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A rack is a set X together with a binary operation (written xy) such that

x(yz) = (xy)(xz) and x· : X → X is bijective .

An X module is a collection of abelian groups Ax together with maps

Ay
αx−→Axy

βy←−Ax

such that each αx is an isomorphism and the following diagrams commute.

Az
αy //

αx

��

Ayz

αx

��
Axz

αxy // Ax(yz)

Ay
βz //

αx

��

Ayz

αx

��
Axy

βxz // Ax(yz)

Ax
βz //

βyz

##
βy
��

Axz

αxy

��
Axy

βxz // Ax(yz)

where the last diagram signifies that the diagonal is the sum of the two edges.
That is,

αxαy = αxyαx , αxβz = βxzαx ,

and
βyz = αxyβz + βxzβy .

A derivation of a rack X with values in an X-module A is a choice of
σx ∈ Ax for each x ∈ X satisfying

σxy = αxσy + βyσx .
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The abelian group of derivations from X with values in A forms an abelian
group Der(X,A).

There is a canonical X-module, the “Kähler differentials” ΩX . It is the
abelianization of X as a rack over itself, characterized by

HomX−mod(ΩX , A) = Der(X,A) .

It comes equipped with the “universal derivation” σ : X → ΩX .
Example. The singleton set ∗ admits a unique rack structure, and a module
for it is simply a module over the ring

R = Z[α±1, β]/ββ′ , β + β′ = 1− α .

The group of derivations from ∗ into an R-module M is

Der(∗,M) = ker (β′|M) ,

so the R-module of Kähler differentials is

Ω∗ = R/(β′)

and the universal derivation sends ∗ to 1 ∈ R/(β′).
An X-module is automorphic if βy = 0 : Ax → Ay for every x, y. For

example an automorphic ∗-module is an abelian group equipped with an
automorphism α.

More generally, suppose that we are given an abelian group A together
with a map α : X2 → Aut(A) such that

αx,yzαy,z = αxy,xzαx.z .

Then we can take Ax = A for every x, and αx : Ay → Axy given by αx,y. This
gives us an automorphic X-module. In particular, if αx,y is independent of
y, this is equivalent to an action on A of the group GX associated to X:

GX = 〈X : x · y = xyx−1〉

where we have written · for the rack operation and juxtaposition for the
group operation.

A differential into an automorhic X-module is an assignment σx ∈ A for
each x ∈ X such that

σxy = αxσy .
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An X-module is differential if there is an abelian group A and isomor-
phisms A ' Ax for every x under which αx : Ay → Ax corresponds to the
identity map on A for every x, y. The relations then imply that the structure
of an X-module is completed by giving an endomorphism βx of A for every
x ∈ X, with the property that for all x, y, z,

βx(yz)(1− βxy) = βxz .

For example, a differential ∗-module is an abelian group equipped with a
differential β.

A derivation into a differential X-module A is a function σ : X → A such
that

σxy = σy + βyσx .

Given a morphism of racks f : X → X ′, there are functors

f∗ : X −mod� X ′ −mod : f ∗

The pull-back functor f ∗ is easy to describe. Given an X ′-module (A,α, β),

(f ∗A)x = Af(x) for all x ∈ X

and for all x, y ∈ X

(f ∗A)y
αx // (f ∗A)xy (f ∗A)x

βyoo

Af(y)
αf(x) // Af(x)f(y) Af(x)

βf(y)oo

The functor f∗ is the left adjoint to f ∗, and is harder to describe. But
sometimes we can.

An X-module is constant if it is pulled back from a module over the trivial
rack. So if M is an R-module, the corresponding constant X module MX

has
(MX)x = M for all x ∈ X

and
αx = α , βy = β for all x, y ∈ X .

A derivation from X to a constant module M is a function σ : X → M
such that

σxy = ασy + βσx for all x, y ∈ X .
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The adjunction shows that if π : X → ∗ then

π∗ΩX = R〈X〉/(xy = αy + βx) .

Now let’s try to construct a “Hochschild complex.” For a start, what
should “free” mean? Here’s the proposal. There is a functor u from X-mod
to sets over X, simply forgetting all the structure. This functor has a left
adjoint, which I will write FX . It is characterized by

HomX(FXS,A) =
∏
x∈X

Map(Sx, Ax) .

