4.4.2. Let M be a bounded-below graded D-module and suppose uM = min{u(x) :

x ∈ M}. If x ∈ Ext∗D(k,M) is a nonzero element of degree (s, t, u) and x 6= 0, then

u ≥ uM + 6t− 2.

Proof. First we check the cases when M ∼= k,M(1), or D.
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Case 1: M ∼= k. Let y be the generator of M , in degree (t, u) = (0, u(y)). We have

Ext∗D(k, k{y}) = E[h10]⊗ P [b10]⊗ k{y} where h10 is in degree (t, u) = (1, |ξ1|) = (1, 4)

and b10 is in degree (t, u) = (2, 12). The minimum degree element is y, so uM = u(y).

Every element has the form h10b
n
10y or b10y for n ≥ 0, and both of these satisfy

u ≥ uM + 6t− 2.

Case 2: M ∼= M(1). Write M = k{y, ∂y}, where ∂y is in degree (0, u(∂y)) and ∂y is in

degree (0, u(∂y) + 4). By Lemma 4.3.7(1), Ext∗D(k,M) = Fp[b10]⊗ k{∂y, e(y)} where

e(y) is in degree (t, u) = (1, u(∂y) + 8). The minimum degree element is ∂y, and all

the elements satisfy u ≥ uM + 6t.

Case 3: M ∼= D. Here, Ext0D(k,M) ∼= k has degree (t, u) = (0, uM) and ExttD(k,M) = 0

for t > 0.

In general, a homogeneous element x ∈ M is a sum
∑
xi for xi ∈ Mi where Mi is

a summand of the above type, and by definition, uMi
≥ uM . So u(x) = u(xi) ≥

uMi
+ 6t− 2 ≥ uM + 6t− 2.

Proposition 4.4.3. There is a vanishing plane in the E1 page of our spectral sequence:

Es,t,u
1 = 0 if u < 12s+ 6t− 2.

Proof. Recall Es,t,∗
1 = ExttP (k, P �DB

⊗s
) ∼= ExtD(k,B

⊗s
). The element in B of smallest

internal degree is ξ31 , which has u = 12. Therefore x ∈ B
⊗s has u ≥ 12s. By Lemma

4.4.2, if x ∈ Es,t,u
1 has degree (s, t, u), then u ≥ 12s+ 6t− 2.

Corollary 4.4.4. The differential dr : Es,t,u
r ! Es+r,t−r+1,u

r is zero if r > 1
6
(u− 12s−

6t− 4).

Proof. Given x ∈ Es,t,u
r , dr(x) ∈ Es′,t′,u′

r = Es+r,t−r+1,u
r will be zero because of the

95



vanishing plane if 12s′ + 6t′ − 2− u′ > 0. But

12s′ + 6t′ − 2− u′ = 12(s+ r) + 6(t− r + 1)− 2− u = (12s+ 6t+ 4− u) + 6r

which is > 0 for r as indicated.

Corollary 4.4.5. There is a vanishing line in Ext∗P (k, k): if x ∈ Extt
′,u
P (k, k) and

u− 6t′ + 2 < 0 then x = 0.

Proof. Permanent cycles in Es,t,u
1 converge to elements in Exts+t,uP (k, k). Any such x

would then be represented by a permanent cycle in Es,t,u
1 with u− 6(s+ t) + 2 < 0 ≤

6s (since Adams filtrations are non-negative), which falls in the vanishing region of

Proposition 4.4.3.

Note that b10 ∈ Ext2,12P (k, k) acts parallel to this vanishing line; this is an illustration of

the Stable(P ) version of Theorem 1.1.3.

Proof of Proposition 4.4.1. The non-localized spectral sequence converges by Proposi-

tion 2.2.5. There are two things that can go wrong with convergence of a localized

spectral sequence: (1) a b10-tower of permanent cycles is not in b−1
10 E∞ because the

tower is split into infinitely many pieces in the spectral sequence, connected by hidden

multiplications; (2) a b10-periodic tower supports a differential to an infinite sequence

of torsion elements, and hence this differential is not recorded in b−1
10 Er. (The reverse of

(2), where a sequence of torsion elements supports a differential that hits a b10-tower,

cannot happen: if dr(x) = y and bn10x = 0 in Er, then 0 = dr(b
n
10x) = bn10dr(x) = bn10y.)
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Figure 4-1: Illustration of (1): this represents a b10-tower in π∗X

For (1), suppose x has degree (sx, tx, ux). If there were no multiplicative extensions,

then bi10x would have degree (sx, tx + 2i, ux + 12i). But multiplicative extensions cause

it to have the expected internal degree u and stem s + t, but higher s. That is, bi10x

has degree (sx + ni, tx + 2i− ni, ux + 12i) for some ni > 0, and because this scenario

involves the existence of infinitely many multiplicative extensions, the sequence (ni)i is

increasing and unbounded above. This causes us to run afoul of the vanishing plane

(Proposition 4.4.3) for sufficiently large i:

12s+ 6t− 2− u = 12(sx + ni) + 6(tx + 2i− ni)− 2− (ux + 12i)

= 12sx + 6tx − 2− ux + 6ni

which is > 0 for i� 0.

For (2), the scenario is, more precisely, as follows: we have a b10-periodic element

x ∈ Ext∗P (k, k), and a sequence of differentials dri(bi10x) = yi 6= 0, where every yi is

b10-torsion. The sequence (ri)i must be increasing and bounded above: if bni
10yi = 0

then dri(b
ni
10x) = bni

10yi = 0, and so if bni
10x is to support a differential drni

, we must have

rni
> ri. Note that the condition on r in Corollary 4.4.4 is the same for all bi10x. So

some of the ri’s will be greater than this bound, contradicting the assumption that

dri(b
i
10x) 6= 0.
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4.5 Identifying the b10-periodic region

In this section, we determine a line of slope 1
23

above which Ext∗P (k, k) is b10-periodic.

Our main input is the following theorem, which Palmieri states for the Steenrod dual

A instead of P , as we do below. The only difference is that, over A, one must also take

into account the objects K(τn), which do not come into play over P . (This reasoning

follows from the discussion in [Pal01, §2.3.2].)

Recall in Section 2.3.2, we defined s(ξp
s

t ) = 1
2
p|ξp

s

t | = ps+1(pt − 1) and discussed how

this related to vanishing lines on Adams E2 pages.

Theorem 4.5.1 ([Pal01, Theorem 2.3.1]). Suppose X is a spectrum in Stable(P )

satisfying the following conditions:

(1) There exists an integer i0 such that πi,∗X = 0 if i < i0,

(2) There exists an integer j0 such that πi,jX = 0 if j − i < j0,

(3) There exists an integer i1 such that the homology of the cochain complex X

vanishes in homological degree > i1. (In particular, this is satisfied if X is the

resolution of a bounded-below comodule.)

Suppose d = s(ξp
s0

t0 ) (with s0 < t0) has the property that K(ξp
s

t )∗∗(X) = 0 for all (s, t)

with s < t and s(ξp
s

t ) < d. Then π∗∗X has a vanishing line of slope d: for some c,

πi,jX = 0 when j < di− c.

As elsewhere in this thesis, we abuse notation by identifying a P -comodule with its

image in Stable(P ), and here we take that one step further by writing k/b10 for the

cofiber in Stable(P ) of b10 ∈ Ext2P (k, k), thought of as a map k ! k in Stable(P ). We

will make use of the cofiber sequence

k
b10! k[2]! k/b10[2] (4.5.1)
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and its induced long exact sequence

· · ·! Exts,tP (k, k)! Exts+2,t+12
P (k, k)

Exts,t+12
P (k,k[2])

! Exts+2,t+12
P (k, k/b10)! Exts+1,t

P (k, k)! . . . .

(4.5.2)

(Here we use Ext∗∗P (k, k/b10) to denote HomStable(P )(k, k/b10).)

Claim 4.5.2. The object k/b10 satisfies the conditions of Theorem 4.5.1 for d = 24.

Proof. First we check the three homotopy boundedness conditions.

(1) k satisfies the condition for i0 = 0, so (4.5.2) shows that k/b10 satisfies the condition

for i0 = 0.

(2) k satisfies this condition for j0 = 0, so by (4.5.2), k/b10 satisfies the condition for

j0 = 0.

(3) k/b10 is (the resolution of) the 2-cell complex k b10! k.

Now we check the main condition in Theorem 4.5.1 with d = 24 = s(ξ2). Since ξ1 is the

first ξp
s

t with s < t and ξ2 is the second, we just have to check K(ξ1)∗∗(k/b10) = 0. This

is essentially by construction: consider the long exact sequence of (4.5.1) in K(ξp
s

t )∗∗:

K(ξp
s

t )∗,∗
b10 // K(ξp

s

t )∗+2,∗+12
// K(ξp

s

t )∗+2,∗+12(k/b10).ll

Since (P �D[ξ1]k)∗∗ = B∗∗ ∼= E[h10] ⊗ P [b10], the non-connective version K(ξ1) =

b−1
10 (P �D[ξ1]k) has K(ξ1)∗∗ ∼= E[h10]⊗P [b±10], i.e. multiplication by b10 is an isomorphism

K(ξ1)s,∗ ! K(ξ1)s+2,∗+12 for all s, and so the LES shows K(ξ1)∗∗(k/b10) = 0.

Thus, we can use Palmieri’s theorem to conclude that there exists some c such that

πs,t(k/b10) = 0 when t < 24s− c. Going back to (4.5.2), we see that multiplication by
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b10 is an isomorphism in this range; more specifically, from the exact sequence

Exts+1,t+12
P (k, k/b10)

0 if t+12<24(s+1)−c

! Exts,tP (k, k)! Exts+2,t+12
P (k, k)! Exts+2,t+12

P (k, k/b10)

0 if t+12<24(s+2)−c

we see that Exts,tP (k, k)
b10! Exts+2,t+12

P (k, k) is an isomorphism if t < 24s + 12 − c, or

equivalently 1
23
(t− s) + 1

23
(c− 12) < s. If x ∈ Exts,tP (k, k) is nonzero with s, t satisfying

this condition, then so is bk10x for every k. Therefore:

Proposition 4.5.3. The localization map Exts,tP (k, k)! b−1
10 Exts,tP (k, k) is an isomor-

phism in the range s > 1
23
(t− s) + c′ for some constant c′.

In [Pal01, 2.3.5(c)], Palmieri gives an explicit expression for the constant c, which allows

us to calculate the y-intercept in the above line to be c′ ≈ 6.39.
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Chapter 5

Computation of d4

Notation 5.0.1. As in all of the computational parts of this thesis, we are working at

p = 3. Recall we have set

• D = k[ξ1]/ξ
3
1 ,

• K(ξ1) = b−1
10 B where B = P �Dk, and

• R = K(ξ1)∗∗ = E[h10]⊗ P [b±1
10 ].

Finally, recall from 4.1.5 that we have established the convention that the symbol ξn
means what is usually called ξn: that is, we have

∆(ξn) =
∑
i+j=n

ξi ⊗ ξp
i

j .

This makes it easier to talk about B = P �Dk, which can be written k[ξ31 , ξ2, ξ3, . . . ]

with the above unconventional notation.
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5.1 Overview of the computation

In the previous chapter, we’ve shown that theK(ξ1)-based MPASS computing b−1
10 ExtP (k, k)

has the form

E∗∗
2 = E[h10]⊗ P [b±1

10 , w2, w3, . . . ] =⇒ b−1
10 Ext∗P (k, k)

where s(wn) = 1, t(wn) = 1, and u(wn) = 2(3n + 1). (Recall s is Adams filtration,

t is internal homological degree, and u is internal topological degree, so Es,t,u
1 =

Extt,uP (k,B ⊗B
⊗s
).)

Proposition 5.1.1. If r ≥ 2 and r 6≡ 4 (mod 9) or r 6≡ 8 (mod 9), then dr = 0.

Furthermore, if we let W+ = P [b±1
10 , w2, w3, . . . ] and W− = W+{h10}, then

d4+9n(W
+) ⊂ W− d4+9n(W

−) = 0

d8+9n(W
+) = 0 d8+9n(W

−) ⊂ W+.

