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The challenge: explain this picture
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Conway’s Game of Life? The rings of Saturn?
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Slope-by-slope computation of Ext

The Adams E2 term at p = 3:
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Slope-by-slope computation of Ext
Slopes 1/4 (old), 1/5 (quite new)



Slope-by-slope computation of Ext
Slope 1/23 (next up)



The Adams Spectral Sequence (1958–1969)
A “unit” map S → R in spectra determines a diagram

S

��

Roo

""

R ∧ Roo · · ·

R

@@

R ∧ R

::

Apply π∗(− ∧ X ) to get an exact couple and a spectral sequence
with

E s
1 = R∗(R

∧s ∧ X ) =⇒ π∗(X )

If R is a ring-spectrum such that R∗R is flat over R∗, then R∗R is
a Hopf algebroid and

E ∗1 = C ∗(R∗R;R∗X )

– the cobar construction. So in this case

E ∗2 = H∗(R∗R;R∗X )

and is determined by R∗X as a comodule over R∗R.
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The Adams Spectral Sequence
Example: R = Hk , k = Fp. Then R∗R = A, the dual Steenrod
algebra. Plot filtration degree s vertically and t − s = topological
dimension horizontally.

With X = S , p = 3:
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v0-localization: algebra (1964)

At least we know that there’s a vertical vanishing line: if Mn = 0
for n < 0 then Hs,t(A;M) = 0 for t − s < 0.

Hs,s(A) = 〈v s0 〉, where v0 represents pι ∈ π0(S). This acts on
H∗(A;M) for any M, and we may localize by inverting v0.

Theorem.
H∗(A;M)→ v−1

0 H∗(A;M)

is iso for s > c +
t − s

2p − 2
, and

v−1
0 H∗(A;M) = k[v±1

0 ]⊗ H(M;β) .

In particular, v−1
0 H∗(A;M) depends only on the action of β on M.

Using A→ E [τ0], this can be written as

v−1
0 H∗(A;M) = v−1

0 H∗(E [τ0];M) .
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v0-localization: topology (1981)

Theorem. Above a line of slope 1/(2p − 2), the Adams spectral
sequence coincides with the mod p homology Bockstein spectral
sequence.

E.g. H5(X ) = Z/27 and is 3-torsion free nearby. Then:
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v1-localization (1981)

Corollary. If H(M;β) = 0, we get a vanishing line of slope
1/(2p − 2).

Example: (p odd) M = A�A/τ0
N is Bockstein-acyclic.

For example, if N = H∗(X ), this is H∗(V (0) ∧ X ), where
V (0) = S ∪p e1.

Then
H∗(A;M) = H∗(A/τ0;N)

Now τ1 ∈ A/τ0 is primitive, and produces v1 ∈ H1(A/τ0) acting on
H∗(A/τ0;N).

Theorem. The localization map

H∗(A/τ0;N)→ v−1
1 H∗(A/τ0;N)

is an isomorphism above a line of slope 1/(p2 − p − 1) (e.g. 1/5 if
p = 3).
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v1-localization (1981)

(Still p odd) There’s a formula for

v−1
1 H∗(A/τ0;N) .

To state it, note the split Hopf algebra extension

E [τ1]→ A/τ0 → A/(τ0, τ1)

A comodule over E [τ1] is a graded vector space with a differential
∂ of degree −|τ1| = 1− 2p. This makes A/(τ0, τ1) into a
differential Hopf algebra, and an A/τ0-comodule is the same thing
as a differential A/(τ0, τ1)-comodule.



v1-localization (1981)

Theorem.

v−1
1 H∗(A/τ0;N) = k[v±1

1 ]⊗H∗(A/(τ0, τ1);N) .

There’s a spectral sequence converging to this hypercohomology:

E2 = H∗(H(A/(τ0, τ1));H(N)) =⇒ H∗(A/(τ0, τ1);N)

H(A/(τ0, τ1)) = k[ξ1, ξ2, . . .]/(ξp1 , ξ
p
2 , . . .)