For example, if X = ∗, FX is the free R-module functor. Write

ι : S → uFS

for the unit of the adjunction; it is a map over X.
The universal derivation σ : X → ΩX is a map over X and hence extends

to an X-module surjection

ΩX
σ←−FXX

where X is regarded as a set over itself by the identity map.
How do we reflect the identity satisfied by the universal (and hence any)

derivation? Regard X2 as a set over X via the rack multiplication. Then
there are three maps X2 → uFXX in Set/X, given by

(x, y) 7→ αxιy , ιxy , βyιx ,

and the identity specifies that their alternating sum is zero in ΩX . So we
have a presentation

0←−ΩX
σ←−FXX

∂←−FXX2 .

We want to extend this presentation to an exact complex, and based on
the example provided by associative algebras we hope that the next term will
be FXX

3. It seems that the appropriate thing to do is to specify that Xn is
to be regarded as a set over X by means of the map

πn : (x1, . . . , xn) 7→ x1(x2 · · · (xn−1xn) · · · ) .

Note that it is not possible to give meaning to X0; there is no way to present
ΩX as a kernel. Andruskiewitch and Graña insist on unnaturally building
something by choosing a basepoint at this point.
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There are five natural maps X3 → FXX
2 over X. Fix w ∈ X and restrict

to
π−13 w = {(x, y, z) : w = x(yz) = (xy)(xz)} .

The maps send (x, y, z) to

αxιy,z , αxyιx,z , βxzιx,y , ιx,yz , ιxy,xz .

Apply ∂ : FX2 → FX to these five elements:

αxιy,z 7→ αx(αyιz − ιyz + βzιy)

αxyιx,z 7→ αxy(αxιz − ιxz + βzιx)

βxzιx,y 7→ βxz(αxιy − ιxy + βyιx)

ιx,yz 7→ αxιyz − ιx(yz) + βyzιx

ιxy,xz 7→ αxyιxz − ι(xy)(xz) + βxzιxy .

Applying the three identities satisfied by the α’s and the β’s, we see that
choosing signs +,−,−,+,− produces a signed sum of zero.

So define ∂ : FX3 → FXX
2 by

ιx,y,z 7→ αxιy,z − αxyιx,z − βx,zιx,y + ιx,yz − ιxy,xz .

Then ∂2 = 0.
Perhaps contracting homotopies can be built using the fact that x· is

bijective. So there’s an operator x 7→ x′ on X characterized by xx′ = x.
Notice then that X → X2 by x 7→ (x, x′) is a map over X.

A&G effectively describe the rest of this complex.
We use a variant of the useful notation introduced by Andruskiewitch

and Graña:
x1 · · ·xn = x1(x2 · · ·xn)

They observe that for i < n,

(x1 · · ·xi)(x1 · · ·xi−1xi+1 · · ·xn) = (x1 · · ·xn) .

To see this note that it’s the definition for i = 1. Then use self-distributivity:

(x1 · · ·xi)(x1 · · ·xi−1xi+1 · · · xn) = (x1(x2 · · ·xi)x2 · · · xi−1xi+1 · · ·xn)

which, by induction on i, is x1 · · ·xn.
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Define maps di : Xn → FXX
n−1 over X:

d1(x1, . . . , xn) = (x1x2, . . . , x1xn)

d2(x1, . . . , xn) = (x1, x2x3, . . . , x2xn)

· · ·
dn−1(x1, . . . , xn) = (x1, . . . , xn−2, xn−1xn)

Also

a1(x1, . . . , xn) = αx1(x2, . . . , xn)

a2(x1, . . . , xn) = αx1x2(x1, x3, . . . , xn)

· · ·
an−1(x1, . . . , xn) = αx1···xn−1(x1, . . . , xn−2, xn)

and
b(x1, . . . , xn) = βx1···xn−2xn(x1, . . . , xn−1) .

Reminder: The operators α and β here are the ones in the free X-module
construction FX .

For example, with n = 2 we have

d1(x1, x2) = x1x2 , a1(x1, x2) = α1x2 , b(x1, x2) = β2x1 .

With n = 3,

a1(x1, x2, x3) = αx1(x2, x3) , a2(x1, x2, x3) = αx1x2(x1, x3) ,

d1(x1, x2, x3) = (x1x2, x1x3) , d2(x1, x2, x3) = (x1, x2x3) ,

and
b(x1, x2, x3) = βx1x3(x1, x2) .