Proof. This is a degree argument, so we simplify to considering dr(x) where x is a

monomial.

Case 1: x = wk1 . . . wkd and dr(x) = bN10wn1 . . . wnd+r
. I claim this is not possible

because t(dr(x)) has the wrong parity. Recall that t(wn) = 1, t(b10) = 2, and t(dr(x)) =

1− r+ t(x). But here we have t(dr(x))+ r− t(x) = (2N + d+ r)+ r− d = 2N +2r 6≡ 1

(mod 2).

Case 2: x = wk1 . . . wkd and dr(x) = bN10h10wn1 . . . wnd+r
. We will measure degree

using u′ := u − 6(s + t); this has the property that u′(b10) = 0, u′(h10) = −2, and

u′(wk) = 2(3k − 5) for all k. Furthermore u′(dr(x)) = u′(x) − 6. Using the fact that
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u′(wn) = 2(3n − 5), u′(h10) = −2, and u′(b10) = 0, this equality becomes

d+r∑
i=1

2(3ni − 5)− 2 =
d∑
j=1

2(3kj − 5)− 6

d+r∑
i=1

3ni −
d∑
j=1

3kj = 5r − 2

Since ni, kj ≥ 2 for all i, j, taking this mod 9 gives 0 ≡ 5r−2 (mod 9), so r ≡ 4 (mod 9).

Case 3: x = h10wk1 . . . wkd and dr(x) = bN10wn1 . . . wnd+r
. As in Case 2, u′(dr(x)) =

u′(x)− 6 becomes:

d+r∑
i=1

2(3ni − 5) =
d∑
j=1

2(3kj − 5)− 2− 6

d+r∑
i=1

3ni −
d∑
j=1

3kj = 5r − 4

and taking this mod 9 yields r ≡ 8 (mod 9).

Case 4: x = h10wk1 . . . wkd and dr(x) = bN10h10wn1 . . . wnd+r
. This can’t happen for the

same reason as Case 1.

So the next possibly nontrivial differential is d4.

Proposition 5.1.2. We have the following:

dr(h10) = 0 for r ≥ 2

dr(w2) = 0 for r ≥ 2

d4(w3) = ±b−1
10 h10w

5
2

d4(w4) = ±b−1
10 h10w

2
2w

3
3.

Proof. The first two facts can be seen directly in the cobar complex CP (k, k), using the
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cobar representatives h10 = [ξ1] and w2 = [ξ1|ξ2]− [ξ21 |ξ31 ], which are permanent cycles.

The differentials on w3 and w4 were deduced from the chart of Ext∗P (k, k) up to the

700 stem that appears as Figure 4-2 (generated by the software [Nas]). In Proposition

4.5.3, we showed that Ext∗P (k, k) agreed with b−1
10 Ext∗P (k, k) in the range of dimensions

depicted in the chart. Thus we know which classes in E2 = R⊗ P [w2, w3, . . . ] in this

range of dimensions die in the spectral sequence, and, using multiplicativity of the

spectral sequence, this forces the differentials above.

The goal of this chapter is to prove the following:

Theorem 5.1.3. For n ≥ 5, there is a differential in the MPASS

d4(wn) = ±b−4
10 h10w

2
2w

3
n−1.

Since the spectral sequence is multiplicative and d4(h10) = 0, this determines d4.

The main idea is to use comparison with the MPASS computing b−1
10 ExtPn(k, k), where

Pn = k[ξ1, ξ2, ξn−2, ξn−1, ξn]/(ξ
9
1 , ξ

3
2 , ξ

27
n−2, ξ

9
n−1, ξ

3
n).

(The idea is that this is the smallest algebra in which the desired differential can be

seen.) This is a quotient Hopf algebra of P by the classification of such (see [Pal01,

Theorem 2.1.1.(a)]). Here’s a picture:

ξ1

ξ31

ξ2 ξn−2

ξ3n−2

ξ9n−2

ξn−1

ξ3n−1

ξn

Let B = P �Dk and Bn = Pn �Dk. There is a b−1
10 Bn-based MPASS computing

b−1
10 ExtPn(k, k), which we will denote Er(k,Bn). Let Er(k,B) denote the b−1

10 B-based
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MPASS for b−1
10 ExtP (k, k) discussed above. Then the diagram

B //

��

P

��

// D

Bn
// Pn // D

shows there is a map of spectral sequences Er(k,B)! Er(k,Bn).

Lemma 5.1.4. It suffices to show that d4(wn) 6= 0 in E4(k,B).

Proof. Since s(d4(wn)) = 4 + s(wn) = 5, we know that d4(wn) is a linear combination

of terms of the form bN10h10wk1 . . . wk5 . Using the grading u′ := u− 6(s+ t), we have

u′(wn) = u′(bN10h10wk1 . . . wk5) + 6

2(3n − 5) = −2 +
5∑
i=1

2(3ki − 5) + 6

3n + 18 =
5∑
i=1

3ki

Note that ki ≥ 2. Looking at this mod 9, we see that two of the ki’s have to be

= 2, say k1 and k2. Then we have 3n = 3k3 + 3k4 + 3k5 . The only possibility is

n − 1 = k3 = k4 = k5. So if d4(wn) 6= 0 then d4(wn) = bN10h10w
2
2w

3
n−1, and checking

internal degrees shows N = −4.

When we discuss Er(k,Bn) it will be easy to see that there is a class wn ∈ E2(k,Bn)

which is the target of wn ∈ E2(k,B) along the quotient map.

E4(k,B)
d4 //

��

E4(k,B)

��

E4(k,Bn)
d4 // E4(k,Bn)

Lemma 5.1.4 says that it suffices to show d4(wn) 6= 0 in E4(k,Bn), but it turns out to
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be the same amount of work to show the following more attractive statement.

Goal 5.1.5. There is a differential d4(wn) = ±b−4
10 h10w

2
2w

3
n−1 in Er(k,Bn).

Using the same argument as Proposition 5.1.1, we know that d2 = 0 = d3 in Er(k,Bn),

so h10w2
2w

3
n−1 is not the target of an earlier differential.

We will use the following strategy to show the desired differential in Er(k,Bn):

(1) Calculate E2(k,Bn) in a region and identify classes w2, wn−1, wn that are the

targets of their namesake classes under the quotient map E2(k,B)! E2(k,Bn).

(2) Show that b−1
10 Ext∗Pn

(k, k) is zero in the stem of b−4
10 h10w

2
2w

3
n−1. This implies that

b−4
10 h10w

2
2w

3
n−1 either supports a differential or is the target of a differential.

(3) Show that b−4
10 h10w

2
2w

3
n−1 is a permanent cycle in the MPASS (so it must be the

target of a differential) and show that, for degree reasons, wn is the only element

that can hit it. By looking at filtrations, we see this differential is a d4.

In order to show (2), we introduce another spectral sequence for calculating b−1
10 Ext∗Pn

(k, k),

the Ivanovskii spectral sequence (ISS). This is the (b10-localized version of the) dual of

the May spectral sequence; that is, it is the spectral sequence obtained by filtering the

cobar complex on Pn by powers of the augmentation ideal.

In Section 5.2 we will introduce notation and record facts about gradings. In Section

5.3 we will compute E1(k,Bn) and the relevant part of E2(k,Bn), and show (1) and (3)

assuming (2). In Section 5.4 we will calculate the relevant part of the ISS and show (2).

Convergence of the localized ISS is discussed in Section 5.5.
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5.2 Notation and gradings

Since most of the work in this chapter consists of degree-counting arguments, we will

now record how differentials and convergence affect the various gradings at play. We

also introduce a change of coordinates on degrees that simplifies degree arguments by

putting b10 in degree zero.

MPASS gradings

As mentioned above, when working with MPASS’s we use the grading (s, t, u) where s is

MPASS filtration, t is internal homological degree, and u is internal topological degree,

such that Es,t,u
1 = Extt,uP (k,B ⊗B

⊗s
). This has the property that the differential has

the form

dr : E
s,t,u
r ! Es+r,t−r+1,u

r

and a permanent cycle in Es,t,u
r converges to an element in b−1

10 Exts+t,uP (k, k).

Instead of working with the grading (s, t, u), we perform a change of coordinates by

setting

u′ := u− 6(s+ t)

and track (u′, s) instead. This is more convenient because u′(b10) = 0 = s(b10), so all

classes in a b10-tower have the same (u′, s)-degree. The differential under the change of

coordinates has the form

dr : E
u′,s
r ! Eu′−6,s+r

r

and a permanent cycle in Eu′,s
r converges to an element in b−1

10 Exta,bP (k, k) (where b is

internal topological degree and a is homological degree) with b− 6a = u′.

Definition 5.2.1. Let stem in b−1
10 Exta,bP (k, k) denote the quantity b − 6a. Then a

permanent cycle in Eu′,s
r converges to an element in the u′ stem.

109



Finally, define

u′′ := u− 6t.

This is only useful for looking at the E1 page of the MPASS, as d1 fixes u′′.

ISS gradings

The Ivanovskii spectral sequence computing b−1
10 ExtPn(k, k) is the spectral sequence

obtained by filtering the cobar complex on Pn by powers of the augmentation ideal:

for example, [ξ1ξ2|ξ3n−1] has filtration 2 + 3 = 5. Let EISS
r denote the Er page of the

Ivanovskii spectral sequence.

We use slightly different grading conventions: classes have degree (s, t, u) where s is

ISS filtration, t denotes degree in the cobar complex, and u denotes internal topological

degree (as in the MPASS). The differential has the form

dISSr : Es,t,u
r ! Es+r,t+1,u

r

and a permanent cycle in Es,t,u
r converges to an element in b−1

10 Extt,uP (k, k).

We will use the change of coordinates

u′ := u− 6t

which is designed so that u′(b10) = 0. (This has a different formula from the MPASS

change of coordinates simply because (s, t, u) correspond to different parameters here.)

The differential has the form

dISSr : Eu′,s
r ! Eu′−6,s+r

r

and a permanent cycle in Eu′,s
r converges to an element in b−1

10 Exta,bP (k, k) with u′ = b−6a,
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i.e. an element in the u′ stem.

Note that u′ has different formulas for the MPASS and ISS, but in both spectral sequences

u′ corresponds to stem, with the definition given above. Now we will introduce another

grading on Pn (for n ≥ 5) preserved by the comultiplication.

Extra grading on Pn

Let P ′
n = k[ξ1, ξ2, ξ

3
n−2, ξn−1, ξn]/(ξ

9
1 , ξ

3
2 , ξ

27
n−2, ξ

9
n−1, ξ

3
n). Note that every monomial in Pn

can be written ξen−2x where e ∈ {0, 1, 2} and x ∈ P ′
n.

Lemma 5.2.2. For n ≥ 5, P ′
n is a sub-coalgebra of Pn.

Proof. This is clear from the comultiplication formulas

∆(ξn) = 1⊗ ξn + ξ1 ⊗ ξ3n−1 + ξ2 ⊗ ξ9n−2 (5.2.1)

∆(ξn−1) = 1⊗ ξn−1 + ξ1 ⊗ ξ3n−2 + ξn−1 ⊗ 1

∆(ξ3n−2) = 1⊗ ξ3n−2 + ξ3n−2 ⊗ 1

and the assumption n ≥ 5 guarantees that ξ1, ξ2 6= ξn−2.

Proposition 5.2.3. Let n ≥ 3. There is an extra grading α on Pn that respects the

comultiplication, defined by the property that it is multiplicative on P ′
n, and

α(ξ1) = α(ξ2) = α(ξn−2) = 0,

α(ξ3n−2) = α(ξn−1) = 3,

α(ξn) = 9,

α(ξen−1x) = α(x) for e ∈ {0, 1, 2} and x ∈ P ′
n.

Proof. First we check that α respects the comultiplication when restricted to P ′
n. Since
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it is defined to be multiplicative on P ′
n, it suffices to check that α(y) = α(∆y) for y as

each of the multiplicative generators. This is clear from the comultiplication formulas

(5.2.1).

