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Introduction

This introduction will describe a bit of the short history leading to the
research presented in this text. In a nutshell, the material stems from an
investigation of a suffciently natural diagrammatic interpretation of topolog-
ical Hochschild homology (THH). This naturality shows the way towards
generalizations of THH for En-algebras.

The author’s gateway into this problem was an apparent lack of nat-
urality of the usual definition of topological Hochschild homology, as the
geometric realization of the cyclic bar construction of an associative ring
spectrum. A telling sign is that the indexing category ∆op for the cyclic
bar construction does not reflect the full rotational symmetry of S1. Con-
sequently, it is insufficient to recover the action of S1 on THH.

In order to repair this state of affairs, the author conceived of the cat-
egory E , here called Elmendorf’s category. This category is essentially a
combinatorial description of the spaces of configurations in S1. Topological
Hochschild homology can be recovered as a homotopy colimit along E . This
draws an analogy with the well-known result that THH of a commutative
ring spectrum is given by tensoring with S1.

A more natural, yet equivalent, amalgamation of the spaces of configu-
rations of S1 is given by the topologically enriched category M(S1) of sticky
configurations in S1. The advantage of M(S1) is that it generalizes promptly
to a category M(X) for any space X. The significance of M(X) is most ap-
parent for the case of a manifold, where it carries homotopical information
about the tangent space of the manifold, and about embeddings into other
manifolds.

Restricting then to the case of a n-manifold M , the analogies between
M(M) and En-operads are very strong. This raises the question of whether
one can obtain invariants of En-algebras as homotopy colimits along M(M),
just as THH is a homotopy colimit along M(S1) ' E .

To answer that question, we will reformulate little discs operads in terms
of modifications to the spaces of embeddings of manifolds. We designate
these modifications by G-augmented embedding spaces, where G is a struc-
ture group. The augmented embedding spaces give rise to PROPs EGn and,
for each appropriate n-manifold M , a right module

EGn [M ] :
(
EGn
)op −→ Top

over EGn . In the case G = 1, E1
n is equivalent to the little n-discs PROP, and

the right modules E1
n[M ] are defined for any parallelized n-manifold M .

The category M(M) reappears as the Grothendieck construction of the
functor EGn [M ]. The hypothesized invariant of En-algebras can now be
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6 INTRODUCTION

phrased simply as a derived enriched colimit

E1
n[M ]

L

⊗
E1
n

A

for any E1
n-algebra A, and any parallelized n-manifold M . In case M = S1,

we recover topological Hochschild homology.

Bibliographic references

The category E has appeared repeatedly in the literature in different
guises, e.g. [Elm93] and [BHM93]; see also [DK85] for a very similar
category studied even earlier.

This led the author to conjecture a relation between them, and conse-
quently hypothesize the existence of generalizations of topological Hochschild
homology for En-algebras associated to appropriate n-manifolds. These op-
erations on En-algebras would be given by a homotopy colimit along the
category M(M).

A positive resolution of the author’s conjectures came immediately from
[Lur09c], where a parallel investigation into so-called topological chiral ho-
mology had turned up the desired objects.

The operations on En-algebras which we describe have already appeared
in the literature. The first construction known to the author was given by
Paolo Salvatore in [Sal01], using the Fulton-MacPherson operads. More
recently, Jacob Lurie has defined topological chiral homology, as explained
in [Lur09a] and [Lur09c].

The work of Lurie influenced the present research. After having defined
the categories M(M), and noticed their strict parallels with En-operads, the
author conjectured a relation between the two, with a view towards defining
the desired generalizations of topological Hochschild homology

On a more historical context, these ideas closely follow earlier work of
Graeme Segal and Dusa McDuff (among others too numerous to name) on
spaces of labeled configurations (see [Seg73] and [McD75]). Additionally,
the diagrammatic approach taken here is most reminiscing of the charac-
terization of the infinite symmetric product of a space detailed in [Kuh04]
(called there the McCord model): this model can actually be seen as a sort
of limiting case n→∞ of our framework.



Summary

Chapter I establishes some basic terminology and concepts which will
be used throughout the text. It discusses quite disparate subjects and is
meant only for reference.

Chapter II gives some basic theory of internal categories, with the dual
aim of relating them to enriched categories, and of defining the Grothendieck
construction in a sufficiently general context.

Chapter III associates to each space X the topologically enriched cat-
egory of sticky configurations on X, M(X), together with an equivariant
analogue. Chapter IV analyzes the example M(S1), which is weakly equiv-
alent to Elmendorf’s category E . It finishes by showing that topological
Hochschild homology is a homotopy colimit along E .

Chapter V defines the concept ofG-structure on a manifold. Then theG-
augmented embedding spaces of manifolds are constructed as modifications
of the usual embedding spaces of manifolds. These are used to define a
PROP EGn , together with a right module over it for each n-manifold with a
G-structure.

Chapter VI describes convenient concepts of stratified spaces, together
with some basic results. Moreover, it recovers M(X) from spaces of filtered
paths on stratified spaces. This analysis comes in handy in the next chap-
ter VII where it is shown that the category M(M) — for M a n-manifold
with a G-structure — is essentially the Grothendieck construction of the
corresponding right module over the PROP EGn . More precisely, a zig-zag of
weak equivalences is given between the category M(M) and a Grothendieck
construction of the functor EGn [M ], which we denote by TGn [M ]δ.

Chapter VIII is another technical chapter describing the concepts of
homotopy colimits necessary in the final chapter. In particular, it is stated,
without proof, how the homotopy colimits along Grothendieck constructions
can be computed as derived enriched colimits over the base category.

The last chapter IX defines the invariant TG(A;M) of a EGn -algebra A,
for each n-manifold M with a G-structure. A proof is given that T1(−;S1)
for the category of spectra is equivalent to topological Hochschild homology.
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CHAPTER I

Basic terminology

Introduction

In this very disconnected chapter, we introduce some basic notation,
terminology, and definitions which we will use in the remainder of the text.

Summary

Section 1 describes some categories of sets, and categories of categories
designed to deal with issues of size. It also mentions the category of finite sets
and categories of finite ordinals. Section 2 makes some important abstract
remarks on categories, 2-categories, functors, and natural transformations.

Section 3 introduces the category of topological spaces and the category
of weak Hausdorff compactly generated topological spaces.

Section 4 settles some language for principal bundles and principal spaces.
Section 5 makes a few comments regarding the homotopy theory of

spaces, with a focus on the notion of homotopy equivalence. Section 6
defines the space of Moore paths on a topological space and gives some
important maps based on this space.

Section 7 discusses basic concepts of enriched category theory. Section
8 establishes some terminology regarding properties of enriched functors.

Section 9 explains basic notions regarding enriched model categories and
monoidal model categories.

The last three section deal with PROPs and operads. Section 10 defines
the notions of PROP, and algebra for a PROP. Section 11 relates PROPs to
operads: to each PROP it associates an operad, and for each operad it con-
structs a PROP called the associated category of operators. Furthermore, it
relates the notions of algebras for PROPs and operads. Finally, section 12
gives examples of PROPs in Set and Top: the associative and commutative
PROPs, and the little discs PROPs.

1. Categories of sets and categories

1.1. Convention – sets
To avoid problems relating to size of sets, we will assume the existence of
several universes of sets.
More precisely, we will assume the existence of three categories of sets

Set ↪−→ SET ↪−→ SET

such that
- all three are closed under taking subsets and elements;
- Set is Set-bicomplete, i.e. it has all products and coproducts indexed by

sets in Set;

9



10 I. BASIC TERMINOLOGY

- SET is SET-bicomplete;
- SET is SET-bicomplete;
- ob(Set) is in SET;
- ob(SET) is in SET;
These categories can be constructed assuming the existence of three inac-
cessible cardinals.
We will refer to the elements of Set as small sets, and a set will be by default
a small set. The elements of SET will be called large sets.

1.2. Notation – categories
We will need many categories of categories.
Given two categories of sets, S and T, we will have a corresponding 2-
category of categories, T-CatS, whose objects are categories C such that
obC ∈ S, and C(x, y) ∈ T for any x, y ∈ obC.
We will use a few useful abbreviations:

Cat := Set-CatSet

CAT := Set-CatSET

CAT := SET-CatSET

A category in Cat is a small category. A category in CAT is a locally small
large category. Without further mention, a category will be, by default, in
CAT, except if it is constructed not to be. Often, it will actually not matter
where exactly the category is.

We will also need a few explicit smaller categories, such as the categories
of ordinals and of finite sets.

1.3. Notation – finite sets
The category of (small) finite sets will be denoted FinSet. We consider the
inclusion

N ⊂→ obFinSet
n → {1, . . . , n}

and we will, for brevity, denote the set . . . 1, . . . , n (for n ∈ N) simply by n.

1.4. Notation – categories of ordinals
The category of (small) finite ordinals and order preserving functions will
be denoted Ord.
For each n ∈ N, the ordinal corresponding to the set {1, . . . , n} with the
order induced from N is denoted simply by n.
We will denote by ∆ the full subcategory of Ord generated by the ordinals
n for n ∈ N \ {0}.

1.5. Observation
The category Ord is monoidal, with the monoidal product given by

+ : Ord×Ord −→ Ord

where for any finite ordinals x and y, the ordinal x+ y is the disjoint union
of x and y with the unique total order which recovers the total orders on x
and y, and such that any element of x is less than any element of y.
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2. Categories

As we mentioned, S-CatT, Cat, CAT, . . . , are all 2-categories. We leave
some remarks about the 2-categories which will appear.

2.1. Convention – 2-categories, 2-functors
For us, a 2-category is always a strict 2-category. Furthermore, all func-
tors and natural transformations between 2-categories will be strict, unless
specifically stated otherwise.
Any ordinary category will be viewed as a 2-category with only identity
2-morphisms.

2.2. Convention – lax natural transformation
One of the rare instances that we will need of a non-strict natural transforma-
tion will be that of a lax natural transformation α between strict 2-functors,
as in definition 7.5.2 of [Bor94]. This will appear in chapter III.
If all the 2-morphisms in the lax naturality squares for α are isomorphisms
then we call α a pseudo-natural transformation (again following definition
7.5.2 of [Bor94]). This will only appear in proposition 11.2 below.

2.3. Notation – categories of functors
Given any 2-categories A and B, we will denote the 2-category of strict func-
tors, strict natural transformations, and strict modifications (see chapter 7
of [Bor94]) from A to B by [A,B].
If A, B are ordinary categories, then [A,B] is just the usual category of
functors and natural transformations from A to B, CAT(A,B). We will,
nevertheless, prioritize the notation [A,B].

2.4. Notation – composition of natural transformations
For any 2-categories A, B, and C, the composition functor will be denoted

− ◦ − : [B,C] × [A,B] −→ [A,C]

In particular, given a natural transformation α from A to B, and a natural
transformation β from B to C, we will denote their horizontal composition
by β ◦ α.
The composition of 1-morphisms in the category [A,B] will be denoted
differently: given functors F,G,H : A→ B, and natural transformations

α : A→ B

β : b→ C

their vertical composition will be abbreviated β · α.
This notation is the one used in the book [ML98].

2.5. Notation – opposite of category
Given a category A, Aop will denote the opposite category of A.
We will also consider the opposite Aop of a 2-category A. In this case Aop

only reverses the 1-morphisms, and not the 2-morphisms.

2.6. Convention – limits and colimits in categories
We will follow the common convention of writing limits (respectively, colim-
its) in a category C as if there were a preassigned limit (respectively, colimit)
for each diagram in C which does have a limit (respectively, colimit).
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For that purpose, the reader may assume that each category C comes
equipped with an assignment of a limit (respectively, colimit) to each di-
agram in C which has a limit (respectively, colimit).

2.7. Notation – terminal object
Given a category C with a terminal object, we will often denote the termi-
nal object by 1. For example, 1 ∈ Cat denotes a category with one object
and one morphism, and 1 ∈ Top denotes a topological space with a single
element.
This convention will not be followed when 1 already has an assigned mean-
ing, such as in the categories FinSetop and Ordop.

2.8. Notation – category associated to a monoid
Given an associative monoid A in the cartesian category Set, we will denote
by BA the category associated with A: ob(BA) = 1, BA(1, 1) = A, and
the composition in BA comes from the binary operation on A.

3. Categories of topological spaces

3.1. Notation – topological spaces
We will denote by Top the category of topological spaces and continuous
maps. This will be our default category of spaces.
We will also occasionally need the category TOP of large topological spaces
and continuous maps.

3.2. Convention – sets as topological spaces
The canonical inclusion functor

Set ↪−→ Top

will be used to consider all small sets canonically as discrete topological
spaces. In particular, any ordinary locally small category will be considered
as a Top-category whenever necessary.

3.3. Notation
Top is not cartesian closed, but for any topological spaces X and Y , we
will consider the space Map(X,Y ) of continuous maps X → Y with the
compact-open topology.

Since Top is not cartesian closed, it is useful to introduce a category of
spaces which is.

3.4. Definition – weak Hausdorff space
A topological space X is said to be weak Hausdorff if for any map f : C → X
with C compact Hausdorff, the image f(C) is closed in X.

3.5. Definition – compactly generated space
A topological space X is said to be compactly generated if it has the initial
topology induced by all maps C → X with C compact Hausdorff.

3.6. Notation – weak Hausdorff compactly generated spaces
We will denote by kTop the category of weak Hausdorff compactly generated
spaces, and continuous maps. This category is cartesian closed.
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The inclusion kTop ↪→ Top has a right adjoint

κ : Top −→ kTop

called the k-ification functor. We remark that κ preserves small coproducts.

4. Principal bundles

We will follow the nomenclature of [Hus94], which we briefly describe
below. We fix a topological group G.

4.1. Definition – principal bundle
By a principal G-bundle we will mean a right G-space X and a map

p : X −→ B

of topological spaces such that
- p induces a homeomorphism X/G ∼= B;
- there exists a map

transl : X ×
Y
X −→ G

such that
x · transl(x, y) = y

for any x, y ∈ X such that p(x) = p(y).

4.2. Definition – map of principal bundles
Let p : X → B, and p′ : X ′ → B′ be principal G-bundles.
A map of principal G-bundles (f, g) : p → p′ is a G-equivariant map f :
X → X ′ of right G-spaces, together with a map g : B → B′ such that

X
f → X ′

B

p
↓

g → B′

p′

↓

commutes.

4.3. Proposition
Let p : X → B, and p′ : X ′ → B′ be principal G-bundles.
Given a map of principal G-bundles, (f, g) : p→ p′, the diagram

X
f → X ′

B

p
↓

g → B′

p′

↓

is a cartesian square.

4.4. Definition – locally trivial principal bundle
We say that a principal G-bundle p : X → B is locally trivial if each point
of B has a neighborhood U in B such that there exists a G-equivariant map
p−1(U)→ G.
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4.5. Notation – principal G-space
We call a right G-space X a principal G-space if the map X → X/G gives
a principal G-bundle. We say X is a locally trivial principal G-space if
X → X/G gives a locally trivial principal G-bundle.

4.6. Observation – principal left G-space
We will occasionally refer to (locally trivial) principal left G-spaces. This
will mean a left G-space (i.e. a right Gop-space) which is a (locally trivial)
principal Gop-space.

5. Homotopy theory of topological spaces

We will be mostly interested in homotopy equivalences of topological
spaces. Therefore, we will mostly deal with the category Top of topological
spaces equipped with the Strøm model structure from [Str72]:
- the weak equivalences are homotopy equivalences of spaces;
- the cofibrations are closed maps with the homotopy extension property;
- the fibrations are Hurewicz fibrations.

The Strøm model structure on Top is right proper and naturally framed
(see section 16.6 of [Hir03]), in a way that recovers the usual homotopy
pullbacks and pushouts, and the usual homotopy limits and colimits in Top
(see chapter 19 of [Hir03]). While the framing is not necessary, and all
necessary results can be derived directly, it is nevertheless useful.

We will also make use of the analogous Strøm model structure on kTop,
which is the only model structure on kTop which we consider. kTop with
the Strøm model structure is actually a simplicial model category.

In keeping with our focus on homotopy equivalences, we will say that a
commutative square in Top

A → B

C
↓

→ D
↓

is homotopy cartesian (or a homotopy pullback square) if the natural map
from A to the homotopy pullback of C → D ← B is a homotopy equivalence.

Despite our focus on homotopy equivalences, when talking about topo-
logical spaces, “weak equivalence” always has the usual meaning (isomor-
phisms on homotopy groups). We will always refer explicitly to homotopy
equivalences of topological spaces as such.

6. Moore path space

6.1. Definition – Moore path space
Let X be a topological space. Recall that Map ([0,+∞[ , X) is endowed with
the compact-open topology.
The subspace of Map ([0,+∞[ , X)× [0,+∞[ corresponding to its subset{

(α, τ) ∈ Map ([0,+∞[ , X)× [0,+∞[ : α|[τ,+∞[ is constant
}

will be called the Moore path space of X, H(X).
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6.2. Observation – functoriality of Moore path space
The Moore path space above extends to a functor

H : Top −→ Top

6.3. Definition – maps on Moore path space
Let X be a topological space.
We define the following continuous maps on the Moore path space of X:
- the length map, l:

l : H(X) ↪−→ Map ([0,+∞[ , X)× [0,+∞[
proj−−−→ [0,+∞[

- the source map, s:

s : H(X) ↪−→ Map ([0,+∞[ , X)× [0,+∞[
proj−−−→ Map ([0,+∞[ , X) ev0−−→ X

- the target map, t:

t : H(X) ↪−→ Map ([0,+∞[ , X)× [0,+∞[ ev−−→ X

- the inclusion of X is the unique map i : X → H(X) such that

s ◦ i = idX
l ◦ i = 0

6.4. Proposition
Let X be a topological space.
The map

(s, t) : H(X) −→ X ×X
is a Hurewicz fibration.

6.5. Definition – concatenation of Moore paths
Let X be a topological space.
Let P be determined by the pullback square

P
p1→ H(X)

H(X)

p2
↓

s→ X

t
↓

The concatenation map cc : P → H(X) is now characterized by:

l ◦ cc = l ◦ p1 + l ◦ p2

and, for x ∈ P
cc(x)|[0,l◦p1(x)] = p1(x)

cc(x)|[l◦p1(x),+∞[ = p2(x)(?− l ◦ p1(x))

6.6. Definition – reparametrization of Moore paths
Let X be a topological space.
Define the reparametrization map

rprm : H(X) −→ Map(I,X)

by
rprm(γ, τ) := γ(τ · −)

for (γ, τ) ∈ H(X)
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6.7. Proposition
Let X be a topological space.
The map

rprm : H(X) −→ Map(I,X)

is a homotopy equivalence over X×X. Here, H(X) maps by (s, t) to X×X;
Map(I,X) maps by (ev0, ev1) to X ×X.

7. Enriched categories

For material on enriched category theory, we refer the reader to the book
[Kel05]. We leave here some notation regarding enriched categories. V will
denote a symmetric monoidal category with unit I.

7.1. Notation – 2-category of V -categories
If S is a category of sets, V -CatS is the 2-category whose:
- objects are V -categories whose set of objects lies in S;
- 1-morphisms are the V -functors;
- 2-morphisms are the V -natural transformations.
For convenience, we make the following abbreviations

V -Cat := V -CatSet

V -CAT := V -CatSET

for the 2-categories of small V -categories and large V -categories, respec-
tively.
A V -category will typically be in V -CAT, by default.

7.2. Notation – V -category of functors
Assume V is symmetric monoidal closed.
If A and B are V -categories then [A,B]V denotes the enriched V -category
of functors from A to B, whose objects are the V -functors from A to B.

7.3. Notation – change of enriching category
Assume F : V →W is a lax symmetric monoidal functor.
For any V -category C, there is an induced W -category F (C) such that

ob
(
F (C)

)
= obC

and
F (C)(x, y) = F

(
C(x, y)

)
for any x, y ∈ obC.
This extends to functors

F : V -Cat −→W -Cat
F : V -CAT −→W -CAT
F : V -CatS −→W -CatS

7.4. Notation – underlying category
For the special case of the lax symmetric monoidal functor

V (I,−) : V −→ SET
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we denote the corresponding functor from V -categories to SET-categories
(i.e. ordinary categories) by

(−)0 : V -CAT −→ CAT

In particular, given a V -category C, we denote its underlying category by
C0. Moreover, the underlying functor of a V -functor F : C → D is denoted

F0 : C0 −→ D0

This is in conformance with the notation in [Kel05].

We finish this section with a few remarks on symmetric monoidal V -
categories.

7.5. Notation – symmetric monoidal V -category
We will occasionally need the concept of a symmetric monoidal V -category.
This is exactly parallel to the notion of symmetric monoidal category, only
all structure functors and natural transformations are now required to be
V -functors and V -natural transformations.
We will denote by V -SMCat the 2-category of
- small symmetric monoidal V -categories,
- strong symmetric monoidal V -functors, and
- symmetric monoidal V -natural transformations.
The analogous 2-category of large symmetric monoidal V -categories will be
abbreviated V -SMCAT.

7.6. Proposition – change of enriching category
Assume F : V →W is a lax symmetric monoidal functor.
There exists a natural functor

F : V -SMCAT −→W -SMCAT

such that

V -SMCAT
F→W -SMCAT

V -CAT
↓

∩

F →W -CAT
↓

∩

commutes.

7.7. Observation
The above functor restricts to a functor

F : V -SMCat −→W -SMCat

8. Properties of enriched functors

We will now turn to properties of V -functors, where V is again a sym-
metric monoidal category.

8.1. Definition – essentially surjective V -functor
Let F : A→ B be a V -functor between V -categories.
F is said to be essentially surjective if the underlying functor

F0 : A0 −→ B0



18 I. BASIC TERMINOLOGY

is essentially surjective.

8.2. Definition – local isomorphism
Let F : A→ B be a V -functor.
We say F is a local isomorphism if for all x, y ∈ obA

F : A(x, y) −→ B(Fx, Fy)

is an isomorphism in V .

This last definition gives way to the nomenclature “local {name of prop-
erty}” which we now introduce.

8.3. Notation
Let nameP be the name of a property of morphisms in V .
We say a V -functor F : A → B is locally nameP (or a local nameP ) if for
every x, y ∈ obA, the morphism

F : A(x, y) −→ B(Fx, Fy)

verifies the property nameP .

We give a few examples of this notation involving the cartesian category
Top.

8.4. Examples
If we take nameP to be “isomorphism”, then we recover the notion of local
isomorphism from definition 8.2.
Other relevant examples are given by “weak equivalence” and “homotopy
equivalence” in Top. From these we get the notion of local weak equivalences
and local homotopy equivalences of Top-categories.

This example can be used to define the notion of weak equivalence of
Top-categories.

8.5. Definition – weak equivalence of Top-categories
Let F : A→ B be a Top-functor between Top-categories.
We say F is a weak equivalence if F is a local homotopy equivalence and

π0F : π0A −→ π0B

is an essentially surjective functor (between ordinary categories).

8.6. Observation
Note that we mean a local homotopy equivalence when we refer to a weak
equivalence of Top-categories.
This is in accordance with our focus on homotopy equivalences, and the
Strøm model structure in Top, even if conflicting with our convention to
refer explicitly to homotopy equivalences of spaces as such.
We use this terminology for simplicity, since it is the only case which will
appear.
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9. Model categories

We will mostly follow the book [Hir03] on matters relating to model
categories. In this section we fix some terminology regarding model cate-
gories, and discuss some concepts not appearing in [Hir03], namely enriched
model categories and monoidal model categories.

9.1. Notation
By a model category, we will mean exactly the notion explained in [Hir03].
In particular, a model category is a bicomplete category verifying the clas-
sical Quillen axioms for a closed model category, in which the factorizations
can be chosen functorially.
Nevertheless, we will occasionally use redundant expressions regarding (co)completeness.
such as “cocomplete model category”, or “bicomplete model category”. This
is merely for emphasis of a necessary property.

9.2. Examples
The main examples of model structures for us are the Kan model structure
on sSet, and the Strøm model structures on Top and kTop. All of these will
always be implicit when dealing with these categories.

9.3. Definition – left Quillen bifunctor
Let V , W , X be model categories, and

F : V ×W −→ X

a functor. We say F is a left Quillen bifunctor (or that it verifies the pushout-
product axiom) if for any cofibrations f : x→ y in V and g : x′ → y′ in W ,
the canonical map

f �
F
g : F (y, x′) q

F (x,x′)
F (x, y′) −→ F (y, y′)

is a cofibration in X, which is a weak equivalence if either f or g is a weak
equivalence.

9.4. Definition – symmetric monoidal model category
Let V be a model category, and a symmetric monoidal category (with
monoidal product ⊗).
We will say V is a symmetric monoidal model category if

⊗ : V × V −→ V

verifies the pushout-product axiom (i.e. is a left Quillen bifunctor).

9.5. Observation
It is usual to assume some condition on the unit of the monoidal structure on
V , for example that it be cofibrant. We will always explicitly state as much
by saying, for example, that V is a symmetric monoidal model category with
cofibrant unit.

9.6. Notation
If the monoidal structure on V is cartesian, we will say that V is a cartesian
model category.
If the monoidal structure on V is closed, we will say that V is a symmetric
monoidal closed model category.
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9.7. Examples
All of sSet (with the Kan model structure), Top, and kTop (the last two with
the Strøm model structures) are cartesian model categories with cofibrant
unit. sSet and kTop are cartesian closed model categories.

9.8. Definition – V -model category
Let V be a bicomplete symmetric monoidal closed model category.
A bicomplete V -category C with a model structure on C0 is called a V -model
category if the functor

⊗ : V × C0 −→ C0

corresponding to tensoring an object of V and an object of C (which is
defined since C is cocomplete as a V -category), is a left Quillen bifunctor.

9.9. Notation – simplicial model category
In the special case that V = sSet (with the Kan model structure), we call
C a simplicial model category.

9.10. Examples
V is naturally a V -model category.
kTop (with the Strøm model structure) is a simplicial model category.

9.11. Definition – symmetric monoidal V -model category
Let V be a bicomplete symmetric monoidal closed model category.
A symmetric monoidal V -category C with a model structure on C0 is called
a symmetric monoidal V -model category if C is a V -model category and the
monoidal product on C gives a left Quillen bifunctor

⊗ : C0 × C0 −→ C0

9.12. Notation – symmetric monoidal simplicial model category
In case V = sSet, we say that C is a symmetric monoidal simplicial model
category.

9.13. Notation
As above, we will say that C is a cartesian V -model category if the monoidal
structure on C is cartesian.
We will also say that C is a symmetric monoidal closed V -model category
if the monoidal V -category C is closed (as a V -category).

9.14. Examples
V is a symmetric monoidal closed V -model category.
kTop is a symmetric monoidal closed simplicial model category.

10. PROPs

Fix a symmetric monoidal category V .

10.1. Definition – PROP
A V -PROP is a pair (P, a) where P is a symmetric monoidal V -category
(with monoidal product given by ⊗), and a ∈ obP is such that any object
of P is isomorphic to a⊗n for some n ∈ N.

10.2. Notation – generator of a PROP
The distinguished object a ∈ obP is called the generator of the V -PROP
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(P, a).
For convenience, we will often confuse the V -PROP with its underlying
symmetric monoidal V -category, leaving the generator implicit.

10.3. Notation
If the category V is clear from context, we will often omit it, and simply
call the above a PROP.

10.4. Definition – category of PROPs
The category of V -PROPs, V -PROP, is the 2-category determined by
- the objects of V -PROP are the V -PROPs;
- the 1-morphisms from a V -PROP (P, a) to a V -PROP (Q, b) are the sym-

metric monoidal V -functors

F : P −→ Q

such that F (a) = b;
- given two 1-morphisms

F,G : (P, a) −→ (Q, b)

V -PROP(F,G) is the set of symmetric monoidal V -natural transforma-
tions α : F → G such that αa = idb.

10.5. Proposition
The 2-category V -PROP is equivalent to a 1-category. Equivalently, given
two V -PROPs (P, a) and (Q, b), the category V -PROP

(
(P, a), (Q, b)

)
is

equivalent to a set.

The following result states that given a V -PROP (P, a), and a lax sym-
metric monoidal functor F : V →W , we get a W -PROP

F (P, a) = (FP, a)

It follows from proposition 7.6.

10.6. Proposition – change of enriching category
Let F : V →W be a lax symmetric monoidal functor.
There exists a natural functor

F : V -PROP −→W -PROP

such that

V -PROP
F→W -PROP

V -SMCAT

proj
↓

F→W -SMCAT

proj
↓

commutes.

10.7. Definition – algebra for PROP
Let C be a symmetric monoidal V -category.
Given a V -PROP (P, a), the category of (P, a)-algebras in C is the category

(P, a)-alg(C) := V -SMCAT(P, C)

An object of (P, a)-alg(C) is called a (P, a)-algebra in C (or an algebra over
(P, a) in C).
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10.8. Definition – right module for PROP
Let V be a symmetric monoidal closed category.
Given a V -PROP (P, a), a right module over (P, a) is a V -functor

Pop −→ V

11. Operads and categories of operators

Let V be a symmetric monoidal category.

11.1. Observation – operads from PROPs
Every V -PROP (P, a) has an underlying V -operad, whose underlying sym-
metric sequence in V is

(
P(a⊗n, a)

)
n∈N.

The actions of the symmetric groups and the structure maps for the operad
come from the composition in P.
This construction gives a functor

Σ : V -PROP −→ operad(V )

form the category of V -PROPs to the category of operads in V .

To continue the comparison of PROPs and operads, call V a good sym-
metric monoidal category if V has all finite coproducts, and the monoidal
product on V

⊗ : V × V −→ V

is such that the functor x⊗− : V → V preserves finite coproducts for any
x ∈ obV .

11.2. Proposition
If V is a good symmetric monoidal category, the functor

Σ : V -PROP −→ operad(V )

has a (bicategorical) left adjoint

Ξ : operad(V ) −→ V -PROP

Moreover, the counit of this adjunction (which is a pseudo-natural transfor-
mation)

Ξ ◦Σ −→ idV -PROP

is an isomorphism.

11.3. Notation – category of operators
Given an operad P , the corresponding V -PROP ΞP is called the category
of operators associated with P .
A V -PROP is called a category of operators in V if it is equivalent (in the
2-category V -PROP) to the category of operators associated to some V -
operad.
The above result implies that a category of operators can be essentially
recovered (up to equivalence of PROPs) from its underlying operad.

11.4. Observation
Given a V -operad P =

(
P (n)

)
n∈N, the category of operators associated with

P has
ob(ΞP ) = N
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with generator the object 1, and monoidal structure given on objects by
addition on N.
Furthermore, for any k, l ∈ N, we have

(ΞP )(k, l) =
∐

f∈FinSet(k,l)

⊗
i∈l

P
(
f−1({i})

)
The next result says that taking algebras for an operad P is equivalent

to taking algebras over the category of operators associated with P .

11.5. Proposition
Let V be a good symmetric monoidal category, and C a symmetric monoidal
V -category.
For any V -operad P , there exists an equivalence of categories

ΞP -alg(C) −→ P -alg(C)

natural in P and C. Here, P -alg(C) denotes the category of algebras in C
over the operad P .

11.6. Observation
There is a similar equivalence between right modules over an operad, P , and
right modules over its associated category of operators, ΞP .

One of the advantages with operads is that we can push-forward algebras
along maps of operads. We state the consequence for categories of operators.

11.7. Proposition
Let V be a symmetric monoidal closed category, and C a symmetric monoidal
V -category.
Let (P, a) and (Q, b) be categories of operators in V , and f : (P, a)→ (Q, b)
a morphism of V -PROPs.
The functor

SMCAT(f, C) : (Q, b)-alg(C) −→ (P, a)-alg(C)

has a left adjoint

f∗ : (P, a)-alg(C) −→ (Q, b)-alg(C)

12. Examples of PROPs in Set and Top

We will now give a few important examples of Top-PROPs (where we
consider Top as a cartesian category). All our examples are actually cat-
egories of operators in Top, and can therefore be essentially recovered for
their underlying operads.

12.1. Example – commutative PROP
The commutative PROP, Comm, is the Set-PROP given by the cocartesian
category FinSet (i.e. the symmetric monoidal structure is given by disjoint
union), with the generator 1.
Given a symmetric monoidal category C, there is an equivalence of categories

u : Comm-alg(C) −→ CommMon(C)

between the category of Comm-algebras in C and the category of commu-
tative monoids in C.
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The equivalence u takes a Comm-algebra F : FinSet→ C to the commuta-
tive monoid F (1) in C, which is called the underlying commutative monoid
of F .

12.2. Construction – symmetric monoidal category OrdΣ
The category OrdΣ is defined by
- the objects of OrdΣ are the (small) finite sets;
- given two finite sets A and B, a morphism A→ B in OrdΣ is a function
f : A→ B together with a total order on f−1(i) for each i ∈ B.

We leave the composition in OrdΣ as an exercise to the reader.
The category OrdΣ fits canonically in a commutative diagram

Ord → OrdΣ

FinSet

proj
↓proj →

There exists a unique symmetric monoidal structure on OrdΣ such that the
functor

Ord −→ OrdΣ
is strict monoidal and the functor

OrdΣ −→ FinSet

is strict symmetric monoidal (the symmetric monoidal structure on FinSet
is given by disjoint union).
Additionally, the monoidal functor Ord → OrdΣ induces an equivalence
between OrdΣ and the free symmetric monoidal category on the monoidal
category Ord.

12.3. Example – associative PROP
The associative PROP, Ass, is the Set-PROP (OrdΣ, 1).
Given a symmetric monoidal category C, there is an equivalence of categories

u : Comm-alg(C) −→ AssMon(C)

between the category of Ass-algebras in C and the category of associative
monoids in C.
The equivalence u takes a Ass-algebra F : OrdΣ → C to the associative
monoid F (1) in C, which is called the underlying associative monoid of F .

12.4. Example – little discs PROPs
We define the little n-discs Top-PROP, Dn, to be the Top-category whose
objects are

ob(Dn) :=
{

(Dn)qk : k ∈ N
}

and such that for k, l ∈ N, the space of morphisms

Dn

(
(Dn)qk, (Dn)ql

)
is the subspace of Map

(
(Dn)qk, (Dn)ql

)
consisting of the maps

f : (Dn)qk −→ (Dn)ql

such that
- f restricted to (intDn)qk is injective;
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- the restriction of f to each disc in the disjoint union (Dn)qk is the com-
position of a translation with multiplication by a positive real number.

Composition in Dn is given by composition of maps.
The symmetric monoidal structure on Dn is given by disjoint union, and
the generator of Dn is the object Dn.
It is straightforward to check that Dn is isomorphic to the category of op-
erators associated with the usual little n-discs operad.

12.5. Example – framed little discs PROPs
The framed little n-discs PROP, DO(n)

n (respectively, DSO(n)
n ), are defined

similarly to Dn. The only difference is that we require the restriction of the
maps

f : (Dn)qk −→ (Dn)ql

to each disc in the domain to be the composition of (I) a translation, (II)
multiplication by a positive real number, and (III) an element of O(n) (re-
spectively, an element of SO(n)). Again, these PROPs are isomorphic to
the categories of operators of the usual framed little discs operads.





CHAPTER II

Internal categories

Introduction

The purpose of this chapter is to cover the constructions on topological
categories which will be required later in the text. Accordingly, this chapter
discusses internal categories and their relation to enriched categories. Most
importantly, we define the Grothendieck construction for internal presheaves
of categories, and apply it to the case of topological categories.

Summary

The present chapter is quite long, and is meant mostly as reference for
later chapters. On that note, the most relevant sections are the last two,
which deal with Grothendieck constructions and topological categories.

A quick general reference on internal categories is chapter 8 of the book
[Bor94], although it does not contain all the material necessary for our
applications.

Section 1 details the basic concepts of internal category, internal functor,
and internal natural transformation in a category with pullbacks, V . Section
2 defines the 2-category of internal categories in V , Cat(V ). Section 3 gives
examples of internal categories, including ordinary categories, and the path
category of a space X, path(X).

Section 4 gives some useful definitions relating to coproducts in finitely
complete categories. These conditions are then used in section 5 to compare
enriched categories and internal categories. In particular, section 5 defines,
under appropriate conditions, an internal category IA associated to a cate-
gory A enriched over a cartesian closed category. Inversely, it also associates
to each internal category A an enriched category Aδ.

Section 6 dwells on the concept of V -valued functor (or presheaf) on
an internal category in V . The following section 7 resumes the comparison
between enriched and internal concepts, now focusing on presheaves.

Section 8 renews the discussion of internal presheaves to define the con-
cept of internal Cat(V )-valued functors. This is the necessary background
for section 9, where the Grothendieck construction, Groth(F ), of an inter-
nal functor F : Aop → Cat(V ) is described: Groth(F ) is again an internal
category in V .

Finally, the last two sections apply the concepts introduced in this chap-
ter to the case of internal categories in Top. Section 10 gives a variation
of the Grothendieck construction for functors from an ordinary category
to Top-Cat. Section 11 briefly discusses the Grothendieck construction for
topological categories from a homotopical perspective.

27
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1. Internal categories

1.1. Definition – internal category
Let V be a category with pullbacks.
An internal category (or category object) in V is given by
- an object obA in V called the object of objects of A;
- an object morA in V called the object of morphisms of A;
- a morphism s : morA→ obA in V called the source;
- a morphism t : morA→ obA in V called the target;
- a morphism i : obA→ morA in V called the identity;
- a morphism

c : lim
(
morA

t−−→ obA
s←−− morA

)
−→ morA

called the composition.
These data are required to verify

s ◦ i = idobA

t ◦ i = idobA

and to make the three diagrams

morA←projL lim
( L︷ ︸︸ ︷
morA

t−→ obA
s←−

R︷ ︸︸ ︷
morA

) projR→ morA

obA

s

↓
← s

morA

c

↓
t → obA

t

↓

lim ( morA t−→obA
s←−morA

t−→obA
s←−morA)

c ×
obA

morA
→ lim ( morA t−→obA

s←−morA)

lim ( morA−→
t
obA←−

s
morA)

morA ×
obA

c

↓
c

→ morA

c

↓

lim ( morA t−→obA
s←−morA)

lim ( obA−→
id

obA←−
s
morA) ' →

i ×
obA

morA

→

morA

c

↓
← '

lim ( morA−→
t
obA←−

id
obA)

morA ×
obA

i

←

all commute.

1.2. Observation – opposite internal category
Given an internal category A in V , reversing the roles of the source and
target morphisms, s and t, gives a new internal category in V , Aop, called
the opposite of A. It has the same objects and morphisms as A.

1.3. Definition – internal functor
Let V be a category with pullbacks. Let A, B be internal categories in V .
An internal functor F : A→ B is given by a pair of morphisms in V

obF : obA −→ obB

morF : morA −→ morB
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such that the three diagrams

obA
obF→ obB

morA

i
↓

morF→ morB

i
↓

obA←s
morA

t→ obA

obB

obF
↓
←s

morB

morF
↓

t→ obB

obF
↓

lim
(
morA

t−→ obA
s←− morA

)
morF ×

obF
morF
→ lim

(
morB

t−→ obB
s←− morB

)

morA

c

↓
morF → morB

c

↓

all commute.

1.4. Definition – internal natural transformation
Let V be a category with pullbacks.
Let A, B be internal categories in V , and F,G : A→ B internal functors.
An internal natural transformation in V , α : F → G is a morphism

α : obA −→ obB

such that

s ◦ α = obF

t ◦ α = obG

and the following diagram commutes

morA
(α◦s,morG) → morB t×s

obB
morB

morB t×s
obB

morB

(morF,α◦t)

↓
c → morB

c

↓

2. Categories of internal categories

2.1. Proposition – 2-category of internal categories
Let V be a category with pullbacks.
The internal categories, internal functors, and internal natural transforma-
tions in V form the objects, 1-morphisms, and 2-morphisms, respectively, of
a 2-category Cat(V ).
Furthermore, Cat(V ) has pullbacks.

2.2. Observation
We leave it to the reader unfamiliarized with internal categories to define
the several compositions in Cat(V ), and to check that these indeed give a
2-category.
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2.3. Observation
The association of obA, morA to an internal category A in V extends to
functors

ob : Cat(V ) −→ V

mor : Cat(V ) −→ V

Furthermore, the source, target, and identity of internal categories give rise
to natural transformations

s : mor −→ ob

t : mor −→ ob

i : ob→ mor

Given that the previous definitions were very long, we give a short alter-
native characterization of the underlying 1-category of Cat(V ) (i.e. forget
all the 2-cells in Cat(V )).

2.4. Proposition
For each category with pullbacks V , there is an equivalence of categories
(natural in V )

[∆op, V ]pb ∼−−→ Cat(V )≤1

Here, [∆op, V ]pb denotes the full subcategory of [∆op, V ] generated by the
functors which preserve all pullbacks that exist in ∆op. In addition, Cat(V )≤1

denotes the underlying 1-category of Cat(V ).

2.5. Observation
The functor above associates to a simplicial object in V , X, which preserves
all pullbacks in ∆op, an internal category A such that

obA := X(1)

morA := X(2)

2.6. Definition – nerve functor
Any specified inverse to the equivalence in proposition 2.4 is called the nerve
functor for V :

Nerve : Cat(V )≤1 −→ [∆op, V ]pb

2.7. Proposition – transfer of internal categories
Let V , W be categories with pullbacks. Let F : V →W be a functor which
preserves all pullbacks.
There exists a natural induced functor

Cat(F ) : Cat(V ) −→ Cat(W )

which verifies

ob ◦Cat(F ) = F ◦ ob
mor ◦Cat(F ) = F ◦ mor

Moreover, Cat(F ) preserves all pullbacks.
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2.8. Observation
The functor Cat(F ) can be described quite simply on the level of the sim-
plicial objects.
The functor

[∆op, F ] : [∆op, V ] −→ [∆op,W ]
restricts to a functor

[∆op, F ] : [∆op, V ]pb −→ [∆op,W ]pb

and the diagram (where each vertical functor is induced by the equivalence
from proposition 2.4)

[∆op, V ]pb
[∆op,F ]→ [∆op,W ]pb

Cat(V )
↓

Cat(F )→ Cat(W )
↓

commutes.