With N = k , this spectral sequence collapses and we find that

v−1
1 E ∗2 (V (0)) = k[v±1

1 ]⊗ E [h1,0, h2,0, . . .]⊗ k[b1,0, b2,0, . . .]
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v1-localization (1981)

v−1
1 E ∗2 (V (0)) = k[v±1

1 ]⊗ E [h1,0, h2,0, . . .]⊗ k[b1,0, b2,0, . . .]

In the localized Adams spectral sequence,

d2hn,0 = v1bn−1,0 + · · ·

resulting in
v−1

1 π∗(V (0)) = k[v±1
1 ]⊗ E [h1,0] .



The v1 wedge (2015)
There’s a Bockstein spectral sequence relating E2(S ∪p e1) to
E2(S), and Michael Andrews has worked it out – explaining this
picture above a line of slope 1/(p2 − p − 1), or 1/5 when p = 3.



The v1 wedge (2015)
Here are Andrews’s Bockstein differentials: Let p[n] =

pn − 1

p − 1
.

dp[n]v
pn−1

1 = v−p
[n−1]

1 hn,0

dpn−1(v−p
[n]

1 hn,0) = v−p·p
[n]

1 bn,0



“v1-periodic” E2 term, p = 7: slope 1/41

From this calculation Andrews deduces Adams differentials above
the 1/(p2 − p − 1) line, differentials accounting for the order of Im
J. To my knowledge these are the first examples with dr 6= 0 for
arbitrarily large r in the Adams spectral sequence for the sphere.
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Hidden periodicity: Novikov weight (1967)

Novikov observed that when p > 2, the dual Steenrod algebra
admits a second grading, giving τn “weight” 1. The result is that
the extension spectral sequence for

P → A→ E [τ0, τ1, . . .]

collapses to an isomorphism

H∗(A) = H∗(P;Q)

with
Q = H∗(E [τ0, τ1, . . .]) = k[v0, v1, . . .]

E2(S) splits into a sum

H∗(A) =
⊕
n

H∗(P;Qn)



Reduced powers vanishing line (1981)

For M bounded below, H∗(P;M) exhibits a vanishing line of slope

1/(p2 − p − 1) .

With p = 3 this is 2/10 = 1/5.

The primitive element ξ1 ∈ P produces

h ∈ H1,2(p−1)(P)

and its “transpotence” class

b ∈ H2,2p(p−1)(P)

b is non-nilpotent. It acts along the vanishing edge, and

H∗(P;M)→ b−1H∗(P;M)

is an iso above a line of slope 1/(p3 − p − 1), e.g. 1/23 for p = 3.



b−1H∗(P ;M)

So if we can understand b−1H∗(P;M), at least for M = Qn,
we will understand the Adams E2 term above a line of slope
1/(p3 − p − 1), or 1/23 for p = 3: a big improvement.

This is just the odd-primary analogue of understanding v−1
0 H∗(A)

at p = 2!



H∗(P) for p = 3:
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Joint with Eva Belmont (2017)

Harvey Margolis (1983) and John Palmieri (2001) set up a stable
homotopy category of chain complexes of comodules over a Hopf
algebra P.

Analogies:

Spectra Comodules

S0 k
Hk P
∧ ⊗∆

π∗(X ) H∗(P;M)
R∗(X ) H∗(P;R ⊗M)



Margolis-Palmieri Adams spectral sequence
Suppose R is a ring-spectrum; for example a P-comodule algebra.
We can form

k

��

Roo

""

R ⊗ Roo · · ·

R

@@

R ⊗ R

::

Apply π∗(−⊗M) to get an exact couple and a spectral sequence
with

E s
1 = H∗(P;R ⊗ R

⊗s ⊗M) = R∗(R
⊗s ⊗M) =⇒ H∗(P;M)

This replaces the Cartan-Eilenberg spectral sequence

H∗(R;H∗(D;M)) =⇒ H∗(P;M)

which makes sense only when R is the Hopf kernel of a normal
map P → D.