Now suppose y = ξn−2x where x ∈ P ′
n. We have

∆(ξn−2x) = (1⊗ ξn−2 + ξn−2 ⊗ 1)∆x =
∑(

x′ ⊗ x′′ξn−2 + x′ξn−2 ⊗ x′′
)

and the α degrees of both sides agree since P ′
n is a coalgebra. Similarly, if y = ξ2n−2x

for x ∈ P ′
n, we have

α(∆y) = α((1⊗ ξ3n−2 + 2ξn−2 ⊗ ξn−2 + ξ2n−2 ⊗ 1)(∆x))

= α
(∑

x′ ⊗ ξ2n−2x
′′ + 2ξn−2x

′ ⊗ ξn−2x
′′ + ξ2n−2x

′ ⊗ x′′
)
= α(∆x).

5.3 The E2 page of the b−1
10 Bn-based MPASS

The goal of this section is to prove the following:

Proposition 5.3.1. If b−4
10 h10w

2
2w

3
n−1 is the target of a differential in the b−1

10 Bn-based

MPASS calculating b−1
10 Ext∗Pn

(k, k), that differential must be

d4(wn) = ±b−4
10 h10w

2
2w

3
n−1.

The main task is to calculate enough of E2(k,Bn) to do a degree-counting argument

(Proposition 5.3.9), where

Bn = Pn �Dk = k[ξ31 , ξ2, ξn−2, ξn−1, ξn]/(ξ
9
1 , ξ

3
2 , ξ

27
n−2, ξ

9
n−1, ξ

3
n).

As in the calculation of the E2 page of the b−1
10 B-based MPASS (Section 4.3), the
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Künneth formula for the functor b−1
10 Ext∗D(k,−) (Lemma 4.3.5) guarantees flatness of

(b−1
10 Bn)∗∗(b

−1
10 Bn) over (b−1

10 Bn)∗∗. So we can use the formula

E2
∼= Ext∗

(b−1
10 Bn)∗∗b

−1
10 Bn

((b−1
10 Bn)∗∗, (b

−1
10 Bn)∗∗) (5.3.1)

where (b−1
10 Bn)∗∗ = b−1

10 Ext∗Pn
(k,Bn) = R and (b−1

10 Bn)∗∗(b
−1
10 Bn) = b−1

10 Ext∗Pn
(R,B⊗2

n ) ∼=

b−1
10 Ext∗D(k,Bn) by the change of rings theorem. We will simultaneously determine the

vector space structure and the comultiplication on b−1
10 ExtD(k,Bn).

Remark 5.3.2. By the definition of the MPASS (Definition 2.2.2), the change of rings

theorem, and the Künneth formula mentioned above, we have

Es,∗
1 (k,Bn) ∼= b−1

10 Ext∗P (k,Bn ⊗B
⊗s
n ) ∼= b−1

10 Ext∗D(k,B
⊗s
n ) ∼= b−1

10 ExtD(k,Bn)
⊗s

and so the coproduct on b−1
10 Ext∗D(k,Bn) coincides with d1 on E1,∗

1 .

We can write Bn as a tensor product

Bn = k[ξ2, ξ
3
1 ]/(ξ

3
2 , ξ

9
1)⊗ k[ξn−2]/ξ

3
n−2⊗ k[ξn−1, ξ

3
n−2]/(ξ

3
n−1, ξ

27
n−2)⊗ k[ξn, ξ

3
n−1]/(ξ

3
n, ξ

9
n−1)

illustrated in Figure 5-1.

ξ31

ξ2 ξn−2

ξ3n−2

ξ9n−2

ξn−1

ξ3n−1

ξn

Figure 5-1: Illustration of the decomposition of Bn into tensor factors

Since we have a Künneth formula for b−1
10 Ext∗D(k,−), it suffices to apply this functor to

each of the four factors of Bn above.
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Factor 1: k[ξ2, ξ31 ]/(ξ32 , ξ91)

We can explicitly see that this breaks up as a D-comodule as

k[ξ2, ξ
3
1 ]/(ξ

3
2 , ξ

9
1)

∼= k{1}
∼=k

⊕ k{ξ2, ξ31}
∼=M(1)

⊕ k{ξ22 , ξ31ξ2, ξ61}
∼=D

⊕ k{ξ31ξ22 , ξ61ξ2}
∼=M(1)

⊕ k{ξ61ξ22}
∼=k

.

(5.3.2)

(Recall M(1) was defined to be the D-comodule k[ξ1]/ξ21 , and every D-comodule is

a sum of copies of k, M(1), and D.) As a module over R := E[h10] ⊗ P [b±1
10 ], this

is generated by a class e2 = e(ξ2) in b−1
10 Ext1D(k, k{ξ2, ξ31}), a class f20 = e(ξ31ξ

2
2) in

b−1
10 Ext1D(k, k{ξ31ξ22 , ξ61ξ2}), and a class c2 in b−1

10 Ext0D(k, k{ξ61ξ22}). As b−1
10 Ext∗D(k,D) =

0, we may ignore the free summands.

Using Lemma 4.3.7, we can give explicit representatives for the classes in b−1
10 Ext∗D(k, k[ξ2, ξ

3
1 ]/(ξ

3
2 , ξ

9
1))

coming from the decomposition (5.3.2):

e2 := e(ξ2) = [ξ1]ξ2 − [ξ21 ]ξ
3
1 ∈ Ext∗D(k, k[ξ2, ξ

3
1 ]/(ξ

3
2 , ξ

9
1))

f20 := e(ξ31ξ
2
2) = [ξ1]ξ

3
1ξ

2
2 + [ξ21 ]ξ

6
1ξ2

c2 = ξ61ξ
2
2

satisfying relations e22 = 0 = f 2
20 and b10c2 = e2f20.

Lemma 5.3.3. The classes e2 and f20 are primitive in the coalgebra b−1
10 Ext∗D(k,Bn).

Proof. By the results of Section 3.3, we can interpret the MASS as a filtration spectral

sequence on the cobar complex CPn(k, k), where [a1| . . . |as] is in filtration n if ≥ n ai’s

are in BnPn. The elements e2 and f20 correspond to elements in F 1/F 2C2
Pn
(k, k) with

the same formulas, and by Remark 5.3.2 it suffices to show that d1(e2) = 0 = d1(f20)

in the filtration spectral sequence. One checks explicitly that dcobar(e2) = 0, so it is a

permanent cycle. This is not true of f20, but we can write down explicit correcting
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terms in higher filtration:

f20 ≡ f̃20 := [ξ2|ξ22 ] + [ξ22 |ξ2]− [ξ1ξ2|ξ2ξ31 ] + [ξ1ξ
2
2 |ξ31 ] + [ξ21ξ2|ξ61 ] + [ξ21 |ξ2ξ61 ] + [ξ1|ξ22ξ31 ]

and then check that dcobar(f̃20) = [ξ31 |ξ61 |ξ31 ] + [ξ31 |ξ31 |ξ61 ]. This has filtration 3, and so

d1(f20) = 0.

So we’ve proved:

Proposition 5.3.4. There is an isomorphism of Hopf algebras

b−1
10 ExtD(k, k[ξ2, ξ

3
1 ]/(ξ

3
2 , ξ

9
1))

∼= R⊗ E[e2, f20]

where e2 and f20 are primitive.

We can summarize the degree information as follows:

element s t u u′′ = u− 6t α

1 0 0 0 0 0

h10 0 1 4 −2 0

b10 0 2 12 0 0

e2 = [ξ1]ξ2 − [ξ21 ]ξ
3
1 1 1 20 14 0

f20 = [ξ1]ξ
3
1ξ

2
2 + [ξ21 ]ξ

6
1ξ2 1 1 48 42 0

c2 = ξ61ξ
2
2 1 0 56 56 0

Factor 2: k[ξn−2]/ξ
3
n−2

This decomposes as k{1} ⊕ k{ξn−2} ⊕ k{ξ2n−2} so we have three R-module generators:
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element s t u u′′ = u− 6t α

1 0 0 0 0 0

ξn−2 1 0 2(3n−2 − 1) 2(3n−2 − 1) 0

ξ2n−2 1 0 2 · 2(3n−2 − 1) 2 · 2(3n−2 − 1) 0

As a Hopf algebra we have

b−1
10 ExtD(k, k[ξn−2]/ξ

3
n−2)

∼= R⊗D[ξn−2].

Factor 3: k[ξn−1, ξ
3
n−2]/(ξ

3
n−1, ξ

27
n−2)

Similarly to (5.3.2), for the third factor of Bn we have a D-comodule decomposition

k[ξn−1, ξ
3
n−2]/(ξ

3
n−1, ξ

27
n−2)

∼= k{1}
∼=k

⊕ k{ξn−1, ξ
3
n−2}

∼=M(1)

⊕ k{ξ2n−1ξ
21
n−2, ξn−1ξ

24
n−2}

∼=M(1)

⊕ k{ξ2n−1ξ
24
n−2}

∼=k

⊕F

where F is a free D-comodule, which gives the following R-module generators of

b−1
10 Ext∗D(k, k[ξn−1, ξ

3
n−2]/(ξ

3
n−1, ξ

27
n−2)) :

element s t u u′′ = u− 6t α

1 0 0 0 0 0

en−1 := [ξ1]ξn−1 − [ξ21 ]ξ
3
n−2 1 1 2(3n−1 + 1) 2(3n−1 − 2) 3

yn−1 := [ξ1]ξ
2
n−1ξ

21
n−2 + [ξ21 ]ξn−1ξ

24
n−2 1 1 2(3n+1 − 21) 2(3n+1 − 24) 27

zn−1 := ξ2n−1ξ
24
n−2 1 0 2(3n+1 + 3n−1 − 26) 2(3n+1 + 3n−1 − 26) 30

Lemma 5.3.5. en−1 is a permanent cycle in Er(k,Bn). In particular, d1(en−1) = 0.

Proof. Use the filtration spectral sequence interpretation of the MPASS described in
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the proof of Lemma 5.3.3, where en−1 has representative

[ξ1|ξn−1]− [ξ21 |ξ3n−2]

in CPn(k, k). It is clear that this is a cycle in CPn(k, k), hence a permanent cycle in the

spectral sequence.

Factor 4: k[ξn, ξ3n−1]/(ξ
3
n, ξ

9
n−1)

There is a D-comodule decomposition

k[ξn, ξ
3
n−1]/(ξ

3
n, ξ

9
n−1)

∼= k{1}
∼=k

⊕ k{ξn, ξ3n−1}
∼=M(1)

⊕ k{ξ2n, ξ3n−1ξn, ξ
6
n−1}

∼=D

⊕ k{ξ3n−1ξ
2
n, ξ

6
n−1ξn}

∼=M(1)

⊕ k{ξ6n−1ξ
2
n}

∼=k

.

The non-free summands lead toR-module generators of b−1
10 Ext∗D(k, k[ξn, ξ

3
n−1]/(ξ

3
n, ξ

9
n−1))

which have representatives (in order):

element s t u u′′ = u− 6t α

1 0 0 0 0 0

en := [ξ1]ξn − [ξ21 ]ξ
3
n−1 1 1 2(3n + 1) 2(3n − 2) 9

fn0 := [ξ1]ξ
3
n−1ξ

2
n − [ξ21 ]ξ

6
n−1ξn 1 1 2(3n+1 − 3) 2(3n+1 − 6) 27

cn := ξ6n−1ξ
2
n 1 0 2(3n+1 + 3n − 8) 2(3n+1 + 3n − 8) 36

Corollary 5.3.6. There is an isomorphism of R-modules

b−1
10 ExtD(k,Bn) ∼= R{1, e2, f20, c2} ⊗R{1, ξn−2, ξ

2
n−2}

⊗R{1, en−1, yn−1, zn−1} ⊗R{1, en, fn,0, cn}.

We have already computed part of the Hopf algebra structure on b−1
10 ExtD(k,Bn) =
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E1,∗
1 (k,Bn) but do not need to finish this; we just need one more piece of information.

