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STABLE SPLITTINGS OF STIEFEL MANIFOLDS
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§1. INTRODUCTION

LET F be one of the skewfields R, C, or H, and consider the Stiefel manifold V, , of
orthonormal g-frames in F". We regard this as the space of Hermitian inner-product
preserving right F-linear maps from F?to F". Pick a point ¢, € V,, ., and define a filtration of
Va,q by closed subsets

Fk = {¢: dimsKer (¢ + o) 2 g —k}.

Thus Fo V, , = { — @0}, F, V, . is the usual “generating complex,” and F, ¥, , = V, . In this
paper we will show that the qtrata F, — F, _, of this filtration are vector hun_dl s, and that the

ﬁltratlon splits stably, so that ¥, ,is stably equxvalent to a wedge of the corresponding Thom
spaces. Such a splitting was con_yectured in case g = n by C. A. McGibbon.

To describe these Thom spaces, let ad, denote the adjoint representation of the relevant
group G, (= O0,, U,,or Sp,) on its Lie algebra. Let can, denote the canonical representation of
G, on Hom; (F* F). Let G« = G,/Gy x G, _, denote the Grassmann manifold of k-planes in
F4. Tt is the base of a principal G,-bundle with total space V, ,, so for any representation p of
G, we may form the associated vector bundle E(p) over G, ;. Let G}, denote the resulting
Thom space.

THEOREM (A). There are diffeomorphisms
FV, o= F-1V, = E(ad, ®(n—g)can,)
compatible with the evident projections to G,
(B). There are homeomorphisms
Vgl Fimi Vg = Go O -dan,

(C). The filtrations split stably, so there are stable homotopy equivalences
q

\/ @(" q)ﬂn.

When k = 1, the Thom space involved is a “stunted quasiprojective space” [2]. In
particular, when F is commutative, G, is abelian, so ad, is trivial and

G:;di @(n — g)can, > Zd—IFPn—l/FPn—Z

where d = dim  F.
As special cases of Theorem C we mention

o, U, or Sp, ~ \/ Gf,:

k=1
n—1

S0, or SU, = \/ G%Ppn
k=1

An addendum concerning naturality allows us to pass to a limit (keeping r = n — q fixed).
Write G = UG,.
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CoroLLARY D. There are stable homotopy equivalences
G/G, ~ \/ BG#:®ran,

k21

For example,
0=~ \/ BO*
k21

U~ \V BU%
k21

Sp=~ \/ BSpg
k21

S0 ~ \/ BO®an

kz1

SU ~ \/ BUM:®w=n
k21
Some of these results have been anticipated in the literature. Theorem A is due to T. Frankel
{1]incase g = n(ie, V, , = G,). He constructs a Morse-Bott function f on V, , (for any ¢
< n) with critical submanifold diffeomorphic to a disjoint union of G, ,, 0 £ k < g. It is not
hard to see that the negative bundle over G_ , is E (ad, @ (n — g)can, ), so on general principles
a Riemannian metric on V, , yields a decomposition into subspaces:

:n

Vag =
k

E(ad, ®(n—q)cany).

0

These subspaces are the “stable submanifolds” of the gradient flow of f, associated to the
connected components of the critical locus. In case ¢ = n, Frankel notes that for any bi-
invariant metric this decomposition is as we have described in A. Our proof of Theorem A in
general is a modification of his argument, and B is an easy corollary.

We remark that the splitting result C may be expressed by saying that the attaching maps
associated to Frankel’s Morse—Bott function are stably trivial.

Results related to Theorem C exist in the literature also. .M. James [2, Prop. 7.10, p. 50]
proved that the stunted quasiprojective space G;‘f’,‘ ®(n=4q)an: gplits off from ¥, , stably. There
he also raised the question of the structure of the remaining factor. In [3], £ C P is shown to
split off from U stably, by a proof akin to the one given here.

Once A and B have been established, the splitting result C follows by extending a suitable
suspension of the quotient map

. ad -
hk‘ Fk qu - Gq,i®(n g)can,

to a map from that suspension of all of ¥, ., satisfying an evident compatibility condition.
Not unexpectedly, this is done using a “transfer” or Pontrjagin-Thom construction. The
whole proof is geometrical; no homology computations are called for.

Theorems A and B are proved in Section 2, and C is proved in Section 3, with certain
lemmas whose proof uses Morse theory postponed to Section 4. Corollary D is checked at
the end of Section 3.

I am indebted to Chuck McGibbon, who first brought the question of splitting U, to my
attention, and who proposed the form it might take; to Elias Micha and Bill Richter, for
useful conversations; and to Martin Guest, for suggesting the relevance of Morse theory,
and pointing out Frankel’s work to me.

§2. THE FILTRATION

We fix a choice of ¢,: with respect to the standard bases, take

¢o=[10"]
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where the subscript denotes the size of the matrix. We recall the filtration
F,V,,={¢:dimker(¢ + o) = g—k}.