2.9. Example – ordinary categories from internal categories
Let V be a SET-category with pullbacks.
Given x ∈ V , the functor

V (x,−) : V −→ SET

preserves pullbacks, and so we get a functor

Cat
(
V (x,−)

)
: Cat(V ) −→ Cat(Set)

3. Examples of internal categories

3.1. Example – usual categories
A category object in Set is the same thing as an ordinary small category.
A category object in SET is the same thing as a large category (large set
of objects and large sets of morphisms). We thus obtain equivalences of
categories

Cat(Set)
'

↪−−→ Cat
and

Cat(SET)
'

↪−−→ SET-CatSET (3a)
(recall notation from I.1.2).

3.2. Example – discrete category
Let V be a category with pullbacks.
For any object x of V , the corresponding constant simplicial object in V
gives an internal category in V , which is called the discrete category on x,
disc(x).
To be more concrete, this category verifies

ob
(
disc(x)

)
= mor

(
disc(x)

)
= x

s = t = i = idx
which also determines the composition.
We thus get a functor

disc : V −→ Cat(V )
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which actually preserves pullbacks.

3.3. Example – indiscrete category
Let V be a category with all finite limits.
Given x ∈ V , the indiscrete category on x, indisc(x) is the category deter-
mined by

ob
(
indisc(x)

)
:= x

mor
(
indisc(x)

)
:= x× x

s := proj1
t := proj2
i := diagx

which uniquely determines the composition morphism.
We thus get a functor

indisc : V −→ Cat(V )

3.4. Example – path category
Given a topological space X, we define the path category of X, path(X), to
be an internal category in Top whose objects and morphisms are

ob
(
path(X)

)
:= X

mor
(
path(X)

)
:= H(X)

where H(X) is the Moore path space of X from section I.6. The source,
target, and identity structure morphisms for path(X) are given by the maps

s : H(X) −→ X

t : H(X) −→ X

i : X −→ H(X)

defined in I.6.3. The composition in path(X) is given by concatenation of
Moore paths (see I.6.5).
This construction extends to a functor

path : Top −→ Cat(Top)

4. Coproducts in finitely complete categories

In this section, we fix a full subcategory, S, of SET closed under taking
subsets, and finite limits in SET (i.e. given any diagram F : D → S indexed
by a finite category D, there exists an object in S which is the limit of F in
SET). Equivalently, S is closed under taking subsets, and finite products
in SET.

We will discuss some notions which will be useful in the following section
to compare internal and enriched categories.

4.1. Definition
Let V be a category.
Define the category S//V by
- the objects of S//V are pairs (S, F ) where S is a set in S and F : S → V

is a functor;
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- a morphism (S, F )→ (S′, F ′) in S//V is a pair (f, α) where f ∈ S(S, S′),
and

α : F −→ F ′ ◦ f
is a natural transformation;

- given morphisms

(S, F )
(f,α)−−−→ (S′, F ′)

(g,β)−−−→ (S′′.F ′′)

in S//V , their composite is
(
g ◦ f, (β ◦ f) · α

)
.

4.2. Construction
Let V be a category with all coproducts indexed by sets in S.
There exists a functor

q : S//V −→ V

given on objects by
q(S, F ) := colim

S
F =

∐
S

F

The functor q is defined on morphisms via the functoriality of colimits.

4.3. Definition – category with disjoint coproducts
Let V be a finitely complete category which has all coproducts indexed by
sets in S.
V is said to have disjoint S-coproducts if the functor

q : S//V −→ V

preserves all finite limits.

4.4. Observation
V has disjoint S-coproducts if

q : S//V −→ V

preserves pullbacks. This condition can be restated as: given
- a diagram A

f−→ C
g←− B in S,

- functors FA : A→ V , FB : B → V , and FC : C → V ,
- natural transformations α : FA → FC ◦ f , β : FB → FC ◦ g,
the limit of the induced diagram∐

A

FA
α−−→
∐
C

FC
β←−−
∐
B

FB

is given by the coproduct∐
(a,b)∈A×

C
B

lim
(
FA(a) αa−→ FC(f(a)) = FC(g(b))

βb←− FB(b)
)

4.5. Notation
If S = FinSet, we say V has disjoint finite coproducts. If S = Set, we say
V has disjoint small coproducts. If S = SET, we say V has disjoint large
coproducts.

4.6. Examples
The categories Set, Top, and kTop have disjoint small (and finite) coprod-
ucts. The categories SET and TOP have disjoint large coproducts.
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4.7. Definition – category with strongly/totally disjoint coproducts
Let V be a finitely complete category with disjoint S-coproducts.
V is said to have strongly disjoint S-coproducts (respectively, totally disjoint
S-coproducts) if
- for each set S in S,
- and each functor F : S → V ,
the natural functor, obtained by taking the coproduct along S,

qS : [S, V ]/F −→ V/(qSF )

is full and faithful (respectively, an equivalence of categories).

4.8. Notation
As before, we use the terminology “small” and “large” to refer to the cases
of Set and SET.
In particular, if S = Set, we say V has strongly disjoint small coproducts
(or totally disjoint small coproducts).

4.9. Examples
The categories Set, Top, and kTop have totally disjoint Set-coproducts. The
categories SET and TOP have totally disjoint SET-coproducts.

4.10. Definition – connected object
Let V be a finitely complete category which has all coproducts indexed by
sets in S.
An object x of V is said to be connected over S if for each set S in S, the
natural function

S −→ V
(
x, 1qS

)
is a bijection.

4.11. Examples
The object 1 in Set (or Top, or kTop) is connected over Set. The object 1
in SET (or TOP) is connected over SET.

5. Relation between internal and enriched categories

With the definitions of the preceding section, we are ready to tackle the
passage from internal categories to enriched categories and vice-versa. We
fix again, throughout this section, a full subcategory, S, of SET closed under
taking subsets, and finite limits in SET.

5.1. Observation
Given a category with finite products, we view it as a cartesian monoidal
category (V,×, 1), where 1 ∈ V is the terminal object.

5.2. Definition – enriched categories from internal categories
Assume V is a finitely complete category.
Given an internal category A in V , we define the associated discretized
(V,×, 1)-category, Aδ:
- the objects are ob

(
Aδ
)

:= V (1, obA);
- given x, y : 1→ obA, we define Aδ(x, y) to be the pullback of

1
(x,y)−−−→ obA× obA

(s,t)←−−− morA
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- the composition in Aδ (for x, y, z ∈ obAδ)

comp : Aδ(x, y)×Aδ(y, z) −→ Aδ(x, z)

is the unique morphism for which the diagram

Aδ(x, y)×Aδ(y, z) comp→ Aδ(x, z)

morA t×s
obA

morA

proj×proj

↓
c → morA

proj

↓

commutes.

5.3. Observation
Assume now V is a finitely complete S-category.
The above construction extends to a functor (recall the notation V -CatS

from I.7.1)
(−)δ : Cat(V ) −→ V -CatS

where V is viewed as a cartesian monoidal category.

5.4. Example – topological spaces
Given an internal category, A, in Top, the set of objects of the Top-category
Aδ is the underlying set of obA.

5.5. Definition – internal categories from enriched categories
Let V be a finitely complete category with disjoint S-coproducts.
Given a (V,×, 1)-category, A, whose set of objects is in S, we define the
internalization of A, IA, to be the internal category in V determined by
- the object of objects is

ob(IA) :=
∐
obA

1 = 1q(obA)

- the object of morphisms is

mor(IA) :=
∐

(x,y)∈obA×obA

A(x, y) =
∐

x,y∈obA
A(x, y)

- the source map makes the following diagram commute for each x, y ∈ obA:

A(x, y) → 1

mor(IA)

incl

↓

∩

s→
∐
obA

1

inclx↓

∩

- the target map makes the following diagram commute for each x, y ∈ obA:

A(x, y) → 1

mor(IA)

incl

↓

∩

t→
∐
obA

1

incly↓

∩
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- the identity map makes the following diagram commute for each x ∈ obA:

1 ⊂
inclx →

∐
obA

1

A(x, x)

idx

↓
⊂ incl→ mor(IA)

i

↓

- composition in IA makes the following diagram commute∐
x,y,z∈obA

A(x, y)×A(x, z)
comp →

∐
x,z∈obA

A(x, z)

lim
(
mor(IA)

t−→ob(IA)
s←−mor(IA)

)'

↓
c → mor(IA)

wwwww
where the left vertical map is the natural map from the coproduct (which
is an isomorphism since V has disjoint S-coproducts), and the top map
is canonically obtained from composition in A.

5.6. Observation
Let V be a finitely complete category with disjoint S-coproducts.
The above construction extends to a functor (recall the notation V -CatS

from I.7.1)
I : V -CatS −→ Cat(V )

where V is viewed as a cartesian monoidal category.

5.7. Proposition – correspondence between enriched and internal categories
Let V be a finitely complete S-category with disjoint S-coproducts.
There is a canonical natural transformation ΓV from the identity functor on
V -CatS to the composition

V -CatS
I−−→ Cat(V )

(−)δ−−−→ V -CatS

If the object 1 of V is connected over S, then ΓV is a natural isomorphism.

5.8. Proposition – correspondence between enriched and internal categories
Let V be a finitely complete category with strongly disjoint S-coproducts.
If the object 1 of V is connected over S then the functor

I : V -CatS −→ Cat(V )

is a local isomorphism of 2-categories (i.e. induces an isomorphism of cate-
gories

I : V -CatS(A,B) −→ Cat(V )(IA, IB)

for all A, B in V -CatS).

We finish with a simple case in which the transfer of internal categories
is compatible with the transfer of enriched categories.

5.9. Proposition
Let V , W be finitely complete S-categories, and F : V → W a functor
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which preserves all finite limits.
Assume furthermore that F induces a bijection

F : V (1, x) '−−→W (1, Fx)

for any object x in V .
Then there is a canonical natural isomorphism which makes the following
diagram commute

Cat(V )
(−)δ→ V -CatS

Cat(W )

Cat(F )

↓
(−)δ→W -CatS

F

↓

In particular, for each internal category A in V , there exists a canonical
isomorphism (

Cat(F )(A)
)δ = F

(
Aδ
)

6. Internal presheaves

We have defined in 1.3 and 1.4 the notion of internal functor and internal
natural transformation in V . These gives us, for any internal categories A
and B, a category of internal functors Cat(V )(A,B) (see proposition 2.1).
One might try to extract from this a canonical notion of presheaf on an
internal category, analogous to the notion of Set-valued functors on a small
category. Unfortunately, there is (in general) no canonical internal category
to take as the target for internal functors. In this section we will define the
notion of V -valued functors on an internal category in V which will play the
desired role of presheaves on an internal category.

6.1. Definition – internal V -valued functor
Let V be a category with pullbacks, and A an internal category in V .
An internal V -valued functor on A, F : A → V , is a triple F = (P, p0, p1)
where
- P is an object of V ;
- p0 : P → obA is a morphism in V ;
- p1 is a morphism in V

p1 : lim
(
P

p0−→ obA
s←− morA

)
−→ P

These data are required to make the three diagrams

lim
(
P

p0−→ obA
s←− morA

) p1→ P

morA

proj

↓
t → obA

p0

↓

lim
(
P

p0−→ obA
id←− obA

)

lim
(
P

p0−→ obA
s←− morA

)idP ×
obA

i

↓

p1
→ P

'

→
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lim
(
P
p0−→obA

s←−morA
t−→obA

s←−morA
)

p1 ×
obA

morA
→ lim

(
P
p0−→obA

s←−morA
)

lim
(
P
p0−→obA

s←−morA
)P ×

obA
c

↓

p1
→ P

p1

↓

commute.

6.2. Definition – internal V -valued natural transformation
Let V be a category with pullbacks, A an internal category in V .
Additionally, assume F,G : A → V are internal V -valued functors, with
F = (P, p0, p1) and G = (Q, q0, q1).
An internal V -valued natural transformation on A, α : F → G is a mor-
phism α : P → Q in V such that

q0 ◦ α = p0

and the diagram

lim
(
P

p0−→ obA
s←− morA

) p1→ P

lim
(
Q

q0−→ obA
s←− morA

)α ×
obA

morA
↓

q1→ Q

α

↓

commutes.

6.3. Example – Yoneda presheaf
Let V be a finitely complete category, and A an internal category in V .
Given a morphism x : 1 → obA (“an object of A”), we define the Yoneda
presheaf of x

YonA(x) : Aop −→ V

to be the triple (P, p0, p1), where P is the pullback of

1 x−−→ obA
t←−− morA

and p0 is the restriction of s to P , and p0 is induced from the composition,
c, in A.
This construction extends to a functor (recall example 2.9)

YonA : Cat
(
V (1,−)

)
(A) −→ Cat(V )(Aop, V )

6.4. Proposition – category of internal V -valued functors
Let V be a category with pullbacks, and A an internal category in V .
The internal V -valued functors on A, and the internal V -valued natural
transformations on A form the objects and the morphisms, respectively, of
a category Cat(V )(A, V ).

6.5. Observation
The composition of internal natural transformations is just given by com-
posing the corresponding morphisms in V .

6.6. Notation
We call the category Cat(V )(A, V ) the category of internal V -valued func-
tors on A. We denote it by Cat(V )(A, V ) in analogy with the category
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of internal functors Cat(V )(A,B) between internal categories A, B in V ,
despite V not being an internal category in V .

6.7. Example – internal Set-valued functors
Under the identification of an internal category in Set with an ordinary small
category (example 3.1), we obtain an isomorphism

Cat(Set)(A,Set) ' [A,Set]

for any category A internal to Set.

6.8. Construction
Let V be a category with pullbacks.
Assume A, B are internal categories in V , and F : A → B is an internal
functor. Then we get an induced functor

Cat(V )(F, V ) : Cat(V )(B, V ) −→ Cat(V )(A, V )

which we now describe on objects. Suppose (P, p0, p1) is an object of
Cat(V )(B, V ). Then the internal V -valued functor

(Q, q0, q1) =
(
Cat(V )(F, V )

)
(P, p0, p1)

on A is determined by
- Q is the pullback of

obA
obF−−−→ obB

p0←−− P
and q0 : Q→ obA is the canonical projection;

- the morphism q1 makes the diagram

morA
t → obA

lim
(
Q

q0−→ obA
s←− morA

)proj

↑

q1→ Q

q0

↑

lim
(
P

p0−→ obB
s←− morB

)proj ×
obF

morF

↓
p1→ P

proj

↓

commute.

This construction is the basis for the next proposition.

6.9. Proposition – functoriality of internal presheaves
Let V be a category (in CAT) with pullbacks.
There is a functor

Cat(V )(−, V ) : Cat(V )op −→ CAT

which associates to an internal category in V , A, the category Cat(V )(A, V )
of internal V -valued functors on A.

6.10. Observation
We leave it to the reader to supply the remaining ingredients for the functor
declared in the above proposition.
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6.11. Notation
Given an internal functor f : A→ B, we suggestively denote the functor

Cat(V )(f, V ) : Cat(V )(B, V ) −→ Cat(A, V )

by
− ◦ f : Cat(V )(B, V ) → Cat(V )(A, V )

F → F ◦ f
There is one extra piece of functoriality for internal presheaves, induced

by functors V →W which preserve pullbacks.

6.12. Proposition
Let V , W be categories with pullbacks, and F : V → W a functor which
preserves all pullbacks.
For each category object A in V , there exists a functor

Cat(F ) : Cat(V )(A, V ) −→ Cat(W )
(
Cat(F )(A),W

)
which associates to an internal V -valued functor (P, p0, p1) on A, the W -
valued functor on Cat(F )(A) (see proposition 2.7)

Cat(F )(P, p0, p1) := (F (P ), F (p0), F (p1))

6.13. Observation
The functors in the proposition are actually natural in A, defining a natural
transformation

Cat(F ) : Cat(V )(−, V ) −→ Cat(W )
(
Cat(F )(−),W

)
between functors Cat(V )op → CAT

7. Relation between external presheaves and internal presheaves

We fix, throughout this section, a full subcategory, S, of SET closed
under taking subsets, and finite limits in SET.

7.1. Definition – enriched presheaves from internal presheaves
Assume V is a finitely complete, cartesian closed category, with internal
morphism objects given by

homV (−,−) : V op × V −→ V

Let A be an internal category in V .
Given an internal V -valued functor on A, F = (P, p0, p1), we define the
discretized (V,×, 1)-functor

F δ : Aδ −→ V

- given x ∈ ob
(
Aδ
)

= V (1, obA), let

F δ(x) := lim
(
1 x−→ obA

p0←− P
)

- for any x, y ∈ ob
(
Aδ
)
, the map

F δ : Aδ(x, y) −→ homV

(
F δ(x), F δ(y)

)
is adjoint to the unique morphism

F δ : F δ(x)×Aδ(x, y) −→ F δ(x)
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for which the diagram

F δ(x)×Aδ(x, y)
F δ → F δ(x)

lim
(
P

p0−→ obA
s←− morA

)proj×proj
↓

p1→ P

proj

↓

commutes.

7.2. Observation
Assume now V is a finitely complete, cartesian closed S-category, and A is
an internal category in V .
The above construction extends to a functor (recall observation 5.3)

(−)δ : Cat(V )(A, V ) −→ V -CatS

(
Aδ, V

)
where V is viewed as a cartesian monoidal category.
Furthermore, this functor is natural in A, with respect to the functor from
proposition 8.8, Cat(V )(−, V ).

7.3. Definition – internal presheaves from enriched presheaves
Let V be a finitely complete, cartesian closed category with disjoint S-
coproducts.
Let A be a (V,×, 1)-category whose set of objects is in S, and

F : A −→ V

a (V,×, 1)-functor.
We define the internalization of F , to be the internal V -valued functor on
IA

IF = (P, p0, p1) : IA −→ V

- P is defined as

P :=
∐

x∈obA
F (x)

- p0 is the morphism (where for any y ∈ V , ! ∈ V (y, 1) is the unique element)∐
x∈obA

! :
∐

x∈obA
F (X) −→

∐
x∈obA

1 = ob(IA)

- p1 is the unique map for which∐
x,y∈obA

F (x)×A(x, y)
F →

∐
y∈obA

F (y)

lim
(
P

p0−→ ob(IA) s←− mor(IA)
)'

↓
p1→ P

wwww
commutes, where the top map is determined by the functor F on mor-
phisms, and the left vertical map is the natural map from the coproduct
(which is an isomorphism because V has disjoint S-coproducts).
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7.4. Observation
Let V be a finitely complete cartesian closed category with disjoint S-
coproducts.
The above construction extends to a functor

I : V -CatS(A, V ) −→ Cat(V )(IA, V )

where V is viewed as a cartesian monoidal category.
Additionally, this functor is natural with respect to A (recall proposition 8.8
and observation 5.6).

7.5. Proposition – correspondence between enriched and internal presheaves
Let V be a finitely complete, cartesian closed S-category with disjoint S-
coproducts.
If A is a V -category such that obA is in S, then the composition

V -CatS(A, V ) I−−→ Cat(V )(IA, V )
(−)δ−−−→ V -CatS

(
(IA)δ, V

)
V -CatS(ΓVA ,V )
−−−−−−−−−−→ V -CatS(A, V )

is the identity functor (where ΓV appearing in the last arrow is the natural
transformation from proposition 5.7).

7.6. Proposition – correspondence between enriched and internal presheaves
Let V be a finitely complete category with strongly disjoint S-coproducts.
If A is a V -category such that obA is in S, the functor

I : V -CatS(A, V ) −→ Cat(V )(A, V )

is full and faithful. Moreover, it is an equivalence of categories if V has
totally disjoint S-coproducts.

8. Internal presheaves of categories

In section 6 we discussed V -valued functors on an category object in
V . However, our ultimate goal is to define Grothendieck constructions of
functors with values in categories. With that in mind, we now define the
concept of Cat(V )-valued functors on internal categories. For that purpose,
recall the definition of the discrete internal category from example 3.2.

8.1. Definition – internal Cat(V )-valued functor
Let V be a category with pullbacks, and A an internal category in V .
An internal Cat(V )-valued functor on A

F : A −→ Cat(V )

is a triple F = (P, p0, p1) where
- P is an object of Cat(V );
- p0 : P → disc(obA) is a morphism in Cat(V );
- p1 is a morphism in Cat(V )

p1 : lim
(
P

p0−→ disc(obA)
disc(s)←−−−− disc(morA)

)
−→ P
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These data are required to make the three diagrams

lim
(
P

p0−→ disc(obA)
disc(s)←−−−− disc(morA)

) p1 → P

disc(morA)

proj

↓
disc(t) → disc(obA)

p0

↓

lim
(
disc(P )

p0−→ disc(obA) id←− disc(obA)
)

lim
(
P

p0−→ disc(obA) disc(s)←−−−− disc(morA)
)idP ×

disc(obA)
disc(i)

↓

p1
→ P

'

→

lim
(
P
p0−→disc(obA)

disc(s)←−−−disc(morA)
disc(t)−−−→disc(obA)

disc(s)←−−−disc(morA)
)

lim
(
P
p0−→disc(obA)

disc(s)←−−−disc(morA)
)

P ×
disc(obA)

disc(c)

←
lim
(
P
p0−→obA

disc(s)←−−−disc(morA)
)

p1 ×
disc(obA)

disc(morA)

→

P

p1

←
p1

→
commute.

This is a very long definition, so now we restate it in a much more
compact form.

8.2. Observation – restatement of definition
This definition is a copy of the definition 6.1 of an internal V -valued functor
on A: we have only replaced obA, morA, and V by disc(obA), disc(morA),
and Cat(V ), respectively.
In other words, an internal Cat(V )-valued functor on an internal category
A in V

F : A −→ Cat(V )
is exactly the same as a Cat(V )-valued functor on the category object
disctA in Cat(V )

F : disctA −→ Cat(V )
i.e. an object of the already defined category

F ∈ Cat
(
Cat(V )

)(
disctA,Cat(V )

)
Here, we define

disct := Cat(disc) : Cat(V ) −→ Cat
(
Cat(V )

)
(where Cat(disc) is the functor from proposition 2.7), or more explicitly

ob(disctA) = disc(obA)

mor(disctA) = disc(morA)

so disctA is not the discrete (“constant”) category object discA in Cat(V ),
but a “transposed” version of it (which is not discrete in general).



44 II. INTERNAL CATEGORIES

In conclusion, we have almost reduced the above definition 8.1 to a particular
case of the definition 6.1 of internal presheaf. There is only one oversight
in this discussion: the category Cat(V ) is a 2-category, not a 1-category.
Therefore, the definitions of internal category and internal presheaf do not
immediately apply to Cat(V ). One way to rectify this (which is sufficient
for our needs) is to consider instead the underlying 1-category Cat(V )≤1

of Cat(V ) (forget the 2-morphisms). A more satisfactory solution is to
generalize the preceding definitions to the case of internal categories in 2-
categories, thus allowing for the case of Cat(V ). We will adopt the first
solution, but the reader should note that it is possible to remove all the
superscripts “≤ 1” in what follows by generalizing our definitions to the
case of 2-categories.

8.3. Observation – transposition in Cat
(
Cat(V )

)
The definition of disct in the previous remark reflects a fundamental sym-
metry in Cat(Cat(V )) which, informally, switches the two symbols “Cat”.
More precisely, there is a transposition functor (which is an isomorphism of
categories)

(−)t : Cat
(
Cat(V )≤1

)≤1 −→ Cat
(
Cat(V )≤1

)≤1

that generalizes the transposition of double categories: small double cate-
gories are the same as objects of Cat(Cat(Set)).
This transposition functor verifies a commutative diagram

Cat(V )≤1 disc→ Cat
(
Cat(V )≤1

)≤1

Cat
(
Cat(V )≤1

)≤1

(−)t

↓disct →

8.4. Definition – ob and mor of Cat(V )-valued presheaf
Assume V is a category with pullbacks. Let

F = (P, p0, p1) : A −→ Cat(V )

be a Cat(V )-valued functor on the category object A in V .
We define the internal V -valued functors on A

obF := (obP, ob p0, ob p1)

morF := (morP, mor p0, mor p1)

Using the restatement 8.2 of the definition, the discussion in section 6
applies immediately to internal Cat(V )-valued functors on category objects
in V .

8.5. Definition – internal Cat(V )-valued natural transformation
Let V be a category with pullbacks, A an internal category in V .
Additionally, assume F,G : A → Cat(V ) are internal Cat(V )-valued func-
tors.
An internal Cat(V )-valued natural transformation on A

α : F → G
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is defined to be an internal natural transformation between the Cat(V )-
valued functors F,G : disctA→ Cat(V ) (on the internal category disctA
in Cat(V )≤1).

8.6. Definition – category of internal Cat(V )-valued functors
Let V be a category with pullbacks, and A an internal category in V .
The 2-category of internal Cat(V )-valued functors on A, Cat(V )(A,Cat(V )),
is defined to be

Cat(V )
(
A,Cat(V )

)
:= Cat

(
Cat(V )≤1

)(
disctA,Cat(V )≤1

)
8.7. Observation
One can easily extend the category Cat(V )(A,Cat(V )) to a 2-category by
adding natural transformations between internal categories over disc(obA).
This comes essentially for free if we generalize our definitions to allow for
internal categories in 2-categories. We could then drop the superscripts
“≤ 1” in the above definition.

8.8. Proposition – functoriality of internal presheaves of categories
Let V be a category (in CAT) with pullbacks.
There is a functor

Cat(V )
(
−,Cat(V )

)
: Cat(V )op −→ CAT

which associates to an internal category in V , A, the category of internal
Cat(V )-valued functors on A, Cat(V )

(
A,Cat(V )

)
.

8.9. Notation
Analogously to notation 6.11, given an internal functor f : A → B, we
suggestively denote the functor Cat(V )

(
f,Cat(V )

)
by

− ◦ f : Cat(V )
(
B,Cat(V )

)
→ Cat(V )

(
A,Cat(V )

)
F → F ◦ f

8.10. Example – discrete Cat(V )-valued presheaves
Assume V is a category with pullbacks, and A is a category object in V .
Given a V -valued internal functor on A

F : A −→ V

with F = (P, p0, p1), there is an associated discrete Cat(V )-valued internal
functor on A

disc(F ) : A −→ Cat(V )

with disc(F ) := (disc(P ), disc(p0), disc(p1)).
This extends to a functor

disc : Cat(V )(A, V ) −→ Cat(V )
(
A,Cat(V )

)
which is natural in A.

8.11. Example – usual functors into Cat
Recall from example 3.1 that an internal category in Set is the same as a
small category.
An internal Cat(Set)-valued functor on a small category A is then the same
as an ordinary functor A→ Cat.
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We finish this section by stating a result on transfer of internal category-
valued functors across functors F : V → W which preserve pullbacks. It is
a consequence of propositions 6.12 and 2.7.

8.12. Proposition
Let V , W be categories with pullbacks, and F : V → W a functor which
preserves all pullbacks.
For each category object A in V , there exists a functor (recall proposition
2.7)

Cat(F ) : Cat(V )
(
A,Cat(V )

)
−→ Cat(W )

(
Cat(F )(A),Cat(W )

)
which associates to an internal Cat(V )-valued functor (P, p0, p1) on A, the
Cat(W )-valued functor on Cat(F )(A)

Cat(F )(P, p0, p1) :=
(
Cat(F )(P ),Cat(F )(p0),Cat(F )(p1)

)
8.13. Observation
The functors in the proposition are actually natural in A, defining a natural
transformation

Cat(F ) : Cat(V )
(
−,Cat(V )

)
−→ Cat(W )

(
Cat(F )(−),Cat(W )

)
between functors Cat(V )op → CAT

9. Grothendieck construction

The last section introduced Cat(V )-valued internal functors. With these,
we can define a sufficiently general Grothendieck construction for our pur-
poses. Recall the definition of the opposite of an internal category from
observation 1.2.

9.1. Definition – Grothendieck construction
Assume V is a category with pullbacks, A is a category object in V , and

F = (P, p0, p1) : Aop −→ Cat(V )

is an internal Cat(V )-valued functor on Aop.
The Grothendieck construction of F , Groth(F ), is the internal category in
V defined by:
- the objects are ob

(
Groth(F )

)
:= obP

- the object of morphisms mor
(
Groth(F )

)
is the limit of

morP
t−−→ obP

ob p1←−−− lim
(
morA

t−→ obA
ob p0←−−− obP

)
- the source for Groth(F )

s : mor
(
Groth(F )

)
−→ ob

(
Groth(F )

)
is given by the composition

mor
(
Groth(F )

) proj−−−→ morP
s−−→ obP

- the target for Groth(F )

t : mor
(
Groth(F )

)
−→ ob

(
Groth(F )

)
is given by the composition

mor
(
Groth(F )

) proj−−−→ lim
(
morA

t−→ obA
ob p0←−−− obP

) proj−−−→ obP
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- the identity for Groth(F )

i : obP = ob
(
Groth(F )

)
−→ mor

(
Groth(F )

)
is the unique morphism such that

lim
(
obA

t−→obA
ob p0←−−−obP

)
i ×
obA

morA
→ lim

(
morA

t−→obA
ob p0←−−−obP

)

obP

'

↑

i → mor
(
Groth(F )

)proj

↑

morP

proj

↓i

→

commutes.
- the composition for Groth(F )

c : lim
(
mor(Groth(F ))

t−→obP
s←−mor(Groth(F ))

)
−→ mor

(
Groth(F )

)
is the unique morphism such that

lim
(
mor(Groth(F ))

t−→obP
s←−mor(Groth(F ))

) c → mor
(
Groth(F )

)

lim
(
mor(Groth(F ))

t−→obP
s←−morP

)id ×
obP

proj

↓
morP

proj

↓

'

lim


lim
(
morA

t−→obA
mor p0←−−−morP

)

morP
t
→ obP

s◦(mor p1)

↓

 id×
id
mor p1
→ lim

 morP

morP
t→ obP

s↓


c

↑

and

lim
(
mor(Groth(F ))

t−→obP
s←−mor(Groth(F ))

) c → mor
(
Groth(F )

)

lim
(
morA

t−→obA
s←−morA

t−→obA
ob p0←−−−obP

)proj

↓

c ×
obA

obP
→ lim

(
morA

t−→obA
ob p0←−−−obP

)proj

↓

both commute.

9.2. Observation
We have defined the Grothendieck construction of Cat(V ) valued functors
on Aop. We chose Aop because that is the case which will appear in our
applications.

We will leave it to the reader to verify the claims in the following propo-
sitions.



48 II. INTERNAL CATEGORIES

9.3. Proposition
Assume V is a category with pullbacks, A is a category object in V , and
F : Aop → Cat(V ) is an internal Cat(V )-valued functor on Aop.
Then there is a natural internal functor

π : Groth(F ) −→ A

9.4. Proposition
Let V be a category with pullbacks, and A a category object in V .
There is a natural functor

Groth : Cat(V )
(
Aop,Cat(V )

)
−→ Cat(V )/A

which associates to each internal Cat(V )-valued functor F : Aop → Cat(V ),
the morphism

π : Groth(F ) −→ A

9.5. Notation
We will, for simplicity, also denote by Groth the composition

Cat(V )
(
Aop,Cat(V )

) Groth−−−−→ Cat(V )/A
proj−−−→ Cat(V )

9.6. Proposition – naturality of Grothendieck construction on base category
Let V be a category with pullbacks.
If f : A → B is an internal functor between internal categories in V , there
is a canonical natural transformation

Cat(V )
(
Aop,Cat(V )

)
←−◦f

op

Cat(V )
(
Bop, Cat(V )

)
Groth(f)

=⇒
Cat(V )/A

Groth

↓

f◦−
→ Cat(V )/B

Groth

↓

Moreover, these natural transformations compose in the obvious way (when
one places two of these diagrams side by side).

9.7. Construction
In particular, given

f : A −→ B

an internal functor, we have a natural transformation

Cat(V )
(
Aop,Cat(V )

)
←−◦f

op

Cat(V )
(
Bop, Cat(V )

)
Groth(f)=⇒

Cat(V )

Groth

←
Groth

→

So if

F : Aop −→ Cat(V )

G : Bop −→ Cat(V )

are internal Cat(V )-valued functors, and

α : F −→ G ◦ fop
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is an internal Cat(V )-valued natural transformation, we have a canonical
internal functor

Groth(f, α) : Groth(F ) −→ Groth(G)

given by the composition

Groth(F )
Groth(α)−−−−−−→ Groth(G ◦ fop)

Groth(f)−−−−−−→ Groth(G)

Moreover, the diagram

Groth(F )
Groth(f,α)→ Groth(G)

A

π

↓
f → B

π

↓

commutes.

The last result of this section shows that Grothendieck constructions are
compatible with transfer along functors V →W which preserve pullbacks.

9.8. Proposition
Let V , W be categories with pullbacks, and F : V → W a functor which
preserves all pullbacks.
For each internal category A in V , the following diagram commutes up to
canonical natural isomorphism

Cat(V )
(
Aop,Cat(V )

) Groth → Cat(V )/A

Cat(W )
(
Cat(F )(A)op,Cat(W )

)Cat(F ) 8.12

↓
Groth→ Cat(W )/

(
Cat(F )(A)

)Cat(F )

↓

In particular, for each internal Cat(V )-valued functor f : Aop → Cat(V ),
there is a canonical isomorphism

Cat(F )
(
Groth(f)

)
= Groth

(
Cat(F )(f)

)
10. Variation on Grothendieck construction

We will now deal with the case of topological categories. First we define
a few variations of the Grothendieck construction.

10.1. Construction
If A is a category in Set-CAT, and

F : Aop −→ Cat(Top)

there is a canonical associated internal Cat(TOP)-functor

IF : IAop −→ Cat(TOP)

where IA is the category internal to TOP associated with the Top-category
C. This internal functor is not an instance of our previous constructions.
Instead, IF := (P, p0, p1) is such that

P :=
∐

a∈obA
F (a)
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and
p0 : P −→ disc(obA)

is the canonical projection, and p1 is obtained from the functoriality of F .
Thus we get a canonical (full faithful) inclusion

[Aop,Cat(Top)] ↪−→ Cat(TOP)
(
IAop,Cat(TOP)

)
which is natural in A.
Applying the Grothendieck construction, we obtain

[Aop,Cat(Top)] ↪−→ Cat(TOP)
(
IAop,Cat(TOP)

) Groth−−−−→ Cat(TOP)/(IA)

which we call

Groth : [Aop,Cat(Top)] −→ Cat(TOP)/(IA)

10.2. Construction – variation of Grothendieck construction
We will only apply the previous construction to functors

F : Aop −→ Top-Cat

thus we define a new Grothendieck construction

Groth : [Aop,Top-Cat] −→ Top-CAT/A

by the composite

[Aop,Top-Cat]
[Aop,I]−−−−−→ [Aop,Cat(Top)]
Groth−−−−→ Cat(TOP)/(IA)
(−)δ−−−→ TOP-CAT/(IA)δ

(ΓA)−1◦−−−−−−−→
5.7

TOP-CAT/A

which can be seen to factor through Top-Cat/A.

10.3. Notation
As before, we will also denote by Groth the functor

[Aop,Top-Cat] Groth−−−−→ Top-CAT/A
proj−−−→ Top-CAT

We leave here a description of the categories obtained through this con-
struction.

10.4. Proposition – description of the Grothendieck construction
Let A be a category in Set-CAT, and F : Aop → Top-Cat a functor.
Then the Grothendieck construction of F verifies:
- the set of objects of Groth(F ) is

ob
(
Groth(F )

)
=

∐
x∈obA

ob
(
F (x)

)
- given x, y ∈ obA, a ∈ obF (x), and b ∈ obF (y), we have

Groth(F )(a, b) =
∐

f∈A(x,y)

F (x)
(
a, F (f)(b)

)
10.5. Observation
This description is natural with respect to A and F .



11. HOMOTOPICAL PROPERTIES OF GROTHENDIECK CONSTRUCTION 51

10.6. Construction – naturality of variation of Grothendieck construction
Given a functor f : A→ B, we have a natural transformation

[Aop,Top-Cat] ←−◦f
op

[Bop,Top-Cat]

Groth(f)

=⇒
Top-CAT/A

Groth

↓

f◦−
→ Top-CAT/B

Groth

↓

obtained from proposition 9.6.
Consequently, given functors

F : Aop −→ Top-Cat
G : Bop −→ Top-Cat

and a natural transformation

α : F −→ G ◦ fop

we have an induced Top-functor

Groth(f, α) : Groth(F ) −→ Groth(G)

given by the composition

Groth(F )
Groth(α)−−−−−−→ Groth(G ◦ fop)

Groth(f)−−−−−−→ Groth(G)

This is analogous to construction 9.7, and indeed can be recovered from it.

11. Homotopical properties of Grothendieck construction

We now change direction and turn to internal presheaves of categories
on native category objects in Top. Our main example of Cat(Top)-valued
internal presheaves are obtained by taking the path category of a Top-valued
internal presheaf, which we now proceed to describe. It involves defining a
fibrewise version of the path category from example 3.4.

11.1. Definition – path category presheaf
Let A be a category internal to Top, and F = (P, p0, p1) : A −→ Top an
internal Top-valued functor.
We define the path category of F to be the Cat(Top)-valued internal functor

path ◦ F : A −→ Cat(Top)

to be the triple (Q, q0, q1) determined by:
- the objects of Q are obQ := P ;
- morQ is the subspace of H(P ) defined by

morQ := {(γ, τ) ∈ H(P ) : p0 ◦ γ is constant}

- the source s : morQ→ obQ is the composition

morQ ↪−→ H(P ) s−−→ P

- the target t : morQ→ obQ is the composition

morQ ↪−→ H(P ) t−−→ P
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- the identity i : obQ→ morQ makes the square

obQ
i→ morQ

P

wwwwww
i→ H(P )

incl
↓

∩

commute.
- the composition is given by concatenation of paths (denoted cc), i.e.

lim
(
morQ

t−→ obQ
s←− morQ

) c→ morQ

lim
(
H(P ) t−→ P

s←− H(Q)
)incl×

P
incl
↓

∩

cc→ H(P )

incl

↓

∩

commutes.
- the map ob q0 is just p0;
- the map mor q0 is the composition

morQ ↪−→ H(P ) s−−→ P
p0−−→ obA

- the map ob q1 is just p1;
- the map mor q1 is defined by (where the pullback is the appropriate one)

mor q1 : morQ ×
obA

morA → morQ(
(γ, τ), f

)
→
(
p1(γ(−), f), τ

)
11.2. Proposition – functoriality of path category presheaf
Let A be a category object in Top.
There is a functor

path ◦ − : Cat(Top)(A,Top) −→ Cat(Top)
(
A,Cat(Top)

)
which associates to a Top-valued internal functor F : A → Top the path
category of F , path ◦ F .

11.3. Proposition – naturality of path category presheaf
Let f : A → B be a morphism in Cat(Top). For each internal Top-valued
functor

F : B −→ Top
we have a natural isomorphism

(path ◦ F ) ◦ f = path ◦ (F ◦ f)

11.4. Observation
As a consequence of proposition 8.8, we conclude that path ◦ − extends to
a natural transformation

path ◦ − : Cat(Top)(−,Top) −→ Cat(Top)
(
−,Cat(Top)

)
between functors Cat(Top)op → Set-CAT.

We will finish this chapter with a few homotopical properties of the
categories obtained by taking the Grothendieck construction of a Cat(Top)-
valued presheaf.
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11.5. Definition – fibrant internal category in Top
Let A be an internal category in Top.
We say A is fibrant if the map

(s, t) : morA −→ obA× obA

is a Hurewicz fibration.

The relevance of this fibrancy condition is explained by the next result.

11.6. Proposition
Let F : A→ B be a morphism in Cat(Top).
If A and B are fibrant, and the square

morA
morF → morB

obA× obA

(s,t)

↓
obF×obF→ obB × obB

(s,t)

↓

is homotopy cartesian, then the Top-functor

F δ : Aδ −→ Bδ

is a local homotopy equivalence.

We can now give simple conditions for Grothendieck constructions to be
fibrant internal categories in Top.

11.7. Proposition – fibrancy of Grothendieck construction
Let A be a category object in Top, and

F = (P, p0, p1) : Aop −→ Cat(Top)

an internal Cat(Top)-valued functor.
Then Groth(F ) is fibrant if the maps

(s, t) : morP −→ obP × obP

t : morA −→ obA

are Hurewicz fibrations.

11.8. Corollary
Let A be a small Top-category, and F : IAop −→ Top an internal Top-
valued functor.
The category Groth(path ◦ F ) is fibrant.

Now we give a description of the morphism spaces in Groth(path ◦ F )δ.

11.9. Definition – value of internal Top-valued functor at object
Let A be an internal category in Top, and

F = (P, p0, p1) : A −→ Top

an internal Top-valued functor.
If x ∈ obA, we define the value of F at x, F (x), to be the pullback of

1 x−−→ obA
p0−−→ P
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11.10. Construction
The map p1 induces maps

F : Aδ(x, y)× F (x) −→ F (y)

which we denote simply by F to analogize with the case of external functors.

11.11. Proposition
Let A be an internal category in Top, and F : Aop −→ Top a Top-valued
functor.
Let x, y ∈ obA, a ∈ F (x), and b ∈ F (y).
The topological space

(
Groth(path ◦ F )

)δ(a, b) is the limit of

Aδ(x, y)
F (−,b)−−−−→ F (x) t←−− H(F (x)) s−−→ F (x) a←−− 1

In particular, there is a canonical homotopy equivalence(
Groth(path ◦ F )

)δ(a, b) ∼−−→ ho fiba
(
F (−, b) : Aδ(x, y) −→ F (x)

)
induced by reparametrization of Moore paths (see I.6.6 and I.6.7).