Lemma 5.3.7. en is primitive in b−1
10 ExtD(k,Bn)

Proof. Write ψ(en) =
∑

i c[xi|yi], where c ∈ R and xi, yi ∈ b−1
10 ExtD(k,Bn). As the

cobar differential preserves the grading α (see Proposition 5.2.3) and ψ can be given

in terms of the cobar differential (see e.g. Remark 5.3.2), ψ also preserves α. Since

α(en) = 9, in order for d1(en) to have α = 9, we need α(xi) + α(yi) = 9. Looking at α

degrees in the above charts of R-module generators in b−1
10 ExtD(k,Bn), the only options

are for en | xi or yi, or for e2n−1 | xi or yi. But e2n−1 = 0 by Lemma 4.3.7, and so the

only option is for en to be primitive.

Combining Lemmas 5.3.3, 5.3.5, and 5.3.7 we have:

Corollary 5.3.8. In b−1
10 ExtD(k,Bn), the elements e2, f20, en−1, and en are exterior

generators in the Hopf algebra sense—they are primitive and square to zero.

Now we have computed enough of E2(k,Bn) to show Proposition 5.3.1. If b−4
10 h10w

2
2w

3
n−1

(which is in degree α = 9, u′ = 2(3n−8), and u = 2(3n+1)) is the target of a differential,

it must be a dr for r ≤ 4 (since the target is in filtration 5), and the source of that

differential must have degree α = 9, u′ = 2(3n − 5), and u = 2(3n + 1). Thus it suffices

to prove Proposition 5.3.9.

Proposition 5.3.9. The only element in E2(k,Bn) with s ≤ 4, α = 9, u′ = 2(3n − 5),

and u = 2(3n + 1) is ±wn.

Proof. There is a map R ⊗ E[e2, f20, en−1, en]⊗D[ξn−2]! b−1
10 ExtD(k,Bn) that is an

isomorphism on degree u′′ < 2(3n+1 − 24) and induces a map on cobar complexes

Cs
R⊗E[e2,f20,en−1,en]⊗D[ξn−2]

(R,R)! Cs
b−1
10 ExtD(k,Bn)

(R,R).
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I claim the map of cobar complexes is an isomorphism in degree u′′ < −2 + 2(3n+1 −

24) + 14(s − 1). One can see this by noting that a minimal-degree element in

Cs
b−1
10 ExtD(k,Bn)

(R,R) not in the image is h10[yn−1|e2| . . . |e2], in degree −2 + 2(3n+1 −

24) + 14(s − 1). (We use u′′ degree here because it is additive with respect to multi-

plication within b−1
10 ExtD(k,Bn) = E1,∗

1 , whereas u′ degree is additive with respect to

multiplication of cohomology classes in H∗E1 = E2.) Note that the desired degrees

u′′ = u′ + 6s = 2(3n − 5) + 6s fall into the region described here for every s.

Now we look at the map induced on Ext in this region. Since dr differentials increase

u′′ degree by 6(r − 1) (they preserve u and decrease t by r − 1) and increase s by r,

differentials originating in the region u′′ < −2 + 2(3n+1 − 24) + 14(s− 1) stay in the

region, but there might be differentials originating outside the region hitting elements

in the region. Instead of showing that the map on Ext is an isomorphism in a smaller

region, note that this is already enough for our purposes: we want to check that

Extb−1
10 ExtD(k,Bn)

(R,R) is zero in particular dimensions, and it suffices to check that in

ExtR⊗E[e2,f20,en−1,en]⊗D[ξn−2](R,R).

We have

ExtR⊗E[e2,f20,en−1,en]⊗D[ξn−2](R,R)
∼= R⊗ P [w2, b20, bn−2,0, wn−1, wn]⊗ E[hn−2,0]

where wi = [ei], b20 = [f20], and ExtD[ξn−2](R,R) = R ⊗ E[hn−2,0] ⊗ P [bn−2,0]. Degree

information is as follows:
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element s t u u′ α

w2 1 1 20 8 0

b20 1 1 48 36 0

hn−2,0 1 0 2(3n−2 − 1) 2(3n−2 − 1) 0

bn−2,0 2 0 2(3n−1 − 3) 2(3n−1 − 3) 0

wn−1 1 1 2(3n−1 + 1) 2(3n−1 − 5) 3

wn 1 1 2(3n + 1) 2(3n − 5) 9

h10 0 1 4 −2 0

b10 0 2 12 0 0

Of course, wn has the right degree. Any other monomial with the right degree must be

in R⊗P [w2, b20, bn−2,0, wn−1]⊗E[hn−2,0], and it is clear from looking at α degree above

that it must have the form w3
n−1x (where x ∈ R⊗ P [w2, b20, bn−2,0]⊗ E[hn−2,0]). Since

u′(w3
n−1) = 2(3n − 15), we need u′(x) = 20, which is not possible using w2 in degree

8, b20 in degree 36, h10 in degree −2 (where h210 = 0), and hn−2,0 and bn−2,0 in higher

degree.

So the element must be ±bN10wn, and by checking u degree we see that the power N has

to be zero.

5.4 Degree-counting in the ISS

Recall that b−4
10 h10w

2
2w

3
n−1 has α = 9 and u′ = 2(3n − 8); if it were a permanent cycle,

it would converge to an element of b−1
10 Exta,bPn(k, k) with stem b− 6a = 2(3n − 8) (see

Definition 5.2.1) and α = 9. The goal of this section is to prove:

Proposition 5.4.1. The sub-vector space of b−1
10 Ext∗Pn

(k, k) consisting of elements in

stem 2(3n − 8) and α = 9 is zero.
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We will prove this using a (localized) Ivanovskii spectral sequence (ISS) computing

b−1
10 ExtPn(k, k). In our case, the ISS is constructed by filtering the cobar complex for

Pn by powers of the augmentation ideal. For example, [ξn] is in filtration 1, and in the

Milnor diagonal

dcobar([ξn]) = [ξ1|ξ3n−1] + [ξ2|ξ9n−2],

[ξ1|ξ3n−1] is in filtration 4 (since [ξ1] is in filtration 1 and [ξ3n−1] is in filtration 3), and

[ξ2|ξ9n−2] is in filtration 10. In general, all of the multiplicative generators ξ1, ξ2, ξn−2, ξn−1, ξn

are primitive in the associated graded, i.e. they are in ker d0. To form the b10-localized

spectral sequence, take the colimit of multiplication by b10. In Section 5.5 we show that

the (localized and un-localized) ISS converges in our case.

So we have E0
∼= D[ξ1, ξ

3
1 , ξ2, ξn−2, ξ

3
n−2, ξ

9
n−2, ξn−1, ξ

3
n−1, ξn] and

EISS
1 = E[h1i, h20, hn−2,j, hn−1,i, hn0] i∈{0,1}

j∈{0,1,2}
⊗ P [b±1

10 , b11, b20, bn−2,j, bn−1,i, bn,0] i∈{0,1}
j∈{0,1,2}

.

Here hij = [ξ3
j

i ] has filtration 3j and bij has filtration 3j+1. To help with the degree-

counting argument in Proposition 5.4.1, here is a table of the degrees of the multiplicative

generators of the E1 page.

element s t u u′ = u− 6t α

h10 1 1 4 −2 0

b10 3 2 12 0 0

h11 3 1 12 6 0

b11 9 2 36 24 0

h20 1 1 16 10 0

b20 3 2 48 36 0

hn−2,0 1 1 2(3n−2 − 1) 2(3n−2 − 4) 0

bn−2,0 3 2 2(3n−1 − 3) 2(3n−1 − 9) 0

hn−2,1 3 1 2(3n−1 − 3) 2(3n−1 − 6) 3

bn−2,1 9 2 2(3n − 9) 2(3n − 15) 9
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hn−2,2 9 1 2(3n − 9) 2(3n − 12) 9

bn−2,2 27 2 2(3n+1 − 27) 2(3n+1 − 33) 27

hn−1,0 1 1 2(3n−1 − 1) 2(3n−1 − 4) 3

bn−1,0 3 2 2(3n − 3) 2(3n − 9) 9

hn−1,1 3 1 2(3n − 3) 2(3n − 6) 9

bn−1,1 9 2 2(3n+1 − 9) 2(3n+1 − 15) 27

hn,0 1 1 2(3n − 1) 2(3n − 4) 9

bn,0 3 2 2(3n+1 − 3) 2(3n+1 − 9) 27

Proof of Proposition 5.4.1. The argument has two parts:

(1) show that (up to powers of b10) the only generators in EISS
1 in degree (u′ =

2(3n − 8), α = 9) are h10h20hn−2,2 and h10h11h20bn−2,1;

(2) show that those elements are targets of higher differentials in the b10-local ISS.

From looking α degrees we see that no monomial in E1 in degree (u′ = 2(3n− 8), α = 9)

can be divisible by bn−2,2, bn−1,1, or bn,0, and moreover by looking at u′ degree we see

it is not possible for bn−1,0, hn−1,1, or hn,0 to be a factor of such a monomial. The

only monomial of the right degree divisible by hn−2,2 is bN10h10h20hn−2,2. Any remaining

elements of the right degree are in

E[h10, h11, h20, hn−2,0, hn−2,1, hn−1,0]⊗ P [b±1
10 , b11, b20, bn−2,0, bn−2,1].

Of these generators, only hn−2,1, hn−1,0, and bn−2,1 have α > 0. Since h2n−2,1 = 0 = h2n−1,0,

a monomial with α = 9 needs to be divisible by bn−2,1. If u′(bn−2,1x) = 2(3n − 8)

then u′(x) = 14, and the only possibility is x = bN10h10h11h20. (Here we are using the

assumption n ≥ 5 to determine that u′(hn−2,0) = 2(3n−2 − 4) ≥ 46, and the elements

following it in the chart have greater degree).
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This concludes part (1) of the argument; for (2) it suffices to show

d9(h10h20bn−1,0) = h10h20h11bn−2,1 − b10h10h20hn−2,2 (5.4.1)

d9(b10h10hn0) = −b10h10h20hn−2,2. (5.4.2)

First, I claim that h10h20 is a permanent cycle; it is represented by [ξ1|ξ2]− [ξ21 |ξ31 ] = w2,

which we’ve seen is a permanent cycle in the cobar complex. The class bn−1,0 has cobar

representative [ξn−1|ξ2n−1] + [ξ2n−1|ξn−1] and

bn−1,0 ≡ [ξn−1|ξ2n−1] + [ξ2n−1|ξn−1]− [ξ1ξn−1|ξn−1ξ
3
n−2] + [ξ1ξ

2
n−1|ξ3n−2]

+ [ξ21ξn−1|ξ6n−2] + [ξ21 |ξn−1ξ
6
n−2] + [ξ1|ξ2n−1ξ

3
n−2] ∈ (F 3/F 4)C2

Pn
(k, k).

Computing the cobar differential on this class (and remembering that ξ9n−3 = 0 in Pn),

we see that d9(bn−1,0) = h11bn−2,1 − b10hn−2,2. So

d9(h10h20bn−1,0) = h10h20 d9(bn−1,0) = h10h20(h11bn−1,1 − b10hn−2,2).

We have h10hn0 ≡ [ξ1|ξn]− [ξ21 |ξ3n−1] = wn ∈ F 2/F 3 and there is a cobar differential

dcobar([ξ1|ξn]− [ξ11 |ξ3n−1]) = −[ξ1|ξ2|ξ9n−2] + [ξ21 |ξ31 |ξ9n−2].

This implies (5.4.2). (We didn’t check that h10h20h11bn−2,1 and h10h20b10hn−2,2 survive

to the E9 page, because that is not necessary: we only have to check that these elements

die somehow in the spectral sequence, and if they have already died before the E9 page,

then that is good enough for this argument.)

5.5 ISS convergence

It is easy to see that the (unlocalized) ISS converges: it is based on a decreas-

ing filtration of the cobar complex that clearly satisfies both
⋂
s F

sCPn(k, k) = {0}
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and
⋃
s F

sCPn(k, k) = CPn(k, k). In the rest of this section, we will check that the

b10-localized ISS converges; this boils down to the fact that it has a vanishing line

parallel to b10. Let EISS
r denote the Er page of the unlocalized ISS and b−1

10 E
ISS
r denote

the Er page of the localized ISS.