Our first step is to blow up F, ¥, _ so as to get a manifold. The problem with F, ¥, _ is that
the (n — g)-dimensional subspace V on which ¢ is required to agree with — ¢ is not well-
defined when ¢ e F,_, V, .. To overcome this, we define

ru,q,k = {(¢s V): ¢[V = _é()[y} = V;.q X GQ.Q‘!{' (2‘1)

This is a submanifold, and the obvious smooth map =, : T, , ,— V, . has image equal to F, V, ..
Moreover, if peF, V, ,— F;-, V, . then it has a unique preimage in [, _ ,.
The projection n,: T, , , = G, .- isclearly a fiber bundle. To be specific, write g € V,, , as

[¢,,:| where ¢’ is a k x k matrix and ¢" is an (m — k) x k matrix. Let G, act on V,, , from the

left by means of the formula _
ue'u!
F‘d):[ "oo- ] (2‘2)
T
Write V,, , for this G,-space. Map T, , , to G, , by composing 7, with the diffeomorphism p:
Gaq-x— Gy sending Vo V .

Lemma 2.3. T, is diffeomorphic over G, to V , X o Vitn~gu-

Proof. Map G, x Vyyp-gi =T, qu bY

¢ 0
(%4’)"’([8 (1):”:0 —I:Ia'l,aVo)
¢Il 0

where ¥, = F?is the subspace spanned by the first k standard basis vectors. This passes to a
diffeomorphism

Gq X Gy X Ggoy Vk+n-q,k nd rn.q,k

where we let G, _, act trivially on ¥, ,,_, ;. Dividing by G,_, first, the result follows.

The filtration Fg on V; , is preserved by the action of G,, and consequently we have a
filtration of V,, x ¢ V,f,,,,_q_!( =TI, ¢k The projection n;: I, .=V, , is filtration-
preserving; and we have a relative diffeomorphism

Ve X6, (Vitn-gior Feoy Visn-gi) = (FVu gy Fioy1 V).

We now come to a key fact, whose proof we defer to Section 4. For any representation p,
let D(p)and S (p) denote the unit disk and unit sphere, with respect to some invariant metric.

LeMMA 2.4. There is a Gy-equivariant relative diffeomorphism

(D(pi), S(pi)) = (V;,k’ FooyVax)

where p, = ad, @ (m — k)can,.
We maintain this use of the symbol p, for the rest of the paper.
Theorem A and B now follow from the composite relative diffefomorphism

Ve % 6, (D(pi) S(pi)) = (Fy V;;,qs Foo1 Voo

§3. THE SPLITTING MAPS
Notice that the homeomorphism

FiVog/Feoy Vag = G2, (3.1)

n.q
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may be construed as a Pontrjagin-Thom construction. For we have an embedding

G,
sending V to (¢, V), where
¢|V= ¢’0|V
3.2)
(NVL = "'¢0|V‘

Composing with 7, we obtain an embedding of G_ , into the submanifold F, — F,_; of V, ,
By Lemma 2.4, this submanifold is a tubular neighborhood of G, ,, diffeomorphic to E(p,);
and (3.1) is the corresponding collapse map.

Composing with the projection and adjoining a disjoint basepoint, we obtain a map

h: F Vit =GBy

and our next step is to show that a suitable suspension of this map extends over V... For this
we claim:

ProposITION 3.3. The stable normal bundle of m,: T, o« = Vy 0 is 73 E(py).

The Pontrjagin-Thom construction then yields the first map in the following composite
of stable maps; the second is induced from =,.

V: - rnzp, k—’ Gp“

This will be our splitting map.
To establish (3.3), we will use the involution « of ¥, , defined by sending ¢ to —¢. We
exploit the following fact, which will be proved in Section 4.

Lemma 34. F,_, V,  and aF, V, , intersect transversely along G, ,\ (embedded via (3.2)).

This makes sense since the intersection clearly lies in the manifold F— V, g — Fg-x-1 Va g
Consider the commutative diagram

G mcw .

.k > Lnqq-k

; 1,
axl

FVeyx Gy ———>V a X Gk

Here the map 4§ is the diagonal inclusion, defined using (3.2), and i = ip. Since the image of
M1:Dpga—k = Vagis Fi_i V, .. Lemma 3.4 implies that the square is a transverse intersection.

Thus
v(8) = * v(j).

We will prove the following lemma in a moment.

