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Abstract. I will attempt to describe some of the ideas of chro-
matic homotopy theory, focusing on the role of periodicity. I will
then describe “non-chromatic” periodicity operators that occur
in motivic homotopy theory. All that is new here is joint work
with Michael Andrews or work of his alone.

I want to thank Niko Naumann for this invitation: it’s certainly an honor
to give a lecture here in Regensburg honoring the memory of Johannes Ke-
pler!

I have in mind a naive meaning for “localization,” namely, the effect of
inverting an operator. I want to talk about several local computations in
homotopy theory. Some are quite old, and some are newer – motivic – and
represent work of Michael Andrews and some joint work I’ve done with him.

At heart, homotopy theory is the study of “meso-scale” phenomena in
geometry: perhaps high dimensional but certainly not infinite dimensional.
And it has a computational inclination. For example we want to know πk(S

n).
Homotopy theory is much more than merely a febrile attempt to compute
these abelian groups, which is just as well because, for given n > 1, we
never will know than a modest finite number of them in terms of generators
and relations. But “chromatic homotopy theory” provides certain structural
features of the homotopy theory of finite complexes that shed light on reg-
ularities among these groups, and it leads us to consider certain natural
localizations.

Ideas of localization have pervaded homotopy theory for a long time.
There are two preliminary localizations:

Stabilization. There is an operation on pointed spaces (X, ∗) which pre-
serves homology: Form the reduced cone on X and then divide by X. This
is the “suspension” of X, and

Hn(X)
∼=−→Hn+1(ΣX) .
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So for example ΣSn−1 = Sn. Suspension kills the cup product in cohomology;
but otherwise the spaces X and ΣX look quite similar. There is a rather
simple process by which we may invert the operator Σ acting on pointed
spaces. We receive thereby the “Stable Homotopy Category” S, along with
a functor

Σ∞ : Ho(Top∗)→ S

The objects in S are (unfortunately) called “spectra.” S is an additive cat-
egory, and the mapping cone construction provides it with a triangulation.
It’s a kind of non-abelian derived category. I might use curly brackets to
denote Hom in this category. Because I’ve inverted suspension, there is a
sphere Sn for every n ∈ Z.

Since homology, or generalized homology, commutes with suspension, we
may define the homology of a spectrum. For example πn(X) = {Sn, X},
“stable homotopy,” is a homology theory, with coefficient ring π∗(S

0). Simi-
larly with cohomology. “Brown representability” asserts that cohomology –
in fact any generalized cohomology theory – is representable in this category.
Also, the smash product (product modulo axes) descends to a symmetric
monoidal structure – it’s a tensor triangulated category, with unit given by
S0. Whitehead showed that any homology theory is of the form

X 7→ π∗(E ∧X)

for some spectrum E; for example, ordinary rational homology is

H∗(X;Q) = π∗(HQ ∧X)

where HQ is an object called the (rational) Eilenberg Mac Lane spectrum.

Arithmetic localization. Once we’ve eliminated the fundamental group,
the homotopy type of a space can be analyzed one prime at a time. Serre
described a way to localize at a prime p on the algebra side, and later Sullivan,
Quillen, and Bousfield pushed this construction into topology. In S, we can
imitate one construction of Z(p): form the sequence of spectra

X
n1−→X

n2−→· · ·

where the numbers n1, n2, . . . run through all the positive integers prime to
p. Then we take the direct limit. (Actually, we want to form a homotopy
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theoretic version of the direct limit, making the construction homotopy in-
variant. Appropriately for this occasion, it’s known as a telescope.) We are
inverting all primes other than p, and we’ll write X(p) for the result.

We will consider p-local spectra only; S0 is shorthand for S0
(p), for example.

Here are two avatars of the kind of localization theorem I have in mind.
First, what is

p−1π∗(X) = π∗(X)⊗Q ?

Serre gave an effective way of determining these “p-periodic” elements:

p−1π∗(X) = π∗(X)⊗Q = H∗(X;Q)

This has a geometric version: the telescope p−1X of

X
p−→X

p−→X −→· · ·−→ p−1X

satisfies
π∗(p

−1X) = p−1π∗(X)

[Serre] p−1X
'−→LHQ∗X = HQ ∧X.

Second, inverting p is the only interesting thing to do, by virtue of:

[Nishida] The nonzero elements of π0(S
0) exhaust the non-nilpotent ele-

ments in the graded ring π∗(S
0).

Chromatic homotopy theory provides generalizations of these two facts.