The next results give conditions under which a functor between two
Grothendieck constructions induces a local equivalence on the discretized
categories.

11.12. Proposition
Let f : A→ B be a morphism in Cat(Top). Let

F : Aop −→ Top
G : Bop −→ Top

be internal Top-valued functors, and α : F → G ◦ fop be an internal natural
transformation.
The functor (see construction 9.7)

Groth(f, path ◦ α)δ : Groth(path ◦ F )δ −→ Groth(path ◦G)δ

is a local homotopy equivalence if for all x, y ∈ obA and a ∈ F (y), the
square

Aδ(x, y)
fδ→ Bδ

(
f δx, f δy

)

F (x)

F (−,a)

↓
α → G

(
f δx

)G(−,αa)

↓

is homotopy cartesian.

Sketch of proof:
This result follows from the natural homotopy equivalence in proposition

11.11.
End of proof
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11.13. Proposition
Let f : A→ B be a morphism in Cat(Top). Also, let

F = (P, p0, p1) : Aop −→ Cat(Top)

G = (Q, q0, q1) : Bop −→ Cat(Top)

be internal Cat(Top)-valued functors, and α : F → G ◦ fop be an internal
natural transformation.
Assume that the maps

t : morP −→ obP

t : morQ −→ obQ

are Hurewicz fibrations and homotopy equivalences.
The functor (see construction 9.7)

Groth(f, α)δ : Groth(F )δ −→ Groth(G)δ

is a local homotopy equivalence if Groth(F ), Groth(G) are fibrant and the
square

lim
(
morA

t−→ obA
ob p0←−−− obF

) (ob p1,proj)→ obP × obP

lim
(
morB

t−→ obB
ob q0←−−− obQ

)mor f ×
ob f

obα

↓
(ob q1,proj)→ obQ× obQ

obα×obα

↓

is homotopy cartesian.

11.14. Corollary
Let f : A→ B be a morphism in Top-Cat. Also, let

F = (P, p0, p1) : IAop −→ Cat(Top)

G = (Q, q0, q1) : IBop −→ Cat(Top)

be internal Cat(Top)-valued functors, and α : F → G◦(If)op be an internal
natural transformation.
Assume that the maps

s, t : morP −→ obP

s, t : morQ −→ obQ

are Hurewicz fibrations and homotopy equivalences (note that s is a homo-
topy equivalence if and only if t is).
The functor (see construction 9.7)

Groth(If, α)δ : Groth(F )δ −→ Groth(G)δ

is a local homotopy equivalence if the square (recall definition 8.4)

A(x, y)× (obF )(y)
(obF,proj) → (obF )(x)× (obF )(y)

B(fx, fy)× (obG)(fy)

f×obα
↓

(obG,proj)→ (obG)(fx)× (obG)(fy)

obα×obα
↓

is homotopy cartesian for all x, y ∈ obA.





CHAPTER III

Categories of sticky configurations

Introduction

This chapter introduces the first interesting construction in this text.
To each space X, we associate a topological category M(X). The objects
of M(X) are finite subsets of X. The morphisms of M(X) are “sticky ho-
motopies”, so called because they are homotopies in which any two points
stick together when they collide.

The construction M(X) gives a very concrete model for categories which
parametrize algebraic structures like En-algebras, as we will see later in
chapter VII. Also, it allows us to recover topological Hochschild homology
in the case of X = S1, as we will see in the next chapter IV. Putting
these two observations together is the motivation for chapter IX where we
define an invariant of En-algebras which generalizes topological Hochschild
homology, and is related to M(X).

Summary

The first three sections in this chapter lay out a formalism for con-
structing spaces and categories of sticky homotopies, as mentioned in the
introduction. Section 1 defines the notion of sticky homotopy for a func-
tor C → Top, relative to a subcategory of C. These sticky homotopies
form a space for each object of C. Section 2 analyzes the functoriality of
the spaces of sticky homotopies. Section 3 assembles topological categories
whose morphisms are sticky homotopies, giving a functor C → Cat(Top).

Section 4 uses the categories of sticky homotopies constructed in section
3 to define the topologically enriched category M(X) of sticky configurations
in a space X.

At this point, the discussion turns to defining an equivariant analogue
of M(X). Section 5 describes some basic concepts on G-equivariant objects,
while section 6 deals specifically with G-sets and G-spaces. This is put to
use in section 7 where the category MG(X) of G-equivariant sticky con-
figurations in a G-space X is defined (using again the formalism of sticky
homotopies).

The last two sections deal with comparing the categories of equivariant
and non-equivariant sticky configurations. Section 8 defines a functor

ρX : MG(X) −→M(X/G)

Section 9 proves that ρX is an essentially surjective local isomorphism if G
acts freely on X and X → X/G is a covering space.

57
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1. Sticky homotopies

The path category of a space X (example II.3.4) is an interesting homo-
topical replacement of the discrete category on X, disc(X) (example II.3.2).
It is constructed out of the space of Moore paths of X, H(X) (definition
I.6.1). However, we will need a more refined notion of path or homotopy in
X, which we introduce in this section.

1.1. Definition
Define CAT(2) to be the full subcategory of the arrow category of CAT

arrow(CAT) = [(0→1),CAT]

generated by the arrows which are inclusions of subcategories.
An object of CAT(2) is called a category pair.

1.2. Observation
(0→1) denotes the category with two objects, 0 and 1, and a unique non-
identity arrow, 0→ 1.

1.3. Notation
We will denote the functor which takes an arrow and returns the source of
the arrow, ev0 : CAT(2) → CAT, simply by

(−)0 : CAT(2) −→ CAT

Similarly, we will denote ev1 : CAT(2) → CAT by

(−)1 : CAT(2) −→ CAT

In particular, given an object C of CAT(2), C0 is a subcategory of C1.
Additionally, given a morphism G : C → D in CAT(2), G1 : C1 → D1 is a
functor which takes the subcategory C0 of C1 into D0. G is fully determined
by G1.

1.4. Definition – sticky homotopy
Let C be an object of CAT(2), x an object of C1, and F : C1 → Top a
functor.
An element (α, τ) ∈ H(F (x)) is a C-sticky homotopy for F at x if for any
morphism f : y → x in the subcategory C0, the image of h : P → [0,+∞[
— as in the pullback square

P
h→ [0,+∞[

F (y)
↓

F (f)→ F (x)

α
↓

— is an interval which is empty or contains τ .
The subspace of H◦F (x) corresponding to the C-sticky homotopies, denoted
SHC(F )(x), will be called the space of C-sticky homotopies for F at x.

1.5. Observation – concatenation of sticky homotopies
Note that the concatenation (definition I.6.5) of C-sticky homotopies for F
is a C-sticky homotopy for F .
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We now summarize the behavior of sticky homotopies with respect to
functors between the base categories.

1.6. Proposition
Let G : C → D be a morphism in CAT(2), F : D1 → Top a functor, and x
an object of C.
Recall that SHD(F )(G1x) and SHC(F ◦G1)(x) are both subspaces of H ◦
F ◦G1(x). We have the inclusion

SHD(F )(G1x) ⊂ SHC(F ◦G1)(x)

between those subspaces of H ◦ F ◦G(x).

1.7. Proposition
Let G : C → D be a morphism in CAT(2), and x an object of C1.
Assume that for any morphism f in D0 with codom f = G1x, there exists
an isomorphism a in D1, and an arrow b in C0 such that

codom b = x

(G1b) ◦ a = f

Then, for any functor F : D1 → Top, the subspaces SHD(F )(G1x) and
SHC(F ◦G1)(x) of H ◦ F ◦G1(x) are equal:

SHD(F )(G1x) = SHC(F ◦G1)(x)

2. Functoriality of sticky homotopies

2.1. Definition – cartesian natural transformation
Assume C, D are categories with pullbacks, and F,G : C → D are functors.
A natural transformation

α : F −→ G

is said to be cartesian if the square

F (x)
F (f)→ F (y)

G(X)

αx
↓

G(f)→ G(y)

αy
↓

is cartesian for each morphism f : x→ y in C.

2.2. Definition
Define CAT(2)

cart to be the sub-2-category of Cat(2) whose
- objects are C ∈ ob

(
CAT(2)

)
such that C1 has pullbacks and, for any

pullback diagram in C1

a → a′

b

f
↓

→ b′

f ′

↓

if f ′ is in C0 then f is also in C0.
- 1-morphisms are the 1-morphisms G of CAT(2) such that G1 preserves all

pullbacks.
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- 2-morphisms are the 2-morphisms α of CAT(2) such that α0 is a cartesian
natural transformation.

2.3. Example
If C is a category with pullbacks in which monomorphisms are stable un-
der pullback (along any arrow), then the inclusion of the subcategory of
monomorphisms

mono(C) ↪−→ C

gives an element of CAT(2)
cart.

Later, we will give two cases of this example in the form of the opposites of
the categories of finite sets, and finitely generated free G-sets.

2.4. Example – Top as an object of CAT(2)
cart

idTop : Top→ Top is an element of CAT(2)
cart. We will call it simply Top.

Observe that a morphism F : C → Top in CAT(2)
cart is determined by any

pullback preserving functor F1 : C1 → Top.

2.5. Proposition
Let C be an object of CAT(2)

cart, and F : C1 → Top a pullback preserving
functor.
There is a functor

SHC(F ) : C1 −→ Top

which is given on objects by the space of sticky homotopies for F from
definition 1.4.
Moreover, there is a natural transformation

SHC(F ) −→ H ◦ F

which at each object x of C is the inclusion

SHC(F )(x) ↪−→ H ◦ F (X)

2.6. Proposition
There is a functor

SHC : CAT(2)
cart(C,Top) −→ [C1,Top]

which associates to each morphism F : C → Top in CAT(2)
cart the functor

SHC(F1) (as given in the previous proposition).

2.7. Construction
Thanks to proposition 1.6, we can extend this to a lax natural transformation

SH : CAT(2)
cart(−,Top) −→ [(−)1,Top]

between functors
(
CAT(2)

cart

)op
→ SET-CAT.

We will need slightly more functoriality from SH later on, so we intro-
duce it here.

2.8. Definition – quasi-cartesian natural transformation
Let C, D be categories, d an object of D, and F,G : C → D functors.
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We say a natural transformation α : F → G is quasi-cartesian with respect
to d if for every morphism f : x→ y in C, and every commutative diagram

d → G(x)

F (y)
↓

αy→ G(y)

G(f)

↓

there exist morphisms d→ F (x) in D, and σ : y → y in C such that

d → F (y)
αy→ G(y)

G(x)←
αx

←
F (x)
↓

F (f)
→ F (y)

F (σ)

↓ αy

→

commutes.

2.9. Definition
Let C be a category pair in CAT(2)

cart.
We define CAT(2)

qc (C,Top) to be the subcategory CAT(2)(C,Top) whose
- objects are F ∈ CAT(2)(C,Top) such that F1 preserves all pullbacks;
- morphisms are the morphisms α in CAT(2)(C,Top) such that α0 is quasi-

cartesian with respect to 1 ∈ Top.

2.10. Observation
The category CAT(2)

cart(C,Top) is a subcategory of CAT(2)
qc (C,Top) which

possesses the same objects.

2.11. Observation
The category CAT(2)

qc (C,Top) is not functorial in C in CAT(2)
cart. It is only

functorial on full functors, for example.

2.12. Proposition
Let C be a category pair in CAT(2)

cart.
There is a functor

SHC : CAT(2)
qc (C,Top) −→ [C1,Top]

for which the diagram

CAT(2)
cart(C,Top)

SHC→ [C1,Top]

CAT(2)
qc (C,Top)

incl

↓

∩

SHC

→

commutes.

3. Categories of sticky homotopies

As suggested by remark 1.5, and stated in the following proposition,
sticky homotopies form the morphisms of a functorial subcategory of path◦F
for appropriate functors F with values in Top.
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3.1. Proposition – internal category of sticky homotopies

Let C be an object of CAT(2)
cart, and F : C → Top a morphism in CAT(2)

cart.
There is a unique functor

stCF : C1 −→ Cat(Top)

and a unique natural transformation (path is defined in example II.3.4)

σ : stCF −→ path ◦ F1

such that the following conditions hold:
- ob ◦σ = idF1 ;
- for any object x of C1, mor ◦σx is the inclusion SHC(F )(x) ↪→ H ◦ F1(x).

3.2. Notation
We call stCF the functorial category of sticky homotopies for F .

The functoriality of stC stated in the next result follows from the func-
toriality of SH analyzed in the previous section.

3.3. Proposition – functoriality of stC
Let C be an object of CAT(2)

cart.
There is a functor

stC : CAT(2)
qc (C,Top) −→ [C1,Cat(Top)]

which is given on objects by the functorial category of sticky homotopies.

3.4. Notation
The restriction of stC to CAT(2)

cart(C,Top) will also be designated by stC .

We can extract greater naturality for stC — this time on the base cate-
gory C — from proposition 1.6.

3.5. Proposition – lax naturality of st on the base category

Let G : C → D be a morphism in CAT(2)
cart.

There is a canonical natural transformation ϑG

CAT(2)
cart(D,Top)

stD→ [D1,Cat(Top)]

ϑG

⇐=

CAT(2)
cart(C,Top)

CAT
(2)
cart(G,Top)

↓
stC→ [C1,Cat(Top)]

[G1,Cat(Top)]

↓
(3a)

3.6. Observation
More concretely, for each F : D → Top in CAT(2)

cart, ϑG gives a natural
transformation

(ϑG)F : stDF ◦G1 −→ stC(F ◦G)
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3.7. Observation
The natural transformations

CAT(2)
cart(D,Top)

stD→ [D1,Cat(Top)]

ϑG

⇐=

CAT(2)
cart(C,Top)

CAT
(2)
cart(G,Top)

↓
stC→ [C1,Cat(Top)]

[G1,Cat(Top)]

↓

compose in the obvious manner, when one stacks two of these diagrams on
top of each other.
In other words, they endow the family of functors st• with the structure of
a lax natural transformation

st• : CAT(2)
cart(−,Top) −→ [(−)1,Cat(Top)]

between functors
(
CAT(2)

cart

)op
→ SET-CAT.

The following proposition is now a consequence of 1.7. For conciseness,
we first give a definition derived from proposition 1.7.

3.8. Definition – iso-full morphism of category pairs
We say a morphism G : C → D in CAT(2) is iso-full if for any object x
in C1, and any morphism f in D0 with codom f = G1x, there exists an
isomorphism a in D1, and an arrow b in C0 such that

codom b = x

(G1b) ◦ a = f

3.9. Proposition
Let G : C → D be an iso-full morphism in CAT(2)

cart.
The natural transformation ϑG in diagram (3a) is the identity natural trans-
formation.
In particular, the diagram

CAT(2)
cart(D,Top)

stD→ [D1,Cat(Top)]

CAT(2)
cart(C,Top)

CAT
(2)
cart(G,Top)

↓
stC→ [C1,Cat(Top)]

[G1,Cat(Top)]

↓

commutes. Consequently, for each F ∈ CAT(2)
cart(D,Top)

stDF ◦G1 = stC(F ◦G)

3.10. Definition – enriched category of sticky homotopies

Let C be an object of CAT(2)
cart.

For convenience, we let stδC abbreviate the composition

CAT(2)
cart(C,Top) stC−−→ [C1,Cat(Top)]

[C1,(−)δ]
−−−−−−→ [C1,Top-Cat]

3.11. Observation
We will make frequent use of this notation: adding a superscript δ to the
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name of a functor or natural transformation, f , in [A,F (Cat(Top))] — thus
obtaining f δ — will indicate

f δ := F
(
(−)δ

)
◦ f

This is done for convenience, since the expression of F (commonly of the
form [B,−]) could add some cumbersome overhead to the notation.
As an example, the lax naturality square for stδ• at a morphism G : C → D
is given by the natural transformation

ϑG
δ = [C1, (−)δ] ◦ ϑG

4. Category of sticky configurations

In the present section, we introduce one of the central constructions in
this text.

4.1. Definition
Define Topinj to be the subcategory of Top whose morphisms are all con-
tinuous injective maps.

4.2. Notation – FinSetop as an object of CAT(2)
cart

The opposite of the inclusion of the subcategory of epimorphisms of FinSet

epi(FinSet)op ↪−→ FinSetop

is a particular case of example 2.3, and therefore is an object of CAT(2)
cart.

For ease of notation, we will denote it by FinSetop.

4.3. Construction
Let M̂ap denote the functor

M̂ap : Top
Map−−−→ [Topop,Top]

[inclop,Top]−−−−−−−→ [FinSetop,Top]

Then there is a unique functor

Map : Topinj −→ CAT(2)
cart(FinSetop,Top)

for which

Topinj
Map→ CAT(2)

cart(FinSetop,Top)

Top

incl

↓

∩

dMap → [FinSetop,Top]

(−)1

↓

commutes. With this, we can define the functor

st-path : Top −→ [FinSetop,Cat(Top)]

as the composition

Topinj
Map−−−→ CAT(2)

cart(FinSetop,Top)
stFinSetop−−−−−−→

3.3
[FinSetop,Cat(Top)]

4.4. Definition – category of sticky finite sets
We let Mbig denote the composition

Top
st-pathδ−−−−−→ [FinSetop,Top-Cat] Groth−−−−→

II.10.2
Top-CAT
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This category is too big: we want to consider only its objects which
correspond to injective maps from finite sets into X, or configurations in X.
Thus we will restrict to an appropriate full subcategory of Mbig(X).

First, note that proposition II.10.4 identifies the class of objects of
Mbig(X) as

ob
(
Mbig(X)

)
=
∐

z∈FinSet

Top(z,X)

4.5. Definition – category of sticky configurations
Let X be a topological space.
The category of sticky configurations in X, M(X), is the full Top-subcategory
of Mbig(X) (definition 4.4) generated by all injective maps from finite sets
to X.

4.6. Observation
This subcategory of Mbig inherits the functoriality: there is a functor

M : Topinj −→ Top-CAT

given on objects by the previous definition.

5. Generalities on G-equivariance

Having defined the category of sticky configurations, M(X), we will sim-
ilarly introduce an equivariant version of it. For that purpose, this section
revises some basic facts on equivariant objects. Assume for the remainder
of this section that G is a monoid in the cartesian category Set. Recall that
BG denotes a category with one object and morphisms given by G.

5.1. Definition – category of G-objects
Let C be a category.
G-C denotes the category [BG,C] of G-objects in C.

5.2. Observation
There is an isomorphism 1-C ∼= C natural in C.

5.3. Definition – functors on G-objects
Let C be a category.
The forgetful functor

G-C = [BG,C]
(1→BG)∗−−−−−−→ [1, C] = C

is called u : G-C → C.
The trivial G-object functor

C = [1, C]
(BG→1)∗−−−−−−→ [BG,C] = G-C

is called k : C → G-C.

5.4. Observation
Note that u ◦ k = idC .

5.5. Proposition – free G-object
Let C be a cocomplete category.
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The functor u : G-C → C has a left adjoint, which will be denoted

G〈−〉 : C −→ G-C

5.6. Proposition – quotient G-object
Let C be a cocomplete category.
The functor k : C → G-C has a left adjoint, denoted

−/G : G-C −→ C

The counit of the adjunction is the identity natural transformation.

6. G-objects in Set and Top

In this section, let G abbreviate a monoid in Set.

6.1. Observation
All the functors defined in the preceding section 5 commute appropriately
with the inclusions Set→ Top and G-Set→ G-Top.

6.2. Observation
A monoid G in the cartesian category Set passes to a monoid G in the
cartesian category Top. We can therefore consider left modules over these
monoids.
The categories of G-objects in Set and Top admit canonical isomorphisms
with the categories of left G-modules in Set and Top:

G-Set ∼= G-mod(Set)

G-Top ∼= G-mod(Top)

6.3. Definition – free finitely generated G-sets
The full subcategory of G-Set generated by the essential image of

FinSet −→ Set
G〈−〉−−−→ G-Set

is abbreviated FinSetG.

6.4. Observation
Note that FinSet1 is isomorphic to FinSet.

6.5. Construction – FinSetGop as an object of CAT(2)
cart

The opposite of the inclusion of the subcategory of epimorphisms of FinSetG

epi(FinSetG)op ↪−→ FinSetGop

gives an object of CAT(2)
cart (an instance of example 2.3), which is denoted

simply by FinSetGop.
The functor

(−/G)op : FinSetGop −→ FinSetop

determines a morphism (−/G)op ∈ CAT(2)
cart

(
FinSetGop,FinSetop

)
.

If G is a group, then the functor

G〈−〉op : FinSetop −→ FinSetGop

determines a morphism G〈−〉op ∈ CAT(2)
cart

(
FinSetop,FinSetGop

)
.
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6.6. Proposition
The morphism in CAT(2)

cart

(−/G)op : FinSetGop −→ FinSetop

is iso-full (see definition 3.8).
If G is the monoid underlying a group, then the morphism

G〈−〉op : FinSetop −→ FinSetGop

is iso-full.

6.7. Proposition – equivariant mapping space
There is a unique functor

MapG : G-Topop ×G-Top −→ Top

and a unique natural transformation (recall u : G-Top→ Top from definition
5.3)

j : MapG −→ Map ◦(uop × u)

such that for any objects X, Y of G-Top, j(X,Y ) is the inclusion of the
subspace of G-equivariant maps in Map(uX, uY ).

6.8. Observation
The isomorphism 1-Top ∼= Top carries Map1 to Map.

7. G-equivariant sticky configurations

Throughout this section, let G denote a monoid in the cartesian category
Set. We introduce a category of G-equivariant sticky configurations, similar
to the construction in section 4.

7.1. Definition
Let G-Topinj denote the subcategory of G-Top whose morphisms are all
injective G-equivariant maps.

7.2. Construction
Define M̂apG to be the functor

G-Top
MapG−−−−→

6.7
[G-Topop,Top]

[inclop,Top]−−−−−−−→ [FinSetGop,Top]

Then there is a unique functor

MapG : G-Topinj −→ CAT(2)
cart(FinSetGop,Top)

for which

G-Topinj
MapG→ CAT(2)

cart(FinSetGop,Top)

G-Top

incl

↓

∩

dMapG → [FinSetop
G,Top]

(−)1

↓

commutes.
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7.3. Definition
The composition

G-Topinj
MapG−−−−→ CAT(2)

cart(FinSetGop,Top)
stFinSetG

op

−−−−−−−→
3.1

[FinSetGop,Cat(Top)]

is abbreviated st-pathG.

7.4. Definition – G-equivariant sticky sets

We let Mbig
G denote the composite functor

G-Top
st-pathGδ−−−−−−→ [FinSetGop,Top-Cat] Groth−−−−→

II.10.2
Top-CAT

Note that the Grothendieck construction provides a cocone

π : Mbig
G → FinSetG

Proposition II.10.4 determines the set of objects of Mbig
G (X) to be

ob
(
Mbig
G (X)

)
=
∐

z∈FinSetG

G-Top(z,X)

7.5. Definition – G-equivariant sticky configurations
Let X be an object of G-Top.
The category of G-equivariant sticky configurations in X, MG(X), is the
full Top-subcategory of Mbig

G (X) generated by the injective (G-equivariant)
maps into X.

7.6. Observation
Note that the objects defined in this section for the case G = 1 are naturally
isomorphic to the corresponding objects defined in section 4, after taking
into account the isomorphisms FinSet1

∼= FinSet and 1-Top ∼= Top.

8. From MG to M

Throughout this section, we let G be a group in Set.

8.1. Construction
Let X be a an object of G-Top.
For each Y in FinSetG, define the map

MapG(Y,X) −→ Map
(
Y/G,X/G

)
which takes f : Y → X to the map induced by f on the quotients by G.
These maps, for Y in FinSetG, assemble into a natural transformation

θ̂X : M̂apG(X) −→ M̂ap(X/G) ◦ (−/G)op

The restriction of θ̂X to the category epi(FinSetG)op is quasi-cartesian with
respect to 1 ∈ Top.

8.2. Construction
The preceding construction defines the components of a natural transforma-
tion

θ̂ : M̂apG −→ M̂ap(X/G) ◦ (−/G)op
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from M̂apG to the composition

G-Top
−/G−−→ Top

dMap−−−→ [FinSetop,Top]
[(−/G)op,Top]−−−−−−−−→ [FinSetGop,Top]

θ̂ determines a unique natural transformation θ between functors of type

G-Topinj −→ CAT(2)
qc (FinSetGop,Top)

such that
ev1 ◦ θ = θ̂|G-Topinj

The source of θ is

MapG : G-Topinj
MapG−−−−→ CAT(2)

cart(FinSetGop,Top) ↪−→ CAT(2)
qc (FinSetGop,Top)

The target of θ is

G-Topinj
−/G−−→ Topinj
Map−−−→ CAT(2)

cart(FinSetop,Top)

CAT
(2)
cart((−/G)op,Top)

−−−−−−−−−−−−−−→ CAT(2)
cart(FinSetGop,Top)

↪−→ CAT(2)
qc (FinSetGop,Top)

8.3. Definition
Define stθ to be the natural transformation

stθ := stFinSetG
op ◦ θ

8.4. Proposition
stθ is a natural transformation from st-pathG to the composition

G-Topinj
−/G−−→ Topinj
st-path−−−−−→ [FinSetop,Cat(Top)]
[(−/G)op,Cat(Top)]−−−−−−−−−−−−→ [FinSetGop,Cat(Top)]

Proof:
Since the source of θ is MapG, the source of stθ = stFinSetG

op ◦ θ is

stFinSetG
op ◦MapG = st-pathG

We know from proposition 6.6 that the morphism in CAT(2)
cart

(−/G)op : FinSetGop −→ FinSetop

is iso-full. Consequently, by virtue of proposition 3.9, the following diagram
commutes

CAT(2)
cart(FinSetop,Top)

CAT
(2)
cart((−/G)op,Top)

→ CAT(2)
cart(FinSetGop,Top)

[FinSetop,Cat(Top)]

stFinSetop

↓
[(−/G)op,Cat(Top)] → [FinSetGop,Cat(Top)]

stFinSetG
op

↓
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This diagram and the knowledge that the target of θ is

CAT(2)
cart

(
(−/G)op,Top

)
◦Map ◦ (−/G)

imply that the target of stθ = stFinSetG ◦ θ is

G-Top
−/G−−→ Top

Map−−−→ [FinSetop,Top]
stFinSet−−−−−→ [FinSetop,Cat(Top)]
[(−/G)op,Top]−−−−−−−−→ [FinSetGop,Cat(Top)]

End of proof

8.5. Construction
In view of the previous proposition, the natural transformation stθ induces,
for each X in G-Top, a functor

Groth
(
−/G, stθδX

)
: Mbig

G (X) −→Mbig(X/G)

by construction II.10.6. These functors are the components of a natural
transformation

ρ : Mbig
G −→Mbig ◦ (−/G)

between functors G-Topinj −→ Top-CAT.

8.6. Proposition
Let X be an object of G-Top.
The Top-functor

ρX : Mbig
G (X) −→Mbig(X/G)

restricts to a Top-functor

ρX : MG(X) −→M(X/G)

(to which we give the same name).

8.7. Proposition
Let X be an object of G-Top.
The Top-functor

ρX : Mbig
G (X) −→Mbig(X/G)

is essentially surjective. It restricts to an essentially surjective Top-functor

ρX : MG(X) −→M(X/G)

if the action of G on uX is free.

Proof:
According to proposition II.10.4, the set of objects of Mbig

G (X) is

ob
(
Mbig
G (X)

)
=
∐

x∈FinSetG

G-Top(x,X)

and the set of objects of Mbig(X/G) is

ob
(
Mbig(X/G)

)
=
∐

x∈FinSet

Top
(
x,X/G

)
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In addition, the diagram

G-Top(y,X) ⊂
incly→

∐
x∈FinSetG

G-Top(x,X)

Top
(
y/G,X/G

)−/G

↓
⊂

incly/G→
∐

x∈FinSet

Top(x,X)

ρX

↓

commutes for every y in FinSetG.
Given an object of Mbig(X/G)

f : x −→ X/G

choose a free G-set y such that x ' y/G in FinSet. Then f ' f ′ in Mbig(X/G),
where

f ′ : y/G −→ X/G

Since y is free, there exists a G-equivariant map

f : y −→ X

such that the map induced by f on the quotients is f ′ : y/G→ X/G. Therefore
(by the above commutative square)

ρX(f) = f ′ ' f

We conclude that
ρX : Mbig

G (X) −→Mbig(X/G)

is essentially surjective.
Now assume that the action of G on uX is free. If f : x → X/G is

injective, then the G-map f : y → X chosen above is also injective. We thus
conclude that the functor

ρX : MG(X) −→M(X/G)

is essentially surjective.
End of proof

9. Sticky configurations and covering spaces

Throughout this section, we fix a group G in Set, and an object X of
G-Top.

9.1. Notation
Let Y be a topological space, and a, b ∈ Y .
We let H(Y ; a, b) denote the subspace of H(Y ) given by

H(Y ; a, b) := {x ∈ H(y) : s(x) = a , t(x) = b}

9.2. Construction
Let x, y be objects of FinSetG, and consider G-equivariant maps

f : x −→ X

g : y −→ X
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Let f/G = ρXf and g/G = ρXg be the maps

f/G : x/G −→ X/G

g/G : y/G −→ X/G

induced by f and g on the quotients. We know from proposition II.10.4 and
the definition of st• that

Mbig
G (X)(f, g) =

∐
h∈FinSetG(x,y)

(
stFinSetG

op

(
MapG(X)

)
(x)
)δ

(f, g ◦ h)

⊂
∐

h∈FinSetG(x,y)

H
(

MapG(x,X); f, g ◦ h
)

and

Mbig(X/G)(f/G, g/G) =
∐

h∈FinSet(x/G,y/G)

(
stFinSetop

(
Map(X/G)

)
(x/G)

)δ(
f/G, (g/G)◦h

)
⊂

∐
h∈Set(x/G,y/G)

H
(

Map(x/G,X/G); f/G, (g/G)◦h
)

We thus get a a commutative square

Mbig
G (X)(f, g) ⊂

incl →
∐

h∈FinSetG(x,y)

H
(

MapG(x,X); f, g ◦ h
)

Mbig(X/G)(f/G, g/G)

ρX
↓

⊂ incl→
∐

h∈Set(x/G,y/G)

H
(

Map(x/G,X/G); f/G, (g/G)◦h
)q

↓
(9a)

where q makes the square

H
`

MapG(x,X); f, g ◦ j
´
⊂

inclj →
a

h∈FinSetG(x,y)

H
`

MapG(x,X); f, g ◦ h
´

H
`

Map(x/G,X/G); f/G, (g/G)◦(j/G)
´

H(proj)

↓
⊂

inclj/G→
a

h∈Set(x/G,y/G)

H
`

Map(x/G,X/G); f/G, (g/G)◦h
´

q

↓

commute for all j ∈ FinSetG(x, y).

9.3. Lemma
Assume X is a principal left G-space.
Let x, y be objects of FinSetG, f ∈ G-Top(x,X), and g ∈ G-Top(y,X).
The square diagram (9a) is a pullback square in Top.

Sketch of proof:
Since the horizontal maps in diagram (9a) are inclusions of subspaces,

it is enough to show that (9a) gives a pullback square in Set. Since the top
horizontal map in diagram (9a) is injective, our task is reduced to proving
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that the induced map from Mbig
G (X)(f, g) to the pullback of∐
h∈FinSetG(x,y)

H
(

MapG(x,X); f, g ◦ h
)

Mbig(X/G)(f/G, g/G) ⊂
incl→

∐
h∈Set(x/G,y/G)

H
(

Map(x/G,X/G); f/G, (g/G)◦h
)q

↓
(9b)

is surjective.
Let then

h ∈ FinSetG(x, y)

(γ, τ) ∈ H
(

MapG(x,X); f, g ◦ h
)

be such that the Moore path induced from (γ, τ) on the quotients

(γ, τ) ∈ H
(

Map(x/G,X/G); f/G, (g◦h)/G
)

is a sticky homotopy for Map(X/G) at x/G (see definition 1.4). This data
determines an (arbitrary) element z of the pullback of diagram (9b). We
will prove that (γ, τ) is a sticky homotopy for MapG(X) at x. That implies

(γ, τ) ∈Mbig
G (X)(f, g)

(via the inclusion that is the top map in (9a)), and this element must map
to z in the pullback of (9b). This proves the required surjectivity.

To check that (γ, τ) is a sticky homotopy for MapG(X) at x, consider
any epimorphism v : x→ z in FinSetG, and the pullback square

P
h → [0,+∞[

MapG(z,X)
↓

MapG(v,X)→ MapG(x,X)

γ
↓

We must show the image of h is an interval which is empty or contains τ .
Let us analyze the commutative cube

P
h → [0,+∞[

Q
h →

→
[0,+∞[

==========

↓
MapG(z,X)

MapG(v,X) → MapG(x,X)

γ
↓

Map(z/G,X/G)
↓

Map(v/G,X/G) →

proj
→

Map(x/G,X/G)

γ

↓
proj

→

whose front face is defined to be a pullback square. Since (γ, τ) is a sticky
homotopy for Map(X/G) at x/G, the image of h is an interval J which is
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empty or contains τ . In fact, h : Q→ [0,+∞[ is a homeomorphism onto J .
We will finish by proving that if P is not empty then imh = J .

Considering the adjoint maps

γ : x× [0,+∞[ −→ uX

γ : x/G× [0,+∞[ −→ X/G

we are required to show that γ|x×J factors through z × J . Instead, we
know that γ|x/G×J factors through z/G × J . In particular, there exists a
commutative diagram

x/G× J ⊂ → x/G× [0,+∞[ ←proj×[0,+∞[
x× [0,+∞[

z/G× J

v/G×J
↓

γ′ → X/G

γ
↓
← proj

uX

γ
↓

Let σ : z → x (in FinSetG) be a section of v

v ◦ σ = idz

which exists because v is an epimorphism of free G-sets. The commutative
diagram above implies that

proj ◦ γ|x×J = proj ◦ γ|x×J ◦
(
(σ ◦ v)× J

)
where proj : uX → X/G is the projection. Since X is a principal left G-space,
we conclude there is a continuous map

f : x× J −→ G

which verifies a commutative diagram

x× J (f,γ)→ G× uX

x× J

(σ◦v)×J
↓

γ → uX

µ
↓

where µ : G× uX → uX is the action of G on uX. In equation form

µ(f, γ|x×J) = γ|x×J ◦
(
(σ ◦ v)× J

)
Finally, if P is not empty, we know that for some a ∈ J , γ(a,−) factors

through v : x→ z. Consequently

γ(a,−) = γ
(
a, σ ◦ v(−)

)
which implies that

f(a,−) = e

(where e is the unit of G) in view of G acting freely on X. Since f is
continuous and J is connected, we conclude that f = e. Therefore γ|x×J
factors through z × J , and so J ⊂ imh.

In summary, if P is not empty then imh = J .
End of proof
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9.4. Lemma
Assume the projection

proj : uX −→ X/G

is a covering space.
For any object of FinSetG, x, the canonical map

proj : MapG(x,X) −→ Map(x/G,X/G)

is a covering space.

Proof:
A section σ : x/G→ ux of proj : ux→ x/G induces a map

MapG(x,X) ↪−→ Map(ux, uX)
Map(σ,uX)−−−−−−−→ Map(x/G, uX)

which is a homeomorphism because x is a free G-set. This homeomorphism
sits in a commutative diagram

MapG(x,X)
∼=→ Map(x/G, uX)

Map(x/G,X/G)

Map(x/G,proj)

↓
proj

→

Since x/G is finite, the vertical map on the right is a covering space. Conse-
quently

proj : MapG(x,X) −→ Map(x/G,X/G)
is a covering space.

End of proof

We state the following proposition without proof.

9.5. Proposition
If p : A→ B is a covering space and a, b ∈ A, then

H(p) : H(A; a, b) −→ H(B; pa, pb)

is an open map.

The next result follows immediately from lemma 9.4 and proposition 9.5.

9.6. Corollary
Assume the projection

proj : uX −→ X/G

is a covering space.
Let x be an object of FinSetG, and f, g ∈ G-Top(x,X).
The canonical map

H(proj) : H
(

MapG(x,X); f, g
)
−→ H

(
Map(x/G,X/G); f/G, g/G

)
is an open map.

9.7. Lemma
Assume the projection

proj : uX −→ X/G
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is a covering space.
Let x, y be objects of FinSetG, f ∈ G-Top(x,X), and g ∈ G-Top(y,X).
The map (from diagram (9a))

q :
∐

h∈FinSetG(x,y)

H
(

MapG(x,X); f, g◦h
)
−−→

∐
h∈Set(x/G,y/G)

H
(

Map(x/G,X/G); f/G, (g/G)◦h
)

is a surjective open map.
Additionally, if the action of G on uX is free, the map q is a homeomorphism.

Sketch of proof:
We conclude from the preceding corollary that q is open. The surjectivity

will follow from the existence of lifts of paths across the cover (lemma 9.4)

proj : MapG(x,X) −→ Map(x/G,X/G)

Given h ∈ Set(x/G, y/G), and

(γ, τ) ∈ H
(

Map(x/G,X/G); f/G, (g/G)◦h
)

there exists a unique lift

(γ, τ) ∈ H
(

MapG(x,X)
)

such that

proj ◦ γ = γ

γ(0) = f

(since proj : MapG(x,X) → Map(x/G,X/G) is a covering space). Conse-
quently

proj ◦ γ(τ) = γ(τ) = t(γ) = (g/G) ◦ h
One can now find h ∈ FinSetG(x, y) such that

h/G = h

γ(τ) = g ◦ h

because x is a free G-set. If the action of G on uX is free, then there is a
unique such h.

We conclude that the image by q of the point

(γ, τ) ∈ H
(

MapG(x,X); f, g ◦ h
) inclh
↪−−−−→

∐
h∈FinSetG(x,y)

H
(

MapG(x,X); f, g ◦ h
)

is the (arbitrarily chosen) point

(γ, τ) ∈ H
`

Map(x/G,X/G); f/G, (g/G)◦h
´ inclh
↪−−−−→

a
h∈Set(x/G,y/G)

H
`

Map(x/G,X/G); f/G, (g/G)◦h
´

Hence, q is surjective.
If the action of G on uX is free, the uniqueness of the lift (γ, τ) and of

h ∈ FinSetG(x, y) guarantee that

q−1
(
{(γ, τ)}

)
= {(γ, τ)}

(where the points (γ, τ) ∈ codom q, and (γ, τ) ∈ dom q are as above). In
conclusion, q is injective, and therefore a homeomorphism.

End of proof
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9.8. Proposition
Let G be a group in Set. Let X be a locally trivial principal left G-space.
The Top-functor

ρX : Mbig
G (X) −→Mbig(X/G)

is an essentially surjective local isomorphism. Furthermore, it restricts to
an essentially surjective local isomorphism

ρX : MG(X) −→M(X/G)

Proof:
The essential surjectiveness follows from proposition 8.7. The local iso-

morphism property is a consequence of lemmas 9.3 and 9.7. For any x, y in
FinSetG, and any f ∈ G-Top(x,X), g ∈ G-Top(y,X)m the square

Mbig
G (X)(f, g) ⊂

incl →
∐

h∈FinSetG(x,y)

H
(

MapG(x,X); f, g ◦ h
)

Mbig(X/G)(f/G, g/G)

ρX
↓

⊂ incl→
∐

h∈Set(x/G,y/G)

H
(

Map(x/G,X/G); f/G, (g/G)◦h
)q

↓

is cartesian by lemma 9.3. Lemma 9.7 states that the vertical map on the
right, q, is a homeomorphism.

End of proof





CHAPTER IV

Sticky configurations in S1

Introduction

This chapter analyzes the simplest case of interest of the construction
M(X) from chapter III, namely M(S1). We study a few properties of M(S1),
and give different weakly equivalent models for it. The ultimate goal of this
chapter is to show how to recover topological Hochschild homology from
M(S1).

Summary

This is a short chapter dedicated to an analysis of the Top-category of
sticky configurations in S1, M(S1).

Section 1 sets up some basic results on Top-categories whose morphism
spaces are homotopically discrete. In section 2, we state that M(S1) is equiv-
alent to the Top-category MZ(R) of Z-equivariant sticky configurations in
R. The results of section 1 are used to prove that MZ(R) — and conse-
quently, M(S1) — is weakly equivalent to a Set-category. One specific such
Set-category, E , is given in section 3: it is essentially the category introduced
by Elmendorf in [Elm93].

Section 5 gives a functor from Elmendorf’s category E to the associative
PROP. Section 6 constructs a homotopy cofinal functor from ∆op to E .
Finally, section 7 uses the previous two sections to recover the cyclic bar
construction and topological Hochschild homology via the category E .

1. Homotopical discreteness

1.1. Definition – homotopically discrete space
We say a topological space X is homotopically discrete if it is homotopy
equivalent to a discrete space (i.e. a set).

1.2. Proposition
A topological space X is homotopically discrete if and only if the canonical
function

proj : X −→ π0(X)
is continuous and a homotopy equivalence.

1.3. Definition – locally homotopically discrete Top-category
Let C be a Top-category.
We say C is locally homotopically discrete if for any objects x, y of C, the
space C(x, y) is homotopically discrete.

1.4. Proposition
Let C be a locally homotopically discrete Top-category.

79
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There exists a canonical Top-functor

proj : C −→ π0(C)

which is surjective on objects and a local homotopy equivalence.

The notion of local homotopical discreteness interacts appropriately with
the Grothendieck construction from II.10.2.

1.5. Proposition
Let C be a category in CAT, and F : Cop → Top-Cat a functor.
If for every object x of C, the Top-category F (x) is locally homotopically
discrete, then the Top-category Groth(F ) is locally homotopically discrete.