LemMa 3.6. There is a bundle & over G, such that v(j) = n3¢.
We may then calculate &, using (2.4):
E=T*n%& =1*v(j) = v(8) = E(p) DT(G, ). (3.7

Pick an embedding
e:G,, — R
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The normal bundle of the resulting embedding
fy=(xeejil,, o>V, xR
is then, by (3.7),
viry) = v(j)@nivie) = nF(E(p) DTG, ) Dvie) = nFE(py) @f-

This completes the proof of Proposition 3.3.
The compatibility diagram

TRV,

\z‘h
/

v

ZIGhy (3.8)

commutes by construction.
We proceed to the (standard) deduction of Theorem C. Filter the suspension spectrum

q
V G&,
k=0

by letting F; truncate the wedge at k = j. The map
q
i Vg = k\=/0 Gou

with kth component s, is then filtration preserving. When we pass to associated quotients, the
diagram (3.8) shows that we obtain at each stage the stabilization of a homeomorphism. Thus
by induction

=

j
+ P
FiVie— k\_/o Gae

Remark 3.9. The proof shows that this map exists after max {d,: 1 < k < j} suspensions,
where d, is the embedding dimension of G, ;. The Whitney embedding Theorem gives the
estimate

d, £ 2dk(g~k), d=dim,F.

We now return to a proof of Lemma 3.6. For this we consider the diagram

i
Iqn.q.(,y—k Gq.k
j 1
v T
Vn.q x Gq.k > Vn.q.q-k

in which

v
Vegg-x ={F*2 V——>F" dim V = q—k, ¥ is inner-product preserving}

dlw

n(p, W)= (Fia2W*

F")

~dolw+

(W)= (FiaW"

Fn).

The map = is clearly a fiber-bundle projection, and the diagram is a pull-back. It follows that
v(j)=n3v(l).
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Remark 3.10. Let G be a compact Lie group and P a compact principal G-space with
orbit-space B. Let ad denote the adjoint representation of G. Let End ; (P) denote the space of
continuous equivariant endomorphisms of P. Then in [3] ideas of Becker and Schultz are
shown to yield a stable map from End (P), to B*. In particular, take G = G,, P =V,
B = G, ,; then we have a stable map

Endg, (Vo) — Gy

Since G, acts from the left G,-equivariantly on V, ,, we have by composition a stable map
G — fo,:. This is precisely the map s, constructed here, in the special case when g = n.
Finally, we turn to the “naturality” condition needed to establish Corollary D. Let

1
Via= Var1,q+1 carry ¢ to ¢ @1. Let G, =G, apply the map [0"]: Fi Fa*!,

This is covered by a Gy-bundle map V,,—V,,,, sending ¢ to [(g}

p

so we get a map GJ4 — Go%, , of Thom spaces. We require:

ProrposiTiON 3.11. The diagram

+ +
Vn.q Vn+1,q+1

st" l Sk

p > GP
Gq:‘k qu+l.k

of suspension spectra is homotopy-commutative.

Proof. We consider the diagram

Gq.k Gq+1,k
I”z T"z
I—n‘qu"k Iqn+1‘q+1.q-¢-1'-k

| lj

Vn‘q X Gq.k——*Vn+ l,g+1 x Gq+ 1,k

We leave it to the reader to check that the bottom square is a transverse intersection. Thus [3]
the corresponding diagram involving Pontrjagin~Thom collapses commutes, and (3.11)
follows.

Remark 3.12. There are many other canonical, maps relating Stiefel manifolds—
composition maps, the James intrinsic maps, direct sums, bundle projections, . ... The
expression of these maps in terms of our splitting presents an entertaining exercise.

§4. MORSE THEORY

Recall that a smooth real-valued function f on a compact manifold M is called a
Morse—Bott function when the critical locus C forms a submanifold of M, and the null-space
of the Hessian H of f at any point ¢ € C coincides with the tangent space to C at ¢c. The normal
bundle of C in M then splits as P @ N, where H|, is positive-definite and H| is negative-
definite. Standard Morse theory shows that M is homotopy-equivalent to an identification
space formed from the bundle N (or dually from the bundle P).

In the presence of a Riemannian metric we may say more, however. For we may then form
the gradient Vf of the Morse function. The set of zeros of this vector-field is exactly C. Let ¢
denote the associated flow. The stable submanifold associated to a critical point ¢ is

t—=®

S(e)=S8,()= {xeM: lim ¢, x =c}.

If C = UC,; is the decomposition into connected components, we let

S; = u{S(e): ceC;}.
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It projects to C;, and is diffeomorphic over C; to the vector-bundle N |C,. Dually, the unstable
submanifold associated to ceC is U(c) = S_ ;(c); and we let
U;=u{Ul(c)ceC}.

It maps to C;, and is diffeomorphic over C; to the vector-bundle P|C,. Thus M decomposes
into a disjoint union of vector-bundles, in two complementary ways. Note that §; and U,
intersect transversely along C,.

Consider the Stiefel manifold V, ,. Decompose ¢ € V, ,into [z] with ¢’ a g x g matrix
and ¢" an (n— g) x g matrix. Let

f(@)=Retr¢"
In [1], Frankel shows that this is a Morse—Bott function, and that its critical locus is
q
C= I_I Gy
k=0

embedded in ¥V, , via (3.2).