Localization of the Moore spectrum. Let’s look at low-dimensional sta-

ble homotopy of the sphere spectrum. Of course π0(S
0) = Z, given by degree.

Next, the Hopf map η : S3 → S2 stabilizes to an element of order 2 that gen-
erates π1(S

0). This famous element has a cousin at every prime p, less famous
but no less important: α1, a generator of the lowest-dimensional p-torsion.
It is of order p for every prime p;

π2p−3(S
0) ∼= Z/pZ .

For large p this group would be very complicated if we had not tensored with
Z(p)!
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Suspend α1 once: α1 : S2p−2 → S1. Saying that pα1 = 0 is the same as
saying that the diagonal factorization occurs in

S2p−2/p
v1 //

$$

S0/p

π
��

S2p−2 α1 //

ι

OO

S1

where S2p−2/p denotes the effect of “coning off” the map p : S2p−2 → S2p−2:

S2p−2/p = S2p−2 ∪p e2p−1 .

For p odd this new map also has order p, and we receive a further factorization
through a self-map of S0/p, of degree 2p− 2, written v1.

The map v1 is certainly essential, since α1 is. The interesting thing is
that it is non-nilpotent: All of the composites

S2p−2/p−→S0/p−→S−(2p−2)/p−→S−2(2p−2)/p−→· · ·

are essential. You can’t see this using homology! But there are other homol-
ogy theories, and in fact v1 induces an isomorphism in complex K-theory.

A principle interest in non-nilpotent self-maps is that they give rise to
infinite families of elements in π∗(S

0):

S(2p−2)k/p
vk1 // S0/p

��
S(2p−2)k

OO

αk // S1

each of which which turns out to be essential.

We got an estimate of the size of the collection of “p-periodic” families by
forming the telescope p−1X. Just so, here I can form the “mapping telescope”
of this sequence to obtain a spectrum

v−11 S0/p .

This is a periodic spectrum: it is isomorphic to its own (2p − 2)-fold sus-
pension. It has trivial homology but the map from S0/p to it is a K-theory
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isomorphism so it’s certainly nontrivial. Here are a couple of homotopy
classes in π∗(S

0/p):

S0 ι // S0/p

S2p−3

α1

OO

ια1

;;

Computation. v−11 π∗(S
0/p) = π∗(v

−1
1 S0/p) = Fp[v±11 ]〈ι, ια1〉.

Since S0/p → v−11 S0/p is a K-theory isomorphism, we get a canonical
map, which turns out to be an equivalence:

Theorem. v−11 S0/p
'−→LKS

0/p.

Question. Is there a more general construction, analogous to our expression
of Serre’s theorem, valid for all spectra? We shall see.

Adams, Smith, Toda. Something similar happens at p = 2; it’s just a
little more complicated. Adams constructed a K-theory isomorphism

v41 : S8/2→ S0/2 ,

and Mahowald computed v−11 π∗(S
0/2). Adams also considered Moore spectra

with larger cyclic groups, using the J-homomorphism.

Now let’s see: p : S0 → S0 and then (if p > 2) v1 : S2p−2/p→ S0/p. This
suggests that the the mapping cone

S0/p, v1

might have an interesting self-map of it. Larry Smith found one, for p > 3:

v2 : S2p2−2/p, v1 → S0/p, v1 .

Both sides have trivialK-theory now, so he usedMU to detect non-nilpotence;
v2 acts non-nilpotently in MU∗. Today we could equally well say that it is
an isomorphism in a Morava K-theory. Morava K-theories form a family of
ring spectra associated with complex bordism and hence controlled by the
theory of one-dimensional formal groups. There’s one for each n, with

K(n)∗(S
0) = Fp[v±1n ] , |vn| = 2pn − 2 .
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In any case, this self-map produced elements βn ∈ π∗(S0) occuring every
2(p2 − 1) dimensions. They are the surface of an extremely complex family
of elements which are still far from understood. At this second level, the
theories known as “elliptic cohomomology” come into play, and the spectrum
of topological modular forms.

And we can consider the telescope v−12 S0/p, v1, and its homotopy

v−12 π∗(S
0/p, v1).

We do not know what this module is.

This was hard work. It was continued by Toda and has been taken up
by others to the present day – Behrens, Hopkins, Mahowald, Hill, .... It
seemed that these finite complexes were very special; they enjoyed an extra
symmetry in the form of an interesting non-nilpotent self-map.