Proof:
Choose objects x, y ∈ obC, a ∈ ob(Fx), and b ∈ ob(Fy). According to

proposition II.10.4, the morphism space Groth(F )(a, b) is

Groth(F )(a, b) =
∐

f∈A(x,y)

(Fx)
(
a, (Ff)b

)
Therefore Groth(F )(a, b) is homotopically discrete, since the coproduct of
homotopically discrete spaces is homotopically discrete.

End of proof

2. Z-equivariant sticky configurations in R

In this section, we will prove that M(S1) is locally homotopically dis-
crete, by comparing it with Z-equivariant sticky configurations in R.

2.1. Definition – R as an object of Z-Top
R will be considered as an object of Z-Top whose underlying space is R, and
whose action of Z is given by addition:

Z× R ↪−→ R× R +−−→ R

Viewing R as a Z-space gives us a new presentation of M(S1) as the
category of Z-equivariant sticky configurations on R, by applying proposition
III.9.8 and noticing that S1 = R/Z.

2.2. Proposition
The functor

ρR : MZ(R) −→M(S1)

is an essentially surjective local isomorphism.

The advantage of considering MZ(R) is that it is a full subcategory of the
Grothendieck construction of categories which are homotopically discrete.

2.3. Proposition
Let x be an object of FinSetZ.
For any objects f , g of

(
st-pathZ(R)(x)

)δ (see definition III.7.3), the topo-
logical space

(
st-pathZ(R)(x)

)δ(f, g) is contractible or empty.
In particular,

(
st-pathZ(R)(x)

)δ is locally homotopically discrete.
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Sketch of proof:
Let

f, g ∈ ob
(
st-pathZ(R)(x)

)δ = Z-Top(x,R)
We will give a strong deformation retraction of the space

X :=
(
st-pathZ(R)(x)

)δ(f, g)

onto a singleton subspace, assuming that X is not empty. This will finish
the proof.

The space X is the subspace of H
(

MapZ(x,R); f, g
)

consisting of the
FinSetZ

op-sticky homotopies for MapZ(−,R) at x (see definitions in III.1.4
and III.6.5). Recall (notation III.9.1) that H

(
MapZ(x,R); f, g

)
refers to the

subspace of Moore paths starting at f and ending at g.
Recall also the length map

l : H
(

MapZ(x,R); f, g
)
−→ [0,+∞[

and consider the subspace l−1({1}) of H
(

MapZ(x,R); f, g
)
. Using reparam-

etrization of paths, one can construct a strong deformation retraction of the
space H

(
MapZ(x,R); f, g

)
onto l−1({1}), which preserves the subspace X.

In particular, there is a strong deformation retraction of X onto X∩l−1({1}).
Now we will define a strong deformation retraction of l−1({1}). Set

λ(t) =
{
tg + (1− t)f if t ∈ [0, 1]
g if t ∈ [1,+∞[

for t ∈ [0,+∞[ , and define

G : l−1({1})× I → l−1({1})(
(γ, 1), τ

)
→
(
τλ+ (1− τ)γ, 1

)
G gives a strong deformation retraction of l−1({1}) onto the subspace {(λ, 1)}.
Moreover, G preserves X:

G
((
X ∩ l−1({1})

)
× I
)
⊂ X

In conclusion, if X is not empty then {(λ, 1)} is a strong deformation retract
of X, so X is contractible.

In order to prove that G preserves X, it is enough to note that (λ, 1) ∈ X
if X is not empty, and that

(τγ + (1− τ)γ′, 1) ∈ X
for any (γ, 1) ∈ X, (γ′, 1) ∈ X, and τ ∈ R. We leave the proof of this claim
to the interested reader.

End of proof

2.4. Corollary
The Top-category MZ(R) is locally homotopically discrete. Consequently,
M(S1) is also locally homotopically discrete.

Proof:
The first statement follows from propositions 2.3 and 1.5, given that

MZ(R) is a full Top-subcategory of Groth
(
st-pathZ

δ(R)
)

(see definition
III.7.5). The second statement then follows from proposition 2.2.

End of proof
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2.5. Corollary
There are canonical Top-functors

proj : MZ(R) −→ π0

(
MZ(R)

)
proj : M(S1) −→ π0

(
M(S1)

)
which are surjective on objects and local homotopy equivalences. Addition-
ally, the square diagram

MZ(R)
proj→ π0

(
MZ(R)

)

M(S1)

ρR
↓

proj→ π0

(
M(S1)

)π0(ρR)
↓

commutes.

3. A category of Elmendorf

3.1. Construction – category of Elmendorf
Consider the category Z-poset of Z-objects in the category poset of partially
ordered sets.
For each n ∈ N \ {0}, let xn denote the object of Z-poset = [BZ, poset]
determined by:
- the underlying partially ordered set of xn is u(xn) = (Z,≤);
- the action of Z is

xn : Z → poset
(
(Z,≤), (Z,≤)

)
k → (−+ kn)

Then Elmendorf’s category, E , is defined to be the full subcategory of
Z-poset generated by all objects y of Z-poset such that either
- the underlying partially ordered set of y is empty, or
- y is isomorphic in Z-poset to xn, for some n ∈ N \ {0}.

3.2. Observation
The category E is the full subcategory of Z-poset generated by the objects
P such that
- the underlying partially ordered set, uP , is a total order;
- for every x ∈ uP , the function (where µ is the action of Z on the set uP )

Z ↪−→ Z× {x} ↪−→ Z× uP µ−−→ uP

is order preserving and cofinal (with respect to the orders).
We can similarly characterize a full subcategory Ebig of the category of Z-
objects in preordered sets. While we will prove that E is weakly equivalent
to MZ(R), Ebig is actually weakly equivalent to Mbig

Z (R).

3.3. Proposition
Recall the canonical forgetful functor

proj : poset −→ Set

The functor

Z-poset = [BZ, poset] [BZ,proj]−−−−−−→ [BZ,Set] = Z-Set



4. EQUIVALENCE WITH ELMENDORF’S CATEGORY 83

restricts to a functor
U : E −→ FinSetZ

3.4. Observation – comparison with Elmendorf
The linear category L, introduced by Elmendorf in [Elm93], is the skeletal
full subcategory of E generated by the objects xn for n ∈ N \ {0}.
Consequently, L is equivalent to the full subcategory of E generated by the
objects whose underlying partially ordered set is non-empty.

We suggest the reader look at [Elm93], where he can obtain a wealth of
information about L, and from there extrapolate to E . In [Elm93] a strict
unique factorization system is given on L, which recovers it as a crossed
simplicial group (see [FL91] for material on crossed simplicial groups). Also,
several familiar categories, such as ∆ and ∆op are embedded in L — we
will describe the embedding of ∆op in section 6. Moreover, a duality is
established which gives an isomorphism L ' Lop — this does not extend to
a duality on E . Finally, it is also explained how Connes’ cyclic category, Λ,
is a quotient of L by an action of the group BZ in Cat.

In case the reader prefers presentations of categories by generators and
relations, one is also available for L, and is given in definition 1.5 of [BHM93],
where it is called Λ∞.

4. Equivalence with Elmendorf’s category

4.1. Construction
We will now define the functor

ZO : π0

(
MZ(R)

)
−→ E

Consider an object of π0

(
MZ(R)

)
, that is, an injective Z-equivariant map

f : x→ R for some x in FinSetZ. Since the underlying map of sets

uf : ux −→ R

is injective, it endows ux with a unique total order such that uf becomes
order preserving. Call this total order (ux,≤).
We define ZO(f) to be the unique object of E
- whose underlying partially ordered set is u

(
ZO(f)

)
= (ux,≤), and

- whose underlying Z-set is U
(
ZO(f)

)
= x.

Recall now that there is a natural functor (see definition III.7.4)

π : MZ(R) ↪−→Mbig
Z (R) π−−→ FinSetZ

This functor into a Set-category necessarily factors through π0

(
MZ(R)

)
:

π : π0

(
MZ(R)

)
−→ FinSetZ

Now let x, y be in FinSetZ, and

f : x −→ R
g : y −→ R

be injective Z-equivariant maps. Given a : f → g in π0

(
MZ(R)

)
, the mor-

phism π(a) ∈ FinSetZ(x, y) gives an order preserving function relative to
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the orders induced from R
u(π(a)) : ux −→ uy

We leave it to the reader to verify that the order preservation follows from
the stickiness condition on the morphisms in MZ(R).
π(a) thus determines a unique morphism ZO(a) ∈ E

(
ZO(f), ZO(g)

)
such

that the underlying map of Z-sets is

U
(
ZO(a)

)
= π(a)

4.2. Proposition
The diagram

π0

(
MZ(R)

) ZO→ E

FinSetZ

U

←

π →

commutes.

4.3. Proposition
The functor

ZO : π0

(
MZ(R)

)
−→ E

is an equivalence of categories.

Proof:
Let us prove first that ZO is essentially surjective. Obviously, the object

of E whose underlying partially ordered set is empty is in the image of ZO.
Choose then n ∈ N \ {0}. We will prove that xn, as given in 3.1, is in the
image of ZO. Consider the order preserving injective function

jn : Z → R
k → k/n

which induces a Z-equivariant map on the Z-set, U(xn), underlying xn
jn : U(xn) −→ R

Thus jn is an object of π0

(
MZ(R)

)
such that

ZO(jn) = xn

Let x, y ∈ FinSetZ, and

f : x −→ R
g : y −→ R

be injective Z-equivariant maps. We will now demonstrate that

ZO : π0

(
MZ(R)(f, g)

)
−→ E

(
ZO(f), ZO(g)

)
is a bijection.

Given a : ZO(f)→ ZO(g) in E , consider the underlying map of Z-sets

Ua : x −→ y

and define the Moore path (λ, 1) ∈ H
(

MapZ(x,R); f, g ◦ Ua
)

by

λ(t) =
{
t(g ◦ Ua) + (1− t)f if t ∈ [0, 1]
g ◦ Ua if t ∈ [1,+∞[
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for t ∈ [0,+∞[ . As a consequence of

uf : u
(
ZO(f)

)
−→ R

u(g ◦ Ua) : u
(
ZO(g)

)
−→ R

being order preserving, the Moore path λ is actually FinSetZ
op-sticky for

MapZ(−,R) at x. Therefore, we obtain a point

(λ, 1) ∈MZ(R)(f, g) =
∐

h∈FinSetZ(x,y)

(
st-pathZ(R)(x)

)δ(f, g ◦ h)

(see proposition II.10.4) determined by Ua and (λ, 1):

(λ, 1) ∈
(
st-pathZ(R)(x)

)δ(f, g ◦ Ua)
inclUa
↪−−−−→

∐
h∈FinSetZ(x,y)

(
st-pathZ(R)(x)

)δ(f, g ◦ h)

This morphism (λ, 1) ∈MZ(R)(f, g) verifies

ZO ◦ proj(λ, 1) = a

where
proj : MZ(R) −→ π0

(
MZ(R)

)
In conclusion, the function

ZO : π0

(
MZ(R)(f, g)

)
−→ E

(
ZO(f), ZO(g)

)
is surjective.

Now assume we are given two morphisms a, b : f → g in MZ(R) such
that

ZO ◦ proj(a) = ZO ◦ proj(b)

Proposition 4.2 entails that

π(a) = U ◦ ZO ◦ proj(a) = U ◦ ZO ◦ proj(b) = π(b)

where π : MZ(R)→ FinSetZ. Taking into account that (proposition II.10.4)

MZ(R)(f, g) =
∐

h∈FinSetZ(x,y)

(
st-pathZ(R)(x)

)δ(f, g ◦ h)

we conclude

a, b ∈
(
st-pathZ(R)(x)

)δ(
f, g ◦

=π(b)︷︸︸︷
π(a)

) inclπ(a)

↪−−−−−→MZ(R)(f, g)

Since the space
(
st-pathZ(R)(x)

)δ(f, g ◦ πa) is contractible by proposition
2.3, there exists a path in MZ(R)(f, g) from a to b, i.e.

proj(a) = proj(b) ∈ π0

(
MZ(R)(f, g)

)
In summary

ZO : π0

(
MZ(R)(f, g)

)
−→ E

(
ZO(f), ZO(g)

)
is injective.

End of proof
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5. Relation to associative PROP

The category E has the advantage of being concrete and easy to manip-
ulate. That will be useful in constructing a functor to the category OrdΣ
(consult construction I.12.2) underlying the associative PROP.

5.1. Construction – functor ψ : E → OrdΣ
We will construct a functor

ψ : E −→ OrdΣ

For each object x ∈ ob E , ψ(x) is the finite set

ψ(x) := (Ux)/Z

where U : E → FinSetZ is the forgetful functor.
Given a morphism f : x→ y in E , we define the morphism

ψ(f) ∈ OrdΣ
(

(Ux)/Z, (Uy)/Z
)

- the map of sets underlying ψ(f) is

(Uf)/Z : (Ux)/Z −→ (Uy)/Z

- given a ∈ (Uy)/Z, the total order on
(

(Uf)/Z
)−1({a}) is the order induced

from the bijection

proj : (uf)−1({a}) '−−→
(

(Uf)/Z
)−1({a})

where (uf)−1({a}) ⊂ ux has the order induced from ux. Here, a ∈ Uy is
any representative of a ∈ (Uy)/Z.

5.2. Proposition
The square diagram

E ψ → OrdΣ

FinSetZ

U
↓

−/Z→ FinSet

proj
↓

commutes.

6. Relation to ∆op

In this section we construct a homotopy cofinal functor ∆op −→ E .

6.1. Construction – functor ι : ∆op → E
Let n ∈ N \ {0}. The object n ∈ ∆op maps to

ι(n) := xn

where xn is as defined in construction 3.1.
For i ∈ {0, . . . , n}, the i-th face map di ∈ ∆op(n+1, n) gets mapped to ι(di)
which is determined uniquely (thanks to Z-equivariance) by(

u ◦ ι(di)
)
(a) =

{
a if 0 ≤ a ≤ i
a− 1 if i < a ≤ n+ 1
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for a ∈ Z. On the other hand, for i ∈ {1, . . . n}, the i-th degeneracy map
si ∈ ∆op(n, n+ 1) gets mapped to ι(si) which is determined uniquely by(

u ◦ ι(si)
)
(a) =

{
a if 0 ≤ a < i
a+ 1 if i ≤ a ≤ n

for a ∈ Z.

6.2. Observation
The functor ι : ∆op −→ E gives an isomorphism between ∆op and the subcat-
egory of E whose set of objects is {xn : n ∈ N \ {0}}, and whose morphisms
are the f : xi → xj such that uf(0) = 0 (for i, j ∈ N \ {0}).
We can conclude that the functor ι lifts to an equivalence

∆op ∼−−→ (ι1)/E

We state the following proposition without proof. The proof is essentially
a copy of the proof of proposition 2.7 in [DHK85]. Equivalently, it is an
instance of lemma 1.6 in [BHM93] (for the case of Λ∞, in their notation).
We encourage the reader to analyze the relevant results in those articles and
give a detailed proof of this proposition.

6.3. Proposition – homotopy cofinality
The functor

ι : ∆op −→ E
is homotopy cofinal.

7. Cyclic bar construction

7.1. Construction – cyclic bar construction
Let (C,⊗, I) be a symmetric monoidal category, and assume A is an asso-
ciative monoid in C. Then the bar construction

Bar(A,A,A) : ∆op −→ A-bimod-A

takes values in A-bimodules or, equivalently, left A⊗Aop-modules. We can
then consider the objectwise tensor product (which always exists)

Barcyc(A) : ∆op −→ C

Barcyc(A) := A ⊗
A⊗Aop

Bar(A,A,A)

This is the usual cyclic bar construction of A.

7.2. Observation
The cyclic bar construction of an associative monoid A verifies

Barcyc(A)(n) ' A⊗n

for any object n of ∆op.

7.3. Observation
The above construction gives a functor from the category of associative
monoids in (C,⊗, I) to the category of simplicial objects in C.

Recall the functors ψ : E → OrdΣ and ι : ∆op → E from constructions
5.1 and 6.1. We state the following proposition without proof.
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7.4. Proposition
Let C be a symmetric monoidal category, A a Ass-algebra in C, and A the
underlying associative monoid of A (see example I.12.3).
Then there is an isomorphism

A ◦ ψ ◦ ι ' Barcyc(A)

which is natural in the Ass-algebra A.

We will now apply these results to topological Hochschild homology. We
assume that (Sp,∧, S) is a symmetric monoidal simplicial model category in
which the unit S is cofibrant: in particular, ∧ verifies the pushout-product
axiom. This holds for the category of symmetric spectra.

7.5. Definition – topological Hochschild homology
Let A be an associative monoid in the symmetric monoidal category of
spectra, (Sp,∧, S).
The topological Hochschild homology of A is the geometric realization of the
cyclic bar construction of A:

THH(A) := |Barcyc(A)|

7.6. Proposition
Let A be a Ass-algebra in the symmetric monoidal category of spectra,
(Sp,∧, S). Let A denote the underlying associative monoid of A.
There exists a canonical zig-zag

THH(A)←− hocolim
∆op

(
Barcyc(A)

)
−→ hocolim

E
(A ◦ ψ)

which is natural in the Ass-algebra A.
Both maps in the zig-zag are weak equivalences if the unit map of A, S → A,
is a cofibration in Sp.

The zig-zag in the statement is standard: the left arrow is the Bousfield-
Kan map (see definition 18.7.3 in [Hir03]); the right arrow is just the natural
map between the homotopy colimits, together with the isomorphism from
proposition 7.4.

The proof of the statement is also quite standard. Assuming the unit
of A is a cofibration, the cyclic bar construction of A is a Reedy cofibrant
simplicial object in Sp. Therefore the left arrow

THH(A)←− hocolim
∆op

(
Barcyc(A)

)
is a weak equivalence. On the other hand, the right arrow

hocolim
∆op

(
Barcyc(A)

)
−→ hocolim

E
(A ◦ ψ)

is a weak equivalence since ι : ∆op → E is homotopy cofinal and A is object-
wise cofibrant.

It is possible to prove a similar statement without assuming that S is
cofibrant (e.g. for the category of spectra of [EKMM]), but the proof
becomes more involved.



CHAPTER V

Spaces of embeddings of manifolds

Introduction

This chapter is devoted primarily to discussing smooth manifolds and
their embeddings, and constructing useful operads from those.

We have given the construction M(X) of sticky configurations in chapter
III, and have seen how one particular example, M(S1), can be used to recover
topological Hochschild homology of associative ring spectra (chapter IV).

In order to generalize this picture, we need to first replace associative
monoids by other algebraic structures. Therefore, one of the goals of this
chapter is to introduce the relevant PROPs EGn , which will be closely related
to spaces of embeddings between manifolds. These PROPs will turn out to
be similar to little discs operads.

We also need to define an invariant for EGn -algebras which generalizes
THH of associative monoids. The necessary objects for such a definition
are constructed in this chapter: to each manifold (with some geometric struc-
ture) we associate a right module over the aforementioned PROPs. These
right modules will also play a role in connecting back to the construction
M(X).

Summary

Section 1 deals with defining spaces of embeddings between manifolds —
which will be the basic objects for this chapter — and topologically enriched
categories of n-manifolds and embeddings.

Sections 2 and 3 are meant as simplified illustrations of the construc-
tions which will appear later in the chapter. In section 2, the categories of
embeddings from section 1 are used to build a PROP made up of spaces of
embeddings between n-manifolds. Section 3 associates to each manifold a
natural right module over those PROPs, whose homotopy type is determined
in section 4.

At this point, we genuinely begin the trek towards building the desired
PROPs EGn . Section 5 defines the necessary geometric structures on n-
manifolds, which are associated to each topological group G over GL(n,R),
and are called G-structures. Sections 6 and 7 dwell into some properties and
examples of such geometric structures.

Section 8 uses the G-structures of section 5 to define a homotopical
modification of embedding spaces between manifolds: these are called “G-
augmented embeddings”. Section 9 is an aside to talk about homotopy
pullbacks over a fixed space, since such a concept is necessary to define the
space of G-augmented embeddings.

89
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In section 10, we assemble the spaces of G-augmented embeddings into
topologically enriched categories, whose objects are n-manifolds with a G-
structure. Out of these categories we extract the sought after PROPs EGn in
section 11. We also compare these PROPs to known ones, and in particular
prove that E1

n is equivalent to the little n-discs PROP, Dn.
Finally, sections 12 and 13 describe a right module over EGn for each

n-manifold with a G-structure. Section 14 provides a simple analysis of the
homotopy type of these right modules.

1. Spaces of embeddings and categories of manifolds

By “manifold” we will always mean a smooth manifold (possibly with
boundary) whose underlying topological space is paracompact and Haus-
dorff. We will need to consider the space of embeddings between two mani-
folds.

1.1. Definition – space of embeddings
Given two manifolds M , N , the space of embeddings Emb(M,N) is the
topological space given by:
- the elements of Emb(M,N) are smooth embeddings of M into N , i.e.

smooth maps M → N which are a homeomorphism onto the image, and
whose derivative at each point of M is injective;

- the topology on Emb(M,N) is the compact-open C1-topology, also called
the weak C1-topology (see [Hir]).

Throughout the rest of this section we fix a (dimension) n ∈ N. We
continue by observing that n-manifolds and spaces of embeddings form a
Top-enriched category.

1.2. Definition – Top-category of n-manifolds and embeddings
The Top-category Embn of n-dimensional manifolds and embeddings is de-
fined by:
- the objects of Embn are n-dimensional manifolds without boundary;
- given n-manifolds M , N without boundary, Embn(M,N) := Emb(M,N);
- composition is given by composition of embeddings.

Embn is actually a symmetric monoidal Top-category: the symmetric
monoidal structure is given by disjoint union of manifolds (and embeddings)

q : Embn × Embn → Embn
(M,N) →M qN

A slight modification of Embn, which will be a useful example later, is
given by restricting to oriented manifolds and orientation preserving embed-
dings.

1.3. Definition – Top-category of oriented n-manifolds and embeddings
The Top-category Embor

n of n-dimensional oriented manifolds and orienta-
tion preserving embeddings is defined by:
- the objects of Embor

n are n-dimensional oriented manifolds without bound-
ary;
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- given oriented n-manifolds M , N without boundary, the morphism space
Embor

n (M,N) is the subspace of Emb(M,N) constituted by the orienta-
tion preserving embeddings;

- composition is given by composition of embeddings.

Embor
n is also a symmetric monoidal Top-category via disjoint union

of oriented manifolds. Moreover, the obvious map Embor
n → Embn is a

symmetric monoidal Top-functor.

2. Simple PROPs of embeddings

Some of the most important PROPs in this document will be given by
considering variations on the full subcategory of Embn generated by disjoint
unions of copies of Rn, where we introduce modifications to the spaces of
embeddings. As an expository prelude, we now examine the example of two
simpler PROPs derived directly from Embn and Embor

n . We again fix n ∈ N.

2.1. Definition – PROP of embeddings
The Top-PROP En is the full symmetric monoidal Top-subcategory of Embn
generated by Rn (in particular, ob(En) =

{
(Rn)qk : k ∈ N

}
, and the sym-

metric monoidal structure is given by disjoint union). The generator of En
is the object Rn.

2.2. Definition – PROP of orientation preserving embeddings
The Top-PROP Eor

n is the full symmetric monoidal Top-subcategory of Embor
n

generated by Rn. The generator of Eor
n is also the object Rn.

Observe that the obvious map incl : Eor
n → En is a map of Top-PROPs.

It is also easy to see that both En and Eor
n are categories of operators (recall

I.11.3), and therefore can be recovered from their underlying operads.
We will now identify Rn and the interior of the n-disc, intDn, via some

orientation preserving smooth diffeomorphism φ : intDn → Rn. This in-
duces maps of PROPs (the PROPs D•n are introduced in section I.12)

Fφ : DO(n)
n −→ En

Fφ : DSO(n)
n −→ Eor

n

which are given on morphisms by conjugation by φ:

Fφ(f) = φql ◦ f ◦
(
φqk

)−1

for any morphism f : (Dn)qk → (Dn)ql in DSO(n)
n or DO(n)

n . Note that the
following diagram commutes

DSO(n)
n

Fφ→ Eor
n

DO(n)
n

incl↓
Fφ→ En

incl
↓

It is easy to see that both maps Fφ are essentially surjective local homotopy
equivalences of Top-categories: this is essentially a consequence of the fact
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that the inclusions

SO(n) ↪−→ Embor(Rn,Rn)

O(n) ↪−→ Emb(Rn,Rn)

are homotopy equivalences (which follows, for example, from proposition
4.5).

In conclusion, we have constructed weak equivalences of PROPs between
En, Eor

n and certain PROPs of framed little n-discs, thus lending interest to
these new PROPs. However, the PROP of little n-discs, Dn, is not available
through these simple constructions of PROPs of embeddings. We will need
to modify the spaces of embeddings slightly in order to recover Dn from
these methods: that will be the goal of section 8.

3. Right modules over PROPs of embeddings

One advantage of the new PROPs En and Eor
n (over the PROPs D•n)

is that each (oriented) n-manifold naturally determines a right module (in
spaces) over them. However, we first need to move to a cartesian closed
category of spaces, since Top is not itself a Top-category. Recall that κ :
Top → kTop denotes the (product preserving) functor from Top into the
cartesian closed category of weak Hausdorff compactly generated spaces (see
I.3.6).

3.1. Definition – right modules over κEn
Let M be a n-manifold.
The restriction of the kTop-functor

YonκEmbn(M) = κEmbn(−,M) : (κEmbn)op −→ kTop

to the category (κEn)op is called

κEn[M ] : (κEn)op −→ kTop

3.2. Definition – right modules over κEor
n

Let M be an oriented n-manifold.
The restriction of the kTop-functor

YonκEmbor
n

(M) = κEmbor
n (−,M) : (κEmbor

n )op −→ kTop

to the category (κEor
n )op is (also) denoted

κEor
n [M ] : (κEor

n )op −→ kTop

Note that these constructions aggregate into kTop-functors

κEn[−] : Embn −→ [(En)op, kTop]kTop

κEor
n [−] : Embor

n −→ [
(
Eor
n

)op
, kTop]kTop

4. Homotopy type of the right modules over En

In this section we study the homotopy type of

Embn((Rn)qk,M) = κEn[M ]((Rn)qk)

For simplicity of notation, we will make the identification

k × Rn = (Rn)qk
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for k ∈ N.
We need a few preliminary definitions, which will also be useful through-

out the remainder of the present chapter.

4.1. Notation – frame bundle
Let E be a n-dimensional vector bundle.
Fr(E) denotes the frame bundle of E, which is the (locally trivial) principal
GL(n,R)-bundle associated with the vector bundle E. Note that both E
and Fr(E) have the same base space.

4.2. Observation – maps of vector bundles and principal bundles
Assuming E, E′ are n-dimensional vector bundles, let us denote the space
of vector bundle maps E → E′ by Mapvec(E,E′).
Within Mapvec(E,E′) we identify the subspace Mapvec

iso (E,E′) constituted
by the maps which are fibrewise (linear) isomorphisms.
Lastly, observe that the canonical map

MapGL(n,R)
(
Fr(E),Fr(E′)

)
−→ Mapvec(E,E′)

induces a homeomorphism

v : MapGL(n,R)
(
Fr(E),Fr(E′)

) ∼=−−→ Mapvec
iso (E,E′)

4.3. Definition – derivative of an embedding
Let M , N be n-dimensional manifolds.
We define the derivative map

D : Emb(M,N) −→ MapGL(n,R)
(
Fr(TM),Fr(TN)

)
as the composition

Emb(M,N) d−−→ Mapvec
iso (TM, TN)

v−1

−−−→ MapGL(n,R)
(
Fr(TM),Fr(TN)

)
where d takes an embedding h : M → N to its differential dh : TM → TN ,
which is a fibrewise linear isomorphism.

We will now use the derivative map to construct an approximation to the
desired space Emb(R,M). Consider for that purpose the canonical inclusion
at the origins

ik : k ⊂→ k × Rn

i → (i, 0) (4a)

Additionally, k×Rn is canonically parallelized, and so Fr(T (k×Rn)) acquires
a corresponding trivialization

Fr
(
T (k × Rn)

)
= GL(n,R)× k × Rn

4.4. Definition – derivative at the origins
Let M be a n-manifold without boundary, and k ∈ N.
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Consider the composition

Emb(k × Rn,M) D−−→
4.3

MapGL(n,R)
(
GL(n,R)× k × Rn,Fr(TM)

)
(−)|k−−−→ MapGL(n,R)

(
GL(n,R)× k,Fr(TM)

)
'−−→
(
Fr(TM)

)×k
'−−→ Fr

(
T (M×k)

)
where the second map is restriction along the inclusion ik : k ↪→ k × Rn

(equation (4a)) of the base spaces. That composition induces a map

D0 : Emb
(
(Rn)qk,M

)
−→ Fr

(
TConf(M,k)

)
(note that Conf(M,k) is an open submanifold of M×k) which we call the
derivative at the origins.

The following is now a standard result.

4.5. Proposition
Let M be a n-manifold without boundary, and k ∈ N.
The map

D0 : Emb
(
(Rn)qk,M

)
−→ Fr

(
TConf(M,k)

)
is a Hurewicz fibration and a homotopy equivalence.

Ingredients for proof:
The map D0 is equivariant with respect to the action of the topological

group Diff(M) × GL(n,R)×k on the source and target. We can therefore
use it to prove local triviality for D0. Given x ∈ Fr

(
TConf(M,k)

)
and a

sufficiently small neighborhood U of x, choose a map

ϕ : U −→ Diff(M)×GL(n,R)×k

such that

ϕ(y) · x = y for y ∈ U
ϕ(x) = unit

Use ϕ to translate between the fibres of D0 over the points of U .
The proof that D0 is a homotopy equivalence proceeds in three steps.

The first is to give a section σ of D0. The second is to give a homotopy over
Fr
(
TConf(M,k)

)
O : Emb(k × Rn,M)× I −→ Emb(k × Rn,M)

such that O(−, 0) = id, and for f ∈ Emb(k × Rn,M)

im
(
O(f, 1)

)
⊂ im

(
σ(D0f)

)
Intuitively, O is shrinking the image of f so that it fits within the image of
σ(D0f). This can be done by a simple manipulation of the domain of f .

The last step is to define the homotopy

O′ : Emb(k × Rn,M)× I −→ Emb(k × Rn, k × Rn)
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by the formula

O′(f, 1) = id

O′(f, τ)(x) =
1

1− τ
(
σ(D0f)−1 ◦O(f, 1)

)(
(1− τ)x

)
for τ ∈ [0, 1[ ,

x ∈ k × Rn

for f ∈ Emb(k×Rn,M). Concatenating O with the homotopy given by the
composition

Emb(k × Rn,M)× I (O′,proj)−−−−−−→ Emb(k × Rn, k × Rn)× Emb(k × Rn,M)
id×(σ◦D0)−−−−−−−→ Emb(k × Rn, k × Rn)× Emb(k × Rn,M)
comp−−−→ Emb(k × Rn,M)

(where “comp” indicates composition of embeddings), gives a homotopy
between the identity on Emb(k × Rn,M) and σ ◦D0.

End of proof

One can easily formulate an analog of this result for the case of orienta-
tion preserving embeddings.

5. G-structures on manifolds

Soon, we will construct modifications of the embedding spaces of man-
ifolds which will allow us to build new PROPs similar to En. First, and
arguably most important, we need to add geometric structures to our man-
ifolds, as was already hinted by our use of oriented n-manifolds to build the
PROP Eor

n : these geometric structures will come in the form of reductions of
the structure group of the tangent bundle. Second, we need to augment the
embedding spaces of manifolds with a “homotopical component” relating to
the aforementioned geometric structures.

We now define a convenient category of groups over GL(n,RR).

5.1. Definition – topological groups over GL(n,R)
The category of topological groups over GL(n,R), Grp/n, is defined by:
- the objects of Grp/n are maps of topological groups

G −→ GL(n,R)

from a topological group G to GL(n,R)
- given two maps of topological groups

f : G −→ GL(n,R)

g : H −→ GL(n,R)

a morphism in Grp/n(f, g) is a pair (h,A) where

h : G −→ H

is a map of topological groups, and A ∈ GL(n,R) conjugates g ◦ h to f

A · (g ◦ h) = f ·A
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- the composition (of composable morphisms) (h,A) and (h′, A′) in Grp/n
is given by

(h,A) ◦ (h′, A′) = (h ◦ h′, A ·A′)
We will call the objects of Grp/n topological groups over GL(n,R).

5.2. Observation
There is an obvious functor from Grp/n to the category of topological groups,
which associates to a map f : G→ GL(n,R) the topological group G, called
the underlying topological group of f .
We will call a morphism in Grp/n a weak equivalence if the corresponding
map of underlying topological groups is a weak equivalence.

5.3. Notation
We will often denote an object of Grp/n either by f, g, . . . or by G,H, . . . de-
pending on the emphasis: if the map to GL(n,R) is essential, we denote the
object of Grp/n by f, g, . . . ; otherwise, we tend to use the letters G,H, . . .
If G,H, . . . designates an object of Grp/n, we will often denote its underlying
topological group by G,H, . . . as well.
Furthermore, if G is a given topological group for which one can infer from
context an obvious map f : G → GL(n,R), we will often denote the corre-
sponding object of Grp/n (namely f) simply by G, without further note.

Let us now introduce the relevant geometric structures on manifolds.
Since these structures only involve the tangent bundle, let us start with
the corresponding definition on vector bundles. Recall (notation 4.1) Fr(E)
denotes the frame bundle of a vector bundle E.

5.4. Definition – G-structure on a vector bundle
Let f : G→ GL(n,R) be a topological group over GL(n,R) (i.e. an object
of Grp/n).
Given a n-dimensional vector bundle E (over a space X), a f -structure on E
is a reduction of the structure group of E across the map f . More precisely,
we require
- a locally trivial principal G-bundle PGE over X, and
- an isomorphism of principal GL(n,R)-bundles

λf (E) : f∗
(
PGE

) '−−→ Fr(E)

over the identity map on X.

5.5. Observation
For later use, we remark here that, given two vector bundles E, F with
f -structure, there is a natural map

MapG
(
PGE,PGF

) f∗−−→ MapGL(n,R)
(
Fr(E),Fr(F )

)
defined as the composition

MapG
(
PGE,PGF

) f∗−−→ MapGL(n,R)
(
f∗(PGE), f∗(PGF )

)
∼=−−→ MapGL(n,R)

(
Fr(E),Fr(F )

)
where the bottom homeomorphism is induced by the isomorphisms λf (E)
and λf (F ) which are part of the f -structures on E and F .
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5.6. Definition – G-structure on a manifold
Let G be a topological group over GL(n,R) (i.e. an object of Grp/n).
Given a n-manifold without boundary M , a G-structure on M is defined as
a G-structure on the tangent vector bundle TM .

5.7. Observation
The preceding definitions of G-structure — where G is a topological group
over GL(n,R) — could be easily generalized, with only mild modifications,
to the case of spaces over BGL(n,R). However, we will not do so in the
interest of simplicity.

These geometric structures are functorial on maps of groups: if h : G→
H is a morphism in Grp/n, then a G-structure on a n-manifold M can be
pushed forward along h to a H-structure on M . The same statement holds
for G-structures on vector bundles. In addition, if h is a weak equivalence
(of underlying topological groups) then any H-structure on a n-manifold M
can be lifted — essentially uniquely — to a G-structure, whose push-forward
along h is the original H-structure.

6. Constructions on G-structures

In this section, we give some simple constructions involving the geometric
structures defined in the previous section.

6.1. Definition – G-structure on disjoint union
Let f : G→ GL(n,R) be an object of Grp/n (where n ∈ N).
Assume M , N are n-manifolds with a f -structure.
The induced f -structure on the disjoint union M qN is given by
- the principal G-bundle PG

(
T (MqN)

)
:= PG(TM)qPG(TN) over MqN ;

- the required isomorphism λf (T (M qN)) of principal GL(n,R)-bundles is

f∗
(
PG
(
T (M qN)

)) '−−→ f∗
(
PG(TM)

)
q f∗

(
PG(TN)

)
λf (TM)qλf (TN)
−−−−−−−−−−−→ Fr(TM)q Fr(TN)
'−−→ Fr

(
T (M qN)

)
6.2. Definition – induced G-structure on open submanifold
Let f : G→ GL(n,R) be a topological group over GL(n,R) (where n ∈ N).
Let M be a n-manifold equipped with a f -structure, and N an open sub-
manifold of M .
The induced f -structure on the open submanifold N of M is defined by:
- PG(TN) is the restriction to N of the principal G-bundle PG(TM);
- the isomorphism of principal GL(n,R)-bundles λf (TN) is the restriction

to N of the isomorphism

λf (TM) : f∗(PG(TM)) '−→ Fr(TM)

coming from the f -structure on M .

6.3. Definition
Let m,n ∈ N, and assume
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f : G −→ GL(m,R)

g : H −→ GL(n,R)

are maps of topological groups.
We define the topological group over GL(m+ n,R)

f � g : G×H −→ GL(m+ n,R)

to be the composition

G×H f×g−−−→ GL(m,R)×GL(n,R)
⊕

↪−−→ GL(m+ n,R)

where ⊕ is the canonical inclusion.

6.4. Notation
In particular, we denote the underlying group of G�H by G×H.

6.5. Definition – geometric structure on product
Let m,n ∈ N, and assume

f : G −→ GL(m,R)

g : H −→ GL(n,R)

are maps of topological groups.
Additionally, let M be a m-manifold with a f -structure and N a n-manifold
with a g-structure.
The product f � g-structure on M ×N is given by:
- the G×H-principal bundle PG×H

(
T (M ×N)

)
over M ×N is the product

PG×H
(
T (M ×N)

)
:= PG(TM)× PH(TN)

- the isomorphism λf�g(T (M × N)) of principal GL(m + n,R)-bundles is
the composition

(f�g)∗
(
PG(TM)×PH(TN)

) '−−→ ⊕∗(f∗(PG(TM)
)
× g∗

(
PH(TN)

))
⊕∗(λf (TM)×λg(TN))
−−−−−−−−−−−−−→ ⊕∗

(
Fr(TM)×Fr(TN)

)
'−−→ Fr(TM × TN)
'−−→ Fr

(
T (M ×N)

)
where the non-named isomorphisms are canonical with respect to prod-
ucts of principal bundles (first isomorphism), vector bundles (third iso-
morphism), and manifolds (last isomorphism), respectively.

In the next example, we apply these constructions to the space of config-
urations Conf(M,k) of a n-manifold M with a G-structure (for G in Grp/n).
We denote by G�k the object in Grp/n which is the result of iterating the
construction in definition 6.3.

6.6. Example – G�k-structure on Conf(M,k)
Let M be a n-manifold with a G-structure, and k ∈ N.
The previous definition gives a G�k-structure on M×k. Define the G�k-
structure on Conf(M,k) to be the structure induced on the open submanifold
Conf(M,k) of M×k.
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7. Examples of G-structures

Observe that every n-manifold has a canonical GL(n,R)-structure. This
section gives a few more examples of less trivial G-structures.

7.1. Example – orientations and GL+(n,R)
Consider the subgroup GL+(n,R) of GL(n,R).
An orientation on a n-dimensional manifold M determines an essentially
unique GL+(n,R)-structure on M (inducing that orientation on M). It is
essentially unique in the following sense: any two reductions of the structure
group of TM to GL+(n,R) which induce the same orientation on M are
uniquely isomorphic.

7.2. Example – Riemannian structures and O(n)
Consider the subgroup O(n) of GL(n,R).
A Riemannian structure on a n-manifold M is equivalent to a O(n)-structure
on M . More precisely, a reduction of the structure group of TM to O(n)
determines a Riemannian structure on M , and any two reductions giving
the same Riemannian structure are uniquely isomorphic.

Note that, in view of the two preceding examples, one concludes that a
SO(n)-structure on a n-manifold M is equivalent to giving a Riemannian
structure and an orientation on M . Additionally, the previous example can
be easily modified to give, for example, a similar relation between symplectic
structures on a manifold and Sp(2n,R)-structures (where Sp(2n,R) is the
group of symplectic real 2n× 2n matrices).

We now analyze a very important example of the geometric structures
under consideration.

7.3. Example – parallelizations and the trivial group
A trivialization of a n-dimensional vector bundle E is equivalent to a re-
duction of the structure group of E to the trivial group 1. In particular,
giving a 1-structure on M is equivalent to giving a parallelization of M (i.e.
a trivialization of TM).

7.4. Example – G-structure on Rn

Note that the manifold Rn is naturally parallelized, and therefore is equipped
with a canonical 1-structure (by the previous example).
Consequently, for any map of topological groups f : G → GL(n,R), the
manifold Rn has a canonical f -structure obtained by pushing-forward (along
1→ G) the canonical 1-structure on Rn. In particular, the bundle PG(TRn)
is canonically trivialized:

PG(TRn) = Rn ×G

8. Augmented embedding spaces

Having defined the necessary geometric structures on manifolds, in this
section we will introduce the related “homotopical” modifications of the
spaces of embeddings of manifolds. We fix throughout this section a topo-
logical group over GL(n,R), f : G→ GL(n,R) (where n ∈ N is also fixed).
Recall from 5.3 that we will sometimes denote this object of Grp/n simply
by G, if the map f is not essential at the time.
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Given the definitions presented in the previous sections, one might ex-
pect that the correct space of embeddings would be the subspace of Emb(M,N)
of the embeddings which preserve the G-structures, in some sense. We now
exemplify what this could mean.

8.1. Example – preservation of G-structure by an embedding
Assume that f : G→ GL(n,R) is the inclusion of a closed subgroup. Then
the induced map

PG(TM) ↪−→ f∗
(
PG(TM)

) λf (TM)
−−−−−→

5.4
Fr(TM)

is the inclusion of a closed subspace, for any n-manifold M with a f -
structure. So if Mn, Nn both have a G-structure, it makes sense to say
that an embedding e ∈ Emb(M,N) preserves the f -structure when the de-
rivative map (as in definition 4.3)

De : Fr(TM) −→ Fr(TN)

carries the subspace PG(TM) of Fr(TM) into the closed subspace PG(TN)
of Fr(TN). In this case, De determines a G-map

De|PG(TM) : PG(TM) −→ PG(TN)

However, important cases of f -structures, such as parallelizations (ex-
ample 7.3), are often very rigid, not allowing for the existence of many
embeddings which preserve the f -structures. Next we give an example of
this kind of rigidity.