Lemma 5.5.1. There is a slope 1
4

vanishing line in EISS
1 in (u, s) coordinates. That

is, if x ∈ EISS
1 has s(x) > 1

4
u(x) then x = 0.

Proof. In Section 5.4 we computed the E1 page:

EISS
1 =

⊗
(i,j)∈I

E[hij]⊗ P [bij]

where I = {(1, 0), (1, 1), (2, 0), (n−2, 0), (n−2, 1), (n−2, 2), (n−1, 0), (n−1, 1), (n, 0)}.

These generators occur in the following degrees:

element u s u/s

hij 2(3i − 1)3j 3j 2(3i − 1)

bij 2(3i − 1)3j+1 3j+1 2(3i − 1)

So we have u
s
≥ 2(31 − 1) = 4, which proves the lemma. Note that b10, in degree

(u = 12, s = 3), acts parallel to the vanishing line.

Here is a picture:

u

s

h10

b10

h20
1

2

4 8 12 160
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Differentials are vertical: dr takes elements in degree (u, s) to degree (u, s+ r).

Proposition 5.5.2. The b10-localized ISS converges.

Proof. There are two ways convergence could fail:

(1) There could be a b10-tower x in EISS
∞ that does not appear in b−1

10 E∞ because it

is broken into a series of b10-torsion towers connected by hidden multiplications.

x
b10x

b210x
b310x

b410x
b510x

(2) There could be a b10-tower x in b−1
10 E

ISS
∞ that is not a permanent cycle in EISS

∞

because there it supports a series of increasing-length differentials to b10-torsion

elements (so these differentials would be zero in b−1
10 E

ISS
r ).

x
b10x

b210x

. .
.

y
b10y

z
b10z

In both of these cases, it is clear from the pictures that these cannot happen if there is

a vanishing line of slope equal to the degree of b10.

(Notice that the reverse of (2) can’t happen—the b10 tower x can’t be hit by a differential

originating at a b10-torsion element y, because dr(bN10y) = bN10dr(y) = bN10x 6= 0 which

implies bN10y 6= 0 for all N .)
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Remark 5.5.3. The same proof shows that the ISS for b−1
10 ExtP (k, k) converges; in

particular, the vanishing line in Lemma 5.5.1 goes through even with more hij’s and

bij’s in the E1 page.
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Chapter 6

Conjectures and Examples

Recall we have been using the following notation: B = P �Dk, K(ξ1) = b−1
10 B, and

R = b−1
10 Ext∗D(k, k) = P [b±1

10 ] ⊗ E[h10]. Furthermore, we maintain the convention, as

used in the last two chapters, of silently applying the antipode to the generators ξn of

P , so ∆(ξn) =
∑

i+j=n ξi ⊗ ξp
i

j instead of
∑

i+j=n ξ
pi

j ⊗ ξi as is the customary definition

of the symbol ξn.

6.1 Conjectures

In the previous two chapters, we studied the K(ξ1)-based Adams spectral sequence

E2 = Ext∗K(ξ1)∗∗K(ξ1)
(K(ξ1)∗∗, K(ξ1)∗∗) =⇒ b−1

10 Ext∗P (k, k).

We showed that the E2 page is isomorphic to R⊗ P [w2, w3, . . . ] and showed that the

first nonzero differential is dr(wn) = b−1
10 h10w

2
2w

3
n−1. By a degree argument (Proposition

5.1.1) we know that dr = 0 (for r ≥ 2) unless r ≡ 4 (mod 9) and r ≡ 8 (mod 9). We

conjecture that d8 is the only other nonzero differential. More precisely:

Conjecture 6.1.1.
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(1) If d4(x) = h10y and d4(y) = h10z, then d8(h10x) = h10z.

(2) dr = 0 for r ≥ 8.

Evidence for this conjecture includes the fact that it agrees with b10-periodic range

of the computer calculation of Ext∗P (k, k) up to the 700 stem (see Figure 4-2). See

Figures 6-3–6-5 for charts depicting these differentials. In the range of the pictures,

the differentials are known, not conjectured, because they can be deduced from the

aforementioned chart of Ext∗P (k, k). Conjecture 6.1.1, together with information about

multiplicative extensions, allows one to conclude that b−1
10 ExtP (k, k) has a particularly

attractive form.

Proposition 6.1.2. Suppose Conjecture 6.1.1 holds. Then there is an isomorphism on

the level of vector spaces

b−1
10 Ext∗P (k, k)

∼= b−1
10 Ext∗D(k, k[w̃2, w̃3, . . . ])

where the D-coaction on w̃n is given by ψ(w̃n) = 1⊗ w̃n + ξ1 ⊗ w̃2
2w̃

3
n−1 for n ≥ 3 and

ψ(w̃2) = 1⊗ w̃2. This is an isomorphism of R-modules if, for every differential d4(x) =

h10y such that y is a permanent cycle, there is a hidden multiplication h10 ·(h10x) = b10y

in b−1
10 Ext∗P (k, k).

Proof. We begin by determining the isomorphism on the level of vector spaces. Given

any D-comodule M with coaction ψ : M ! D ⊗ M , let ∂ : M ! M denote the

operator defined by ψ(m) = 1⊗m+ξ1⊗∂(m)−ξ21 ⊗∂2(m) (see Definition 4.2.1). Then

there is a resolution D
∂
! D

∂2
! D

∂
! . . . for k, and applying − �DM gives rise to a

complex M ∂
!M

∂2
!M

∂
! . . . whose cohomology is CotorD(k,M) ∼= Ext∗D(k,M), and

b−1
10 Ext∗D(k,M) is the cohomology of the periodic complex · · ·!M

∂
!M

∂2
!M ! . . . .

Let w̃n = b−1
10 wn and let W = k[w̃2, w̃3, . . . ]. Note that d4(w̃n) = h10w̃

2
2w̃

3
n−1. We will

show that the E∞ term in the MPASS is isomorphic to the cohomology of W ∗ : · · ·!

W
∂
! W

∂2
! W ! · · · .
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We have E2 = R ⊗ P [w2, w3, . . . ] ∼= R ⊗W . Write E2 = W+ ⊕W−, where W+ =

W ⊗ P [b±1
10 ] and W− = W+{h10}. By Proposition 5.1.1, we know that elements in W+

could be the source of a d4 differential or the target of a d8 differential, and vice versa

for W−. Using Conjecture 6.1.1(2), the E∞ page of the MPASS is obtained by taking

the cohomology of E2 by d4 and d8, and in fact this is

E∞ ∼= ker(d4|W+)/ im(d8|W−)⊕ ker(d8|W−)/ im(d4|W+). (6.1.1)

By Conjecture 6.1.1(1), there is a map f of chain complexes

. . . //W
∂ //

f2n

��

W
∂2 //

f2n+1

��

W
∂ //

f2n+2

��

. . .

. . . //W{bn10}
d4 //W{h10bn10}

d8 //W{bn+1
10 } d4 // . . .

where the vertical maps are the obvious isomorphisms. By construction the cohomology

of the top complex is b−1
10 ExtD(k,W ), and by (6.1.1), the cohomology of the bottom

complex is E∞.

Now we check that this respects the R-module structure, assuming the extra hypothesis.

We will just check that it commutes with multiplication by h10. Note that the powers

of b10 and h10 on the bottom row refer to names in the MPASS E2 page. If ω =

[x] ∈ W 2n is a cycle then h10ω is represented by [x] ∈ W 2n+1. So f 2n+1
∗ (h10ω) =

[h10b
n
10x] = h10[b

n
10x] = h10f

2n
∗ (ω). The other case is a bit more complicated. If

υ = [y] ∈ W 2n+1 is a cycle then h10υ is represented by [∂y] ∈ W 2n. We need to

show that f 2n+2
∗ (h10υ) = [bn+1

10 (∂y)] can be represented as h10 · [h10bn10y] = h10 · f 2n+1
∗ (υ).

From the commutativity of the diagram we have d4([bn10y]) = [h10b
n
10∂y] = h10[b

n
10∂y],

and [bn10∂y] is a permanent cycle because ∂2y = 0 by assumption. From the assumption

about hidden multiplications, we have h10 · [h10bn10y] = b10[b
n
10∂y] as desired.

Remark 6.1.3. One can try to show the hidden multiplication by use of Massey

products. First, one would like to use the Massey product convergence theorem (see
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[Rav86, A1.4.10]) to show that the E5 Massey product 〈h10, h10, [bn10∂y]〉 converges to

a Massey product in b−1
10 ExtP (k, k). The crossing differentials hypothesis is automati-

cally satisfied (assuming Conjecture 6.1.1): this says that there can be no nontrivial

differentials dr with r > 4 hitting classes in the same stem as h10[bn10∂y], and this is

true because any such differential would be a d8, which only hits classes with u′ ≡ 0

(mod 4) (that is, classes whose E2 representatives are in k[w2, w3, . . . ], as opposed to

k[w2, w3, . . . ]{h10}). However, to use the Massey product convergence theorem, we also

need to show that 〈h10, h10, [bn10∂y]〉 is strictly defined in b−1
10 Ext∗P (k, k), in particular

that there is no nonzero hidden multiplication h10 · [bn10∂y].

If this can be shown, then the Massey product shuffling relations

h10 · [h10bn10y] = h10 〈h10, h10, [bn10∂y]〉 = 〈h10, h10, h10〉 [bn10∂y]

in b−1
10 Ext∗P (k, k) give rise to the desired hidden multiplication.

The expression in Proposition 6.1.2 is the k = M case of the following more general

conjecture.

Conjecture 6.1.4. There is a functor W : ComodP ! ComodD such that for any

P -comodule M , we have

b−1
10 Ext∗P (k,M) ∼= b−1

10 Ext∗D(k,W (M)).

We do not have a conjecture for the form of W (M) in general, though we believe it to

be related to the MPASS E2 page.

Remark 6.1.5. Since b−1
10 Ext∗D(k,W (M)) ∼= b−1

10 Ext∗P (k, P �DW (M)), it is tempting

to guess that the isomorphism in Conjecture 6.1.4 comes from a map M ! P �DW (M).
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However, I claim that this cannot be true for M = k. There is a free-forgetful adjunction

U : ComodP � ComodD : F

where the free functor F takes M 7! P �DM . Given a D-comodule W (k), this shows

that every P -comodule map k ! P �DW (k) factors through the adjunction unit

k ! P �Dk. So the supposed isomorphism b−1
10 Ext∗P (k, k) ! b−1

10 Ext∗P (k, P �DW (M))

factors through b−1
10 Ext∗P (k, P �Dk) ∼= b−1

10 Ext∗D(k, k) = E[h10]⊗P [b±1
10 ], which is clearly

false in light of what we know about b−1
10 Ext∗P (k, k).

In the remainder of this chapter, we present two simpler, but complete, calculations

which provide evidence for 6.1.4. In Section 6.2, we show that

b−1
10 Ext∗P (k, k[ξ

9
1 , ξ

3
2 , ξ3, ξ4, . . . ])

∼= b−1
10 Ext∗D(k, k[w̃2, b̃20])

where ψ(w̃2) = 1 ⊗ w̃2 and ψ(̃b20) = 1 ⊗ b̃20 + ξ1 ⊗ w̃4
2. (We actually compute

b−1
10 Ext∗k[ξ1,ξ2]/(ξ91 ,ξ32)

(k, k), which is isomorphic to the left hand side due to the change of

rings theorem corresponding to the fact that P �k[ξ1,ξ2]/(ξ91 ,ξ
3
2)
k ∼= k[ξ91 , ξ

3
2 , ξ3, ξ4, . . . ].) In

Section 6.3, we compute

b−1
10 Ext∗P (k, k[ξ

3
1 ]) = b−1

10 Ext∗D(k, k[h̃20, b̃20, w̃3, w̃4, . . . ]/h̃
2
20)

where the generators h̃20, b̃20, and w̃n have trivial D-coaction. To summarize, our

conjectural functor W should satisfy:
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M W (M)/free D-comodule summands

k
k[w̃2, w̃3, . . . ] (conjectural)

ψ(w̃n) = 1⊗ w̃n + ξ1 ⊗ w̃2
2w̃

3
n−1 (n ≥ 3)

k[ξ31 ]
k[h̃20, b̃20, w̃3, w̃4, . . . ]/(h̃

2
20)

trivial D-coaction

k[ξ91 , ξ
3
2 , ξ3, ξ4, . . . ]

k[w̃2, b̃20]

ψ(̃b20) = 1⊗ b̃20 + ξ1 ⊗ w̃4
2

B = k[ξ31 , ξ2, ξ3, . . . ] k

P 0

6.2 Localized cohomology of P (1)

Let P (1) = k[ξ1, ξ2]/(ξ
p2

1 , ξ
p
2). Henderson [Hen97], building on work of Liulevicius

[Liu62], computes Ext∗P (1)(k, k) at all odd primes. In this section we will compute

b−1
10 Ext∗P (1)(k, k) at p = 3; as Ext∗P (1)(k, k) at p = 3 was already b10-periodic, we recover

Henderson’s result on the vector space level, but the multiplicative structure is much

simpler after inverting b10.