Ravenel’s conjectures; Hopkins-Smith. In the late 1970s Doug Ravenel
formulated a series of conjectures, most of which were soon verified in work
by Mike Hopkins and Jeff [unrelated to Larry] Smith. First of all,

Theorem. If X is finite and f : Σ?X → X is nilpotent in MU∗, then f is
nilpotent.

This generalizes Nishida’s theorem. (Niko Naumann and collaborators
have recently proven a different generalization of Nishida’s theorem.) But
there’s more. Say that a finite spectrum X has “type n” if

K(i)∗(X) = 0 for i < n .

Theorem. (1) Every finite spectrum is of some type; only the contractible
spectrum is of type n for every n; and for any n there are finite spectra of
type n and not of type n+ 1.

(2) Let X be of type n. For some k ≥ 0 there is a map

φ : Σ?X → X

that induces multiplication by vp
k

n on K(n)∗(X) and zero on K(m) ∗ (X) for
m 6= n: a “vn-self-map.”

(3) vn-self-maps are essentially canonical: Let f : X → Y be any map of
type n spectra, let φX be any vn-self-map of X and φY any vn-self-map of Y .
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Then for some l and m, the following diagram commutes (in which I omit
suspensions):

X
f //

φp
l

X��

Y

φp
m

Y��
X

f // Y

So there’s nothing special about these “generalized Moore spectra”! There’s
a universal “almost symmetry” on finite complexes of type n. The verifica-
tion of these conjectures produced a revolution in our understanding of stable
homotopy theory.

Among other things, this work shows that the telescopes described above
are canonically associated to the finite spectrum you started with. In fact
they are cases of a general construction. There’s an exact triangle

Σ−1X/φ−→X
φ−→X

and since φ is a K(n)-isomorphism, and certainly a K(i)-isomorphism for
i < n, the spectrum X/φ is a finite complex of type (n + 1). In general
you can start with any spectrum X; cone off all maps from finite type n1-
spectra to get X → X1; and continue. In the direct limit you get the “finite
localization”

X → LfnX

with respect to K(n). This is a canonical construction, functorial in the
spectrum X, that may be arbitrary. But if X is finite of type n and φ is a
vn-self map, then

φ−1X = LfnX .

The finite localization is a “geometric” construction, reflecting properties of
finite complexes.

There’s another localization at play here, namely Bousfield localization.
Bousfield showed this: For any homology theory E∗, there is a functor X 7→
LE∗X and a natural transformation X → LE∗X that is, in the homotopy
category, terminal among E∗-isomorphisms out of X. This is obtained also
by coning off maps from E∗-acyclics, but not necessarily finite ones. The
construction is more elaborate, but the result is more computable. We’ll
write Ln for the localization functor analogus to Lfn, that is,

Ln = LK(0)∨K(1)∨···K(n) .
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For example, L0 is rationalization.

Since X → LfnX is an isomorphism in K(i)∗ for i ≤ n, we have the
factorization

X

zz $$
LfnX

θ // LnX

The right hand side here is amenable to attack by high powered machin-
ery. In the case n = 1 for example it’s explictly constructible by means of
Adams operations. The Computation above (and an analogue at p = 2 due
to Mark Mahowald) leads to the

Telescope Theorem. Lf1X
∼=−→L1X.

This is an analogue of Serre’s theorem.

For n > 1 the whole of the theory of formal groups can be brought to
bear on the homotopy of LnX. For example, we know that (for p ≥ 5)
π∗(L2S

0/p, v1) is known, and quite interesting – computations using p-adic
analytic groups show that it is of dimension 12 over Fp[v±12 ]. But we don’t
know how it’s related to v−12 π∗(S

0/p, v1). So the one conjecture remaining in
Doug Ravenel’s list is very important!

Telescope Question: Is the map θ an equivalence?

In my view this is the major outstanding question in chromatic homotopy
theory. A single finite complex of type n but not n+1 for which the conjecture
is true would verify it for all such. But Ravenel himself, and others, have
spent a great deal of effort on it, and have presented evidence that it is
probably false for n > 1. So perhaps it’s like Kepler’s zeroth law, the one
about Platonic solids.

Because they localize at larger and larger spectra, the Ln’s fit into a tower,
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the “chromatic tower”:

...

��
LnX

��

MnXoo

Ln−1X

��

Mn−1Xoo

...

��
X

HH

EE

// L0X

This is like a prism, breaking the white light of X into its constituent wave-
lengths.