8.2. Example
There are no embeddings R2 → S2 which preserve the usual Riemannian
structures on these manifolds (since S2 has constant non-zero curvature).
In particular, there are no embeddings R2 → S2 which preserve the corre-
sponding O(2)-structures (see example 7.2).
Informally, one could say S2 has no O(2)-charts.

To avoid this issue of rigidity, we demand that the f -augmented embed-
dings (defined next) preserve the f -structures only up to homotopy.

8.3. Definition – G-augmented embedding spaces
Let M , N be n-manifolds equipped with a f -structure (see definition 5.6).
The space of f -augmented embeddings, IEmbfn(M,N), is the homotopy pull-
back over Map(M,N) of the following diagram over Map(M,N)

MapG
(
PG(TM),PG(TN)

)

Emb(M,N)
D

4.3
→ MapGL(n,R)

(
Fr(TM),Fr(TN)

)f∗ 5.5
↓

Before proceeding, we need to explain the meaning of the homotopy
pullback appearing in the definition. That is the purpose of the next section.
Before that, let us just give a definition close in spirit to 4.3.

8.4. Definition – G-augmented derivative
Let M , N be n-manifolds equipped with a G-structure.
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We call the canonical projection

IEmbGN (M,N) −→ MapG
(
PG(TM),PG(TN)

)
the G-augmented derivative map, and denote it by IDG.

9. Interlude: homotopy pullbacks over a space

The diagram in definition 8.3 sits over Map(M,N) (as stated there), by
which it is meant that the diagram

MapGL(n,R)
(
Fr(TM),Fr(TN)

)
←f∗ MapG

(
PG(TM),PG(TN)

)

Emb(M,N)

D

↑

incl → Map(M,N)

p2

↓

p1

→

commutes, where the maps p1 and p2 associate to a map of principal bundles
the corresponding map on the base spaces. Equivalently (letting • stand for
the appropriate space of maps between principal bundles)

(Emb(M,N), incl) D−−→ (•, p1)
f∗←−− (•, p2)

is a diagram in the over-category Top/Map(M,N). We will now describe
the homotopy pullback of this last diagram over Map(M,N), which is the
object specified in definition 8.3 to be IEmbfn(M,N).

Let W be a topological space, and suppose we are given a diagram D in
Top/W

D : (X, pX)
g−−→ (Y, pY ) h←−− (Z, pZ)

The homotopy pullback of D over W is defined to be the limit in Top

ho pb/W (D) := lim



X
g → Y W

Map(I, Y )

ev0

↑

Map(I,pY )→ Map(I,W )

const↓

Z
h → Y

ev1↓


More informally, ho pb/W (D) is the subspace of the usual homotopy pullback
of X g−→ Y

h←− Z which sits over the constant paths in Map(I,W ). In
particular, ho pb/W (D) naturally maps to W .

9.1. Observation – homotopical properties of ho pb/W
The specific model above, ho pb/W , gives indeed a homotopy pullback (in
the sense of model categories) for the category Top/W , modulo fibrancy
conditions in Top/W : we need that

pY : Y −→W

pZ : Z →W

are Serre fibrations.
If pY , pZ are indeed Serre fibrations (respectively, Hurewicz fibrations), the
natural inclusion of ho pb/W (D) into the usual homotopy pullback (in Top) of
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X
g−→ Y

h←− Z is a weak equivalence (respectively, homotopy equivalence).
Also, if pY : Y −→ W is a Serre (respectively, Hurewicz) fibration then the
projection

ho pb/W (D) −→ X ×
W
Z

is also a Serre (respectively, Hurewicz) fibration.

9.2. Observation – homotopical properties of IEmbGn (M,N)
In the case appearing in definition 8.3, we do obtain a homotopy pull-
back in Top/Map(M,N) since the necessary fibrancy conditions are verified:
namely the projections

MapGL(n,R)
(
Fr(TM),Fr(TN)

)
−→ Map(M,N)

MapG
(
PG(TM),PG(TN)

)
−→ Map(M,N)

are Hurewicz fibrations.
So the inclusion of IEmbGn (M,N) into the usual homotopy pullback of the
diagram in 8.3 is a homotopy equivalence.
Furthermore, the canonical projection

IEmbGn (M,N) −→ MapG
(
PG(TM),PG(TN)

)
×

Map(M,N)
Emb(M,N) (9a)

is a Hurewicz fibration. Since the map

MapG
(
PG(TM),PG(TN)

)
−→ Map(M,N)

is a Hurewicz fibration, it follows that the canonical projection

q : IEmbGn (M,N) −→ Emb(M,N)

is also a Hurewicz fibration.

9.3. Notation – G-augmented embeddings
We will denote elements of ho pb/W (D) (defined above) by triples (x, γ, z)
where x ∈ X, z ∈ Z and γ ∈ Map(I, Y ).
In particular, we will denote elements of IEmbGn (M,N) (that is, G-augmented
embeddings) by triples (e, γ, g) where:
- e ∈ Emb(M,N);
- g : PG(TM)→ PG(TN) is a map of principal G-bundles over e;
- γ is a path in MapGL(n,R)

(
Fr(TM),Fr(TN)

)
: it goes from De to the map

induced by g, and sits over the constant path in Map(M,N) with value e.

As a simple illustration of this notation, assume that f : G→ GL(n,R)
is the inclusion of a closed subgroup, and that Mn, Nn have G-structures.
Then any embedding e ∈ Emb(M,N) which preserves the G-structure (in
the sense of example 8.1) determines a G-augmented embedding(

e, constDe, De|PG(TM)

)
∈ IEmbfn(M,N)

where De is the derivative of e (as defined in 4.3), and constDe is the constant
path equal to De. We will denote this augmented embedding simply by e.
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10. Categories of augmented embeddings

In this section, we explain how n-dimensional manifolds with a G-struc-
ture, together with G-augmented embeddings define a symmetric monoidal
Top-category. Fix n ∈ N and an object G of Grp/n.

Let us begin by describing the composition of G-augmented embeddings.

10.1. Definition – composition of G-augmented embeddings
Assume M , N , and P are n-manifolds equipped with a G-structure.
Let (e, γ, g) ∈ IEmbGn (M,N), and (e′, γ′, g′) ∈ IEmbGn (N,P ) (recall remark
9.3 on notation for augmented embeddings).
The composite of the G-augmented embeddings (e, γ, g) and (e′, γ′, g′) is

(e′, γ′, g′) ◦ (e, γ, g) := (e′ ◦ e, γ′ ◦ γ, g′ ◦ g) ∈ IEmbGn (M,P )

where γ′ ◦ γ denotes the pointwise composition

(γ′ ◦ γ)(τ) = γ′(τ) ◦ γ(τ) for τ ∈ I = [0, 1]

10.2. Definition – Top-category of G-augmented embeddings
The Top-category IEmbGn is defined by:
- the objects of IEmbGn are the n-manifolds (without boundary) with a G-

structure;
- given n-manifolds with a G-structure, M and N , the morphism space

IEmbGn (M,N) is the space of G-augmented embeddings already defined;
- composition in IEmbGn is given by composition of G-augmented embed-

dings, as described above.

The symmetric monoidal structure on the Top-category IEmbGn is given
by disjoint union of manifolds:

q : IEmbGn × IEmbGn → IEmbGn
(M,N) →M qN

which is well defined since the disjoint union of manifolds with G-structures
has an induced G-structure (definition 6.1).

10.3. Observation – functoriality of IEmb•n
Like the geometric structures on manifolds, these categories are functorial
on maps of groups. More precisely, we have a functor

IEmb•n : Grp/n −→ Top-SMCAT

which associates to a topological group over GL(n,R) the symmetric monoi-
dal Top-category IEmbGn . The functor induced by a morphism h : G→ H in
Grp/n is called

h∗ : IEmbGn −→ IEmbHn

If h : G→ H is a weak equivalence, then h∗ is an essentially surjective local
weak equivalence of Top-categories.

These categories can be related with Embn and Embor
n . Specifically, the

canonical projection from the space of augmented embeddings to the (usual)
space of embeddings gives a functor

q : IEmbGn −→ Embn
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This defines a cocone for the functor IEmb•n. In other words, q gives a natural
transformation

q : IEmb•n −→ Embn (10a)
from IEmb•n to the constant functor equal to Embn.

If G actually sits over GL+(n,R), then q factors through Embor
n .

We can still say more: the description (at the end of the previous sec-
tion 9) of a G-augmented embedding associated to any embedding which
preserves G-structures (example 8.1) determines inclusions

Embn ↪−→ IEmbGL(n,R)
n

Embor
n ↪−→ IEmbGL

+(n,R)
n

(10b)

given that any embedding preserves the GL(n,R)-structures, and any ori-
entation preserving embedding between oriented n-manifolds preserves the
associated GL+(n,R)-structures. These inclusions are symmetric monoidal
Top-functors which are essentially surjective local homotopy equivalences.
Furthermore, the composition

Embn ↪−→ IEmbGL(n,R)
n

q−−→ Embn
is equal to the identity functor.

11. PROPs of augmented embeddings

We will now define the PROPs EGn in analogy with our definition of the
PROPs En and Eor

n before (see definitions 2.1 and 2.2). We fix a dimension
n ∈ N throughout this section.

11.1. Definition – PROPs of G-augmented embeddings
Let G be a topological group over GL(n,R).
The Top-PROP EGn is the full symmetric monoidal Top-subcategory of IEmbGn
generated by Rn (see example 7.4). The generator of EGn is the object Rn.

In particular, ob(EGn ) = {(Rn)qk : k ∈ N}, and the symmetric monoidal
structure on EGn is given by disjoint union. It is straightforward to prove
that EGn is a category of operators and, in particular, can be reconstructed
from its underlying Top-operad.

11.2. Observation – functoriality and homotopy invariance of EGn
The Top-PROP EGn is functorial in the topological group G over GL(n,R),
since the same is true for IEmbGn .
Furthermore, a weak equivalence h : G ∼−→ H in Grp/n induces a weak
equivalence h∗ : EGn

∼−→ EHn .

The rest of this section is dedicated to comparing these new PROPs to
prior ones. There is a canonical map of Top-PROPs

EGL
+(1,R)

1
∼−−→ Ass

which is a weak equivalence. Also, the inclusions in (10b) restrict to weak
equivalences

En
∼

↪−−→ EGL(n,R)
n

Eor
n

∼
↪−−→ EGL

+(n,R)
n



12. RIGHT MODULES OVER PROPS OF AUGMENTED EMBEDDINGS 105

In particular, E
GL(n,R)
n ' DO(n)

n and E
GL+(n,R)
n ' DSO(n)

n (via the weak
equivalences described at the end of section 2).

We can now also compare E1
n with the little n-discs PROP, Dn. Consider

the closed subgroup R+ of GL(n,R) given by the positive multiples of the
identity. Additionally, fix an isomorphism

φ : intDn '−−→ Rn in IEmbR+

n

Then conjugation with φ defines a map of Top-PROPs

Fφ : Dn −→ ER+

n

given by

Fφ(f) = φql ◦ f ◦
(
φqk

)−1 for f ∈Dn

(
(Dn)qk,(Dn)ql

)
(note that f restricts to an embedding of the interiors which preserves the
R+-structure, and thus determines a R+-augmented embedding of the same
name). Fφ can be seen to be a weak equivalence, in part by observing that

IEmbR+

n (Rn,Rn) ' IEmb1
n(Rn,Rn) ' ∗ ' Dn(Dn, Dn)

The weak equivalence (1 ↪→ R+)∗ : E1
n
∼−→ ER+

n now gives a zig-zag

Dn
∼−−→
Fφ

ER+

n
∼←−− E1

n

which shows that E1
n ' Dn.

12. Right modules over PROPs of augmented embeddings

Fix (throughout this section) an object G of Grp/n (where n ∈ N). As
before (with En and Eor

n ), a n-manifold with a G-structure determines a
right module over EGn , after passing to a cartesian closed category of spaces.
Again, κ : Top→ kTop denotes the inclusion of Top into a cartesian closed
category of spaces.

12.1. Definition – right modules over κEGn
Let M be a n-manifold with a G-structure.
The restriction of the kTop-functor

YonκIEmbGn
(M) = κIEmbGn (−,M) :

(
κIEmbGn

)op −→ kTop

to the category
(
κEGn

)op is called

κEGn [M ] :
(
κEGn

)op −→ kTop

Observe that the functoriality of the Yoneda embedding actually extends
this construction to a kTop-functor:

κEGn [−] : κIEmbGn −→ [
(
κEGn

)op
, kTop]kTop

In addition, given a morphism h : G → H in Grp/n, there is an induced
natural transformation (merely witnessing the fact that h∗ : IEmbGn → IEmbHn
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is a Top-functor) (
κEGn

)op (h∗)
op

→
(
κEHn

)op

κεh

=⇒

kTop

κEHn [h∗M ]

←

κEGn [M ] →

which is functorial in h (i.e. these natural transformations compose ap-
propriately) and M . This means, more precisely, that we have for each
h : G→ H as above a kTop-natural transformation

[
(
κEGn

)op
, kTop]kTop ←

[κ(h∗)
op,kTop]kTop [

(
κEHn

)op
, kTop]kTop

κεh
=⇒

κIEmbGn

κEGn [−]

↑

κ(h∗)
→ κIEmbHn

κEHn [−]

↑

and these compose in the obvious manner when we stack two of these squares
side by side (given two composable morphisms in Grp/n). Finally, we remark
that κεh is an objectwise weak equivalence if h : G → H is a weak equiva-
lence.

13. Internal presheaves on EGn

Fix throughout this section an object G of Grp/n (where n ∈ N).
Having to first switch to a cartesian closed category of spaces is slightly

unsatisfying (even if irrelevant from a homotopical viewpoint), since all our
constructions so far are within Top. We can remedy this situation — and
remain within Top — by using internal presheaves in Top. The actual inten-
tion of introducing these internal presheaves is to later establish a connection
with the construction M(X) given in chapter III.

Recall that any Top-category, C, gives rise to a category object, IC, in
TOP (or Top, if obC happens to be small) with a discrete space of objects.
Recall also that for an internal category C, each object x of C determines an
internal (Yoneda) presheaf YonC(x) = C(−, x) on C (see exampleII.6.3).

13.1. Definition – internal presheaves over IEGn
Let M be a n-manifold with a G-structure.
The restriction of the internal TOP-valued functor

YonIIEmbGn
(M) = IIEmbGn (−,M) :

(
IIEmbGn

)op −→ TOP

to the category IEGn
op (internal to Top) is an internal Top-valued presheaf

called
IEGn [M ] :

(
IEGn

)op −→ Top

13.2. Observation
If we push the internal presheaf IEGn [M ] along κ : Top → kTop, we obtain
an internal presheaf on κIEGn = IκEGn . Since kTop is cartesian closed, this
internal presheaf induces a kTop-enriched presheaf on κEGn . This induced
presheaf on κEGn is exactly κEGn [M ], as defined in 12.1.
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Similar statements hold regarding the functoriality — on M and G —
of IEGn [M ] as were made for κEGn [M ] immediately following definition 12.1.
More concretely, there are functors

IEGn [−] :
(
IEmbGn

)
0
−→ Cat(Top)

((
IEGn

)op
,Top

)
where the right hand side denotes the category of internal Top-valued pre-
sheaves on IEGn , and the subscript 0 on the left hand side gives the underlying
Set-category. Also, given a morphism h : G → H in Grp/n, there is a
canonical natural transformation (which is merely a vestige of the Top-
functor h∗ : IEmbGn → IEmbHn )

Cat(Top)
(
IEGn

op
,Top

)
←Cat(Top)(I(h∗)op,Top)

Cat(Top)
(
IEHn

op
,Top

)
Iεh
=⇒(

IEmbGn
)

0

IEGn [−]

↑

(h∗)0
→
(
IEmbHn

)
0

IEHn [−]

↑
(13a)

and these compose adequately when we place two of these diagrams side
by side (given two composable morphisms in Grp/n). As before, Iεh is an
objectwise weak equivalence if h : G→ H is a weak equivalence.

13.3. Observation
Note that we can define, for any n-dimensional manifold M , an analogous
internal Top-valued presheaf (with similar functoriality in M ∈ Embn)

IEn[M ] : (IEn)op −→ Top

for the case of the Top-PROP En.
The comparison between this and IEGL(n,R)

n [M ] takes the form of an internal
natural transformation(

IEn
)op inclop→

(
IEGL(n,R)

n

)op

=⇒

Top

IEGL(n,R)
n [M ]

←

IEn[M ]

→

(13b)

which is actually a weak equivalence of internal Top-valued presheaves.
On the other hand, q : IEmb•n → Embn (expression (10a)) gives a natural
transformation (

IEGn
)op qop→

(
IEn

)op

q

=⇒

Top

IEn[−]

←

IEGn [−] →

(13c)

which “absorbs” the above Iεh:(
q ◦ (h∗)

op) · Iεh = q
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14. Homotopy type of the right modules over EGn

Fix an object of Grp/n, f : G → GL(n,R) (where n ∈ N). As is now
usual, it will be often denoted simply by G. Fix also k ∈ N.

We will end this chapter by describing the homotopy type of the in-
ternal presheaf IEGn [M ]. For that purpose, we will analyze each piece
IEmbGn ((Rn)qk,M) (this is the piece over (Rn)qk) separately. For legibil-
ity, we will again make the identification

(Rn)qk = k × Rn

We will mimic the constructions in section 4 for the space ofG-augmented
embeddings IEmbGn (R,M).

For the next definition, recall the G�k-structure on Conf(M,k) from
example 6.6: it gives us, in particular, a G×k-principal bundle

PG×k
(
TConf(M,k)

)
−→ Conf(M,k)

which is the restriction of PG×k
(
T (M×k)

)
to Conf(M,k). Observe also that

PG(T (k × Rn)) is canonically trivialized (since k × Rn actually has a 1-
structure):

PG(T (k × Rn)) = G× k × Rn

14.1. Definition – G-augmented derivative at the origins
Let M be a n-manifold with a G-structure.
Recall the induced G�k-structure on Conf(M,k) from example 6.6.
Consider the composition

IEmbGn (k × Rn,M) IDG−−→
8.4

MapG
(
G× k × Rn,PG(TM)

)
(−)|k−−−→ MapG

(
G× k,PG(TM)

)
'−−→
(
PG(TM)

)×k
===
6.5

PG×k
(
T (M×k)

)
This composition induces a map

IDG
0 : IEmbGn

(
(Rn)qk,M

)
−→ PG×k

(
TConf(M,k)

)
which we call the G-augmented derivative at the origins.

14.2. Observation
There is an action of G×k on IEmbGn (k × Rn,M) for which IDG

0 is G×k-
equivariant.
This action makes IEmbGn (k × Rn,M) into a principal G×k-space such that
the map to the quotient by the group action is a fibration.

14.3. Observation – naturality of IDG
0

The source of IDG
0 has the functoriality with respect to G and M which is

inherited from the functor IEmb•n : Grp/n → Top-CAT. The target of IDG
0

acquires similar functoriality.
The map IDG

0 is natural with respect to that functoriality of the source and
target. We leave it to the reader to make this assertion precise.
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14.4. Proposition
Let M be a n-manifold with a G-structure.
The map

IDG
0 : IEmbGn

(
(Rn)qk,M

)
−→ PG×k

(
TConf(M,k)

)
is a homotopy equivalence and a Hurewicz fibration.

Sketch of proof:
For brevity of notation, let us define:

R := k × Rn = (Rn)qk

To verify that the map is a fibration, proposition 4.5 and the remarks in 9.2
are useful: using that the maps

MapG
(
PG(TR),PG(TM)

)
−→ Map(R,M)

D0 : Emb(R,M) −→ Fr
(
TConf(M,k)

)
are fibrations, we can prove (through some simple manipulation of principal
G-bundles) that the natural map

MapG
(
PG(TR),PG(TM)

)
×

Map(R,M)
Emb(R,M) −→ PG×k

(
TConf(M,k)

)
is a fibration. Composing with the fibration (expression (9a))

IEmbG(R,M) −→ MapG
(
PG(TR),PG(TM)

)
×

Map(R,M)
Emb(R,M)

gives the map IDG
0 , which is consequently a Hurewicz fibration.

In order to prove that IDG
0 is a homotopy equivalence, first we construct

a homotopy equivalence from IEmbGn (k×Rn,M) to the homotopy pullback,
X, of

PG×k
(
T (M×k)

)

Fr(TConf(M,k)) ⊂ → Fr
(
T (M×k)

)f∗↓ (14a)

This diagram is just the result of taking the diagram in 8.3 which defines
IEmbGn (k×Rn,M), and substituting each of the entries by (smaller) equiva-
lent spaces that they map to (one of those substitutions is given by propo-
sition 4.5; see diagram below). Thus we get a natural objectwise homotopy
equivalence of diagrams from the original one (from definition 8.3 applied
to the present case) to the one displayed above (recall that R := k × Rn):

MapG
(
PG(TR),PG(TM)

)

PG×k
(
T (M×k)

)
∼

(−)|k →

Emb(R,M)
D→ MapGL(n,R)

(
Fr(TR),Fr(TM)

)
f∗

↓

Fr(TConf(M,k)) ⊂ →

∼
D

0 →
Fr
(
T (M×k)

)
f∗

↓
∼

(−)|k →

(14b)
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From this we derive the desired homotopy equivalence of homotopy pullbacks

u : IEmbGn (k × Rn,M) ∼−−→ X

(recall from 9.2 that IEmbGn (k×Rn,M) is homotopy equivalent to the usual
homotopy pullback).

Let us now augment diagram (14a) with more arrows:

PG×k(TConf(M,k)) ⊂ → PG×k
(
T (M×k)

)

Fr(TConf(M,k))

f∗
↓

⊂ → Fr
(
T (M×k)

)f∗↓

Conf(M,k)

proj
↓

⊂ →M×k

proj↓

The bottom square is a pullback square. It is therefore a homotopy pullback
square given that

proj : Fr
(
T (M×k)

)
−→M×k

is a Hurewicz fibration. Similarly, the big outer square is cartesian, and
therefore homotopy cartesian since

proj ◦ f∗ : PG×k
(
T (M×k)

)
−→M×k

is a Hurewicz fibration. Consequently, the top square is homotopy cartesian
as well, which provides a homotopy equivalence

v : PG×k(TConf(M,k)) ∼−−→ X

Observe that v ◦ IDG
0 ' u (the two maps are not equal): this essentially

amounts to a chase around diagram (14b), using the definition of G-aug-
mented embedding spaces. In conclusion, IDG

0 is a homotopy equivalence.
End of proof



CHAPTER VI

Stratified spaces

Introduction

This chapter deals with the notion of stratified space, which is essentially
a space equipped with a filtration. The goal is to develop the basis for
applications to the construction M(X) from chapter III. More precisely, we
define the category of filtered paths on a stratified space, and compare it
with the construction M(X). We also use a well behaved class of stratified
spaces — the homotopically stratified spaces — to compute the homotopy
type of the morphism spaces in M(M) for M a manifold.

Summary

This chapter is mostly expository, and gives a convenient theory of strat-
ified spaces.

The first section, 1, gives a naive definition of stratified space (also called
a filtered space elsewhere) and a few important examples. Section 2 defines
the space of filtered Moore paths on a stratified space. Using this, it then
proceeds to associate to each stratified space X the (internal) topological
category of filtered paths in X,

−−→
path(X). Notions similar to this exist in the

literature, and are often called the “exit-path category” (see, for example,
[Woo09], [Tre09], or the appendix A to [Lur09a]).

Section 3 puts a useful new topology on the space of filtered Moore paths,
resulting in the strong space of filtered Moore paths. Section 4 recovers the
category M(X) from categories of filtered paths, and in particular gives a
description of the morphism spaces of M(X) in terms of spaces of filtered
paths.

Now starts the journey to define a convenient class of stratified spaces,
and to give tools to analyze them homotopically. Essentially, the new con-
cepts discussed in the remaining sections were originally introduced in the
article [Qui88] of Frank Quinn.

Section 5 defines the notion of homotopy links on a stratified space X. It
also gives several properties of the space of homotopy links of (the stratified
space associated to) a pair of spaces. These properties are used to analogize
the space of homotopy links on a pair of spaces with the normal sphere
bundle of an embedding of manifolds.

Section 6 discusses the notion of tame subspace, under which the space
of homotopy links of a pair is particularly well behaved. Section 7 finally
defines a convenient class of stratified spaces: the homotopically stratified
spaces. These allow for a vast simplification in the homotopical analysis
of filtered paths on a stratified space: the theorem of David Miller from
[Mil09] essentially says that the inclusion of a certain space of homotopy

111
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links into a corresponding space of filtered paths is a homotopy equivalence.
We also give a variation on this result using the strong space of filtered paths
which will be necessary in the next chapter.

Finally, section 8 applies the results from the preceding sections to ana-
lyze the homotopy type of the morphism spaces of M(M), for M a manifold.

1. Stratified spaces

In this section we introduce the notion of stratified spaces as spaces over
a partially ordered set, appropriately topologized.

1.1. Notation
Given a partially ordered set A, we will use the following abbreviation

[a,+∞[ := {b ∈ A : a ≤ b}

for a ∈ A.

1.2. Definition – topology on partially ordered set
Let A be a partially ordered set.
We define the topological space potop(A) to be the set A equipped with the
smallest topology such that [a,+∞[ is closed for all a ∈ A.

1.3. Observation
The construction above extends in the obvious manner to a functor from
the category of partially ordered sets, poset, to Top

potop : poset −→ Top

1.4. Definition – stratified space
The category of stratified topological spaces, FTop, is the over-category

FTop := Top/potop

where
- the objects are triples

(
X,A,X → potop(A)

)
, with X a topological space

and A a partially ordered set;
- the morphisms (X,A, f) → (Y,B, g) are pairs (u : X → Y, v : A → B)

such that the diagram

X
f→ potop(A)

Y

u
↓

g→ potop(B)

potop(v)
↓

commutes

1.5. Notation
An element (X,A, f) of FTop will also be called a stratification on its un-
derlying space, X.
We will often denote a stratification on X simply by X, if the stratification
is clear from context (e.g. if there is a canonical one).

1.6. Notation – strata and filtration stages
Given a stratified space

(
X,A, f : X → potop(A)

)
, we use the following
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abbreviations

Xa := f−1({a})
X≥a := f−1

(
[a,+∞[

)
for a ∈ A. We call Xa a stratum of X, and X≥a a filtration stage of X.

1.7. Observation
The data for a stratified space X is equivalent to assigning a closed set X≥a
to each element a ∈ A, in such a way that

X≥a ⊂ X≥b if b ≤ a

for a, b ∈ A.
In particular, the map a 7−→ X≥a is order reversing. This is opposite the
conventional definition of stratified spaces as spaces over a partially ordered
set. The reason for this disparity has to do with convenience in our principal
example 1.10 of a stratified space.

1.8. Example – pair of spaces
A simple example of a stratified space is given by a pair of topological spaces
(X,Y ) where Y is a closed subspace of X. The element of FTop associated
to such a pair is

(
X, ({0, 1},≤), f

)
where

f(Y ) = {1}
f(X \ Y ) = {0}

We denote this stratified space by 〈
−−→
X,Y 〉 in order to avoid confusion.

1.9. Example – intervals in R
Any interval J in R — with the subspace topology — can be canonically
upgraded to a stratified space

(
J, (J,≤), idJ

)
.

Examples of this are given by I = [0, 1] and [0,+∞[ . According to nota-
tion 1.5, we will denote the corresponding stratified spaces simply by I and
[0,+∞[ , respectively.

1.10. Example – mapping spaces
Let X, Y be topological spaces with Y Hausdorff.
There is a canonical stratification on Map(X,Y ) (with the compact-open
topology) whose underlying partially ordered set is (equiv(X),⊂), the set of
all equivalence relations on X equipped with the inclusion partial order.
The stratified space associated with Map(X,Y ) is then(

Map(X,Y ), (equiv(X),⊂), p
)

where for any map g : X → Y , p(g) is the equivalence relation induced on
X by g, i.e.

(x, y) ∈ p(g) ⇐⇒ g(x) = g(y) for x, y ∈ X

Again, as per notation 1.5, this stratified space will be designated simply by
Map(X,Y ).
For future reference, note that an example of this stratified space is given
by the product Y ×S = Map(S, Y ) for any set S.
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1.11. Observation
The preceding construction of a stratification on Map(X,Y ) (for X a space
and Y a Hausdorff space) extends canonically to a functor

Map : Topop ×HTopinj −→ FTop

where HTopinj is the subcategory of Top generated by the injective contin-
uous maps between Hausdorff spaces.

1.12. Definition – underlying space of a stratified space
We define the underlying space functor to be the canonical projection

u : FTop −→ Top

1.13. Definition – space of stratified maps
Let X, Y be stratified spaces.
The space of stratified maps,

−−→
Map(X,Y ), is the subspace of Map(uX, uY )

constituted by the elements in the image of

u : FTop(X,Y ) −→ Top(uX, uY )

The elements of
−−→
Map(X,Y ) will be called stratified maps.

1.14. Example – space of filtered paths
Recall that I is canonically a stratified space (example 1.9).
Given a stratified space (X,A, f), we can therefore consider the space

−−→
Map(I,X),

which we will call the space of filtered paths in X.
Observe that

−−→
Map(I,X) is the subspace of Map(I,X) constituted by the

paths γ : I → X such that
f ◦ γ : I → A

is order preserving.

With this example in mind, it is sensible to look for an analogous space
of filtered Moore paths — recall the concept of Moore paths from section
I.6. Such a space will be a focus of the next section.

2. Spaces and categories of filtered paths

Being in possession of the space of filtered paths
−−→
Map(I,X), we now

turn to define the analogous space of filtered Moore paths.

2.1. Definition – space of filtered Moore paths
Let X be a stratified space X.
The space of filtered Moore paths in X,

−→
H (X), is defined to be the pullback

of ([0,+∞[ is canonically stratified as in example 1.9)
−−→
Map([0,+∞[ , X)× [0,+∞[

H(X) ⊂
incl→ Map([0,+∞[ , X)× [0,+∞[

incl

↓

∩

that is, the subspace of H(X) constituted by the elements (γ, τ) ∈ H(X)
such that γ : [0,+∞[ → X is a stratified map.
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2.2. Observation – functoriality of space of filtered Moore paths
The above definition of the space of filtered Moore paths extends to a functor

−→
H : FTop −→ Top

2.3. Observation – maps on space of filtered Moore paths
We have maps

s :
−→
H (X) −→ X

t :
−→
H (X) −→ X

l :
−→
H (X) −→ [0,+∞[

i : X −→
−→
H (X)

cc :
−→
H (X) t×s

X

−→
H (X) −→

−→
H (X)

obtained by restricting the maps of the same name on H(X) (consult I.6.3
and I.6.5).

2.4. Definition – subspaces of filtered Moore paths
Let X be a stratified space. Let A, B be subspaces of X.
We define the space

−→
H (X;A,B) to be the pullback in Top of

−→
H (X)

A×B ⊂ → X ×X

(s,t)
↓

We call
−→
H (X;A,B) the space of filtered paths in X starting in A and ending

in B.

2.5. Observation
The space

−→
H (X;A,B) is the subspace of x ∈

−→
H (X) such that s(x) ∈ A and

t(x) ∈ B.
This subspace has natural source and target maps

s :
−→
H (X;A,B) −→ A

t :
−→
H (X;A,B) −→ B

Additionally, concatenation defines a map

cc :
−→
H (X;A,B) t×s

B

−→
H (X;B,C) −→

−→
H (X;A,C)

Unlike the case of H(X), the source map on
−→
H (X) is not a fibration in

general. However, it becomes a fibration by restricting to paths which start
at a fixed stratum of X.

2.6. Proposition
Let (X,A, f) be a stratified space, and a, b ∈ A.
Let Y be a subspace of X.
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The maps

s :
−→
H (X;Xa, Y ) −→ Xa

t :
−→
H (X;Y,Xb) −→ Xb

(s, t) :
−→
H (X;Xa, Xb) −→ Xa ×Xb

are Hurewicz fibrations.

With the space of filtered Moore paths in hand, we can now define a
filtered path category of a stratified space, in analogy with the path category
of a space defined in example II.3.4.

2.7. Definition – filtered path category of stratified space
Let X be a stratified space.
We define the filtered path category of X to be the internal category in Top,−−→
path(X), given by (recall observation 2.3)
- the object space is

ob
(−−→
path(X)

)
:= X

- the morphism space is

mor
(−−→
path(X)

)
:=
−→
H (X)

- the source map of
−−→
path(X) is

s :
−→
H (X) −→ X

- the target map of
−−→
path(X) is

t :
−→
H (X) −→ X

- the identity map is
i : X −→

−→
H (X)

- the composition map is

cc :
−→
H (X) t×s

X

−→
H (X) −→

−→
H (X)

2.8. Observation – functoriality of filtered path category
The construction of the filtered path category extends to a functor

−−→
path : FTop −→ Cat(Top)

2.9. Observation
Given x, y ∈ X, the corresponding morphism space of the discretization−−→
pathδ(X) is

−−→
path

δ
(X)(x, y) =

−→
H (X; {x}, {y})

3. Strong spaces of filtered paths

In this section, we will define a different topology on
−→
H (X) which will

be used later. First we introduce functions on
−→
H (X) which are very useful

in practice.
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3.1. Definition – time of entrance into filtration stage
Let (X,A, f) be a stratified space, and a ∈ A.
We define the time of entrance into X≥a, ea, to be the function

ea :
−→
H (X) → [0,+∞[
(γ, τ) → min

{
τ, inf

(
γ−1(X≥a)

)}
Unfortunately, the time of entrance function ea is not continuous except

in rather trivial cases. We can, however, change the topology to make it
continuous.

3.2. Definition – strong space of filtered paths
Let (X,A, f) be a stratified space.
We define the strong space of filtered Moore paths in X,

−→
H s(X), to be the

underlying set of
−→
H (X) equipped with the smallest topology for which

- the identity function

id :
−→
H s(X) −→

−→
H (X)

is continuous, and
- the function

ea :
−→
H s(X) −→ [0,+∞[

is continuous, for each a ∈ A.

3.3. Observation – maps on strong space of filtered Moore paths
The maps in observation 2.3 induce continuous functions

s :
−→
H s(X) −→ X

t :
−→
H s(X) −→ X

l :
−→
H s(X) −→ [0,+∞[

cc :
−→
H s(X) t×s

X

−→
H s(X) −→

−→
H s(X)

3.4. Notation – subspaces
−→
H s(X;A,B)

Let X be a stratified space. Let A, B be subspaces of X.
The subspace of

−→
H s(X) given by the pullback of

−→
H (X;A,B)

−→
H s(X)

id→
−→
H (X)

incl
↓

∩

is denoted
−→
H s(X;A,B). It is, equivalently, the subspace of x ∈

−→
H s(X) such

that s(x) ∈ A and t(x) ∈ B.

3.5. Observation – strong filtered path category
One could define, for each stratified space X, a strong filtered path category
— analogous to

−−→
path(X) — whose space of morphisms would be

−→
H s(X).
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4. Application: sticky homotopies from filtered paths

The next proposition says that filtered paths can recover the notion of
sticky homotopies in many cases of interest. Recall for that purpose the
functor

st-path : Topinj
Map
−−−→ CAT(2)

cart(FinSetop,Top) stFinSetop−−−−−−−→ [FinSetop,Cat(Top)]

from construction III.4.3.

4.1. Definition
Define the functor

Mapstrat : HTopinj −→ [FinSetop,FTop]

as the composition

HTopinj
Map−−−→
1.10

[Topop,FTop]
[inclop,FTop]−−−−−−−−→ [FinSetop,FTop]

The following proposition is an exercise with the definition of categories
of sticky homotopies and the definition of filtered path categories.

4.2. Proposition
There is a unique natural isomorphism

α : st-path|HTopinj
'−−→ [FinSetop,

−−→
path] ◦Mapstrat

such that for any Hausdorff space X the equation

ob ◦αX = idMap(X)1

holds and the diagram

mor ◦st-path(X)
mor ◦αX→ mor ◦

−−→
path ◦Mapstrat(X)

H ◦Map(X)1

incl

↓
← incl −→

H ◦Mapstrat(X)

wwwwww
commutes.

The following construction uses this isomorphism to calculate the mor-
phism spaces of M(X) in terms of spaces of filtered paths.

4.3. Construction – morphisms of M(X) as filtered paths
Let X be a Hausdorff topological space.
From the isomorphism α above we immediately get a canonical isomorphism

Groth
(
αδX

)
: Groth

(
st-pathδ(X)

) '−−→ Groth
(−−→
path

δ
◦Mapstrat(X)

)
Recall from definition III.4.5 that M(X) is a full subcategory of the source
of this isomorphism. In particular, we get an isomorphism

Groth
(
αδX

)
: M(X)(a, b) '−−→ Groth

(−−→
path

δ
◦Mapstrat(X)

)
(a, b)

for any injections a : S → X and b : S′ → X, where S, S′ are finite sets.
By observation 2.9, and proposition II.10.4, the morphism space on the right
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is ∐
f∈FinSet(S,S′)

−→
H
(
X×k; {a}, {b ◦ f}

) ∼= −→H(X×k; {a},{b ◦ f : f ∈ Set(S, S′)
})

=
−→
H
(
X×k; {a}, b ◦ Set(S, S′)

)
where the first (canonical) homeomorphism is a consequence of b being injec-
tive, and the bottom equality results from an abbreviation of the notation.
In conclusion, we have constructed a canonical homeomorphism

M(X)(a, b) ∼=
−→
H
(
X×k; {a}, b ◦ Set(S, S′)

)
(4a)

for any a : S → X and b : S′ → X injective (S and S′ being finite sets).
For simplicity, we will use this homeomorphism to identify its source with
its target. We will therefore occasionally write the two spaces as equal.

5. Homotopy link spaces

In order to define a class of “good” stratified spaces, we will study spaces
of “homotopy links” in this section.

5.1. Definition – space of homotopy links
Let (X,A, f) be a stratified space.
The space of homotopy links in X, holink(X), is the subspace of

−→
H (X) given

by

holink(X) :=
{

(γ, τ) ∈
−→
H (X) : f ◦ γ|[0,τ [ is constant

}
5.2. Observation
Intuitively, a homotopy link is a filtered (Moore) path which remains in the
same stratum until the last possible moment.

5.3. Observation
Observe that the space of homotopy links holink(X) is also a subspace of−→
H s(X). In fact, the inclusion

holink(X) ↪−→
−→
H s(X)

is a closed subspace (unlike the inclusion into
−→
H (X)).

5.4. Observation – functoriality of space of homotopy links
The space of homotopy links of a stratified space extends to a functor

holink : FTop −→ Top

5.5. Definition – subspaces of homotopy links
Let X be a stratified space. Let A, B be subspaces of X.
We define the space of homotopy links in X starting in A and ending in B,
holink(X;A,B), to be the subspace

holink(X) ∩
−→
H (X;A,B)

of
−→
H (X).

Equivalently, holink(X;A,B), is the subspace of holink(X) given by

holink(X;A,B) := {x ∈ holink(X) : s(x) ∈ A, t(x) ∈ B}
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5.6. Proposition
Let (X,A, f) be a stratified space, and a ∈ A.
Let Y be a subspace of X.
The map

s : holink(X;Xa, Y ) −→ Xa

is a Hurewicz fibration.

We will illustrate the role of the space of homotopy links with the case
of a pair of spaces.

5.7. Observation – homotopy link space for a pair of spaces
Suppose we are given a pair of spaces (X,Y ) where Y is a closed subspace
of X. Via example 1.8, we get a stratified space 〈

−−→
X,Y 〉 with two strata: Y

and X \ Y .
Thus we can consider, for example, the homotopy link space

holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
which we will call the homotopy link space of the pair (X,Y ).

What does the homotopy link space

holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
represent? Let us put forward that it aims to give a generalization of the
notion of normal sphere bundle of a closed embedding of manifolds. A few
propositions (stated without proof) will partly justify this statement.

5.8. Proposition – shrinking homotopy links
Let X be a metrizable topological space, Y a closed subspace of X, and U
a neighborhood of Y in X.
Then the inclusion

holink
(
〈
−−→
U, Y 〉;U \ Y, Y

)
↪−→ holink

(
〈
−−→
X,Y 〉;X \ Y, Y

)
is a homotopy equivalence over Y (both spaces map to Y via the target
map, t).
Furthermore, the map

t : holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
−→ Y

is a Hurewicz fibration if and only if

t : holink
(
〈
−−→
U, Y 〉;U \ Y, Y

)
−→ Y

is a Hurewicz fibration.

5.9. Observation
The condition that X be metrizable is only necessary to guarantee that the
space of homotopy links is metrizable, and therefore paracompact.
The proof of the above proposition reduces essentially to finding a map

φ : holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
−→ [0,+∞[

such that
γ
(
φ(γ, τ)

)
∈ U \ Y
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for all (γ, τ) ∈ holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
. Such a map exists by a standard

partition of unity argument.
The metrizability of X will be assumed repeatedly with a similar purpose.

5.10. Proposition – factorization of homotopy links
Let X be a metrizable topological space, Y a closed subspace of X, and U
a neighborhood of Y in X.
Let P denote the pullback of

holink
(
〈
−−→
U, Y 〉;U \ Y, Y

)

holink
(
〈
−−→
X,Y 〉;X \ Y,U \ Y

) t→ U \ Y

s
↓

Then concatenation of filtered paths gives a natural map

cc : P −→ holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
which is a homotopy equivalence over (X \ Y )× Y .