The main goal of this section is to prove the following.

Proposition 6.2.1. There are classes w̃2 in internal degree 8 and b̃20 in internal degree

36 such that there is an isomorphism

b−1
10 Ext∗P (1)(k, k)

∼= b−1
10 Ext∗D(k, k[w̃2, b̃20])

where ψ(̃b20) = 1⊗ b̃20 + ξ1 ⊗ w̃4
2 and ψ(w̃2) = 1⊗ w̃2.

Since P �P (1)k = k[ξ91 , ξ
3
2 , ξ3, ξ4, . . . ], by the change of rings theorem we have the

following.
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Corollary 6.2.2. There is an isomorphism

b−1
10 ExtP (k, k[ξ

9
1 , ξ

3
2 , ξ3, ξ4, . . . ])

∼= b−1
10 ExtD(k, k[w̃2, b̃20])

where ψ(̃b20) = 1⊗ b̃20 + ξ1 ⊗ w̃4
2 and ψ(w̃2) = 1⊗ w̃2.

We approach this computation the way we approached the computation of b10 Ext∗P (k, k)

in previous chapters. That is, we set

B1 = P (1) �Dk = k[ξ31 , ξ2]/(ξ
9
1 , ξ

3
2)

and begin by computing the E2 page of the b−1
10 B1-based MPASS. First, note that

(b10B1)∗∗ = b−1
10 Ext∗P (1)(k,B1) = b−1

10 Ext∗D(k, k) = R.

Lemma 6.2.3. The E2 page of the b−1
10 B1-based MPASS is

E2 = R⊗ k[w2, b20]

where w2 has degree (s, t, u) = (1, 1, 20) and b20 has degree (s, t, u) = (1, 1, 48).

These generators relate to those in Proposition 6.2.1 by w̃2 = b−1
10 w2 and b̃20 = b−1

10 b20; for

most of the computation we find it easier to work with classes with actual representatives

in the non-localized cobar complex. Recall that s is Adams filtration, t is internal

homological degree, and u is internal topological degree, so Es,t,u
1 = b−1

10 Extt,uP (1)(k,B1 ⊗

B
⊗s
1 ).

Proof. This is the same calculation as Proposition 5.3.4.

In Section 3.3 we showed that the MPASS coincides with a filtration spectral sequence

on the cobar complex, which is in this case given by

F sC∗
P (1)(k, k) = {[a1| . . . |an] : #

(
{a1, . . . , an} ∩B1P (1)

)
≥ s}.
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We can pick out some obvious permanent cycles in this spectral sequence:

h10 = [ξ1] h11 := [ξ31 ] b11 := [ξ31 |ξ61 ] + [ξ61 |ξ31 ]

We use the underlined versions as above to refer to explicit classes in the cobar complex,

while the non-underlined versions, e.g. h10, refer to their cohomology classes. By the

spectral sequence comparison result, the permanent cycles above have to correspond to

classes in the MPASS; we clarify this relationship in the next lemma. It is clear that

h10 here represents the same class as h10 in the MPASS coefficient ring (B1)∗∗. We have

the same formula for w2 as in the b−1
10 ExtP (k, k) case, namely

w2 = [ξ1|ξ2]− [ξ21 |ξ31 ]

and by observing their cobar representatives, it is clear that both w2 and h10 are

permanent cycles.

It is clear from its cobar representative that w2 is a permanent cycle, as is h10.

Lemma 6.2.4. There are relations in Ext∗P (1)(k, k):

b210[b11] = ±w3
2.

b10[h11] = ±h10w2

Proof. These are Massey product relations in Ext∗P (1)(k, k). First observe that our

formula w2 = [ξ1|ξ2]− [ξ21 |ξ31 ] implies that w2 = 〈h10, h10, h11〉. Using Massey product

shuffling relations we have:

w2
2 = 〈h10, h10, h11〉2 = ±〈h10, h10, 〈h10, h10, h11〉h11〉

= ±〈h10, h10, h10 〈h10, h11, h11〉〉

= ±〈h10, h10, h10〉 〈h10, h11, h11〉

h10w2 = h10 〈h10, h10, h11〉 = ±〈h10, h10, h10〉h11 = ±b10h11.
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w3
2 = w2 · w2

2 = ±〈h10, h10, h11〉 · b10 〈h10, h11, h11〉

= ±b10 〈h10 〈h10, h10, h11〉 , h11, h11〉

= ±b10 〈〈h10, h10, h10〉h11, h11, h11〉

= ±b210 〈h11, h11, h11〉 = ±b210b11

We need to check Massey product indeterminacy: we need to show that all the Massey

products above are strictly defined. For 〈h10, h10, h11〉, we need to show there are no

cycles in the degree of [ξ21 ] (which hits h210) and [ξ2] (which hits h10h11). It suffices

to check using Lemma 6.2.3 that there are no elements in E2 that could converge

to these elements—that is, that there are no elements in E2 with the given stem

u′ = u − 6(s + t). For 〈h10, h10, 〈h10, h10, h11〉h11〉 we need to check the degree of

[ξ21 ] and w2[ξ2]; for 〈h10, h11, h11〉 we need to check the degree of [ξ2] and [ξ61 ]; for

〈h10, h10, h10 〈h10, h11, h11〉〉 we need to check the degree of [ξ21 ] and b−1
10 w

2
2[ξ

2
1 ]. All of

these can easily be seen as there are not very many classes in these low degrees.

For the second relation, use Massey products similarly:

b10[h11] = 〈h10, h10, h10〉h11 = ±h10 〈h10, h10, h11〉 = ±h10w2.

Lemma 6.2.5. There are differentials:

d3(b20) = ±b−3
10 h10w

4
2

d3(b
2
20) =

±b−3
10 w

4
2b20

d3(b
3
20) = 0.

Proof. We will use the following cobar representative for b20:

b20 = [ξ2|ξ22 ] + [ξ22 |ξ2]− [ξ1ξ2|ξ2ξ31 ] + [ξ1ξ
2
2 |ξ31 ] + [ξ21ξ2|ξ61 ] + [ξ21 |ξ2ξ61 ] + [ξ1|ξ22ξ31 ] (6.2.1)
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in F 1/F 2CP (1)(k, k). One can check directly that

dcobar(b20) = −h11|b11. (6.2.2)

The first differential then follows from Lemma 6.2.4, and the second and third follow

from the first by multiplicativity.

Lemma 6.2.6. b320 is a permanent cycle.

Proof. May [May70] constructed Steenrod operations on the cohomology of a Hopf

algebra; this is functorial, and the Steenrod operations on Ext∗P (1)(k, k) are the image

of the operations on Ext∗A(k, k) along the quotient map Ext∗A(k, k) ! Ext∗P (1)(k, k).

Sawka [Saw82] shows that double complex spectral sequences (such as the Cartan-

Eilenberg spectral sequence) commute with Steenrod operations. In particular, using

[Saw82, Proposition 2.5(3)] we have

d7(b
3
20) = d7(P

1b20) = P 1d3(b20) = P 1(−h11b11)

= P 0(−h11)P 1(b11) = −h12b311

which is zero since h12 = [ξ91 ] is zero in CP (1)(k, k). This shows that d7(b320) = 0, which

is all that we need for now; by the time we get to the E7 page, it will be easy to check

(see e.g. Figure 6-2) that there is no room for higher differentials.

So

E4 = k[b±10, w2, b
3
20]{1, h10, h10b20, h10b220}/(hw4

2, hb20w
4
2).

Furthermore, h10b20 has a cobar representative

ξ1|b20 − ξ2|b11

which is a permanent cycle.
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Figure 6-1: E3 page, with coordinates (u′, s) (note that b10 is at (0, 0))

Lemma 6.2.7. d6(h10b220) = ±b−5
10 w

8
2

Proof. Let b20 be as in (6.2.1) and let y = [ξ61 |ξ61 ]. One can compute that

dcobar(b20) = −h11|b11

dcobar(b20 − y) = −b11|h11.

Since y ∈ F 2 and b20 ∈ F 1, we see that (b20 − y)|h10|b20 ∈ F 2/F 3 is a representative for

b20. Then we have:

d
(
(b20 − y)|h10|b20 − b11|c(ξ2)|b20 − (b20 − y)|ξ2|b11

)
= −b11|h11|h10|b20 − (b20 − y)|h10|h11|b11

+ b11|h11|h10|b20 + b11|c(ξ2)|h11|b11

+ b11|h11|ξ2|b11 + (b20 − y)|h10|h11|b11

= b11|h11|ξ2|b11 + b11|c(ξ2)|h11|b11

137



and this is a representative for b211 〈h11, h10, h11〉 which can be written ±b−5
10 w

8
2 by Lemma

6.2.4.
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Figure 6-2: E7 page

So we have

E7 =
(
k[w2]/w

8
2 ⊕ (k[w2]/w

4
2){h10} ⊕ (k[w2]/w

4
2){h10b20}

)
⊗ k[b320]

and we have seen that all these classes are permanent cycles.

Proof of Proposition 6.2.1. Set w̃2 = b−1
10 w2 and b̃20 = b−1

10 b20. Using Lemmas 6.2.5 and

6.2.7, there is an obvious analogue of Proposition 6.1.2 with the (d3, d6) pair here in

place of the (d4, d8) pair there, and it suffices to show the condition about hidden

multiplications. By Remark 6.1.5, it suffices to show that 〈h10, h10, [bn10∂y]〉 is strictly

defined in b−1
10 Ext∗P (1)(k, k) whenever d4(x) = h10(∂y). Looking at Figure 6-1, we see

there is no room for such hidden multiplications.
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6.3 Localized cohomology of a large quotient of P

In this section we will show:

Theorem 6.3.1. Let D1,∞ = k[ξ1, ξ2, . . . ]/(ξ
3
1). Then

b−1
10 Ext∗D1,∞(k, k) ∼= E[h10, h20]⊗ P [b±1

10 , b20, w3, w4, . . . ].

In particular, one can write

b−1
10 Ext∗D1,∞(k, k) ∼= b−1

10 Ext∗D(k, k[h20, b20, w3, w4, . . . ]/(h
2
20)

where all the generators h20, b20, wn are D-primitive.

It is interesting that D1,∞ seems reasonably close to P in size, and yet the computation of

its b10-local cohomology is much simpler. In particular, attempting to apply the methods

in this section (especially the explicit construction in Lemma 6.3.7) to computing

b−1
10 Ext∗P (k, k) quickly results in an intractable mess.

The strategy is to explicitly construct a map from the cobar complex CD1,∞(k, k) to

another complex which is designed to have the right cohomology, and then show the map

is a quasi-isomorphism. Note that the cobar complex is a dga under the concatenation

product, so every element is a product of elements in degree 1. Thus if our target

complex is a dga, it suffices to construct a map out of C1
D1,∞

(k, k) = D1,∞, and then

extend the map to all of C∗
D1,∞

(k, k) by multiplicativity. In order to ensure the resulting

map is a map of complexes, there is a criterion that the map on degree 1 needs to

satisfy:

Proposition 6.3.2. Let Γ be a Hopf algebra over k, Q∗ be a dga with augmentation
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k ! Q∗, and θ : Γ! Q1 be a k-linear map such that

dQ(θ(x)) =
∑

θ(x′)θ(x′′) (6.3.1)

for all x ∈ Γ, where
∑
x′ ⊗ x′′ is the reduced diagonal ∆(x). Then there is a map of

dga’s f : C∗
Γ(k, k)! Q∗ sending [a1| . . . |an] to

∏
θ(ai).