Novikov. There is a systematic way to use operations in a cohomology the-
ory to get more information than merely evaluating it on a map: the Adams
spectral sequence. Since MU detects non-nilpotence, the Adams spectral
sequence based on MU is particularly adapted to picking out chromatic phe-
nomena. It takes the form

Es
2(X;MU) = ExtsMU∗MU(MU∗,MU∗(X)) =⇒ π∗(X) .

Long ago, Doug Ravenel, Steve Wilson and I used this spectral sequence to
study chromatic phenomena.

While every non-nilpotent self-map of X (for X finite) is detected on the
0-line, there are lots of non-nilpotent elements in E2. For example, when p =
2 the element detecting η is non-nilpotent! The localization η−1E2(S

0;MU)
is “non-chromatic,” and not directly amenable to the standard methods.

The 0-line contains only Z in dimension zero. Along the 1-line, the groups
are trivial for n odd, and in his initiating work on this spectral sequence
Novikov proved that the other groups are cyclic and computed their order.
Doug, Steve, and I showed that with the exception of the one in E1,4

2 all the
generators of these cyclic groups support η towers.

A new result:
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Theorem (with Michael Andrews) These generate the η-free part of E2.

Our method provides suggestive names for the generators positioned along
the zero-line: v21, v2, v

4
1, · · ·, so

η−1E2(S
0) = F2[η

±1, v21, v2]/v
2
2 |v21| = (0, 4), |v2| = (0, 6) .

Then
d3v

2
1 = η3

terminates the spectral sequence.

Motivic homotopy theory. We now know that very nearby there are
worldsheets containing alternate realities, homotopy theories very much like
the one we inhabit but different. They are selected by a choice of base field
k. These “motivic” homotopy theories, denoted S(k), were defined by Morel
and Voevodsky, and have been much studied in the past decade or so. I am
a novice at this, but Voevodsky and others have done enough to let a simple
homotopy theorist such as myself have some fun here.

The first thing to know is that homotopy groups are naturally bi-graded,
and the Hopf map lies in π1,1(S

0). The second thing to realize is:

η is non-nilpotent motivically.

This explains why MU thought that η was non-nilpotent; MU knew
about motivic homotopy theory long before we did.

In case k = R or C, there are realization functors S(R)→ S and S(C)→
S, called “taking real” or “complex points.”

It turns out there is a motivic analogue of the Novikov spectral sequence,
analyzed by Hu, Kriz, and Ormsby and by Dugger and Isaksen. Its E2 term
is the classical one extended by a polynomial generator τ ; so the computation
we did above gives a computation of the η localization of the motivic Novikov
E2 term. Again, there is a d3, but now

d3v
2
1 = τη3

and we end up with the following computation, verifying a conjecture of
Guillou and Isaksen:

Theorem (with Andrews). η−1π∗,∗(S
0) = π∗,∗(η

−1S0) = F2[η
±1, v41, v2]/v

2
2.

So there are non-chromatic periodic operators in motivic homotopy. A
related study of thick subcategories of the motivic homotopy category has
been made by Ruth Joachimi in her thesis.
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The chromatic experience leads one to ask whether there are any other
non-nilpotent self-maps of the motivic sphere (unknown), and to wonder
whether now S0/η has an interesting non-nilpotent self-map.

Theorem (Andrews). There is a non-nilpotent self-map

w1 : S20,12/η → S0,0/η .

A periodicity operator of this type was studied many years ago, by Har-
vey Margolis and Mark Mahowald. Apparently they also knew about the
existence of motivic homotopy theory long before the rest of us did.

In fact Andrews has a sketch of a construction of a spectrum Xn in S(R)
with a self-map whose real points give a vn self map of a type n spectrum, and
which base-changes to S(C) to an operator with properties extending those
of w1. The detection scheme he used for powers of w1 doesn’t work anymore,
though, so we don’t yet know whether wn is non-nilpotent for n > 1.

My guess is that there is a second series of non-nilpotent operators in
motivic homotopy over C, reflecting the existence of the real subfield. vn
corresponds to Milnor’s ξn+1. The element η could be written w0. It corre-
sponds to ξ21 , and the higher wn’s should correspond to the squares of the
other ξn’s. Since it is beyond the standard color range of chromatic homo-
topy theory, I propose to call it “technicolor.” Technicolor was an MIT high
tech spin-off, introduced one century ago, in 1916. The current MIT campus
opened in Cambridge opened the same year. This cinematic technique did
not use colored pigments. Instead, each frame had two pictures. A red beam
was projected through one and a green beam through the other. Just so; we
have the chromatic family, in green, but now also a parallel family, in red.
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