5.11. Observation
Propositions 5.8 and 5.10 have obvious analogues which hold for spaces of
filtered paths.

5.12. Definition – fibrewise open cone
Let f : X → Y be a map of topological spaces. We define the fibrewise open
cone of f , CY f , to be the pushout of

X ∼= X × {0} ⊂ → X × [0,+∞[

Y

f
↓

5.13. Observation
Note that Y includes as a closed subspace of CY f , and CY f naturally
projects to Y . Furthermore, there is a natural inclusion

X ∼= X × {1} ↪−→ CY f \ Y

5.14. Proposition
Let f : X → Y be a Hurewicz fibration.
Then the map

t : holink
(
〈
−−−−→
CY f, Y 〉;CY f \ Y, Y

)
−→ Y

is a Hurewicz fibration. Moreover, the map

s : holink
(
〈
−−−−→
CY f, Y 〉;CY f \ Y, Y

)
−→ CY f \ Y

is a homotopy equivalence which is homotopic to a homotopy equivalence
over Y . Finally, there are two natural maps

X ↪−→ CY f \ Y −→ holink
(
〈
−−−−→
CY f, Y 〉;CY f \ Y, Y

)
which are both homotopy equivalences over Y .
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The previous results allow a preliminary justification of our motto that
homotopy link spaces generalize normal sphere bundles (of closed embed-
dings of manifolds).

5.15. Proposition
Assume i : Y → X is a closed embedding of manifolds without boundary.
Let νi be the normal bundle of i (over Y ), and S(νi) the unit sphere bundle
of νi.
Then there are homotopy equivalences over Y

holink(〈
−−→
X,Y 〉;X \ Y, Y ) '

Y
νi \ Y '

Y
S(νi)

Proof:
Let U be a tubular neighborhood for i. Identifying Y with i(Y ), and

using proposition 5.8 we conclude that the inclusion

holink
(
〈
−−→
U, Y 〉;U \ Y, Y

)
↪−→ holink

(
〈
−−→
X,Y 〉;X \ Y, Y

)
is a homotopy equivalence over Y . On the other hand

CY
(
S(νi)

) ∼=
Y
νi ∼= U

and so proposition 5.14 gives homotopy equivalences over Y

holink(〈
−−→
U, Y 〉;U \ Y, Y ) '

Y
νi \ Y '

Y
S(νi)

End of proof

5.16. Notation
The normal bundle of i : Y → X is

νi := (i∗TX)/TY

The unit sphere bundle of νi is

S(νi) := (νi\Y )/R+

We have shown that holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
recovers (the homotopy

type over Y of) the normal sphere bundle of a closed embedding Y ↪→ X
of manifolds without boundary. In more general settings, the space of ho-
motopy links of a pair attempts to give a homotopical version of the normal
sphere bundle (which is not available). The fibres need not be spheres.

6. Tameness and homotopy links

This section will describe conditions on pairs of spaces under which the
homotopy link space of the pair behaves homotopically like a normal sphere
bundle of an embedding of manifolds.

6.1. Definition – neighborhood of tameness
Let X be a topological space, and Y a closed subspace of X.
A neighborhood U of Y in X is called a neighborhood of tameness of Y in
X if there exists a map

G : U × I −→ X
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such that

G(−, 0) = incl

G(−, τ)|Y = incl , for τ ∈ I
G(U × {1}) ⊂ Y
G
(
(U \ Y )× [0, 1[

)
⊂ X \ Y

If the map G factors through U , we call U a strong neighborhood of tameness
of Y in X.

6.2. Observation – restatement in terms of stratified maps
We could rephrase the conditions appearing in the definition above by stat-
ing that G is a stratified map

G : 〈
−−−−−−−−−−−−−−−→
U×I, Y×I ∪ U×{1}〉 −→ 〈

−−→
X,Y 〉

which gives a strong deformation retraction of U onto Y within X.

6.3. Definition – tame subspace
Let X, Y be topological spaces, with Y a closed subspace of X.
Y is said to be a tame subspace of X if there exists a neighborhood of
tameness U of Y in X, and a map

φ : X → I

such that

φ−1({1}) = Y

φ−1(]0, 1]) ⊂ U

6.4. Observation – simplification of definition for X metrizable
If X is metrizable (or more generally, Hausdorff and perfectly normal) then
the existence of φ in the above definition 6.3 is automatic: Y is a tame
subspace of X if and only if Y has a neighborhood of tameness in X.
The definition of tame subspace explicitly mentions φ only because of the
important role it plays in the proof of proposition 6.9.

6.5. Definition – local tameness
Let Y be a closed subspace of a metrizable space X.
We say Y is locally tame in X if each point of Y has a neighborhood U in
X for which there exists a stratified map

G : 〈
−−−−−−−−−−−−−−−−−−−→
U×I, (U ∩ Y )×I ∪ U×{1}〉 −→ 〈

−−→
X,Y 〉

which gives a deformation retraction, rel U ∩ Y , of U into Y within X (i.e.
G verifies the conditions in definition 6.1, as stated).

The following local characterization of tameness is essentially lemma 2.5
in [Qui88]. Observe only that in [Qui88], a “tame subspace” of a metrizable
space need not be closed.

6.6. Proposition – local tameness implies tameness
Let X be a metrizable topological space, and Y a closed subspace of X.
Y is a tame subspace of X if and only if Y is locally tame in X.
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Under the condition of tameness, the homotopy link space of a pair
shares the following two properties (which we state without proof) with the
normal sphere bundle of a closed embedding of manifolds.

6.7. Proposition
Let X be a topological space, and Y a closed subspace of X.
If U is a strong neighborhood of tameness of Y in X, then the map

s : holink
(
〈
−−→
U, Y 〉;U \ Y, Y

)
−→ U \ Y

is a homotopy equivalence. In particular (by proposition 5.8), if X is metriz-
able there is a homotopy equivalence

holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
−→ U \ Y

6.8. Observation
Under the assumption that Y is an exceptionally tame subspace of metriz-
able X (as defined later in 6.10), we can weaken the conditions on the neigh-
borhood U : it need only deformation retract to Y (not necessarily strongly)
through filtered paths in 〈

−−→
U, Y 〉. The proof in this case uses proposition 7.7.

6.9. Proposition
Let X be a topological space, and Y a tame subspace of X.
Let hoP be the homotopy pushout of

holink
(
〈
−−→
X,Y 〉;X \ Y, Y

) t→ Y

X \ Y

s
↓

There is a natural map
hoP −→ X

which is a homotopy equivalence under Y .

One very useful property of the normal sphere bundle of a closed embed-
ding Y → X (of manifolds without boundary) is that it fibres over Y . The
following definition axiomatizes that for the case of homotopy link space of
a pair.

6.10. Definition – exceptionally tame subspace
Let X be a topological space, and Y a tame subspace of Y .
We say Y is an exceptionally tame subspace of X if the map

t : holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
−→ Y

is a Hurewicz fibration.

6.11. Proposition
Let X be a metrizable space, Y a closed subspace of X, and U a neighbor-
hood of Y in X.
Then Y is an exceptionally tame subspace of U if and only if Y is an excep-
tionally tame subspace of X.

Sketch of proof:
This result follows from remark 6.4 and proposition 5.8.
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End of proof

We now present a very simple local condition for a subspace to be ex-
ceptionally tame.

6.12. Proposition
Let X be a metrizable space, and Y a closed subspace of X.
Assume that for each point y ∈ Y , there is a neighborhood U of y in X, a
pointed space (Z, {z}), and a homeomorphism

f : (Z, {z})× (U ∩ Y )
∼=−−→ (U,U ∩ Y )

(of pairs of spaces) such that the induced map

f : {z} × (U ∩ Y ) −→ U ∩ Y

is the canonical projection.
Then

t : holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
−→ Y

is a Hurewicz fibration.

The proof of 6.12 (which is omitted) uses a Hurewicz uniformization
result to conclude that a local fibration is a fibration. The following result
is an immediate corollary of propositions 6.6 and 6.12.

6.13. Corollary – local triviality and tameness implies exceptional tameness
Let X be a metrizable space, and Y a closed subspace of X.
Assume that for each point y ∈ Y , there is a neighborhood U of y in X,
a pointed space (Z, {z}) such that {z} is a tame subspace of Z, and a
homeomorphism

f : (Z, {z})× (U ∩ Y )
∼=−−→ (U,U ∩ Y )

(of pairs of spaces) such that the induced map

f : {z} × (U ∩ Y ) −→ U ∩ Y

is the canonical projection.
Then Y is an exceptionally tame subspace of X.

7. Homotopically stratified spaces

Now we apply the notions of tameness in the previous section to define
a rather well behaved class of stratified spaces.

7.1. Definition – homotopically stratified space
Let (X,A, f) be a stratified space with X metrizable and A finite.
We say (X,A, f) is homotopically stratified if, for any a, b ∈ A with a ≤ b,
Xb = f−1({b}) is an exceptionally tame subspace of f−1({a, b}).

7.2. Observation
Note that the fibration condition in 6.10 translates in this case to the con-
dition that

t : holink(X,Xa, Xb) −→ Xb

is a Hurewicz fibration.
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7.3. Observation
We assume X is metrizable and A is finite in the definition above for a
matter of convenience: the main general results in this section make use of
those hypotheses.
It is not difficult, however, to relax the finiteness conditions on A. We will
not pursue this.

7.4. Proposition
Assume Y is a closed subspace of a metrizable space X.
The filtered space 〈

−−→
X,Y 〉 is homotopically stratified if and only if Y is an

exceptionally tame subspace of X.

We now give our principal example of a homotopically stratified space,
which is an elaboration of example 1.10.

7.5. Example
Let M be a manifold, and S a finite set.
Then the stratified space M×S = Map(S,M) (example 1.10) is actually
homotopically stratified. This can be easily proved by using proposition
6.13.

7.6. Example
We can generalize the previous example.
Let M be a n-dimensional manifold. Call a finite set A of closed submani-
folds of M locally flat if any point of M has a chart around it

ϕ : Rn −→M

such that for any N ∈ A, ϕ−1(N) is a linear subspace of Rn.
Assume now A is a finite set of closed submanifolds of M such that
- A is locally flat,
- A is closed under intersections, and
- M ∈ A.
Then we get a homotopically stratified space (M,A, f), where A is ordered
by reverse inclusion, and

f :M → potop(A)
x → min {N ∈ A : x ∈ N}

As in the previous example (which is a particular case of the present one),
the proof is a simple use of proposition 6.13.

Having introduced the notion of homotopically stratified space, we will
now enunciate the main general theorems which we will use in our applica-
tions.

The next result is theorem 4.9 in the article [Mil09] by Miller. A few
cautionary remarks are in order regarding notation in that article: the order
of the underlying partially ordered set of a stratified space is reversed in
[Mil09], in comparison with the definition here (as cautioned earlier in
remark 1.7). Consequently, the direction of the filtered paths is also reversed.
In addition

holink
(
〈
−−→
X,Y 〉;X \ Y, Y

)
is denoted simply by holink(X,Y ) in [Mil09].
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7.7. Proposition – Miller’s theorem
Let (X,A, f) be a homotopically stratified space.
Given any a, b ∈ A, there is a homotopy

G :
−→
H (X;Xa, Xb)× I −→

−→
H (X;Xa, Xb)

such that:

G(−, 0) = id−→
H (X;Xa,Xb)

(s, t) ◦G(−, τ) = (s, t) , for τ ∈ I

G
(−→
H (X;Xa, Xb)× ]0, 1]

)
⊂ holink(X;Xa, Xb)

In particular, the inclusion

holink(X;Xa, Xb) ↪−→
−→
H (X;Xa, Xb)

is a homotopy equivalence over Xa ×Xb.

7.8. Observation
This result introduces a remarkable simplification to the analysis of the
homotopy type of the space of filtered paths. Replacing a large stratified
space, now we need only deal with the much simpler case of a pair of spaces:

holink(X;Xa, Xb) = holink
(
〈
−−−−−−−−−−→
f−1({a, b}), Xb〉;Xa, Xb

)
which can be analyzed with the tools of the previous two sections.

Miller’s result has an immediate corollary about deforming homotopies
of filtered paths which will be used (in its full strength) in the next chapter.
It says roughly that we can deform a path γ in

−→
H (X;Xa, Xb) in a way that:

- the deformation keeps γ(0) and γ(1) fixed;
- for any τ ∈ I, the source and target of γ(τ) are kept fixed through the

deformation;
- for any τ ∈ ]0, 1[, γ(τ) gets immediately deformed to a homotopy link.

7.9. Corollary
Let (X,A, f) be a homotopically stratified space.
Given any a, b ∈ A, there is a homotopy

G : Map
(
I,
−→
H (X;Xa, Xb)

)
× I −→ Map

(
I,
−→
H (X;Xa, Xb)

)
such that

G(−, 0) = id

(ev0, ev1) ◦G(−, τ) = (ev0, ev1) , for τ ∈ I
im
(
evσ ◦G(−, τ)

)
⊂ holink(X;Xa, Xb) , for (σ, τ) ∈ ]0, 1[ × ]0, 1]

and the diagram

Map
(
I,
−→
H (X;Xa, Xb)

)
× I G → Map

(
I,
−→
H (X;Xa, Xb)

)

Map
(
I,
−→
H (X;Xa, Xb)

)proj
↓

Map(I,(s,t))→ Map(I,Xa ×Xb)

Map(I,(s,t))

↓
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commutes.

Unfortunately, Miller’s result does not meet our needs completely. We
conjecture a strengthening of 7.7 which would be sufficient. It is entirely
analogous to 7.7, except that it does not fix the stratum at which filtered
paths must end.

7.10. Conjecture – strengthening of Miller’s result
Let (X,A, f) be a homotopically stratified space.
For any a ∈ A, there is a homotopy

G :
−→
H (X;Xa, X)× I −→

−→
H (X;Xa, X)

such that:

G(−, 0) = id−→
H (X;Xa,X)

(s, t) ◦G(−, τ) = (s, t) , for τ ∈ I

G
(−→
H (X;Xa, X)× ]0, 1]

)
⊂ holink(X;Xa, X)

In particular, the inclusion

holink(X;Xa, X) ↪−→
−→
H (X;Xa, X)

is a homotopy equivalence over Xa ×X.

To compensate for this unproven conjecture, we present the following
result which will serve our goals. It has the side effect of bringing strong
spaces of filtered paths into play. The somewhat involved proof, which is
omitted, uses a partition of unity argument similar to the usual proof of
Dold’s uniformization theorem.

7.11. Proposition
Let X be a homotopically stratified space.
Then there exists a strong deformation retraction of

−→
H s(X) onto holink(X)

over X ×X.
More concretely, there is a homotopy

G :
−→
H s(X)× I −→

−→
H s(X)

such that

G(−, 0) = id−→
H s(X)

(s, t) ◦G(−, τ) = (s, t) , for τ ∈ I
G(−, τ)|holink(X) = incl , for τ ∈ I

G
(−→
H s(X)× {1}

)
⊂ holink(X)

8. Application: spaces related to M(M)

We have established the connection between categories of sticky config-
urations, M(X), and categories of filtered paths,

−−→
path(X), in section 4. In

the preceding three sections, we have given tools to analyze the homotopy
type of the filtered path spaces which are the morphisms in

−−→
path(X), most

importantly, propositions 7.7 and 6.7. In this section, we will use those tools
to describe the homotopy type of spaces related to M(M) for M a manifold.
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8.1. Proposition
Let k, l, n ∈ N.
The map

s : holink
(
Map(k, l×Rn); Conf(l×Rn, k), il ◦ Set(k, l)

)
−→ Conf(l×Rn, k)

is a homotopy equivalence (where il : l ↪→ l × Rn is the canonical inclusion
at the origins).

Proof:
Set Y := il ◦ Set(k, l) = {il ◦ g : g ∈ Set(k, l)} for brevity. Observe first

that the source of the map in the proposition is equal to

holink
(
〈
−−→
X,Y 〉; Conf(l × Rn, k), Y

)
= holink

(
〈
−−→
X,Y 〉;X \ Y, Y

)
where X is the subspace of Map(k, l × Rn) given by

X := Conf(l×Rn, k) ∪ Y

(note that Conf(l × Rn, k) = X \ Y ).
We will now prove that X is a strong neighborhood of tameness of Y in

X. Define the continuous map

G : Map(k, l × Rn)× I → Map(k, l × Rn)
(f, τ) → (1− τ)f

where multiplication by a scalar is done in each component of l × Rn sepa-
rately. Note that G gives Map(k, l × Rn) as a neighborhood of tameness of
Y in Map(k, l×Rn) (see definition 6.1). Furthermore, G restricts to a map

G : X × I −→ X

which therefore gives X as a strong neighborhood of tameness of Y in X.
An application of proposition 6.7 now finishes the proof.

End of proof

While the relation of the space in the previous proposition to categories
of sticky configurations is slightly indirect, the next results deals directly
with the morphism spaces of M(M).

8.2. Lemma
Assume k, l, n ∈ N, and M is a n-dimensional manifold without boundary.
Let f : l × Rn →M be an embedding of manifolds.
Let P be the pullback of

holink
(
Map(k, im f);
Conf(im f, k),
f ◦ il ◦ Set(k, l)

)
−→
H
(
M×k; Conf(M,k),Conf(im f, k)

) t → Conf(im f, k)

s

↓

Then concatenation of filtered paths induces a natural map

cc : P −→ holink
(
M×k; Conf(M,k), f ◦ il ◦ Set(k, l)

)
which is a homotopy equivalence over Conf(M,k).
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Proof:
Let Y := f ◦ il ◦ Set(k, l) and consider the subspace X of M×k given by

X := Conf(M,k) ∪ Y
Also, let U be the neighborhood of Y in X given by

X := Conf(im f, k) ∪ Y
The result now follows from applying proposition 5.10 to X, Y , U as defined
here.

End of proof

8.3. Proposition – homotopy type of morphism space of M(M)
Assume k, l, n ∈ N, and M is a n-dimensional manifold without boundary.
Let f : l × Rn → M be an embedding of manifolds, and a : k → M an
injective function.
Let Q be the pullback of

holink
(
Map(k, l × Rn);
Conf(l × Rn, k),
il ◦ Set(k, l)

)
−→
H
(
M×k; {a},Conf(im f, k)

) f−1◦ t→ Conf(l × Rn, k)

s

↓

Then concatenation of filtered paths induces a natural map

c̃c : Q −→M(M)(a, f ◦ il)
which is a homotopy equivalence. Additionally, the canonical projection

proj : Q −→
−→
H
(
M×k; {a},Conf(im f, k)

)
is a homotopy equivalence.

Proof:
Given that the map from the preceding lemma 8.2

cc : P −→ holink
(
M×k; Conf(M,k), f ◦ il ◦ Set(k, l)

)
is a homotopy equivalence over Conf(M,k), we obtain a homotopy equiva-
lence

c̃c : Q −→ holink
(
M×k; {a}, f ◦ il ◦ Set(k, l)

)
by pulling back along {a} ↪→ Conf(M,k). The last statement of 7.7 (Miller’s
theorem) now implies that composing with the inclusion of homotopy links
into filtered paths

c̃c : Q −→
−→
H
(
M×k; {a}, f ◦ il ◦ Set(k, l)

)
gives a homotopy equivalence (recall that M×k is homotopically stratified
by example 7.5). From construction 4.3 (more precisely, equation (4a)), we
conclude that

c̃c : Q −→M(M)(a, f ◦ il)
is a homotopy equivalence. We leave it to the reader to verify that the map
coincides with the map described in the statement of the proposition being
proved.
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Finally, propositions 8.1 and 5.6 guarantee that

s : holink
(
Map(k, l×Rn); Conf(l×Rn, k), il ◦ Set(k, l)

)
−→ Conf(l×Rn, k)

is both a fibration and a homotopy equivalence. Consequently, the pullback

proj : Q −→
−→
H
(
M×k; {a},Conf(im f, k)

)
is also a homotopy equivalence.

End of proof

This result has an immediate corollary which comes from noticing that
there is a homotopy equivalence (induced by reparametrization of Moore
paths) between

−→
H
(
M×k; {a},Conf(im f, k)

)
and the homotopy fibre over a of

f ◦ − : Conf(l × Rn, k) −→ Conf(M,k)

8.4. Corollary
Assume k, l, n ∈ N, and M is a n-dimensional manifold without boundary.
Let f : l × Rn → M be an embedding of manifolds, and a : k → M an
injective function.
There is a homotopy equivalence

M(M)(a, f ◦ il)
'−−→ ho fiba

(
Conf(l × Rn, k)

f◦−−−−→ Conf(M,k)
)





CHAPTER VII

Sticky configurations and embedding spaces

Introduction

In this chapter, we will return to the construction M(X), and show how
it relates to the constructions in the chapter V on spaces of embeddings of
manifolds. We will essentially show that for any n-manifold M (with the
appropriate geometric structure), M(M) is equivalent to the Grothendieck
construction of the right module over EGn associated to M .

Summary

The first section, 1, defines the appropriate Grothendieck-like construc-
tion, TGn [M ], of the right module over EGn associated with any manifold M
with a G-structure. It also defines the analogous Grothendieck-like con-
struction for En, namely Tn[M ].

Section 2 shows that all the Top-categories TGn [M ]δ (for any G over
GL(n,R)) and Tn[M ]δ are equivalent if the underlying manifold M is the
same.

Section 3 provides a useful analysis of the homotopy type of the mor-
phism spaces in Tn[M ]δ.

The remaining sections of this chapter are quite long, due to the neces-
sarily convoluted nature of the comparison between Tn[M ] and M(M), for
M a n-dimensional manifold.

In section 4 we partly construct a category ZM , and define functors — FT

and FM — from it to Tn[M ]δ and M(M). Section 5 finishes the construction
of the category ZM , by defining the composition. Finally, section 6 shows
that the functors

FT : ZM −→ Tn[M ]δ

FM : ZM −→M(M)

are weak equivalences of Top-categories.

1. The Grothendieck construction of embeddings

Let us fix n ∈ N. This section will describe Grothendieck constructions
involving the functors IEGn [M ] of section V.13.

1.1. Definition – total category of manifold with G-structure
Let G be topological group over GL(n,R) (see definition V.5.1).
Let M be a n-manifold equipped with a G-structure (definition V.5.6).
We define the total category of M , TGn [M ], as the Grothendieck construction
of the path category (see definition II.11.1) of IEGn [M ] (definition V.13.1):

TGn [M ] := Groth
(
path ◦ IEGn [M ]

)
133
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which is an internal category in Top.

1.2. Observation – functoriality of total category
The above definition extends to a functor

TGn [−] :
(
IEmbGn

)
0
−→ Cat(Top)

in a straightforward manner.

1.3. Observation
The internal category (in Top) TGn [M ] is fibrant (in the sense of definition
II.11.5) by corollary II.11.8.

Given a morphism h : G → H in Grp/n, the two-cell Iεh in diagram
(V.13a) gives a natural transformation

Iεh : IEGn [−] −→ IEHn [h∗−] ◦ I(h∗)
op

This induces (via construction II.9.7 and proposition II.9.6; see also propo-
sition II.11.3) a natural transformation in [(IEmbGn )0,Cat(Top)]

Thn[−] : TGn [−] −→ THn [h∗−]

Moreover, given another morphism h′ : H → I in Grp/n, the diagram

TGn [−]
Thn[−]→ THn [h∗−]

TIn[(h′ ◦ h)∗−]

Th
′
n [h∗−]

↓Th
′h
n [−] →

(1a)

commutes in [(IEmbGn )0,Cat(Top)].

1.4. Definition – total category of manifold
Let M be a n-dimensional manifold without boundary.
The total category of M , Tn[M ], is defined to be the Grothendieck con-
struction of the path category (definition II.11.1) of IEn (see observation
V.13.3):

Tn[M ] := Groth
(
path ◦ IEn[M ]

)
1.5. Observation
Similarly to observation 1.3, we conclude that the internal category (in Top)
Tn[M ] is fibrant.

As before, this extends to a functor

Tn[−] : (Embn)0 −→ Cat(Top)

The two-cell in diagram (V.13c) translates to a natural transformation

q : IEGn [−] −→ IEn[−] ◦ qop

for any G in Grp/n. This induces (via II.9.6 and II.11.3) a natural transfor-
mation in [(EmbGn )0,Cat(Top)]

q : TGn [−] −→ Tn[−]
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(where we identify qM with M). Moreover, for any morphism h : G → H
in Grp/n, we obtain a commutative diagram

TGn [−]
Thn[−]→ THn [h∗−]

Tn[−]

q

←

q →

(1b)

2. Homotopy invariance of total category

Let us fix n ∈ N. This section is devoted to proving the following result.

2.1. Proposition
Let G be an object of Grp/n, M a n-manifold equipped with a G-structure.
The Top-functor

qδ : TGn [M ]
δ −→ Tn[M ]δ

is a weak equivalence of Top-categories (see definition I.8.5).

We prove this result in two parts.

2.2. Lemma
Let G be an object of Grp/n, and M a n-manifold with a G-structure.
The Top-functor

qδ : TGn [M ]
δ −→ Tn[M ]δ

is a local homotopy equivalence of Top-categories.

Sketch of proof:
According to corollary II.11.14, it suffices to show that for each k, l ∈ N

the commutative square

IEmbGn (l×Rn,k×Rn)×IEmbGn (k×Rn,M)
q×q→ Emb(l×Rn,k×Rn)×Emb(k×Rn,M)

IEmbGn (l×Rn,M)×IEmbGn (k×Rn,M)

(comp,proj)

↓
q×q→ Emb(l×Rn,M)×Emb(k×Rn,M)

(comp,proj)

↓

(where “comp” denotes the composition of embeddings) is homotopy carte-
sian. The bottom map is a Hurewicz fibration by the last remark in V.9.2.
It is straightforward to show that the diagram is also a pullback square: it
amounts to a tedious verification (on the level of sets and topologies) di-
rectly from the definition of G-augmented embedding spaces, noticing that
any map of principal G-bundles is a fibrewise isomorphism. In conclusion,
the square above is homotopy cartesian, as was required.

End of proof

2.3. Lemma
Let G be an object of Grp/n, and M a n-manifold with a G-structure.
The functor

π0

(
qδ
)

: π0

(
TGn [M ]

δ
)
−→ π0

(
Tn[M ]δ

)
is essentially surjective.
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Proof:
Assume k ∈ N, and f ∈ Emb(k × Rn,M) is an object of Tn[M ]δ. Con-

sider the maps

Emb(k × Rn,M) D0−−→ Fr
(
TConf(M,k)

) proj−−−→ Conf(M,k)

and

IEmbGn (k × Rn,M)
IDG0−−→ PG×k

(
TConf(M,k)

) proj−−−→ Conf(M,k)

and let g ∈ IEmbGn (k × Rn,M) be such that

proj ◦D0(f) = proj ◦ IDG
0 (g)

which exists because IDG
0 is a trivial fibration (proposition V.14.4), and there-

fore surjective. The object qδ(g) is just q(g) where q is as usual the projection

q : IEmbGn (k × Rn) −→ Emb(k × Rn,M)

The following lemma implies that q(g) is isomorphic to f in π0

(
Tn[M ]δ

)
,

since

q(g) ◦ ik = proj ◦D0 ◦ q(g) = proj ◦ IDG
0 (g) = proj ◦D0(f) = f ◦ ik

which ends this proof.
End of proof

2.4. Lemma
Let M be a n-manifold, and k ∈ N.
If f, g ∈ Emb(k × Rn,M) verify (ik : k ↪→ k × Rn is the inclusion at the
origins from (V.4a))

f ◦ ik = g ◦ ik
then f , g are isomorphic objects of π0

(
Tn[M ]δ

)
.

Sketch of proof:
Let us first prove the following special case of the lemma: if f, g ∈

Emb(k × Rn,M) verify

f ◦ ik = g ◦ ik
im f ⊂ im g

then f , g are isomorphic objects of π0

(
TGn [M ]δ

)
.

Under those conditions, there exists an embedding

φ : k × Rn −→ k × Rn

such that g ◦ φ = f . This determines a morphism φ : f → g in Tn[M ]δ.
Choose now an embedding

φ′ : k × Rn −→ k × Rn

such that φ′ ◦ ik = ik and its differential at a point (i, 0) of k × Rn is

dφ′(i, 0) =
(
dφ(i, 0)

)−1

Then we conclude that
D0(g) = D0(f ◦ φ′)
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Since D0 is a trivial fibration (by proposition V.4.5) and therefore has con-
tractible fibres, there exists a Moore path, x = (γ, 1), in Emb(k × Rn,M)
which
- starts at g,
- ends at f ◦ φ′, and
- such that D0 ◦ γ is a constant path in Emb(k × Rn,M).
We thus get an induced morphism (x, φ′) : g → f in Tn[M ]δ.

The composition

f
φ−−→ g

(x,φ′)−−−−→ f

is such that the corresponding path D0

(
γ(−) ◦ φ

)
is constant. Since D0 has

contractible fibres, γ(−) ◦φ can be deformed — keeping the endpoints fixed
— to a Moore path of length 0 in Emb(k×Rn,M). This supplies a path λf
in Tn[M ]δ(f, f) from φ ◦ (x, φ′) to idf .

Analogously, the composition

g
(x,φ′)−−−−→ f

φ−−→ g

is such that the corresponding path D0 ◦ γ is constant. Since D0 is a trivial
fibration, γ can be deformed — keeping the endpoints fixed — to a Moore
path of length 0 in Emb(k × Rn,M). This gives a path λg in Tn[M ]δ(g, g)
from (x, φ′) ◦ φ to idg.

The paths λf and λg show that the the morphisms (x, φ′) and φ in-
duce inverse isomorphisms in π0

(
TGn [M ]δ

)
. Hence f is isomorphic to g in

π0

(
TGn [M ]δ

)
. We have thus proved the special case of the lemma.

Assuming now the special case of the lemma, the general case follows
easily. Let f, g ∈ Emb(k × Rn,M) be such that f ◦ ik = g ◦ ik. Choose an
embedding

φ : k × Rn −→ k × Rn

such that

φ ◦ ik = ik

im(f ◦ φ) ⊂ im g

Then the embeddings f ◦ φ and f verify the hypothesis of the special case
of the lemma, as do the embeddings f ◦ φ and g. Therefore, there are
isomorphisms

f ' f ◦ φ ' g
in π0

(
TGn [M ]δ

)
.

End of proof

Proposition 2.1 follows from lemmas 2.2 and 2.3. It has the following
corollary.

2.5. Corollary
Let h : G → H be a morphism in Grp/n, and M a n-manifold with a G-
structure.
The Top-functor

Thn[M ]
δ : TGn [M ]

δ −→ THn [h∗M ]
δ

is a weak equivalence of Top-categories.
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Proof:
The functor above is one of the arrows in diagram (1b). Since the other

two arrows are weak equivalences — by proposition 2.1 — then Thn[M ]δ is
one as well.

End of proof

3. Analysis of morphisms of Tn[M ]

This section is devoted to a simple analysis of the homotopy type of the
morphism spaces in Tn[M ]δ, which will be of use later.

3.1. Construction
Let be a n-manifold without boundary (n ∈ N), and

e ∈ Embn(k × Rn,M)

f ∈ Embn(l × Rn,M)

Recall the natural homotopy equivalence

Tn[M ]δ(e, f) −→ ho fibe
(

Emb(k×Rn, l×Rn)
f◦−−−−→ Emb(k×Rn,M)

)
(3a)

from proposition II.11.11.
Observing that the square

Embn(k × Rn, l × Rn)
−◦ik→ Conf(l × Rn, k)

Embn(k × Rn,M)

f◦−
↓

−◦ik → Conf(M,k)

f◦−
↓

(3b)

commutes, we obtain an induced map between the homotopy fibres of the
vertical maps. Composing it with (3a) gives a map

ς : Tn[M ]δ(e, f) −→ ho fibe◦ik
(

Conf(l × Rn, k)
f◦−−−−→ Conf(M,k)

)
3.2. Proposition – homotopy type of morphisms in Tn[M ]δ

Let M be a n-manifold without boundary (where n ∈ N).
Let k, l ∈ N, e ∈ Embn(k × Rn,M), and f ∈ Embn(l × Rn,M).
The map

ς : Tn[M ]δ(e, f) −→ ho fibe◦ik
(

Conf(l × Rn, k)
f◦−−−−→ Conf(M,k)

)
is a homotopy equivalence.

Proof:
From the construction of the map ς, it suffices to show that the commu-

tative square (3b) is homotopy cartesian. Consider then the commutative
diagram

Embn(k × Rn, l × Rn)
D0

∼
→ Fr

(
TConf(l × Rn, k)

) proj→ Conf(l × Rn, k)

Embn(k × Rn,M)

f◦−
↓

D0

∼
→ Fr

(
TConf(M,k)

)Df◦−
↓

proj→ Conf(M,k)

f◦−
↓
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where D0 is the derivative at the origins defined in V.4.4, and Df is the
derivative of f (definition V.4.3). The two arrows marked D0 are homotopy
equivalences, by proposition V.4.5. Consequently, the inner left square is
homotopy cartesian. On the other hand, the maps marked proj are Hurewicz
fibrations; also, the inner right square is cartesian, since that square is a map
of principalGL(n,R)-bundles. Therefore, the inner right square is homotopy
cartesian. In conclusion, the outer square is a homotopy pullback square.
The proof is completed by identifying the outer square in the above diagram
with the square (3b).

End of proof

3.3. Observation
This proposition and proposition VI.8.3 (which says that a morphism space
of M(M) is equivalent to the target of ς) are the motivation and the founda-
tion for the proof given later that M(M) and Tn[M ]δ are weakly equivalent.

We could similarly construct a homotopy equivalence (natural in G ∈
Grp/n and M ∈ IEmbGn

1)

TGn [M ]
δ
(e, f) ∼−−→ ho fibe◦ik

(
Conf(l × Rn, k)

f◦−−−−→ Conf(M,k)
)

(3c)

for a n-manifold M with a G-structure, and G-augmented embeddings e, f .
The proof that it is a homotopy equivalence would parallel the proof above
(using proposition V.14.4 instead of V.4.5).

The natural homotopy equivalence (3c) gives an immediate direct proof
of the fact that

Thn[M ]
δ : TGn [M ]

δ −→ THn [h∗M ]
δ

is a local homotopy equivalence, for any morphism h : G → H in Grp/n.
Furthermore, the obvious commutative diagram (where we denote the un-
derlying embeddings of e and f by the same letters)

TGn [M ]
δ
(e, f)

qδ → Tn[M ]δ(e, f)

ho fibe◦ik
(

Conf(l × Rn, k)
f◦−−−−→ Conf(M,k)

)ς

←

(3c)

→

gives a quick reproof of lemma 2.2.

4. Connecting Tn[M ] and M(M)

Throughout this section we fix n ∈ N, and M a n-manifold without
boundary.

Having established in the preceding section that any TGn [M ]δ is weakly
equivalent (as a Top-category) to Tn[M ]δ, we will now proceed to show that
Tn[M ]δ is weakly equivalent to M(M) (from section III.4). We will do this
by constructing a natural (two arrow) zig-zag of Top-categories between
Tn[M ]δ and M(M) in the present section and the next, and proving later
that the maps in the zig-zag are weak equivalences.

1We leave it to the reader (again, as in observation V.14.3) to precisely say what this
means.
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We could similarly construct direct two arrow zig-zags (of weak equiva-
lences) between TGn [M ]δ and M(M). For simplicity, we will omit this.

We proceed to construct the zig-zag in Top-categories, which we will
denote by

Tn[M ]δ FT←−−− ZM
FM→M(M)

4.1. Definition – objects of ZM
Define obZM to be the set

obZM := ob
(
Tn[M ]δ

)
=
∐
k∈N

Emb(k × Rn,M)

4.2. Observation
We ignore the obvious topology obZM , since it will not be necessary.
However it is possible to define a category C internal to Top whose dis-
cretization Cδ is ZM and whose space of objects is the topological space

obC =
∐
k∈N

Emb(k × Rn,M)

with the coproduct topology.

4.3. Definition – functor FT : ZM → Tn[M ]: map on objects
The map of sets obFT is defined to be the identity function

id : obZM −→ ob
(

Tn[M ]δ
)

4.4. Definition – functor FM : ZM →M(M): map on objects
The map of sets

obFM : obZM −→ obM(M)
associates to an embedding e ∈ Emb(k × Rn,M) the following element of
Conf(M,k)

obFM(e) = e ◦ ik
where ik : k → k × Rn is the canonical inclusion at the origins (equation
(V.4a)).

A few pictorially inclined definitions will be useful in order to define the
morphisms in ZM , and give some intuition into their structure.

4.5. Definition – squares with assigned verticals
Let X be a topological space, and Y → H(X) a map of topological spaces
(H is the space of Moore paths from I.6.1).
The space of squares in X with verticals in Y , �(X|Y ), is defined to be

�(X|Y ) := H(Y )

The above are only squares in the loosest sense of the word. Nevertheless,
the pictorial intuition coming from this designation is useful. It comes from
the fact that we have a map

�(X|Y ) −→ H(H(X)) ' Map([0, 1]× [0, 1], X) (4a)

The purpose of the above definition is two-fold: first, it constrains the re-
sultant maps [0, 1] × [0, 1] → X to having some specified type (given by
the inclusion Y → H(X))) when the first coordinate is fixed. Second, the
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use of Moore paths, instead of usual paths, allows for strictly associative
concatenation or gluing: in the case of squares, we can glue along common
edges.

4.6. Definition – edges of squares
Let X be a topological space, and f : Y → H(X) a map of topological
spaces.
We define the maps

T : �(X|Y ) −→ H(X) top edge

B : �(X|Y ) −→ H(X) bottom edge

L : �(X|Y ) −→ Y left edge

R : �(X|Y ) −→ Y right edge

to be (recall the maps defined on Moore paths in I.6.3)

T : H(Y )
H(f)−−−→ H(H(X))

H(t)−−−→ H(x)

B : H(Y )
H(f)−−−→ H(H(X))

H(s)−−−→ H(x)

L : H(Y ) s−−→ Y

R : H(Y ) t−−→ Y

4.7. Definition – triangles with assigned verticals
Let X be a topological space, and f : Y → H(X) a map of topological
spaces.
The space of triangles in X with verticals in Y , 4(X|Y ), is defined to be
the limit of

{0}

[0,+∞[
↓

∩

←l H(X)← f
Y ←L

�(X|Y )

i.e. the subspace of �(X|Y ) of squares whose left edge has zero length.

The motivation for this nomenclature is the existence of a map

4(X|Y ) −→ Map(tri,X) (4b)

where

tri := {(x, y) ∈ [0, 1]× [0, 1] : y ≤ x}

is the subspace of [0, 1] × [0, 1] below the diagonal. Again, the purpose of
this definition is to constrain the type of paths obtained when fixing the first
coordinate, and also allowing for strictly associative gluing of maps.

4.8. Definition – edges of triangles
Let X be a topological space, and f : Y → H(X) a map of topological
spaces.
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We define the maps

T : 4(X|Y ) −→ H(X) top (or diagonal) edge

B : 4(X|Y ) −→ H(X) bottom edge

R : 4(X|Y ) −→ Y right edge

to be the restriction of the corresponding maps on �X(Y ) to 4X(Y ):

T : 4(X|Y ) ↪−→ �(X|Y ) T−−→ H(x)

B : 4(X|Y ) ↪−→ �(X|Y ) B−−→ H(x)

R : 4(X|Y ) ↪−→ �(X|Y ) R−−→ Y

We can now define the morphisms of the category ZM . Recall the several
spaces of filtered paths in stratified spaces from chapter VI.

4.9. Observation
Given embeddings e ∈ Embn(k × Rn,M), f ∈ Embn(l × Rn,M), there are
natural projections

m : Tn[M ]δ(e, f) −→ Emb(k × Rn, l × Rn)

h : Tn[M ]δ(e, f) −→ H
(
Emb(k × Rn,M)

)
4.10. Definition – morphisms of ZM
Let k, l ∈ N.
For any e ∈ Emb(k×Rn,M), and f ∈ Emb(l×Rn,M), define the topological
space ZM (e, f) to be the subspace of the product(

Tn[M ]δ(e, f)
)
×
−→
H s

(
Map(k, l × Rn)

)
×4

(
M×k

∣∣∣−→H s

(
M×k

))
×
−→
H
(
M×k

)
constituted by tuples (a, b, c, d) such that

T (c) = d

B(c) = h(a) ◦ ik
f ◦ b = R(c)

s(b) = m(a) ◦ ik
t(b) = ik ◦ π0

(
m(a)

)
where
- we make the identifications (in the obvious way)

π0(k × Rn) = k π0(l × Rn) = l

- ik : k ↪→ k × Rn is the canonical inclusion (at the origins)
- s(b) = b(0) denotes the source (beginning point) of b
- t(b) = b(l(b)) denotes the target (end point) of b

4.11. Observation – variation: Z ′M
We could replace both occurrences of strong spaces of filtered paths (

−→
H s)

in the definition above by usual filtered path spaces (
−→
H ). Let us call the

Top-category resulting from such a replacement by Z ′M .
The composition in Z ′M is defined by the same formula as the composition
of ZM (which will be described in the next section).



4. CONNECTING Tn[M ] AND M(M) 143

4.12. Observation
The above is a fairly complicated definition. It defines ZM (e, f) as the limit
of the following diagram of topological spaces

H(Emb(k×Rn,M))← h
Tn[M ]δ(e,f)

m→ Emb(k×Rn,l×Rn)
π0 → Set(k,l)

H(M×k)

−◦ik

↓
← B

4(M×k|
−→
H s(M×k)) Map(k,l×Rn)

−◦ik

↓
Map(k,l×Rn)

ik◦−

↓

−→
H (M×k)

incl → H(M×k)

T

↓
−→
H s(M×k)←f◦−

R

→
−→
H s(Map(k,l×Rn))

t

↑
s

←

where boxes are drawn around each factor appearing in definition 4.10.
Again, we could replace all three occurrences of strong spaces of filtered
paths (

−→
H s) in the diagram above by usual filtered path spaces (

−→
H ). The

resulting diagram would have Z ′M (e, f) as its limit.