Proof. We just need to check that f commutes with the differential; that is, we have to

check the following diagram commutes:

Cn
Γ(k, k)

f
//

dcobar
��

Qn

dQ
��

Cn+1
Γ (k, k)

f
// Qn+1

For n = 1, this is precisely what the condition (6.3.1) guarantees. Commutativity for

n > 1 follows from the Leibniz rule. The map on n = 0 is the augmentation.

Remark 6.3.3. This is an example of the more general construction of twisting cochains;

see [HMS74, §II.1]. A morphism θ satisfying (6.3.1) will be called a twisting morphism.

The target of our desired twisting morphism will be the complex b−1
10 Ũ

∗ ⊗W ′, where

• W ′ = k[w3, w4, . . . ], with u(wn) = 2(3n−1), is in homological degree zero with zero

differential, and

• Ũ∗ := UL∗(ξ1)⊗ UL∗(ξ2) ⊂ C∗
D[ξ1,ξ2]

(k, k) where the sub-dga UL∗(x) ⊂ C∗
D[x](k, k)

is defined below.

Definition 6.3.4. Given a height-3 truncated polynomial algebra D[x], let UL∗(x) be

the sub-dga of C∗
D[x](k, k) multiplicatively generated by the elements α = [x], β = [x2],

and γ = [x|x2] + [x2|x]. This inherits from C∗
D[x](k, k) the differentials d(α) = 0,

d(β) = −α2, and d(γ) = 0, along with the relations αβ + βα = γ, α3 = 0, and β2 = 0.
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Remark 6.3.5. This is (up to signs) the p = 3 case of a construction due to Moore:

let UL∗ be the dga which has multiplicative generators a1, . . . , ap−1 in degree 1 and

t2, . . . , tp in degree 2 with d(ai) = ti, subject to

a21 = t2 a2i = 0 for i 6= 1 ap1 = 0 aiaj = −ajai for i, j 6= 1

aja1 = −a1aj + tj+1 aitj = tjai titj = tjti.

This is a dga quasi-isomorphic to, and much smaller than, Ck[x]/xp(k, k). It also has the

nice property that tp (which, in the case x = ξ1, represents b10) is central.

Notation 6.3.6. Denote the generators of UL∗(ξ1) by a1 = [ξ1], a2 = [ξ21 ], and

b10 = [ξ1|ξ21 ] + [ξ21 |ξ1], and the generators of UL∗(ξ2) by q1 = [ξ2], q2 = [ξ22 ], and b20 =

[ξ2|ξ22 ] + [ξ22 |ξ2]. (This definition of b10 and b20 does, of course, match up with the image

of b10 and b20 along Ext∗P (k, k)! Ext∗D[ξ1,ξ2](k,k)
, and even Ext∗P (k, k)! Ext∗D1,∞(k, k).)

Note that

H∗(Ũ) = H∗(CD[ξ1,ξ2](k, k)) = E[h10, h20]⊗ P [b10, b20].

So our target complex b−1
10 Ũ ⊗W ′ has cohomology

H∗(b−1
10 Ũ ⊗W ′) = H∗(b−1

10 Ũ)⊗W ′ = E[h10, h20]⊗ P [b±1
10 , b20]⊗W ′.

6.3.1 Defining θ : D1,∞ ! b−1
10 Ũ ⊗W ′

The definition of the map θ : D1,∞ ! b−1
10 Ũ

∗ ⊗W ′ is quite ad hoc, and will be done

in several stages. The map will arise as a composition D1,∞ ! D′ ! Ũ∗ ⊗W ′ !

b−1
10 Ũ

∗ ⊗W ′, where the first map is the natural surjection to

D′ := k[ξ1, ξ2, . . . ]/(ξ
3
1 , ξ

9
2 , ξ

9
3 , . . . )
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and the last map is the natural localization map; the main goal is to construct a map

D′ ! Ũ∗⊗W ′ satisfying the twisting morphism condition, and we begin by constructing

a map out of a slightly smaller coalgebra.

Lemma 6.3.7. Let

C = k[ξ1, ξ
3
2 , ξ3, ξ4, . . . ]/(ξ

3
1 , ξ

9
2 , ξ

9
3 , . . . ).

There is a twisting morphism θ : C ! UL1(ξ1)⊗W ′.

Proof. For n,m, k ≥ 3, make the following definitions:

θ(ξ1) = a1

θ(ξ21) = a2

θ(ξ3n−1) = −a1wn

θ(ξn) = a2wn

θ(ξ1ξ
3
n−1) = −a2wn

θ(ξ1ξn) = 0

θ(ξ3n−1ξ
3
m−1) = a2wnwm

θ(ξnξ
3
m−1) = 0

θ(ξnξm) = 0

θ(ξ21ξ
3
n−1) = 0

θ(ξ1ξ
3
n−1ξ

3
m−1) = 0

θ(ξ3n−1ξ
3
m−1ξ

3
k−1) = 0

It is a straightforward computation with the cobar differential to check that each of

these does not violate the twisting morphism condition

d(θ(x)) =
∑

θ(x′) · θ(x′′) (6.3.2)
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where ∆(x) =
∑
x′ ⊗ x′′. (Note that, in C, we have ∆(ξ3n−1) = 0 and ∆(ξn) = ξ1|ξ3n−1.)

Now it suffices to prove the following.

Claim 6.3.8. Defining θ(X) = 0 for all monomials X except the ones listed above

defines a twisting morphism.

Define a (non-multiplicative) grading ρ on C where

ρ(1) = 0 ρ(ξ1) = 1 ρ(ξ21) = 2 ρ(ξ3n−1) = 1 ρ(ξ6n−1) = 2 ρ(ξn) = 2 ρ(ξ2n) = 4

for n ≥ 3, and ρ(
∏

i ξ
ai+3bi
i ) =

∑
ρ(ξaii ) + ρ(ξ3bii ) (where ai, bi ∈ {0, 1, 2}). The reason

for considering this grading is the following:

Claim 6.3.9. Writing ∆(x) =
∑
x′ ⊗ x′′, we have ρ(x′) + ρ(x′′) ≤ ρ(x).

Proof of Claim 6.3.9. If X =
∏
ξai+3bi
i for ai, bi ∈ {0, 1, 2}, consider the collection

TX = {ξaii : ai 6= 0}∪{ξ3bii : bi 6= 0}. Use induction on n := #TX . If n = 1, then it suf-

fices to check explicitly the Milnor diagonal of each of the terms {ξ1, ξ21 , ξ3i−1, ξ
6
i−1, ξi, ξ

2
i }.

(In fact, we find ρ(x) = ρ(x′) + ρ(x′′) for each of these terms.)

For general monomials a, b, we have

ρ(ab) ≤ ρ(a) + ρ(b). (6.3.3)

By definition, if x and y are products of non-overlapping subsets of TX , then

ρ(xy) = ρ(x) + ρ(y). (6.3.4)

Write X = xy where x ∈ TX and y is a product of terms in TX (different from x).

143



Since ∆(xy) =
∑
x′y′|x′′y′′ it suffices to prove ρ(x′y′) + ρ(x′′y′′) ≤ ρ(xy). We have

ρ(x′y′) + ρ(x′′y′′) ≤ ρ(x′) + ρ(y′) + ρ(x′′) + ρ(y′′)

≤ ρ(x) + ρ(y)

= ρ(xy)

where the first inequality is by (6.3.3), the second inequality is by the inductive

hypothesis, and the last equality is by (6.3.4).

So the monomials in C with degree 1 are ξ1 and ξ3n−1 for n ≥ 3, the monomials with

ρ-degree 2 are ξ21 , ξn, ξ3n−1ξ
3
m−1, and ξ1ξ3n−1 for n,m ≥ 3, and the monomials with degree

3 are ξ21ξ3n−1, ξ1ξ3n−1ξ
3
m−1, ξ3n−1ξ

3
m−1ξ

3
k−1, ξ1ξn, and ξ3n−1ξm for n,m ≥ 3. Notice that θ

has already been defined for these monomials above. So it remains to show that θ can

be defined consistently for monomials with ρ ≥ 4. In particular, we will show using

induction on ρ degree that we can define θ(x) = 0 if ρ(x) ≥ 3 while preserving the

twisting morphism condition (6.3.1).

Since we have already checked above that we can define θ(x) = 0 on the monomials x

with ρ(x) = 3, let ρ(x) = n > 3 and assume inductively that we have already defined

θ(y) = 0 if 3 ≤ ρ(y) ≤ n − 1. Any monomial y with ρ(y) = 0 is in k (and hence

θ(y) = 0), so we can assume that ρ(x′) < ρ(x) and ρ(x′′) < ρ(x). So by the inductive

hypothesis we have
∑
θ(x′) · θ(x′′) = 0, and so we can set θ(x) = 0 without violating

(6.3.1).

Lemma 6.3.10. One may extend θ constructed in Lemma 6.3.7 to a twisting morphism

D′ ! Ũ1 ⊗W ′ by defining:

θ(ξ2) = q1

θ(ξ22) = q2

θ(ξ2x) = 0 for x ∈ C
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θ(ξ22x) = 0 for x ∈ C

where C is the cokernel of the unit map k ! C.

Proof. Note that ξ2 is primitive in D′, and C is a sub-coalgebra of D′, so we need to

define θ on ξ2C and ξ22C. It is straightforward to check that θ(ξ2) = q1 and θ(ξ22) = q2

is consistent with (6.3.1).

If x = ξ2y for y ∈ C then every y′, y′′ in ∆y is in C, and

∑
θ(x′) · θ(x′′) =

∑(
θ(ξ2y

′) · θ(y′′) + θ(y′) · θ(ξ2y′′)
)

= θ(ξ2)θ(y) + θ(y)θ(ξ2) +
∑

y′,y′′ /∈k

(
θ(ξ2y

′) · θ(y′′) + θ(y′) · θ(ξ2y′′)
)

= q1θ(y) + θ(y)q1 +
∑

y′,y′′ /∈k

(
θ(ξ2y

′) · θ(y′′) + θ(y′) · θ(ξ2y′′)
)
.

Since θ(y) ∈ UL1(ξ1) ⊗W ′ and q1 anti-commutes with the generators a1 and a2 of

UL1(ξ1), we have q1θ(y)+ θ(y)q1 = 0. Thus defining θ(ξ2y) = 0 does not violate (6.3.1).

Similarly, if x = ξ22y for y ∈ C, then

∑
θ(x′) · θ(x′′) =

∑(
θ(ξ22y

′) · θ(y′′) + 2θ(ξ2y
′) · θ(ξ2y′′) + θ(y′) · θ(ξ22y′′)

)
= θ(ξ22)θ(y) + 2θ(ξ2)θ(ξ2y) + 2θ(ξ2y)θ(ξ2) + θ(y)θ(ξ22)

+
∑

y′,y′′ /∈k

(
θ(ξ22y

′) · θ(y′′) + 2θ(ξ2y
′) · θ(ξ2y′′) + θ(y′) · θ(ξ22y′′)

)
= θ(ξ22)θ(y) + θ(y)θ(ξ22) +

∑
y′,y′′ /∈k

(
θ(ξ22y

′)θ(y′′) + θ(y′)θ(ξ22y
′′)
)

where in the third equality we use the fact that 0 = θ(ξ2y) = θ(ξ2y
′) = θ(ξ2y

′′) (for

y′, y′′ /∈ k). Again, θ(ξ22)θ(y) + θ(y)θ(ξ22) = q2θ(y) + θ(y)q2 which is zero since θ(y) is in

UL1(ξ1)⊗W ′ and q2 anti-commutes with the generators a1 and a2 of UL1(ξ1). So it is

consistent with (6.3.1) to define θ(ξ22y) = 0.
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Now precompose with the surjection q : D1,∞ ! D′ to obtain a twisting morphism

θ : D1,∞ ! D′ ! Ũ1 ⊗W ′.