MPASS: Flatness

If R is a ring-spectrum such that

R∗R = H∗(P;R ⊗ R)

is flat over
R∗ = H∗(P;R)

then H∗(P;R ⊗ R) is a Hopf algebroid and

E ∗1 = C ∗(R∗R;R∗X )

– the cobar construction. So in this case

E ∗2 = H∗(R∗R;R∗X )

and is determined by R∗X as a comodule over R∗R.



P , D, and R
Try this with the dual reduced powers

P = k[ξ1, ξ2, . . .]

and the the P-comodule algebra

R = k[ξ
p
1 , ξ2, . . .] .

That is,
R = P�Dk

where
D = k[ξ1]/ξp1

(R is the analogue of H∗(HZ) as an A-comodule when p = 2).

Then
R∗M = H∗(P;R ⊗M) = H∗(D;M)

R∗ = H∗(P;R) = H∗(D) = E [h]⊗ k[b] .



b−1R

R∗M = H∗(D;M) is rarely flat over R∗, certainly not if M = R.

But we’re interested in b−1H∗(P), so let’s invert b on R. We can
invert b on the level of “spectra”: replace R by a fibrant object,
represent b by a map Σ2R → R, and take the colimit to form a
new “2-periodic” ring spectrum b−1R with “homotopy”

H∗(P; b−1R) = b−1H∗(D) = E [h]⊗ k[b±1]

Its self-homology is

b−1R∗R = b−1H∗(D;P)

This is still not flat over b−1R∗ = b−1H∗(D) . . .

unless p = 3.
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b−1H∗(P)

For this reason (and others) we’ll take p = 3 now.

So |h| = (1, 4) and |b| = (2, 12).

Then the self-homology

b−1H∗(D;P)

is a Hopf algebroid over

b−1H∗(D) = E [h]⊗ k[b±1] .



b−1H∗(P)

Here’s a wonderful surprise (still for p = 3):

Theorem (Belmont) There are primitives

en ∈ H1,2(3n+1)(D;P)

such that

b−1H∗(D;P) = b−1H∗(D)⊗ E [e2, e3, . . .]

as Hopf algebras.



MPASS E2

Consequently in the localized Margolis-Palmieri Adams spectral
sequence

E2 = b−1H∗(D)⊗ k[w2,w3, . . .] =⇒ b−1H∗(P) .

If we draw the MPASS in the standard Adams way, E2 looks like
this; s − t is total cohomological degree.

1hb

wn

−2 −1 0 1

t − s
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Comparison with data
The class wn contributes a b-tower in H∗(P) starting in degree
(0, 2(3n − 5)): (0, 8), (0, 44), (0, 154), . . .. Here’s the polynomial
subalgebra generated by bwn’s (marked as wn).

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

w3
3

w2
3

w4w3

1

w2

hw3
3

hw2
3

hw4hw3

h

hw2



b−1H∗(P)

This doesn’t correspond well to our picture of H∗(P); there are
differentials in this MPASS. We are still working on this, but we
think we know what they are.

Conjecture. Only d4 and d8 are nontrivial, and

d4wn = hw2
2w

3
n−1

1hb

wn

hw2
2w

3
n−1

C
C
C
C
C
C
CO

−2 −1 0 1
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E4
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E8
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E∞
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D-comodules

A D-comodule structure is a graded vector space M with an
operator ∂ : M → M of degree −4 such that ∂3 = 0.

Define
W = k[w2,w3, . . .] , |wn| = 2(3n − 5) ,

with D-comodule-algebra structure determined by

∂wn = w2
2w

3
n−1

extended as a derivation.

Conjecture
b−1H∗(P) = b−1H∗(D;W ) .



D-comodules

This fits the data. For example, it implies that b−1H∗(P) is free
over the exterior algebra E [h]. We have a sketch of an argument.

Moreover, it seems that the MPASS coincides under this
isomorphism with the spectral sequence associated with the weight
filtration on W , putting each wn in degree 1. Then

d4x = h∂x .

The only remaining nonzero differential is d8, and

d8(hx) = b∂2x .
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And two announcements

with editorial board including

Benoit Fresse, Sadok Kallel, Haynes Miller, Said Zarati

is open for business, using EditFlow.



and

Happy birthday, Paul!