4.13. Notation
We will denote elements of ZM (e, f) by 4-tuples like we did in definition
4.10.

We will finish this section by defining the functors FM and FT on the level
of morphisms. In the next section, we will occupy ourselves with describing
the composition in ZM .

4.14. Definition – functor FT : ZM → Tn[M ]: map on morphisms
Let k, l ∈ N, e ∈ Emb(k × Rn,M), and f ∈ Emb(l × Rn,M).
The map

morFT : ZM (e, f) −→ Tn[M ]δ(e, f)

is the canonical projection (see definition 4.10).

4.15. Definition – functor FM : ZM →M(M): map on morphisms
Let k, l ∈ N, e ∈ Emb(k × Rn,M), and f ∈ Emb(l × Rn,M).
Recall definition 4.4.
The map

morFM : ZM (e, f) −→M(M)(e ◦ ik, f ◦ il)
is given by (denoting elements of ZM (e, f) by 4-tuples like we did in defini-
tion 4.10)

(morFM)(a, b, c, d) = d

Equivalently, morFM is the unique map which makes the diagram

ZM (e, f)
morFM→M(M)(e ◦ ik, f ◦ il)

−→
H
(
M×k

) incl

←
proj →

commute.
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5. Composition in ZM
We again fix (in this section) n ∈ N, and a n-manifold without boundary

M .
We now proceed to construct the composition in ZM , which is a bit

involved. The most non-trivial part of defining the composition resides in
gluing the triangles in the morphisms of ZM to obtain new triangles.

5.1. Construction – horizontal gluing of squares (gH)
Let X be a topological space, and f : Y → H(X) a map of topological
spaces.
Let PH be the pullback in the pullback square

PH
p1→ �(X|Y )

�(X|Y )

p2
↓

L→ Y

R
↓

The horizontal gluing map

gH : PH −→ �(X|Y )

is exactly the concatenation map for H(Y ) (see definition I.6.5).

5.2. Observation – intuition for horizontal gluing
This horizontal gluing operation corresponds approximately (under the map
(4a)) to having continuous functions

[0, 1]× [0, 1] −→ X

[1, 2]× [0, 1] −→ X

which coincide on {1}× [0, 1], and gluing them to obtain a continuous func-
tion

[0, 2]× [0, 1] −→ X

5.3. Construction – vertical gluing of squares (gV )
Let X be a topological space, and f : Y → H(X) a map of topological
spaces which is injective.
Assume that there is a (necessarily unique) commutative diagram in Top

Y ×
X
Y

cc → Y

H(X)t×s
X
H(X)

f×f
↓

cc→ H(X)

f

↓
(5a)

where the bottom map is concatenation of Moore paths in X (definition
I.6.5), and the pullbacks are the obvious ones for which this concatenation
map makes sense (we indicate the maps in the pullback).
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Let PV be the pullback in the pullback square

PV
p1→ �(X|Y )

�(X|Y )

p2
↓

B→ H(X)

T
↓

Then PV is naturally identified with H
(
Y ×X Y

)
(the pullback Y ×X Y

being the same as in diagram (5a)) The vertical gluing map

gV : PV −→ �(X|Y )

is defined to be the map

PV = H
(
Y ×

X
Y
)

H(cc)−−−−−→ H(Y )

where cc is the map assumed to exist in diagram (5a).

5.4. Observation – intuition for vertical gluing
This vertical gluing operation corresponds approximately (under the map
(4a)) to having continuous functions

[0, 1]× [0, 1] −→ X

[0, 1]× [1, 2] −→ X

which coincide on [0, 1]×{1}, and gluing them to obtain a continuous func-
tion

[0, 1]× [0, 2] −→ X

Note that the assumptions of the previous construction are verified for
the inclusions

−→
H (X) ↪−→ H(X)
−→
H s(X) ↪−→ H(X)

for any stratified space X.

5.5. Construction – triangle gluing operation (gT )
Let X be a topological space, and f : Y → H(X) a map of topological
spaces which is injective.
Assume that there is a (necessarily unique) commutative diagram in Top
given by (5a).
Let PT be the subspace of the product 4(X|Y )×�(X|Y )×4(X|Y ) which
is the limit of the diagram

4(X|Y )

H(X)

B
↓

4(X|Y )
R→ Y ←L

�(X|Y )

T
↑
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where the first copy of 4(X|Y ) in the product corresponds to the bottom
left entry in the diagram.
Then there is a gluing map

gT : PT −→ 4(X|Y )

which is given equivalently by either of the two following procedures:
- gluing horizontally a triangle in the bottom left (entry of the diagram

above) with the result of gluing vertically a square in the bottom right
with a triangle in the top right:

gT (a, b, c) = gH(a, gV (b, c)) for (a, b, c) ∈ PT
- gluing horizontally a triangle in the bottom left (entry of the diagram

above) with a square in the bottom right and then glue vertically the
result with a triangle in the top right:

gT (a, b, c) = gV (gH(a, b), c) for (a, b, c) ∈ PT
5.6. Observation – intuition for triangle gluing
So now we know that we can glue two triangles and one square (with com-
patible edges) into one triangle. This corresponds approximately (under the
maps (4b) and (4a)) to having continuous functions

{(x, y) ∈ [0, 1]× [0, 1] : y ≤ x} −→ X

[1, 2]× [0, 1] −→ X

{(x, y) ∈ [1, 2]× [1, 2] : y ≤ x} −→ X

such that the first two coincide on {1} × [0, 1] and the last two coincide on
[1, 2]× {1}, and gluing them to obtain a continuous function

{(x, y) ∈ [0, 2]× [0, 2] : y ≤ x} −→ X

Now we can define the composition in ZM . Recall that we denote the
elements of ZM (e, f) by 4-tuples in the product(

Tn[M ]δ(e, f)
)
×
−→
H s

(
Map(k, l × Rn)

)
×4

(
M×k

∣∣∣−→H s

(
M×k

))
×
−→
H
(
M×k

)
for e ∈ Emb(k × Rn,M) and f ∈ Emb(l × Rn,M). Also, for the following
definition, it may be useful to refer to the diagram within observation 4.12.

5.7. Definition – composition in ZM
Let k, l,m ∈ N, e ∈ Emb(k × Rn,M), e′ ∈ Emb(l × Rn,M), and e′′ ∈
Emb(m× Rn,M).
Given (a, b, c, d) ∈ ZM (e, e′) and (a′, b′, c′, d′) ∈ ZM (e′, e′′), their composi-
tion is defined to be the element

(a′, b′, c′, d′) ◦ (a, b, c, d) :=
(
a ◦ a′,

cc
(
m(a′) ◦ b, b′ ◦ π0

(
m(a)

))
,

gT

(
c,h(a′) ◦ b, c′ ◦ π0

(
m(a)

))
,

cc
(
d, d′ ◦ π0

(
m(a)

)))
of ZM (e, e′′). Here cc designates concatenation of filtered paths.
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5.8. Observation
There is not much to say about this composition: it is essentially the only
thing that can be done, if one takes the mental picture from observation 5.6
seriously.
An element of (a, b, c, d)ZM (e, e′) and an element of (a′, b′, c′, d′)ZM (e′, e′′)
each determine a triangle. In order to obtain a new triangle, we just need
to use an appropriate square and apply the triangle gluing operation. This
square is obtained by taking the filtered path c and tracing it along the
homotopy of embeddings h(a′).

After the laborious definitions and constructions given in this section
and the previous one, we leave it to the dedicated reader to check that all
relevant maps are well-defined and continuous, that the data for ZM indeed
defines a Top-category, and that FT, FM give Top-functors.

6. Equivalence between Tn[M ] and M(M)

Let us fix n ∈ N in this section. We collect in the following proposition
the results described in the previous two sections.

6.1. Proposition
Z• defines a functor

Z• :
(
Embn

)
0
−→ Top-Cat

Furthermore, FT and FM give natural transformations

FT : Z• −→ Tn[−]δ

FM : Z• −→M

6.2. Observation
Recall from observation III.4.6 that M(−) is functorial with respect to in-
jective maps of topological spaces. Therefore, one easily extracts a functor

M :
(
Embn

)
0
−→ Top-CAT

which is used in the previous definition.

6.3. Observation – case of Z ′M
Recall the category Z ′M from 4.11. It admits completely analogous functors

Z ′M −→ Tn[M ]δ

Z ′M −→M(M)

In this section, we summarily show that FT and FM give essentially
surjective local homotopy equivalences of Top-categories. We state the result
now.

6.4. Proposition – FM, FT are weak equivalences
For each n-manifold without boundary, M , the Top-functors

FT : ZM −→ Tn[M ]δ

FM : ZM −→M(M)

are essentially surjective local homotopy equivalences of Top-categories.
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It is quite easy to see that FM and FT are essentially surjective. We are
left with proving that the functors FT and FM are local homotopy equiv-
alences. This will be a consequence of a sequence of constructions and
lemmas, which will occupy us for the remainder of this section.

Let us start by fixing a n-dimensional manifold M without boundary,
k, l ∈ N, e ∈ Emb(k × Rn,M), and f ∈ Emb(l × Rn,M).

6.5. Description – strategy for the proof
In our proof that FM and FT are local equivalences, we would like to compare
ZM (e, f) with the (appropriate) fibre product of Tn[M ]δ(e, f) and the space
of homotopies of filtered paths.
This comparison would ideally take the form of a map that
- projects ZM (e, f) onto Tn[M ]δ(e, f);
- associates to a triangle a with vertical filtered paths and whose edges

are filtered paths (such a triangle is part of the data for an element of
ZM (e, f)), a homotopy through filtered paths from the edge T (a) to the
concatenation of the other edges, cc(B(a), R(a)).

The purpose of doing this is that this fibre product is obviously homotopy
equivalent to ZM (e, f) (since we can deform homotopies to a constant one).
On the other hand, the fibre product has a map to M(M)(e ◦ ik, f ◦ il) (by
taking the appropriate endpoint of the homotopy of filtered paths), which
can be shown to be an equivalence (essentially by using propositions 3.2 and
VI.8.3).
If done compatibly with the functors FM and FT, this comparison would
prove that both functors are local homotopy equivalences.

6.6. Description – correction to the strategy for the proof
There is one obvious problem with the above strategy: there is no easy or
meaningful way to associate to a triangle a (as in the preceding description)
a homotopy through filtered paths from the edge T (a) to the concatenation
of the other edges, cc(B(a), R(a)). Any naive systematic attempt to do so
will result in general in homotopies through non-filtered paths.
To fix this problem, we consider the subspace, V holink

M (e, f), of ZM (e, f) of
elements whose corresponding triangles have vertical homotopy links (in-
stead of just vertical filtered paths).
Applying a naive procedure to such a triangle does indeed give a homo-
topy through filtered paths. The comparison mentioned in the uncorrected
strategy above will thus take the form of a zig-zag through V holink

M (e, f).

6.7. Definition – subspace of ZM (e, f) of vertical homotopy links
Let k, l ∈ N, e ∈ Emb(k × Rn,M), and f ∈ Emb(l × Rn,M).
The subspace of vertical homotopy links, V holink

M (e, f), of ZM (e, f) is given
by

V holink
M (e, f) :=

{
(a, b, c, d) ∈ ZM (e, f) : c ∈ 4

(
M×k

∣∣holink(M×k)
)}

Equivalently, V holink
M (e, f) can be defined as the limit of the diagram obtained

from the one in 4.12 by replacing all three occurrences of strong spaces of
filtered paths (

−→
H s) with the corresponding homotopy link spaces (holink).
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6.8. Lemma – central lemma 1
The inclusion map

V holink
M (e, f) ↪−→ ZM (e, f)

is the inclusion of a strong deformation retract. In particular, it is a homo-
topy equivalence.

Proof:
This is an immediate consequence of proposition VI.7.11.

End of proof

6.9. Observation – case of Z ′M
Recall the category Z ′M from 4.11. It would be an immediate consequence
of conjecture VI.7.10 that the inclusion

incl : V holink
M (e, f) ↪−→ Z ′M (e, f)

is a homotopy equivalence.

6.10. Description – current position within the strategy for the proof
Having defined the subspace of ZM (e, f) whose triangles have vertical homo-
topy links, we will describe precisely in the next two constructions a specific
(naive) procedure to convert such triangles into homotopies of filtered paths
(see also description 6.6).

6.11. Construction
We will construct a precise map from squares in X to Map(I × I,X). Let
f : Y → H(X) be any map. Then we define

sq : �(X|Y ) −→ Map(I × I,X)

to be the composition

�(X|Y ) === H(Y )

↪−→ H(Y )
rprm−−−→ Map

(
I, Y )

Map(I,f)−−−−−−→ Map
(
I,H(X)

)
rprm−−−→ Map

(
I,Map(I,X)

)
=== Map(I × I,X)

(where “rprm” is the canonical reparametrization map of Moore paths from
I.6.6). Under the map sq, the edges correspond in the obvious way:
- the top edge of a square in �(X|Y ) corresponds to restricting to I ×{1};
- the bottom edge of a square corresponds to restricting to I × {0};
- the right edge of a square corresponds to restricting to {1} × I;
- the left edge of a square corresponds to restricting to {0} × I.

6.12. Construction – from triangles of links to homotopies of filtered paths
Let

p : I × I −→ I × I
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be any map which is injective in the interior and such that for x ∈ [0, 1]

p(x, 1) = (1, 1)

p(0, x) = (x, 1)

p(x, 0) = (0, 1− x)

p
(

1,
x

2

)
= (x, 0)

p

(
1,

1 + x

2

)
= (1, x)

Let X be a stratified space, and consider the subspace of 4
(
X
∣∣holink(X)

)
given by

BTY,Z :=
{
x ∈ 4

(
X
∣∣holink(X)

)
: B(x) ∈

−→
H (X),

T (x) ∈
−→
H (X;Y,Z)

}
for Y , Z subspaces of X. Then the composition

BTY,Z ↪−→ 4
(
X
∣∣holink(X)

)
↪−→ �

(
X
∣∣holink(X)

)
sq−−→ Map(I × I,X)
Map(p,X)−−−−−−→ Map(I × I,X)

=== Map
(
I,Map(I,X)

)
(where the last map preserves the orders, as shown, of the two copies of I)
factors through the subspace

Map
(
I,
−−→
MapY,Z(I,X)

)
of Map(I,Map(I,X)), where

−−→
MapY,Z(I,X) :=

{
γ ∈
−−→
Map(I,X) : γ(0) ∈ Y , γ(1) ∈ Z

}
is a subspace of

−−→
Map(I,X). Thus we constructed a map

tr : BTY,Z −→ Map
(
I,
−−→
MapY,Z(I,X)

)
Moreover, for any x in the image of tr, x(τ) is a homotopy link in X

for any τ ∈ ]0, 1[. This observation leads us to the next lemma, which is a
straightforward application of the corollary VI.7.9 to Miller’s result.

6.13. Lemma
Assume X is a homotopically stratified space, and Xa, Xb are strata of X.
Then the map

tr : BTXa,Xb −→ Map
(
I,
−−→
MapXa,Xb(I,X)

)
is part of a homotopy equivalence where
- the homotopy

Map
(
I,
−−→
MapXa,Xb(I,X)

)
× I −→ Map

(
I,
−−→
MapXa,Xb(I,X)

)
fixes the boundary of I × I, pointwise;
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- the homotopy
BTXa,Xb × I −→ BTXa,Xb

fixes the canonical reparametrizations of all edges T , R, B of triangles.

6.14. Observation
We demand that the homotopies in the previous lemma have such specific
properties so that the homotopy equivalence is preserved by taking fibre
products over the edge maps. This will be used in lemma 6.21.

6.15. Description – current position within the strategy for the proof
The following construction details the fibre product, mentioned in the initial
strategy 6.5, which we will compare with ZM (e, f).
This comparison will be made via a zig-zag through V holink

M (e, f), which will
be defined in 6.20.

6.16. Construction – auxiliary spaces
Let Aux1 denote the limit of

holink
(

Map(k, l × Rn);
Conf(l × Rn, k),
il ◦ Set(k, l)

)

Tn[M ]δ(e, f)
m

4.9
→ Emb(k × Rn, l × Rn)

−◦ik→ Conf(l × Rn, k)

s
↓

viewed as a subspace of the product of the bottom left and the top right
entries of the diagram.
Define Aux2 to be the subspace of (recall equation (VI.4a) from construction
VI.4.3)

M(M)(e ◦ ik, f ◦ il) =
−→
H
(
M×k; {e ◦ ik}, f ◦ il ◦ Set(k, l)

)
constituted by the paths of length 1. Note that Aux2 is naturally a subspace
of
−−→
Map

(
I,M×k

)
. As a useful aside, observe that the inclusion

Aux2 ↪−→M(M)(e ◦ ik, f ◦ il)
is a homotopy equivalence.
With this, the map

ccr : Aux1 −→ Aux2

is defined by (cc designates concatenation of paths, and h is given in 4.9)

ccr(a, b) := rprm
(
cc
(
rprm(h(a) ◦ ik), rprm(f ◦ b)

))
for (a, b) ∈ Aux1. Observe that the effect of the multiple reparametrizations
(rprm) is to obtain a path of length 1, where each of the concatenated paths
occupies half of that length.
We finally construct the pullback of

Aux1

Map(I, Aux2)
ev1→ Aux2

ccr
↓
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which we call Aux.

6.17. Lemma – central lemma 2
The canonical projection

proj : Aux1 −→ Tn[M ]δ(e, f)

is a homotopy equivalence.

Proof:
Aux1 is the limit of

holink
(
Map(k, l × Rn);
Conf(l × Rn, k),
il ◦ Set(k, l)

)

Tn[M ]δ(e, f)
m→ Emb(k × Rn, l × Rn)

−◦ik→ Conf(l × Rn, k)

s
↓

The vertical map is known to be a Hurewicz fibration (by proposition VI.5.6)
and a homotopy equivalence (proposition VI.8.1), and we conclude that

proj : Aux1 −→ Tn[M ]δ(e, f)

is a homotopy equivalence.
End of proof

6.18. Lemma – central lemma 3
The map

ccr : Aux1 −→ Aux2

is a homotopy equivalence.

Sketch of proof:
Consider the following homotopy commutative diagram

Aux1
ccr → Aux2

M(M)(e ◦ ik, f ◦ il)

incl

↓

∩

fcc
→

where c̃c is defined similarly to ccr but without reparametrizing (see con-
struction 6.16):

c̃c(a, b) := cc
(
h(a) ◦ ik, f ◦ b

)
for (a, b) ∈ Aux1

Since the triangle above commutes up to homotopy, and

incl : Aux2 ↪−→M(M)(e ◦ ik, f ◦ il)

is a homotopy equivalence, we need only show that c̃c is a homotopy equiv-
alence.
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Now consider the commutative diagram

Aux1

h1 → •
h2 → holink(Map(k, l× Rn);

Conf(l × Rn, k),

il ◦ Set(k, l))

Tn[M ]δ(e,f)

v1

↓
h(−)◦ik

4.9
→ −→

H (M×k;{e◦ik},Conf(im f,k))

v2

↓
f−1◦ t → Conf(l×Rn,k)

s

↓

in which both small squares are cartesian. The outer square is just the
pullback square that defines Aux1.

We know that the arrow s is a Hurewicz fibration (by VI.5.6) and a
homotopy equivalence (by VI.8.1). Therefore both v1 and v2 are homotopy
equivalences.

On the other hand, the map h(−) ◦ ik is a homotopy equivalence: it fits
in a commutative triangle

Tn[M ]δ(e, f)
h(−)◦ik →

−→
H
(
M×k; {e ◦ ik},Conf(im f, k)

)

ho fibe◦ik
(

Conf(l × Rn, k)
f◦−−−−→ Conf(M,k)

)∼ rprm
↓

∼
ς

→

where ς is the homotopy equivalence from proposition 3.2. We conclude that
h1 is also a homotopy equivalence (given that v1, v2, and h(−) ◦ ik are).

Observe now that the space • is exactly the space Q appearing in propo-
sition VI.8.3, and that we actually have a commuting diagram

Aux1
h1

∼
→ •=============Q

M(M)(e ◦ ik, f ◦ il)

ecc
←

fcc
→

(where we have used the notation of VI.8.3). Since proposition VI.8.3 tells
us that the map on the right, c̃c, is a homotopy equivalence, we conclude
that the map on the left, c̃c, is a homotopy equivalence, which ends this
proof.

End of proof

6.19. Observation
Lemma 6.18 does most of the work comparing Tn[M ] and M(M), being the
only one to make use of propositions VI.8.3 and 3.2.

6.20. Construction – from V holink
M (e, f) to the auxiliary spaces

Observe that for any (a, b, c, d) ∈ V holink
M (e, f)

c ∈ (T,B)−1
(−→
H
)
⊂ 4

(
M×k

∣∣holink(M×k)
)

From this we define the map

τ ′ :V holink
M (e, f) → Map(I, Aux2)
(a, b, c, d) → tr(c)
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where we have identified Aux2 with a subspace of
−−→
Map(I,M×k).

There is also a canonical projection (recall the definition of Aux1 from 6.16)

τ ′′ :V holink
M (e, f) → Aux1

(a, b, c, d) → (a, c)

The maps τ ′ and τ ′′ give a commutative diagram

V holink
M (e, f)

τ ′′→ Aux1

Map(I, Aux2)

τ ′

↓
ev1→ Aux2

ccr
↓

and so assemble into a map

τ : V holink
M (e, f) −→ Aux

The following lemma is a straightforward consequence of 6.13 and the
definition of V holink

M (e, f) in 6.7.

6.21. Lemma – central lemma 4
The map

τ : V holink
M (e, f) −→ Aux

is a homotopy equivalence.

The four central lemmas — 6.8, 6.17, 6.18, and 6.21 — are so called
because of their instrumentality in our proof that FM and FT are local
equivalences. More precisely, these lemmas encapsulate all the homotopical
properties of
- spaces of filtered paths and homotopy links,
- morphisms spaces in M(M),
- morphism spaces in Tn[M ]
which we use in showing FM and FT are local equivalences.

6.22. Description – current position within the strategy for the proof
We have now defined all pertinent objects and maps.
All that remains to do is using the zig-zag (via V holink

M (e, f)) between ZM (e, f)
and the auxiliary fibre product Aux to prove that FM and FT are local equiv-
alences.

We now relate the map τ with the functor FT and use this relation to
prove FT is a local homotopy equivalence.

6.23. Lemma
The diagram

V holink
M (e, f)

τ→ Aux
proj → Aux1

ZM (e, f)

incl

↓

∩

morFT → Tn[M ]δ(e, f)

proj

↓
(6a)

commutes.
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6.24. Proposition – FT is a local homotopy equivalence
The map

morFT : ZM (e, f) −→ Tn[M ]δ(e, f)

is a homotopy equivalence.

Proof:
The central lemmas 6.8, 6.21, and 6.17 state that the maps

incl : V holink
M (e, f) ↪−→ ZM (e, f)

τ : V holink
M (e, f) −→ Aux

proj : Aux1
∼−−→ Tn[M ]δ(e, f)

are homotopy equivalences. Since Aux is the pullback of

Aux1

Map(I, Aux2)
ev1→ Aux2

ccr
↓

and ev1 is a Hurewicz fibration and a homotopy equivalence, it follows that
the projection

proj : Aux ∼−−→ Aux1

is a homotopy equivalence.
We have proved that all the arrows in diagram (6a) are homotopy equiv-

alences, except the bottom one. We conclude that the bottom arrow

morFT : ZM (e, f) −→ Tn[M ]δ(e, f)

is also a homotopy equivalence.
End of proof

The next two lemmas relate τ with the functor FM, and prove that FM
is a local homotopy equivalence.

6.25. Lemma
The diagram (where rprm gives the canonical reparametrization to a filtered
path of length 1)

V holink
M (e, f)

τ → Aux
proj → Map(I, Aux2)

ZM (e, f)

incl

↓

∩

morFM→M(e ◦ ik, f ◦ il)
rprm→ Aux2

ev0

↓
(6b)

commutes.

6.26. Proposition – FM is a local homotopy equivalence
The map

morFM : ZM (e, f) −→M(M)(e ◦ ik, f ◦ il)
is a homotopy equivalence.
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Proof:
The central lemmas 6.8 and 6.21 state that the maps

incl : V holink
M (e, f) ↪−→ ZM (e, f)

τ : V holink
M (e, f) −→ Aux

are homotopy equivalences. Furthermore, it is easy to see that

ev0 : Map(I, Aux2) −→ Aux2

rprm : M(M)(e ◦ ik, f ◦ il) −→ Aux2

are both homotopy equivalences.
The canonical projection

proj : Aux −→ Map(I, Aux2)

is a homotopy equivalence because the commutative square

Aux
proj → Aux1

Map(I, Aux2)

proj
↓

ev1→ Aux2

ccr
↓

is cartesian (by definition of Aux), ev1 is a Hurewicz fibration, and

ccr : Aux1 −→ Aux2

is a homotopy equivalence (by central lemma 6.18).
We have proved that all arrows in diagram (6b), except for morFM, are

homotopy equivalences. In conclusion, morFM is a homotopy equivalence as
well.

End of proof

6.27. Observation – case of Z ′M : removing strong spaces of filtered paths
Recall the category Z ′M from remark 4.11. As stated before it admits func-
tors to M(M) and Tn[M ]δ. The proof that FM and FT are weak equivalences
holds for those functors as well, with the exception of central lemma 6.8.
As explained in observation 6.9, this could be remedied by assuming the
conjecture VI.7.10 strengthening Miller’s result.
In conclusion, if we assume conjecture VI.7.10, then we can construct weak
equivalences between Z ′M and each of the Top-categories M(M) and Tn[M ]δ.
This would obviate our use of strong spaces of filtered paths, since they only
enter in the definition of the category ZM .



CHAPTER VIII

Homotopical properties of enriched categories

Introduction

This chapter aims to present some elementary aspects of an ad hoc
theory of homotopy colimits in enriched model categories. In order to meet
our needs in the final chapter, we will present a definition of derived enriched
colimit for an enriched indexing category. To the author’s knowledge, this
notion appears somewhat rarely in the literature in such a generality. It has
nevertheless been considered, for example, in [Shu06] in a more systematic
manner. The reader can also look at section A.3.3 of [Lur09b].

The final section describes, without proof, how these derived enriched
colimits behave with respect to Grothendieck constructions.

Summary

Section 1 analyzes some categories of intervals defined as subcategories
of the category Ord of finite ordinals. Section 2 explains how these categories
naturally index functors associated to algebras over a monad.

Section 3 constructs monads whose algebras are V -functors, for V a
closed symmetric monoidal category. Together with the functors defined
in section 2, this gives rise to several bar-type constructions for enriched
functors. In particular, given V -categories A and C, and functors F : A→ C
and G : Aop → V , we obtain a two-sided bar construction Bar(G,A, F ).

Section 4 uses the two-sided bar construction of the previous section
to define the derived enriched colimit G⊗L

A F when V is an appropriate
simplicial model category, and C is a V -model category. This concept is
applied in section 5 to construct the homotopy colimit hocolimF , when the
monoidal structure on V is cartesian. Furthermore, a notion of homotopy
cofinality is explored in this context.

Section 6 defines when a functor between two V -categories is a weak
equivalence, and proves that such a functor is necessarily homotopy cofinal.

The final section 7 states without proof a result which informally says
that

hocolim
Groth(G)

(F ◦ π) '
∣∣NerveGδ

∣∣ L

⊗
A
F

for G : IAop → Cat(V ) an internal Cat(V )-valued functor (where the func-
tor π : Groth(F )→ A is the projection).

1. Categories of intervals

Recall the category Ord of finite ordinals (see I.1.4). Given a non-empty
ordinal a in Ord, we will denote its minimum (respectively, maximum) by
min a (respectively, max a).

157
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We will now define several subcategories of Ord which correspond to
demanding the preservation of minima and or maxima of the ordinals. These
will be very useful for defining bar-like constructions.

1.1. Definition – category of left intervals
We define the category of left intervals, LeftInt, to be the subcategory of
Ord consisting of the morphisms f : a→ b in Ord such that a is non-empty
and

f(min a) = min b

1.2. Definition – category of right intervals
We define the category of right intervals, RightInt, to be the subcategory of
Ord consisting of the morphisms f : a→ b in Ord such that a is non-empty
and

f(max a) = max b

1.3. Definition – categories of intervals
We define the category of intervals, Int, to be the subcategory of Ord con-
sisting of the morphisms f : a→ b in Ord such that a is non-empty and

f(min a) = min b

f(max a) = max b

Define the category of strict intervals, StrictInt, to be the full subcategory
of Int generated by the ordinals a such that

min a 6= max a

1.4. Observation
Equivalently, StrictInt is the full subcategory of Int generated by the ordinals
with at least two elements.

1.5. Construction – functors which reverse order
There is a functor

rev : Ord −→ Ord

which takes an ordinal a to the ordinal rev(a) which has the same underlying
set as a, and whose order is the reverse of that of a. Informally, rev reverses
the order of an ordinal.
The functor rev is an isomorphism of categories such that

rev ◦ rev = idOrd

Additionally, rev restricts to the following isomorphisms of categories:

rev : LeftInt −→ RightInt
rev : RightInt −→ LeftInt
rev : Int −→ Int
rev : StrictInt −→ StrictInt

which always verify
rev ◦ rev = id

for appropriate compositions.
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Recall that the category Ord has a monoidal structure

+ : Ord×Ord −→ Ord

whose unit is the empty ordinal.

1.6. Construction – functors which add minimum or maximum
The functor

1 +− : Ord −→ Ord
lands within the category of left intervals. In particular, we get an induced
functor

1 +− : Ord −→ LeftInt
Similarly, there are functors

1 +− : RightInt −→ StrictInt
−+ 1 : Ord −→ RightInt
−+ 1 : LeftInt −→ StrictInt

1 +−+ 1 : Ord −→ StrictInt

These functors verify the formulas

rev(1 +−) = rev(−) + 1

rev(−+ 1) = 1 + rev(−)

1.7. Observation – simplicial object with extra degeneracy
The concept of an augmented simplicial object with extra degeneracy can
be stated easily using these functors.
Giving an extra degeneracy to an augmented simplicial object in a category
C

F : Ordop −→ C

is equivalent to finding an extension

F̃ : LeftIntop −→ C

of F making the diagram

Ordop F → C

LeftIntop

(1+−)op

↓
eF
→

commute.

Given an appropriate simplicial space F : ∆op −→ Top with an aug-
mentation F → X, and an extra degeneracy, it is a standard result that
the geometric realization of F is equivalent to X. The following proposition
puts this in perspective.

1.8. Proposition
The functor

F : ∆ ↪−→ Ord 1+−−−−→ LeftInt
is a homotopy final functor.
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Sketch of proof:
We are required to show that for any left interval x, the category F/x has

weakly contractible nerve. We know that F/x is the (usual) Grothendieck
construction of the functor

LeftInt(F−, x) : ∆op −→ Set

By Thomason’s theorem (e.g. theorem 18.9.3 of [Hir03]), we know that
there is a weak equivalence of simplicial sets

Nerve
(
Groth

(
LeftInt(F−, x)

)) ∼−−→ LeftInt(F−, x)

Hence we obtain a weak equivalence in sSet

Nerve(F/x) ∼−−→ LeftInt(F−, x)

Using the previous observation, we notice that the augmented simplicial set
LeftInt(F−, x) −→ 1 has an extra degeneracy, and therefore the augmenta-
tion

LeftInt(F−, x) −→ 1

gives a weak equivalence of simplicial sets. In conclusion, the nerve of the
category F/x is weakly contractible.

End of proof

1.9. Corollary
The functor

∆ ↪−→ Ord −+1−−−→ RightInt

is homotopy final.

Proof:
There is a unique isomorphism of categories

rev : ∆ −→ ∆

such that
∆ ⊂ → Ord

∆

rev
↓
⊂ → Ord

rev
↓

commutes up to natural isomorphism. Since the diagram

Ord
−+1→ RightInt

Ord

rev
↓

1+−→ LeftInt

rev
↓

commutes, we thus get a square

∆
−+1→ RightInt

∆

rev
↓

1+−→ LeftInt

rev
↓
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which commutes up to a natural isomorphism. The result now follows from
the previous proposition coupled with the fact that the two vertical arrows
are isomorphisms of categories.

End of proof

There is one last useful property of the categories of intervals which we
must address. It concerns a duality Ordop ' Int.

1.10. Construction – Stone duality for intervals
There is a natural functor

dual : Ordop −→ Int

such that for an ordinal a, dual(a) is the set Ord(a, 2) with the partial order
induced from 2: it is actually a total order.
Reciprocally, there is a functor

dual : Int −→ Ordop

which associates with each interval a, the set Int(a, 2) with the partial order
induced from 2: again, this is a total order.
Then the compositions

Int dual−−−→ Ordop dual−−−→ Int

Ordop dual−−−→ Int dual−−−→ Ordop

are naturally isomorphic to the identity functors. In particular, the duality
functors are inverse equivalences of categories.

1.11. Observation
The duality functors above give rise to a duality isomorphism

LeftIntop ' RightInt

where, for example, the diagram

LeftIntop dual

∼
→ RightInt

Ordop

inclop

↓
dual → Int

1+−
↓

commutes.

1.12. Corollary
The equivalence

dual : Ordop −→ Int

restricts to an equivalence

dual : ∆op −→ StrictInt

1.13. Observation
We will consider ∆op naturally as an equivalent subcategory of StrictInt via
this duality functor.
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1.14. Proposition
The inclusion functors

StrictInt ↪−→ RightInt

StrictInt ↪−→ LeftInt

are homotopy cofinal.

Proof:
It is enough to prove that the first functor is homotopy cofinal: the

second one follows by using the functor rev appropriately.
The inclusion

StrictInt ↪−→ RightInt
fits into a commutative diagram

∆op (1+−)op→ LeftIntop

StrictInt

dual

↓
⊂ incl→ RightInt

dual

↓

Since the two vertical arrows are equivalences of categories, and the top
arrow is homotopy cofinal (proposition 1.8), we conclude that

StrictInt ↪−→ RightInt

is homotopy cofinal.
End of proof

2. Monads and categories of intervals

The relevance of the categories of intervals defined in the previous propo-
sition is related to how they naturally index algebras over a monad. We
collect in this section the relevant results. Let us fix a category C and a
monad T on C.

We begin with the well-known fact that monoidal functors from Ord into
a monoidal category D are the same as monoids in D. We apply it to the
monoidal category [C,C] of endo-functors of C.

2.1. Construction
Any monad T on a category C gives rise to an essentially unique monoidal
functor

T • : Ord −→ [C,C]
such that T is the monoid T •(1) in the monoidal category [C,C]. The
monoidal structure on [C,C] is given by composition.
Composing with the evaluation at an object x of C gives a functor

T •x : Ord −→ C

This construction obviously extends to a functor

T •− : C −→ [Ord, C]

We will now describe how the functor T •x changes when one allows x
to become an algebra for T .
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2.2. Proposition
Assume x is a T -algebra in C. Then there exist functors

T •−1x : RightInt −→ C

T •−1x : Int −→ T -alg

such that the diagram

Int ⊂ → RightInt←−+1
Ord

T -alg

T •−1x

↓
proj→ C

T •−1x

↓
T •x

←

commutes.

2.3. Notation
In our notation • is meant to represent the number of points in an ordinal.
So the notation T •−1x is meant to inform about its value at an ordinal with
n+ 1 points (n ∈ N):

(T •−1x)(n+ 1) ' T ◦nx

To finish this section, we analyze the case of a free T -algebra.

2.4. Proposition
Let x be an object of C, and consider the free T -algebra Tx in C.
There exists a functor

T •x : LeftInt −→ T -alg

such that the diagram

Int ⊂ → LeftInt ⊂ → Ord

T -alg

T •x

↓
proj→

T •−1(Tx) →
C

T •x

↓

commutes

3. Bar constructions for enriched categories

In this section, we apply the constructions of the preceding section to
obtain bar constructions for enriched functors. Throughout this section, let
V denote a bicomplete symmetric monoidal closed category, and let C be a
V -category which is cocomplete (as a V -category). Recall that C0 denotes
the underlying category of C.

3.1. Construction – monad whose algebras are enriched functors
Let A be a small V -category. We will now construct a monad on the category
[obA,C0] whose category of algebras is equivalent to V -CAT(A,C).
Define the functor

TA,C : [obA,C0] −→ [obA,C0]
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on objects by

TA,C(F ) :=
∐

a∈obA
F (a)⊗A(a,−)

Here, “⊗” denotes tensoring of an object of V with an object of C, which is
always possible since C is cocomplete. We expect the functoriality of TA,C
to be clear to the reader.
The functor TA,C becomes a monad on [obA,C0] with the unit

η : id[obA,C0] −→ TA,C

being determined by the units for the V -category A, and the multiplication

µ : TA,C ◦ TA,C −→ TA,C

arising from the composition in A. We leave the straightforward details of
defining the unit and multiplication for TA,C to the reader.

3.2. Proposition
Let A be a small V -category.
There is a canonical isomorphism of categories

TA,C-alg
∼=−−→ V -CAT(A,C)

3.3. Observation
Let us consider the specific case C = V .
In order to define the monad TA,V , it is only necessary that V be a monoidal
category whose monoidal product preserves coproducts in each variable. In
this case, the algebras for TA,V are somewhat akin to internal functors on
IA. In fact, if V is cartesian monoidal with totally disjoint small coproducts,
then the two notions coincide.
Moreover, the possibility of defining TA,V with fewer assumptions on V could
be used to extend the concepts in the next sections to the case of Top, for
example. We will, however, not pursue this.

In view of this proposition, we will identify V -functors A → C with
TA,C-algebras. The upshot of this perspective is that we can immediately
obtain bar constructions for functors.

3.4. Construction – bar construction for enriched functor
Let A be a small V -category, and F : A→ C a V -functor.
According to the last proposition, F gives an algebra for TA,C , and therefore
we get functors (proposition 2.2)

(TA,C)•−1F : RightInt −→ [obA,C0]

(TA,C)•−1F : Int −→ V -CAT(A,C)

We will rename them

Bar(A,F ) : RightInt −→ [obA,C0]

Bar(A,F ) : Int −→ V -CAT(A,C)
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These functors verify a commutative diagram
Int ⊂ → RightInt

V -CAT(A,C)

Bar(A,F )

↓
proj→ [obA,C0]

Bar(A,F )

↓

Both bar constructions Bar(A,F ) are functorial on F ∈ V -CAT(A,C) and
the V -category A.

3.5. Notation
By default, we will usually mean the functor

Bar(A,F ) : Int −→ V -CAT(A,C)

when we refer to Bar(A,F ).

3.6. Observation
The value of Bar(A,F ) at an ordinal with n+ 1 points (n ∈ N) is

Bar(A,F )(n+ 1) ' (TA,C)◦nF

=
∐

a1,...,an∈obA
F (a1)⊗A(a1, a2)⊗ · · ·⊗A(an−1, an)⊗A(an,−)

Moreover, Bar(A,F )(1) = F .

3.7. Notation – bar construction for contravariant functor
Let A be a small V -category, and G : Aop → C a V -functor.
We will denote the bar construction Bar(Aop, G) by Bar(G,A)

Bar(G,A) := Bar(Aop, G)

3.8. Construction – two-sided bar construction
Let A be a small V -category.
Let F : A→ C and G : Aop → V be V -functors.
We define the two-sided bar construction

Bar(G,A, F ) : Int −→ C

to be the composition

Int
Bar(A,F )−−−−−−→ V -CAT(A,C) G⊗A−−−−−−→ C

which exists since C is cocomplete by assumption. In equation form, we get

Bar(G,A, F ) = G⊗
A

Bar(A,F )

The bar construction Bar(G,A, F ) is functorial in A, F , and G.

3.9. Observation
Note that the restriction of Bar(G,A, F ) to ∆op (recall corollary 1.12)

∆op dual−−−→
∼

StrictInt ↪−→ Int
Bar(G,A,F )−−−−−−−→ C

is naturally isomorphic to the usual two-sided bar construction.
From this observation, it becomes natural to consider the restriction of
Bar(G,A, F ) to the category of strict intervals.
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3.10. Observation
The value of the two-sided bar construction on a strict interval with n + 2
elements (n ∈ N) is

Bar(G,A, F )(1 + n+ 1) '
∐

a0,...,an∈obA
F (a0)⊗A(a0, a1)⊗ · · ·⊗A(an−1, an)⊗G(an)

3.11. Proposition
Let A be a small V -category. Let F : A → C and G : Aop → V be V -
functors.
The two-sided bar construction Bar(G,A, F ) is naturally isomorphic to (re-
call notation 3.7)

Bar(G,A, F ) = Bar(G,A)⊗
A
F

3.12. Observation – symmetry of bar construction
From this proposition, we immediately get the symmetry of the two sided-
bar construction

Bar(F,Aop, G) = Bar(G,A, F )
for any functors F : A→ V and G : Aop → V .

4. Derived enriched colimits

In this section, we assume that V is a symmetric monoidal closed simpli-
cial model category with cofibrant unit (see section I.9). To be more precise,
we demand that V is a bicomplete symmetric monoidal closed sSet-category,
and a simplicial model category, for which the monoidal product in V ver-
ifies the pushout-product axiom (definition I.9.3). Moreover, the unit I of
the monoidal structure of V is required to be cofibrant.

4.1. Definition – locally cofibrant enriched category
Let A be a V -category.
We say that A is locally cofibrant if for any a, b ∈ obA, the morphism object
A(a, b) is cofibrant in V .

4.2. Definition – identity-cofibrant enriched category
Let A be a V -category.
We say that A is identity-cofibrant if A is locally cofibrant, and the identity
morphism of A at a

ida : I −→ A(a, a)
is a cofibration for any a ∈ obA.