This remains a twisting morphism because it is a coalgebra map—in particular, q com-

mutes with the coproduct—and so d(θ(q(x))) =
∑
θ(q(x)′)θ(q(x)′′) =

∑
θ(q(x′))θ(q(x′′)).

So by Proposition 6.3.2 we get an induced map

θ′ : C∗
D1,∞(k, k)! Ũ∗ ⊗W ′

by extending θ multiplicatively using the concatenation product on the cobar complex.

6.3.2 Showing θ is a quasi-isomorphism via spectral sequence

comparison

Our goal is to show:

Theorem 6.3.11. The map θ′ : C∗
D1,∞

(k, k) ! Ũ∗ ⊗W ′ induces an isomorphism in

cohomology after inverting b10. In particular, there is an isomorphism

b−1
10 Ext∗D1,∞(k, k) ∼= E[h10, h20]⊗ P [b±1

10 , b20]⊗W ′.

To show this, we define filtrations on C∗
D1,∞

(k, k) and on Ũ∗ ⊗W ′ in a way that makes

θ′ a filtration-preserving map; this induces a map of filtration spectral sequences. We

compute the E2 pages of both sides and show that θ′ induces an isomorphism of E2

pages, hence an isomorphism of E∞ pages.

Let B1,∞ := k[ξ2, ξ3, . . . ] = D1,∞ �Dk. Define a decreasing filtration on C∗
D1,∞

(k, k)

where [a1| . . . |an] is in F sC∗
D1,∞

(k, k) if at least s of the ai’s are in ker(D1,∞ ! D) =

B1,∞D1,∞. Define a decreasing filtration on Ũ∗ ⊗W ′ by the following multiplicative
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grading:

• |a1| = |a2| = |b10| = 0

• |q1| = |q2| = 1

• |b20| = 2

• |wn| = 1.

Looking at the definition of θ in Lemma 6.3.7 and Lemma 6.3.10, it is clear that θ is

filtration-preserving, and hence so is θ′.

It is a consequence of the work in Section 3.3 that the b−1
10 B1,∞-based MPASS for

computing b−1
10 Ext∗D1,∞(k, k) coincides with the b10-localized version of this filtration

spectral sequence on C∗
D1,∞

(k, k). Our next goal is to calculate the E2 page of (the

b10-localized version of) the filtration spectral sequence on C∗
D1,∞

(k, k), and using this

correspondence we may instead calculate the MPASS E2 term

Es,∗
2 = b−1

10 Exts
b−1
10 Ext∗D(k,B1,∞)

(b−1
10 Ext∗D(k, k), b

−1
10 Ext∗D(k, k)). (6.3.5)

So we need to compute b−1
10 Ext∗D(k,B1,∞) and its coalgebra structure. The correspon-

dence of spectral sequences further gives that

E1,∗
1 = b−1

10 Ext∗D(k,B1,∞) ∼= b−1
10H

∗(F 1/F 2C∗
D1,∞(k, k)) (6.3.6)

and the reduced diagonal on b−1
10 Ext∗D(k,B1,∞) coincides with d1 in the filtration spectral

sequence.

Proposition 6.3.12. As coalgebras, we have

b−1
10 Ext∗D(k,B1,∞) ∼= b−1

10 E[e3, e4, . . . ]⊗D[ξ2]

i.e. en and ξ2 are primitive and ∆(ξ22) = 2ξ2 ⊗ ξ2.
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Proof. The first task is to determine the D-comodule structure on B1,∞. Let ψ denote

the D-coaction induced by the D-coaction on P , and ∂ : B1,∞ ! B1,∞ denote the

operator defined by ψ(x) = 1 ⊗ x + ξ1 ⊗ ∂x − ξ21 ⊗ ∂2x (see Definition 4.2.1). For

example, ∂(ξn) = ξ3n−1, ∂(ξ3n−1) = 0, and ∂ satisfies the Leibniz rule.

We have a coalgebra isomorphism B1,∞ ∼= D[ξ2]⊗ k[ξ32 , ξ3, ξ4, . . . ]. Since 1, ξ2, and ξ22

are all primitive, D[ξ2] splits as D-comodule into three trivial D-comodules, generated

by 1, ξ2, and ξ22 respectively. So it suffices to determine the D-comodule structure of

k[ξ32 , ξ3, ξ4, . . . ].

As part of the determination of the structure of b−1
10 Ext∗D(k,B) in Section 4.2, we

showed that there is a D-comodule decomposition

B ∼=
⊕

ξn1 ...ξnd
ni≥2 distinct

T (〈ξn1 . . . ξnd
; 1〉) ⊕ F

where F is a free D-comodule and T (〈ξn1 . . . ξnd
; 1〉) is generated as a vector space

by monomials of the form ∂ε1(ξn1) . . . ∂
εd(ξnd

) for εi ∈ {0, 1}. I claim the surjection

f : B ! k[ξ32 , ξ3, ξ4, . . . ] takes F to another free summand: this map preserves the

direct sum decomposition into summands of the form D, M(1), and k, and the image

of a free summand D must be either 0 or another free summand (just as there are no

D-module maps k = k[x]/(x)! D or M(1) = k[x]/(x2)! D, there are no D-comodule

maps D ! k or D !M(1)).

Furthermore, I claim that f acts as zero on summands T (〈ξn1 . . . ξnd
; 1〉) where

some ni = 2, and is the identity otherwise. In the first case, every basis element

∂εi(ξ2)
∏

j 6=i ∂
εj(ξnj

) in T (〈ξn1 . . . ξnd
; 1〉) has the form ξ2

∏
j 6=i ∂

εj(ξnj
) ∈ ξ31 ·k[ξ32 , ξ3, ξ4, . . . ]

or ξ31
∏

j 6=i ∂
εj(ξnj

) ∈ ξ31 · k[ξ32 , ξ3, ξ4, . . . ], and these are sent to zero under f . If instead

ni > 2 for every i, then every term ∂ε1(ξn1) . . . ∂
εd(ξnd

) is in k[ξ32 , ξ3, ξ4, . . . ] and so f
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acts as the identity. So we have shown that there is a D-comodule isomorphism

B1,∞ =
( ⊕

ξn1 ...ξnd
ni≥3 distinct

T (〈ξn1 . . . ξnd
; 1〉) ⊕ F ′

)
⊗ (k1 ⊕ kξ2 ⊕ kξ22)

where F ′ is a free D-comodule. So we have

b−1
10 Ext∗D(k,B1,∞) ∼=

⊕
ξn1 ...ξnd

ni≥3 distinct

b−1
10 Ext∗D

(
k, T (〈ξn1 . . . ξnd

; 1〉)⊗ k{1, ξ2, ξ22}
)

∼=
⊕

ξn1 ...ξnd
ni≥3 distinct

b−1
10 Ext∗D

(
k, T (〈ξn1 . . . ξnd

; 1〉)
)
⊗ k{1, ξ2, ξ22}.

By Proposition 4.3.7, b−1
10 ExtdD(k, T (〈ξn1 . . . ξnd

; 1〉)) is generated by en1 . . . end
, where

en = [ξ1]ξn − [ξ21 ]ξ
3
n−1 ∈ b−1

10 Ext1D(k, T (〈ξn ; 1〉))

is primitive. The map B ! B1,∞ gives rise to a map of MPASS’s, and in particular a

map b−1
10 Ext∗D(k,B)! b−1

10 Ext∗D(k,B1,∞) of Hopf algebras over b−1
10 Ext∗D(k, k) sending

en 7! en for n ≥ 3, and e2 7! h10 · ξ2. In particular, we have

b−1
10 Ext∗D(k,B1,∞) ∼= E[h10, e3, e4, . . . ]⊗ P [b±1

10 ]⊗ k{1, ξ2, ξ22} (6.3.7)

and en ∈ b−1
10 Ext∗D(k,B1,∞) is primitive. To find the coproduct on the elements ξ2 and ξ22 ,

use (6.3.6), in particular the fact that the (reduced) Hopf algebra diagonal corresponds to

d1 in the filtration spectral sequence. In particular, ξ2 ∈ b−1
10 Ext∗D(k,B1,∞) corresponds

to the element [ξ2] ∈ F 1/F 2C1
D1,∞

(k, k), and we have dcobar([ξ2]) = [ξ1|ξ31 ] which is zero

in C∗
D1,∞

(k, k), so ξ2 is primitive. Similarly, the cobar differential on C∗
D1,∞

(k, k) shows

∆(ξ22) = 2ξ2 ⊗ ξ2. Thus the tensor factor k{1, ξ2, ξ22} is, as a coalgebra, a truncated

polynomial algebra. This finishes the determination of the coalgebra structure of

b−1
10 Ext∗D(k,B1,∞) in (6.3.7).
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The E2 page (6.3.5) of the MPASS is the cohomology of the Hopf algebroid

(b−1
10 Ext∗D(k, k), b

−1
10 Ext∗D(k,B1,∞)) = (E[h10]⊗P [b±1

10 ], E[h10, e3, e4, . . . ]⊗P [b±1
10 ]⊗D[ξ2])

so we have:

Corollary 6.3.13. The MPASS E2 page is:

E∗∗
2

∼= E[h10, h20]⊗ P [b±1
10 , b20, w3, w4, . . . ].

Proposition 6.3.14. The map θ′ induces an isomorphism of E2 pages.

Proof. We first calculate the E2 page of the filtration spectral sequence on C∗
D1,∞

(k, k),

and observe it is isomorphic to the E2 page of the MPASS we calculated in Corollary

6.3.13. Then we show that the map θ′ induces this isomorphism.

In the associated graded, there is a differential d0(a2) = −a21, but the corresponding

differential on q2 is a d1. So the filtration spectral sequence UEr computing H∗(b−1
10 Ũ

∗ ⊗

W ′) has E0 page
UE0

∼= b−1
10 UL

∗(ξ1)⊗ UL∗(ξ2)⊗W ′

with differential d0(u1 ⊗ u2 ⊗ w) = d(u1)⊗ u2 ⊗ w. So

UE1
∼= H∗(b−1

10 UL
∗(ξ1))⊗ UL∗(ξ2)⊗W ′ ∼= E[h10]⊗ P [b±1

10 ]⊗ UL∗(ξ2)⊗W ′

and the only remaining differential is generated by d1(q2) = −q21, so

UE2
∼= E[h10]⊗ P [b±10]⊗H∗(UL∗(ξ2))⊗W ′ = E[h10, h20]⊗ P [b±1

10 , b20]⊗W ′.

Then Er ∼= E2 for r ≥ 2.

To show that θ′ is an isomorphism, it suffices to show that θ′(h10) = h10, θ′(b10) = b10,
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θ′(h20) = h20, θ′(b20) = b20, and θ′(wn) = b10wn for n ≥ 3. We use the fact that θ′

extends θ multiplicatively using the concatenation product in the cobar complex. So

θ′([a1| . . . |an]) =
∏
θ(ai), and we have:

θ′(h10) = θ′([ξ1]) = θ(ξ1) = a1

θ′(b10) = θ′([ξ1|ξ21 ] + [ξ21 |ξ1]) = θ(ξ1)θ(ξ
2
1) + θ(ξ21)θ(ξ1) = a1a2 + a2a1 = b10

θ′(h20) = θ′([ξ2]) = θ(ξ2) = q1

θ′(b20) = θ′([ξ2|ξ22 ] + [ξ22 |ξ2]) = θ(ξ2)θ(ξ
2
2) + θ(ξ22)θ(ξ2) = q1q2 + q2q1 = b20

θ′(wn) = θ′([ξ1|ξn]− [ξ21 |ξ3n−1]) = a1a2wn + a2a1wn = b10wn.

Since θ′ : C∗
D1,∞

(k, k) ! Ũ∗ ⊗ W ′ induces an isomorphism of spectral sequences,

it induces an isomorphism in cohomology, completing the proof of Theorem 6.3.11.

isomorphism
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