In case g = n, we may choose a bi-invariant metric on ¥, , = G,. Frankel then shows that
the stable submanifold S, associated to G, , is, in our notation, F, — F, _ ;. We must generalize
this

is result
th t.

a3

As usual, we embed ¥, , into the space of all n x g matrices over F. This vector space hasa
natural Hermitian inner product over, F, given by

(A,BY=tr A*B,

where A* is the transpose-conjugate of A, and so a natural inner product over R, given by
taking the real part. We give ¥, , the induced Riemannian metric.

PRrOPOSITION 4.1. The stable submanifold S, associated to G, is
FV,o=F_ 1V, .= {¢: dimker (¢ + o) = g —k}.

This proposition leads immediately to a proof of Lemma 2.4, since the isotropy
representation of G, on the tangent space to V;, at ¢, is clearly p,. In fact, (4.1) gives an
alternate proof of Theorems A and B. We have chosen this organization because alternate
proofs of (2.4) are sometimes possible (see (4.6) below), and so as to introduce the manifolds
I,

g,k
Since f(x¢) = —f(¢), we see also that
U= a(Fq-k Vn,q—Fq-k—l Vn,q) = {d’ dim ker (¢ — ¢o) = k}~
Lemma 3.4 follows immediately.
The proof of (4.1) is a matrix calculation, more elementary than the Lie group techniques
of [1]. If we let G, act on V, , as in (2.2), then our metric is invariant. If we also let G, act
trivially on R, then f is equivariant. Thus Vf'is an equivariant vector field, and the action of G

carries stable submanifolds to stable submanifolds. Moreover, each component of the critical
locus is an orbit. Thus we may assume ¢ €G,, = V, . has the special form

¢q—k=[0 -1‘1"‘}‘

0 0
¢ O

s<¢q-k)={¢=[o ) ]:M-lv,,q} @2
¢” 0

Write 7, for the right hand side here. Since this lies in F, V, ., — F,_, V, ,, (4.1) follows.

We claim that



418 Haynes Miller

We will prove in a moment that Vf is tangent to 7,. This implies (4.2). Here is one
argument for this, which I owe to W. Richter. By induction on n, we may assume (4.1) for
smaller n. Suppose first k < g. Notice that T, is a submanifold of V,.q diffeomorphic to
Va-q+x.x and that the metric and the Morse function on ¥, _ restrict to the corresponding
structures on V,_ .. By our inductive assumption, we know that the stable manifold for
ST, associated to [§] eV, —q¢+ik> 18 T,. Since Vfis tangent to T, V(fIT,) = (V/)IT;;s0 T,
= S§(Py-1) N T,. But Frankel shows that the index of ¢, _, is dim T, so we conclude that 7,
= S(¢,-«)- The case k = g now follows, since T, is the complement of the union of the stable
submanifolds associated to the nonmaximal crmcal points.

So consider ¢ €7, and let § be a tangent vector to ¥, , at ¢. Since ¥, , is a submanifold of
the vector space of n x g matrices over F, f is such a matrix. The defining equation for ¥, ,
yields the equation

B*¢+o*p=0. (4.3)

B B2
B= l:ﬂu ﬂzz]
By Biz

using the same decomposition of n x g matrices as used above in defining ¢,, then (4.3) results
in four equations, two of which are

If we write

11 +B%1 0"+ +¢"*B3, =0 (4.4)
B3+ B2, =0. (4.5)
Now assume f is orthogonal to T} at ¢. Then we want to show that
df(p) =

that is,
Re tl‘ﬂ“ +Retrﬂ22 = 0

The second term is zero by (4.5). As to the first term, we claim that in fact 8,, = 0. To see this,
take y tangent to 7, at ¢. Then y must have the form

yin O
y = 0 0},
731 0

and the pair (y,, 73,) is subject only to (4.4) (with y replacing ). Since 8 is orthogonal to any
such y, it is orthogonal in particular to

By O
y= 0 0.
By O
This forces f,; = 0 and f;, = 0, and completes the proof.

Remark 4.6. One may hope to prove Lemma 2.4 by showing that F,_, ¥,  is the cut
locus of ¢, with respect to a suitable Riemannian metric. While this does not seem to be
known in general, it is easy to see incase m = k,so V,, , = G,. Take F = C, for instance. Give
the Lie algebra u, of G, = U, the invariant inner product { 4, B) = tr 4* B. This defines an
invariant Riemannian metric on U,, and F,_, U, is the cut locus of 1 with respect to this
metric. Indeed, it is easy to see that the set of matrices A € u, all of whose eigenvalues are of
modulus less than 7 maps diffeomorphically under the exponential map to the complement
of F,_, U,.
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