4.3. Proposition
The functor

V (I,−) : V −→ sSet
is a lax symmetric monoidal sSet-functor.

4.4. Observation
In particular, any V -category C gives rise to a sSet-category [V (−, I)]C.
A sSet-enriched colimit in [V (−, I)]C, G⊗A F , for any sSet-functors

F : A −→ [V (−, I)]C
G : Aop −→ sSet
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can be computed as a V -enriched colimit:

G⊗
A
F = (G⊗ I) ⊗

(−⊗I)A
F

where −⊗ I : sSet −→ V is a strong symmetric monoidal sSet-functor (due
to V being closed).

4.5. Proposition
For any V -model category C, the sSet-category [V (−, I)]C is canonically a
simplicial model category.

4.6. Definition – derived enriched colimit
Let A be a small locally cofibrant V -category, and C a cocomplete V -model
category (definition I.9.8).
Let F : A→ C, G : Aop → V be V -functors which are objectwise cofibrant.
We define the derived enriched colimit G⊗L

A F to be

G
L

⊗
A
F := hocolim

StrictInt
Bar(G,A, F )

4.7. Observation – clarification of definition
In the previous definition, the simplicial model category [V (I,−)]C under-
lying C is required to make sense of the homotopy colimit.
Alternatively, one can just observe (thanks to remark 4.4) that the homotopy
colimit is

hocolim
StrictInt

(
Bar(G,A, F )

)
=
[

Nerve
(
StrictIntop/−

)
⊗ I
]
⊗

StrictInt
Bar(G,A, F )

The enriched colimit on the right hand side is then just a V -enriched colimit
in C, with no reference to the underlying simplicial category of C.

4.8. Observation – cofibrancy conditions
For simplicity, we assume that F and G are objectwise cofibrant, so as not
to introduce cofibrant replacements into the definition.
Note that the restriction of the bar construction in the definition above to
StrictInt is objectwise cofibrant, as needed to have homotopy invariance of
the homotopy colimit.
If A is identity-cofibrant, we can replace the above homotopy colimit along
StrictInt with the geometric realization

hocolim
StrictInt

Bar(G,A, F ) ∼−−→ |Bar(G,A, F )|

which is defined after restricting the bar construction to ∆op. The map is
a weak equivalence since the bar construction then gives a Reedy cofibrant
simplicial object in C.

4.9. Observation – homotopy invariance
The construction G⊗L

A F is homotopy invariant: if G→ G′ and F → F ′ are
natural transformations which are objectwise weak equivalences of object-
wise cofibrant functors, then the natural map

G
L

⊗
A
F −→ G′

L

⊗
A
F ′
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is a weak equivalence in C. This homotopy invariance is a straightforward
consequence of the homotopy invariance of the homotopy colimit (along
StrictInt).

4.10. Lemma
Let A be a small locally cofibrant V -category, and C a cocomplete V -model
category.
If F : A→ C is an objectwise cofibrant functor, then the canonical augmen-
tation (note that Bar(A,F )(1) = F )

Bar(A,F ) −→ F

induces a V -natural weak equivalence

hocolim
StrictInt

Bar(A,F ) ∼−−→ F

of objectwise cofibrant functors A→ C.

Sketch of proof:
It is enough to verify that for each a ∈ obA, the map

hocolim
StrictInt

(
Bar(A,F )(a)

)
−→ F (a) (4a)

is a weak equivalence of cofibrant objects in C. F (a) is cofibrant by hypoth-
esis. The left hand side is also cofibrant since it is the homotopy colimit of
an objectwise cofibrant diagram in C.

There exists a commutative diagram

Int
Bar(A,F )→ V -CAT(A,C)

eva→ C

RightInt
↓

∩

Bar(A,F )→ [obA,C0]

proj

↓
eva→ C

wwwwwww
which gives a factorization

hocolim
StrictInt

(
Bar(A,F )(a)

) f−−→ hocolim
RightInt

(
Bar(A,F )(a)

) g−−→ F (a)

of the map (4a). The second arrow, g, is a weak equivalence in C since
- Bar(A,F )(a) is objectwise cofibrant;
- 1 is terminal in RightInt;
-
[

Bar(A,F )(a)
]
(1) = F (a), and g is induced by the unique morphism from

each object of RightInt to 1.
On the other hand, the first arrow, f , is a weak equivalence because

incl : StrictInt ↪−→ RightInt

is homotopy cofinal (proposition 1.14) and Bar(A,F )(a) is objectwise cofi-
brant.

In conclusion, the map (4a) is a weak equivalence, as required.
End of proof

4.11. Definition – homotopy left Kan extension
Let A, B be small locally cofibrant V -categories, and C a cocomplete V -
model category (definition I.9.8).
Let F : Aop → C be an objectwise cofibrant V -functor. Let f : A→ B be a
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V -functor.
We define the homotopy left Kan extension of F along fop

hoLKEfop F : Bop −→ C

by the expression

hoLKEfop F := hocolim
StrictInt

(
LKEfop Bar(F,A)

)
4.12. Proposition – change of categories
Let A, B be small locally cofibrant V -categories, and C a cocomplete V -
model category.
Let F : B → C, G : Aop → V be V -functors which are objectwise cofibrant.
Let f : A→ B be a V -functor.
Then there is a V -natural weak equivalence in C(

hoLKEfop G
) L

⊗
B
F

∼−−→ G
L

⊗
A

(F ◦ f)

Sketch of proof:
Let X : B → C be given by

X := hocolim
StrictInt

Bar(B,F )

By the previous lemma, the canonical map X → F is a natural weak equiv-
alence of objectwise cofibrant functors B → C. Therefore, the induced map

G
L

⊗
A

(X ◦ f) ∼−−→ G
L

⊗
A

(F ◦ f)

is a weak equivalence. We will now manipulate the left hand side:

G
L

⊗
A

(X ◦ f) = hocolim
StrictInt

Bar(G,A,X ◦ f)

= hocolim
StrictInt

(
Bar(G,A)⊗

A
(X ◦ f)

)
=
(

hocolim
StrictInt

Bar(G,A)
)
⊗
A

(X ◦ f)

= LKEfop

(
hocolim
StrictInt

Bar(G,A)
)
⊗
B
X

=
(
hoLKEfop G

)
⊗
B
X

=
(
hoLKEfop G

)
⊗
B

(
hocolim
StrictInt

Bar(B,F )
)

= hocolim
StrictInt

((
hoLKEfop G

)
⊗
B

Bar(B,F )
)

= hocolim
StrictInt

Bar
(
hoLKEfop G,B, F

)
=
(
hoLKEfop G

) L

⊗
B
F

End of proof
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5. Homotopy colimits of enriched functors

Assume now that V is a cartesian closed simplicial model category whose
unit is cofibrant (see section I.9). To be more precise, we demand that
V is a bicomplete cartesian closed sSet-category, and a simplicial model
category, for which the product in V verifies the pushout-product axiom.
Furthermore, the terminal object 1 of V is cofibrant.

5.1. Definition – homotopy colimit of enriched functor
Let A be a small locally cofibrant V -category, and C a cocomplete V -model
category (see definition I.9.8).
Let F : A→ C be a V -functor which is objectwise cofibrant.
We define the homotopy colimit of F to be

hocolimF := 1
L

⊗
A
F

5.2. Observation – homotopy invariance
The homotopy invariance for the derived enriched colimit entails that when
F → F ′ is a natural transformation which is an objectwise weak equivalence
of objectwise cofibrant functors, the induced morphism

hocolimF −→ hocolimF ′

is a weak equivalence in C.

5.3. Observation – relation to usual homotopy colimit
If A happens to be an ordinary small category (viewed as a V -category in the
usual manner), then the homotopy colimit above is canonically equivalent
to the usual homotopy colimit:

1
L

⊗
A
F = hocolim

StrictInt
Bar(1, A, F )

= hocolim
StrictInt

(
Bar(1, A)⊗

A
F
)

=
(

hocolim
StrictInt

Bar(1, A)
)
⊗
A
F

∼−−→ |Bar(1, A)| ⊗
A
F

= Nerve(Aop/−)⊗
A
F

The first entry is the enriched homotopy colimit as defined above. The last
entry is the usual homotopy colimit of F along the ordinary category A.
The non-identity weak equivalence in the calculation above follows from the
fact that A is identity-cofibrant.

5.4. Definition – homotopy cofinal enriched functor
Let A, B be locally cofibrant V -categories, with A small.
Let F : A→ B be a V -functor.
We say the functor F is homotopy cofinal with respect to V if for any object
x of B, the unique map

1
L

⊗
A
B(x, F−) −→ 1

is a weak equivalence in V .
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5.5. Observation
It is easy to relax the conditions of the definition to allow any V -category
B: just substitute B(x, F−) with a cofibrant replacement of it.

5.6. Proposition
Let A, B be small locally cofibrant V -categories, and C a cocomplete V -
model category.
Let F : B → C be a V -functor which is objectwise cofibrant. Let f : A→ B
be a V -functor.
There is a natural morphism in C

hocolim(F ◦ f) −→ hocolimF

which is a weak equivalence if f is homotopy cofinal.

Sketch of proof:
The natural map arises from the functoriality of derived enriched col-

imits, which is a consequence of the functoriality of the two-sided bar con-
struction. We leave the details to be worked out by the reader.

The map in the statement fits as the bottom map in the commutative
triangle (

hoLKEfop 1
) L

⊗
B
F

1
L

⊗
A
F →

g

←
1

L

⊗
B
F

h

→

The map g in the triangle is the map from proposition 4.12, and therefore
is a weak equivalence. The map h in the triangle is induced by the unique
map

hoLKEfop 1 −→ 1

Given x ∈ obB, there are natural isomorphisms(
hoLKEfop 1

)
(x) = hocolim

StrictInt

(
LKEfop Bar(1, A)

)
(x)

= hocolim
StrictInt

(
Bar(1, A)⊗

A
B(x, f−)

)
= hocolim

StrictInt
Bar

(
1, A,B(x, f−)

)
= 1

L

⊗
A
B(x, f−)

It follows that if f is homotopy cofinal then

hoLKEfop 1 −→ 1

is a natural weak equivalence (of objectwise cofibrant functors). Therefore
the map h in the commutative triangle above is a weak equivalence.

In conclusion g and h in the triangle are weak equivalences, and so the
the bottom map is a weak equivalence, as we intended to prove.

End of proof
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6. Weak equivalence of enriched categories

Let V denote a complete model category whose terminal object, 1, is
cofibrant. We consider V with the cartesian symmetric monoidal structure.

6.1. Construction
Let us define the functor

π0 : V −→ Set

to be given on an object x of V by

π0(x) = πl(1, x)

where πl(1, x) denotes the quotient of V (1, x) by the equivalence relation
of left homotopy (see definition 7.3.2 of [Hir03]): left homotopy gives an
equivalence relation because 1 is cofibrant (see proposition 7.4.5 of [Hir03]).
The functoriality of π0 is induced from that of V (1,−).

6.2. Observation
Note that in the cases of simplicial sets or topological spaces, the functor π0

defined above is canonically isomorphic to the usual functor π0.

We leave the proof of the following statement to the reader.

6.3. Proposition
The functor

π0 : V −→ Set

preserves all finite products.

6.4. Definition – weak equivalence of V -categories
Let F : A→ B be a V -functor.
We say F is a weak equivalence with respect to V if F is locally a weak
equivalence in V (recall terminology I.8.3), and the functor

π0F : π0A −→ π0B

is essentially surjective.

6.5. Example
In the case of Top with the Strøm model structure, this recover the notion
of weak equivalence between topologically enriched categories (see definition
I.8.5).

6.6. Lemma
Assume V is a cartesian closed model category with cofibrant unit.
Let A be a locally cofibrant V -category, and a, b ∈ obA.
If a, b are isomorphic in π0A then there exists a morphism f : a → b in A
such that the natural transformation

A(b,−)
−◦f−−−→ A(a,−)

is an objectwise weak equivalence in V .

Sketch of proof:
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If a, b are isomorphic in π0A, there exist morphisms f : a→ b, g : b→ a
in A:

f : 1 −→ A(a, b)

g : 1 −→ A(b, a)

together with a left homotopy

lH1 : f ◦ g '
l

idb

of maps 1→ A(b, b) in V , and a left homotopy

lH2 : g ◦ f '
l

ida

of maps 1→ A(a, a) in V .
The morphisms f , g induce natural transformations

f∗ : A(b,−)
−◦f−−−→ A(a,−)

g∗ : A(a,−)
−◦g−−→ A(b,−)

and we can construct a left homotopy

(f∗ ◦ g∗)x '
l

idA(a,x)

for each x ∈ obA by taking the product of the left homotopy lH2 with
A(a, x) and composing in A. More precisely, let the left homotopy lH2 be
given by the cylinder

1q 1 h−−→ X
∼−−→ 1

(where h is a cofibration), and the map

lH2 : X −→ A(a, a)

such that
lH2 ◦ h = (f ◦ g)q ida

Then we construct the cylinder

A(a, x)qA(a, x)
h×A(a,x)−−−−−−→ X ×A(a, x) ∼−−→ A(a, x)

where the first arrow is a cofibration because A(a, x) is cofibrant. The left
homotopy between (f∗ ◦ g∗)x and idA(a,x) is defined by the composition

X ×A(a, x) lH2×id−−−−−→ A(a, a)×A(a, x)
comp−−−→ A(a, x)

(where the second arrow is composition in A).
Similarly, the left homotopy lH1 can be used to construct a left homotopy

(g∗ ◦ f∗)x '
l

idA(b,x)

for each x ∈ obA. In conclusion, for each x ∈ obA, (f∗ ◦ g∗)x and (g∗ ◦ f∗)x
are left homotopic to the respective identity maps, and in particular are
weak equivalences. Given that (f∗)x ◦ (g∗)x and (g∗)x ◦ (f∗)x are weak
equivalences, the two-out-of-six property of model categories implies that
both (f∗)x and (g∗)x are weak equivalences. This finishes the proof.

End of proof

We finish this section with a predictable result.
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6.7. Proposition – weak equivalence implies homotopy cofinal
Assume V is a cartesian closed simplicial model category whose unit is
cofibrant.
Let A, B be locally cofibrant V -categories, with A small.
Let F : A→ B be a V -functor.
If F is a weak equivalence with respect to V0 then F is homotopy cofinal
with respect to V .

Proof:
Consider an object b of B. We want to prove that

1
L

⊗
A
B(b, F−) ∼−−→ 1

is a weak equivalence in V .
Let a ∈ obA be such that there is an isomorphism

(π0F )(a) ' b

in π0B: such an object of A exists since π0F is essentially surjective. By
the preceding lemma, there exists a morphism f : b → Fa in B such that
the natural transformation

B(Fa,−)
−◦f−−−→ B(b,−)

is an objectwise weak equivalence in V . On the other hand, the functor F
induces a natural transformation

A(a,−) −→ B(Fa, F−)

which is an objectwise weak equivalence. Since all three functors are object-
wise cofibrant, we obtain weak equivalences in V

1
L

⊗
A
A(a,−) ∼−−→ 1

L

⊗
A
B(Fa, F−) ∼−−→ 1

L

⊗
A
B(b, F−)

The result is now a consequence of

1
L

⊗
A
A(a,−) ∼−−→ 1

being a weak equivalence, by the lemma 6.8 presented next.
End of proof

6.8. Lemma
Assume V is a cartesian closed simplicial model category whose unit is
cofibrant.
Let A be a small locally cofibrant V -category.
For any object x of A, the unique map

1
L

⊗
A
A(x,−) −→ 1

is a weak equivalence.

Proof:
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By definition (see construction 3.4 for last line)

1
L

⊗
A
A(x,−) = hocolim

StrictInt
Bar

(
1, A,A(x,−)

)
= hocolim

StrictInt

(
1⊗
A

Bar
(
A,A(x,−)

))
= hocolim

StrictInt

(
1⊗
A

[
(TA,V )•−1

(
A(x,−)

)])
On the other hand, A(x,−) is a free TA,V -algebra (recall construction 3.1):

A(x,−) = TA,V (δx)

where
δx : obA −→ C0

is defined by

δx(a) =
{

1 if a = x
∅ if a 6= x

Here, ∅ denotes an initial object of V . Given that A(x,−) is a free TA,V -
algebra, there is a commutative diagram

Int
(TA,V )•−1(A(x,−))

→ V -CAT(A, V )

LeftInt

(TA,V )•(δx)

→
⊂

→

by proposition 2.4 (recall also proposition 3.2). This induces maps

1
L

⊗
A
A(x,−) === hocolim

StrictInt

(
1⊗
A

[
(TA,V )•−1

(
A(x,−)

)])
f−−→ hocolim

LeftInt

(
1⊗
A

(
(TA,V )•(δx)

))
−→ 1

The middle arrow, f , is a weak equivalence because the inclusion

incl : StrictInt ↪−→ LeftInt

is homotopy cofinal (proposition 1.14). The last arrow

hocolim
LeftInt

(
1⊗
A

(
(TA,V )•(δx)

))
−→ 1

is a weak equivalence because LeftInt has a terminal object, 1, and(
1⊗
A

(
(TA,V )•(δx)

))
(1) = 1

In summary

1
L

⊗
A
A(x,−) ∼−−→ 1

is a weak equivalence.
End of proof
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7. Grothendieck constructions

Grothendieck constructions play an important role in this text. Subse-
quently, it is useful to know how they relate to derived enriched colimits. In
this section we give a calculation of the homotopy left Kan extension of a
functor along the projection of a Grothendieck construction.

The motivation for such a calculation is a simple categorical fact: if A
is a small category, F : Aop → Cat is a functor, and

π : Groth(F ) −→ A

is the canonical projection, then

LKEπop G = colim
F (−)op

G

for each G : Groth(F )op → C. This result is a simple consequence of the
adjunction

F (x)
⊂ →
⊥← x/π

which shows that the inclusion F (x) ↪→ x/π is a final functor, for each
x ∈ obA.

The main result in this section is a homotopical generalization of that
calculation. We state it without proof after a few preliminary definitions.

7.1. Definition – value of internal Cat(V )-valued functor
Let V be a category with pullbacks.
Let A be a category object in V , and

F : A −→ Cat(V )

an internal Cat(V )-valued functor.
Given an internal functor x : 1 → A, the value of F at x, F (x), is the
internal category in V corresponding to the internal functor

F ◦ x : 1 −→ Cat(V )

7.2. Observation
Note that an internal Cat(V )-valued functor

(P, p0, p1) : 1 −→ Cat(V )

is the same as an internal category P in V .

7.3. Observation
An internal functor x : 1→ A is uniquely determined by obx : 1→ obA.
In particular, if A = IB for B a V -category, an object x ∈ obB is equivalent
to giving an internal functor x : 1→ A.

7.4. Definition – pointwise locally cofibrant internal functor
Let V be a category with pullbacks and a model category. Let A a be an
internal category in V .
We say that an internal Cat(V )-valued functor

F : A −→ Cat(V )

is pointwise locally cofibrant if for any internal functor x : 1 → A, the V -
category F (x)δ is locally cofibrant.
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7.5. Proposition
Let V be a cartesian closed simplicial model category with cofibrant unit,
and C a cocomplete V -model category.
Assume that V0 has totally disjoint small coproducts (see definition II.4.7
and terminology II.4.8), and that the object 1 of V0 is connected over Set
(definition II.4.10).
Assume furthermore that A is a small locally cofibrant V -category, and

F : IAop −→ Cat(V0)

is a pointwise locally cofibrant internal Cat(V0)-valued functor.
For any objectwise cofibrant V -functor

G :
(
Groth(F )δ

)op −→ C

there are canonical V -natural weak equivalences

hocolim
(F (−)δ)op

G
∼−−→ hoLKEπop G

∼−−→ hocolim
(F (−)δ)op

G

of objectwise cofibrant V -functors Aop → C, whose composition (as dis-
played) is the identity.
Here, π : Groth(F )δ → A denotes the canonical projection (see propositions
II.9.3 and II.5.7).

7.6. Observation – Clarification
In the preceding statement, we use, for each x ∈ obA, the natural inclusion

F (x)δ ↪−→ Groth(F )δ

to restrict the functor G to
(
F (x)δ

)op.
Note also that, while F (−)δ does not define a functor on Aop in any naive
sense, the construction

hocolim
(F (−)δ)op

G

does define a V -functor on Aop. We leave the details to the reader.

Having calculated the homotopy left Kan extension along the (opposite
of the) projection

π : Groth(F )δ −→ A

the following result is now an application of proposition 4.12.

7.7. Corollary
Let V be a cartesian closed simplicial model category with cofibrant unit,
and C a cocomplete V -model category.
Assume that V0 has totally disjoint small coproducts (see II.4.7 and II.4.8),
and that the object 1 of V0 is connected over Set (see II.4.10).
Assume furthermore that A is a small locally cofibrant V -category, and

G : IAop −→ Cat(V0)

is a pointwise locally cofibrant internal Cat(V0)-valued functor.
For any objectwise cofibrant V -functor

F : A −→ C
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there is a natural weak equivalence in C(
hocolim
(G(−)δ)op

1
)

L

⊗
A
F

∼−−→ hocolim
Groth(G)

(F ◦ π)

7.8. Observation – relation to nerve
The left hand side of the weak equivalence in the corollary is related to the
nerve of G(−)δ.
Observe that for each small V -category B there is a natural projection

hocolim
Bop

1 −→ |Bar(1, Bop, 1)| = |Bar(1, B, 1)|

which is a weak equivalence under good conditions (e.g. if B is identity-
cofibrant). The object on the right is the realization of the nerve of B.



CHAPTER IX

Invariants of EGn -algebras

Introduction

In the last chapter of this thesis, we present a definition of a homotopical
invariant, TG(A;M), of an algebraA over the PROP EGn , for each n-manifold
with a G-structure. In particular, we obtain an invariant of En-algebras
in the case n = 1. We will also prove that T1(A,S1) is the topological
Hochschild homology of A, when A is an associative ring spectrum.

Summary

Section 1 defines the simplicial PROPs SEGn , and gives a definition of the
invariant TG(A;M) of an SEGn -algebra A. It is defined for each n-manifold
M with a G-structure.

Section 2 calculates the homotopy colimit of the constant functor 1 along
the category κ

(
pathδX

)
to be X. This calculation is used in section 3 to

describe the invariant TG(A;M) as a homotopy colimit along the category
TGn [M ]δ, which is weakly equivalent to M(M) (as proved in chapter VII).

Section 4 uses the results of chapters VII and IV to show that when A is
an associative ring spectrum, T1(A,S1) is weakly equivalent to THH(A).

1. The invariants

We will now define the desired invariants of algebras over the PROPs
EGn . This will require taking algebras in a V -model category for some appro-
priate symmetric monoidal model category V . The topological nature of the
kTop-PROPs κEGn , and the right modules κEGn [M ], would make kTop the
natural choice for the enriching category for our invariants. Unfortunately,
our right modules are not valued in CW-complexes. Therefore, in order to
easily obtain homotopy invariance of our construction, the model structure
on kTop would have to be the Strøm model structure or a mixed model
structure (consult [Col06] or chapter 4 of [MS06] regarding mixed model
structures). There are very few instances in the literature (known to the
author) of model categories enriched over those model structures in kTop.
We will thus define the desired invariants for the case of simplicial model
categories. This has the advantage that simplicial model categories are very
common, possibly even the norm.

1.1. Observation – simplicial PROP SEGn
Let n ∈ N, and G a topological group over GL(n,R).

179
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Recall the product preserving functors

S : Top→ sSet
S : kTop→ sSet

which associate to each space its singular simplicial set.
We will be working with the sSet-PROP SEGn = SκEGn .

1.2. Definition – simplicial right modules over SEGn
Let n ∈ N, and G a topological group over GL(n,R). Let M be a n-manifold
with a G-structure.
We define the right module over SEGn

SEGn [M ] :
(
SEGn

)op −→ sSet

to be the composition of the sSet-functors(
SEGn

)op
=
(
SκEGn

)op S(κEGn [M ])−−−−−−−→ S(kTop) S−−→ sSet

1.3. Observation – clarification
In the above definition, the right module κEGn [M ] over κEGn is defined in
V.12.1.
The category S(kTop) is the sSet category associated with the kTop-category
kTop, and

S : S(kTop) −→ sSet

is the sSet functor induced by S.

1.4. Definition – invariants of SEGn -algebras
Let n ∈ N, and G a topological group over GL(n,R). Let M be a n-manifold
with a G-structure.
Let C be a symmetric monoidal simplicial model category (definition I.9.11)
with cofibrant unit.
For any objectwise cofibrant SEGn -algebra A in C, we define the M -indexed
invariant of A to be

TG(A;M) := SEGn [M ]
L

⊗
SEGn

A

1.5. Observation – cofibrancy conditions
Given that C is a symmetric monoidal simplicial model category with cofi-
brant unit, the condition that A be objectwise cofibrant is equivalent to
requiring that A(Rn) is cofibrant in C.
Under these conditions, the canonical map

TG(A;M) = SEGn [M ]
L

⊗
SEGn

A −→
∣∣Bar

(
SEGn [M ], SEGn , A

)∣∣
is a weak equivalence.

1.6. Observation – functoriality of invariant
The above construction is easily seen to extend to a functor

T : SEGn -alg(C)× SIEmbGn −→ C
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1.7. Proposition – homotopy invariance
Let n ∈ N, and G a topological group over GL(n,R). Let M be a n-manifold
with a G-structure.
Let C be a symmetric monoidal simplicial model category with cofibrant
unit.
Given a weak equivalence

F : A −→ B

of objectwise cofibrant SEGn -algebras C, the induced map

TG(F ;M) : TG(A;M) −→ TG(B;M)

is a weak equivalence in C.

1.8. Observation – modifying the definition if unit of C is not cofibrant
It may be useful to remove the condition that the unit I is a cofibrant object
of C from the definition of TG(−;M). This would allow us to apply it to
the category of spectra from [EKMM], for example.
If C is a symmetric monoidal simplicial model category in which the unit
I is not cofibrant in C, it is necessary to require that the unit map of the
SEGn -algebra A

I −→ A(Rn)

(coming from the unique morphism ∅ → Rn in EGn ) is a cofibration in C.
This guarantees that the tensor powers of A(Rn), appearing as values of A,
have the correct homotopy type.
Moreover, to obtain the “correct” answer, and maintain homotopy invari-
ance of TG(A;M), the definition would have to be modified to

T̃(A;M) := SEGn [M ]
L

⊗
SEGn

Acof

where Acof indicates an objectwise cofibrant replacement of A.
The remainder of the text would hold true with this modification in place.

2. Classifying spaces of path categories

In the next section we will apply corollary VIII.7.7 to the invariant
TG(A;M) to obtain it as a homotopy colimit along the (simplicial category
associated to the) Grothendieck construction TGn [M ] of path◦IEGn [M ]. With
that in mind, we will show that

hocolim
κ(pathXδ)

1 ' X

for most topological spaces X.

2.1. Construction
Recall the nerve of an internal category from definition II.2.6.
Given a topological space X, there is a canonical map

ev :
∣∣Nerve

(
path(X)

)∣∣ −→ X

given on k-simplices (k ∈ N) by the formula

ev : Nerve
(
path(X)

)
(k + 1)×∆k −→ X
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ev
(
(γi, τi)ki=1, (ti)

k
i=0

)
:= (γ1 ∗ · · · ∗ γk)

(
k∑
i=1

τi(ti + · · ·+ tk)

)
for

(γi, τi)ki=1 ∈ Nerve(pathX)(k + 1) =

k︷ ︸︸ ︷
H(X) t×s

X
H(X) t×s

X
· · · t×s

X
H(X)

(ti)ki=0 ∈ ∆k =
{
x ∈ Rk+1 :

∑k
i=0xi = 1

}
Also, γ1 ∗ · · · ∗ γk denotes the path obtained by concatenating all the Moore
paths (γi, τi).

2.2. Observation
The map

ev :
∣∣Nerve

(
path(X)

)∣∣ −→ X

can easily be seen to be a homotopy equivalence.

2.3. Construction
Let X be a topological space in kTop.
There is a canonical map

Bar
(
1, κ(pathδX), 1

)
|∆op ↪−→ Nerve

(
path(X)

)
given by the canonical inclusion objectwise. We obtain an induced map on
the geometric realizations

incl :
∣∣Bar

(
1, κ(pathδX), 1

)∣∣ −→ ∣∣Nerve
(
path(X)

)∣∣
(where the left realization is computed in kTop, and the one on the right is
computed in Top). We define the map

ev : hocolim
κ(pathδX)

1 −→ X

as the composition

hocolim
κ(pathδX)

1
proj−−−→

∣∣Bar
(
1, κ(pathδX), 1

)∣∣ incl−−→
∣∣Nerve

(
path(X)

)∣∣ ev−−→ X

2.4. Observation – metrizable spaces
Any metrizable topological space is in kTop.
Any finite product of metrizable topological spaces is metrizable, and thus
is in kTop. Therefore the finite product in kTop of metrizable spaces is
computed in Top.
Moreover, given a second countable locally compact Hausdorff space K, the
space Map(K,X) is metrizable, and therefore in kTop.
Putting all these remarks together, we conclude that for any metrizable space
X, the path category path(X) coincides with the kTop-category κ

(
path(X)

)
.

We leave the following lemma to be proved by the reader. It uses the
characterization of Strøm cofibrations as strong neighborhood deformation
retracts.

2.5. Lemma
If X is a topological space, and x ∈ X is such that

{x} ↪−→ X
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is a Strøm cofibration, then

{e} ↪−→ H(X;x, x)

is a Strøm cofibration. Here, H(X;x, x) is the space of Moore loops on X
based at x, and e is the zero-length loop in H(X;x, x).

2.6. Lemma
For any metrizable space X, the map

ev : hocolim
κ(pathδX)

1 −→ X

is a weak equivalence. If X is homotopy equivalent to a CW-complex, then
this map is a homotopy equivalence.

Proof:
For any space Y , and any subset T of Y , define pathδ(Y ;T ) to be the

full Top-subcategory of pathδ(Y ) generated by T .
Let P be a subset of X such that the canonical map of sets

P ↪−→ X
proj−−−→ π0X

is a bijection P → π0X. Factor P ↪−→ X as

P ↪−→ X
∼−−→ X

where X is metrizable, the first map is a cofibration in kTop, and the second
one is a trivial fibration (recall that we use the Strøm model structure on
kTop; the factorization constructed in [Str72] verifies these conditions).
Consider the following commutative diagram

hocolim
κ(pathδ(X;P ))

1 ⊂
∼→ hocolim

κ(pathδX)
1

ev→ X

hocolim
κ(pathδ(X;P ))

1

∼

↑

⊂ ∼→ hocolim
κ(pathδX)

1

∼

↑

ev→ X

∼

↑

where all the arrows marked ∼−→ are homotopy equivalences. The vertical ar-
rows are homotopy equivalences because X → X is a homotopy equivalence,
and so the kTop-functors

κ
(
pathδX

)
−→ κ

(
pathδX

)
κ
(
pathδ(X;P )

)
−→ κ

(
pathδ(X;P )

)
are weak equivalences with respect to kTop (see definition VIII.6.4) with the
Strøm model structure, and thus homotopy cofinal (see propositions VIII.6.7
and VIII.5.6). The horizontal inclusions are homotopy equivalences because
P → π0X = π0X is a bijection and therefore

κ
(
pathδ(X;P )

)
−→ κ

(
pathδX

)
κ
(
pathδ(X;P )

)
−→ κ

(
pathδX

)
are also weak equivalences of kTop-categories.
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We will show that the composition of the bottom row

ev : hocolim
κ(pathδ(X;P ))

1 −→ X

is a weak equivalence. First observe that this map factors as

hocolim
κ(pathδ(X;P ))

1
proj−−−→

∣∣Bar
(
1, κ
(
pathδ(X;P )

)
, 1
)∣∣ ev→ X

by construction of the map ev. The left arrow is a homotopy equivalence
because κ

(
pathδ(X;P )

)
is identity-cofibrant (definition VIII.4.2): this fol-

lows from P ↪→ X being a cofibration, together with lemma 2.5 and remark
2.4. Thus we are left with proving that

ev :
∣∣Bar

(
1, κ
(
pathδ(X;P )

)
, 1
)∣∣ → X (2a)

is a weak equivalence. This is an immediate consequence of the natural
isomorphism∣∣Bar

(
1, κ
(
pathδ(X;P )

)
, 1
)∣∣ =

∐
p∈P

∣∣Bar
(
1, κ
(
pathδ(X; {p})

)
, 1
)∣∣

=
∐
p∈P

B
(
κH(X, p, p)

)
where B

(
κH(X, p, p)

)
denotes the classifying space (computed in kTop) of

the topological group κH(X, p, p) of Moore loops based at p. The map (2a)
is seen to be a weak equivalence as an immediate consequence of lemma 15.4
of [May75], which shows that B

(
κH(X, p, p)

)
maps by a weak equivalence

to the path component of p in X. Note only that the map in lemma 15.4
of [May75] differs from (2a) by a reversal of the simplices, i.e. a home-
omorphism of the source (compare the formula there with the formula in
construction 2.1).

Assume now that X is homotopy equivalent to a CW-complex. In order
to prove that

ev : hocolim
κ(pathδX)

1 −→ X

is a homotopy equivalence, it is enough to show that (2a) is a homotopy
equivalence. From what we have already proved, it suffices to show that the
source of (2a) is homotopy equivalent to a CW-complex. This follows from
the homotopy equivalence∣∣Bar

(
1,
∣∣S(pathδ(X;P )

)∣∣, 1)∣∣ ∼−−→
∣∣Bar

(
1, κ
(
pathδ(X;P )

)
, 1
)∣∣

where the kTop-category
∣∣S(pathδ(X;P )

)∣∣ is obtained by applying S and
then geometric realization to κ

(
pathδ(X;P )

)
. That map is a homotopy

equivalence because the canonical kTop-functor from which it arises

F :
∣∣S(pathδ(X;P )

)∣∣ −→ κ
(
pathδ(X;P )

)
is an essentially surjective local homotopy equivalence, and therefore a weak
equivalence, of identity-cofibrant kTop-categories. We just need to check all
these conditions for F . The functor F is obviously essentially surjective, and
a local weak equivalence. We have proved that the target of F is identity-
cofibrant earlier in this proof, and the source is clearly identity-cofibrant.
Since the morphism spaces of the source of F are CW-complexes, it remains
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to show that the morphism spaces of the target of F are homotopy equivalent
to CW-complexes.

We are thus left with proving that H(X, p, p) is homotopy equivalent to
a CW-complex for each p ∈ P (recall observation 2.4). Since H(X, p, p) is
homotopy equivalent to ΩpX, we can use the results from [Mil59] (namely,
corollary 3) to finish our proof. All we need to check is that the pair (X, {p})
is homotopy equivalent (as a pair) to a CW-pair. This follows easily from
our current assumption that X, and hence X, is homotopy equivalent to a
CW-complex, together with the fact that the inclusion {p} ↪→ X is a Strøm
cofibration.

End of proof

2.7. Observation
Our assumption that X be metrizable serves only to nullify the effects of
applying the functor κ (by observation 2.4), thus minimizing any complica-
tions from switching to kTop.
Since any space is equivalent to

We will now translate these results to the simplicial world.

2.8. Construction
Let X be a topological space.
Define the map of simplicial sets

ev : hocolim
S(pathδX)

1 −→ SX

to be the adjoint to the map in kTop∣∣∣∣hocolim
S(pathδX)

1
∣∣∣∣ = hocolim

|S(pathδX)|
1 ∼−−→ hocolim

κ(pathδX)
1 ev−−→ X

where the middle arrow is a weak equivalence induced by the canonical
kTop-functor ∣∣S(pathδX)∣∣ −→ κ

(
pathδX

)
which is an essentially surjective local weak equivalence.
This map is natural in the topological space X.

The following proposition is an easy consequence of 2.6.

2.9. Proposition
If X is a metrizable topological space, the map

ev : hocolim
S(pathδX)

1 −→ SX

is a weak equivalence of simplicial sets.

2.10. Observation
The condition that X be metrizable is not essential.

2.11. Observation
Noticing that

hocolim
Aop

1 = 1
L

⊗
Aop

1 = 1
L

⊗
A

1 = hocolim
A

1
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for any sSet-category A, we obtain a sSet-natural map

ev : hocolim
S(pathδX)op

1 −→ SX

for each topological space X, which is a weak equivalence when X is metriz-
able.

3. Relation to M(M)

In this section we will show that the invariant TG(−;M) is a homo-
topy colimit along (the simplicial category associated with) TGn [M ]δ. Since
TGn [M ]δ is weakly equivalent (by a zig-zag) to M(M) (propositions VII.2.1
and VII.6.4), this connects the invariant TG(−;M) to the category M(M).
Let

Sπ : STGn [M ]
δ −→ SEGn

be the canonical projection.

3.1. Proposition
Let n ∈ N, and G a topological group over GL(n,R). Let M be a n-manifold
with a G-structure.
Let C be a symmetric monoidal simplicial model category with cofibrant
unit.
There is a natural zig-zag of weak equivalences in C

TG(A;M) ∼←−− • ∼−−→ hocolim
S(TGn [M ]δ)

(A ◦ Sπ)

for each objectwise cofibrant SEGn -algebra A in C.

Proof:
The object • is given by

• :=
(

hocolim
(G(−)δ)op

1
)

L

⊗
EGn

A

where the internal Cat(sSet)-valued functor

G : I
(
SEGn

)op −→ Cat(sSet)

is simply (recall definition II.11.1 for the meaning of “path” in this case)

G := Cat(S)
(
path ◦ IEGn [M ]

)
By proposition II.9.8

Groth(G) = Cat(S)
(
Groth

(
path ◦ IEGn [M ]

))
= Cat(S)

(
TGn [M ]

)
where the last equality comes from the definition of TGn [M ]. Proposition
II.5.9 now ensures

Groth(G)δ = S
(
TGn [M ]

δ)
The weak equivalence

• ∼−−→ hocolim
S(TGn [M ]δ)

(A ◦ Sπ)

is therefore a consequence of corollary VIII.7.7. The weak equivalence

TG(A;M) = SEGn [M ]
L

⊗
SEGn

A
∼←−− •
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is induced by the natural weak equivalence (see remark 2.11)

ev : hocolim
S(pathδX)op

1 −→ SX

applied to the values (definition II.11.9) of IEGn [M ]:

X = IEGn [M ](k × Rn) = IEmbGn (k × Rn,M)

for k ∈ N. Note that IEmbGn (k×Rn,M) is a metrizable space for each k ∈ N.
End of proof

4. Relation to topological Hochschild homology

In this section, we will apply the results of chapter IV to conclude that
TG(−;M) recovers topological Hochschild homology of associative ring spec-
tra, when G = 1 and M is the parallelized manifold S1. We assume that
(Sp,∧, S) is a symmetric monoidal simplicial model category in which the
unit S is cofibrant. This holds for the category of symmetric spectra.

Recall from section V.11 that there are weak equivalences of Top-PROPs

ω : E1
1
∼−−→ EGL

+(1,R)
1

∼−−→ Ass

We will denote the corresponding weak equivalence of sSet-PROPs by

Sω : SE1
1
∼−−→ Ass

4.1. Proposition
Let A be an objectwise cofibrant Ass-algebra in the symmetric monoidal
category of spectra, (Sp,∧, S). Let A denote the underlying associative
monoid of A (see example I.12.3).
There exists a zig-zag of weak equivalences in Sp connecting THH(A) and
T1(A ◦ Sω, S1), where S1 is viewed as a parallelized manifold. The zig-zag
is natural in the Ass-algebra A.

Proof:
According to proposition 3.1 there is a natural zig-zag of weak equiva-

lences
T1(A ◦ Sω, S1) ∼←−− • ∼−−→ hocolim

S(T1
1[S1]

δ
)
(A ◦ Sω ◦ Sπ) (4a)

Consider now the diagram

π0

(
ZS1

) V II.6.4

∼
→ π0

(
M(S1)

)
←IV.2.2
∼

π0

(
MZ(R)

)

π0

(
T1[S1]δ

)V II.6.4 ∼

↓
∼

f
→ E

∼

IV.4.3

↓
∼

→

where the full arrows are equivalences of categories determined by the ref-
erences next to the arrows. Thus we can construct the dashed arrows in an
essentially unique way so that the diagram commutes up to natural isomor-
phisms. In conclusion, we obtain a weak equivalence

F : T1[S1]δ ∼−−−→
proj

π0

(
T1[S1]δ

) ∼−−→
f
E
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of Top-categories, since T1[S1] is homotopically discrete by propositions
VII.6.4 and IV.2.4.

Consider now the diagram

T1
1[S1]δ

qδ

∼
→ T1[S1]δ

F

∼
→ E

E1
1

π

↓
ω → OrdΣ

ψ IV.5.1

↓

where qδ is the weak equivalence from lemma VII.2.2. We leave to the
reader the straightforward check that this diagram commutes up to natural
isomorphism. This is true assuming we chose the correct orientation on S1:
this orientation depends on the choice of ω. Applying the singular simplicial
set functor, S, to the diagram preserves the weak equivalences. Thus we get
a weak equivalence

hocolim
S(T1

1[S1]
δ
)
(A ◦ Sω ◦ Sπ) ' hocolim

S(T1
1[S1]

δ
)

(
A ◦ ψ ◦ SF ◦ Sqδ

)
∼−−→ hocolim

E
(A ◦ ψ)

(4b)

given that both SF and Sqδ are weak equivalences, and therefore homo-
topy cofinal. Finally, proposition IV.7.6 gives us a natural zig-zag of weak
equivalences

hocolim
E

(A ◦ ψ) ∼←−− • ∼−−→ THH(A) (4c)

Putting together (4a), (4b), and (4c) gives the required natural zig-zag
of weak equivalences.

End of proof
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