The rack axioms and the identities involving α and β imply relations
among these operators. For example as maps X3 → FXX,

a1d1 = d1a2 , a1d2 = d1a2 , bd1 = d1b

are just true;
d1d2 = d1d1
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follows from the rack axiom; and

a1a1 = a1a2 , a1b = ba1 , bd2 = ba2 + bb

follow from the three relations.
The last relation indicates that we are not trying to describe an indexing

category; rather an indexing ringoid, and then we study additive functors
from it into, for example, X-modules.

Next step is to write down the general relations among these operators.
A&G’s proof that ∂2 = 0 should carry over. What about maps going in
the other direction, “degeneracies”? For example, while we don’t have a
unit element, we do have a function ′ : X → X characterized by xx′ = x.
(Sometimes x′ = x.) So I can define X → FXX

2 by sending x to (x, x′).
And there should be an operator FXn−1 → FXn that is only a map of

objects overX but hopefully at least additive, providing us with a contracting
homotopy.

Here’s the “face” structure of the ringoidR over which FXX
• is a module.

The objects form the set {1, 2, . . .}. For all n > 1 there are operators

di, ai, b ∈ R(n, n− 1) , 1 ≤ i < n .

They satisfy the following relations in R(n+ 1, n− 1).

didj = dj−1di for i < j (1)

aiaj = aj−1ai for i < j (2)

diaj =

{
aj−1di for i < j
ajdi+1 for i ≥ j

(3)

bdi = dib and bai = aib for 1 ≤ i < n (4)

bdn = ban + bb (5)

These are painfully derived using the following information. (1) uses the rack
axioms. (2) uses the αα identity. (3) is the most painful one. It uses the
rack identity on subscripts when i < j − 1. (4) uses the rack identity on
subscripts in the d1 case, and the αβ identity for the bai case. (5) of course
uses the last identity.

Maybe it’s nicer to write these relations like this: for i < j,

didj = dj−1di , aiaj = aj−1ai , aidj = dj−1ai , diaj = aj−1di .
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Also, for i < n,
dib = bdi and aib = bai ,

while
b(dn − an) = bb .

The symmetry between a and d in these relations is amazing.
There is an additive functor from this pre-additive category into the addi-

tive category of functors from racks to abelian groups, taking n to the functor
X 7→ FXX

n. It’s augmented to the functor X 7→ ΩX .
An R-module A determines a chain complex as follows. Define operators

An+1 → An by

∂′ = dn − dn−1 + · · ·+ (−1)nd1 , ∂′ = an − an−1 + · · ·+ (−1)na1 .

Then the usual calculation shows that

∂′∂′ = ∂′∂′′ = ∂′′∂′ = ∂′′∂′′ = 0 ,

while
b∂′ = bdn , b∂′′ = ban .

So
∂ = ∂′ − ∂′′ − b : An+1 → An

defines a differential.
For example, with X = ∗, this is the complex of modules over the ring

R = Z[α±1, β]/(β(1− α− β)) given by

R
1−α−β←− R

−β←−R 1−α−β←− R
−β←−· · · .

In this case at least, the complex is exact.
The chain complex associated to an R-module has a maximal augmenta-

tion
M(A•) = A1/∂A2 .

In the case of the free resolution, M(F (X•)) = ΩX .
FGG prove the following important result. Suppose we have a map X →

G from a set to a group. The set X ×G becomes a rack under the operation

(x, f)(y, g) = (y, gf−1xf)
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(where we leave the mapX → G undenoted). Proof: (x, f)(z, h) = (z, hf−1xf),
so

((x, f)(y, g))(x, f)(z, h)) = (z, (hf−1xf)(f−1x−1fg−1)y(gf−1xf)) = (z, hg−1ygf−1xf)

while

(x, f)((y, g)(z, h)) = (x, f)(z, hg−1yg) = (z, (hg−1yg)f−1xf) .

Theorem. (FGG) The free rack on a set X is given in terms of the inclusion
of X into the free group GX by

FX = X ×GX .

For example, the free rack on a singleton is Z with rack structure given
by xy = y + 1 for all x, y ∈ Z and inclusion sending ∗ to 1.

The free X-module functor FX may be expressed in terms of the free rack
functor F : Given a rack X, a set S ↓ X over X, and a rack Y ↓ X over X,
consider

MapSet/X(S, Y )

��

MapRack/X(FS, Y )

��
Map(S, Y )

��

MapRack(FS, Y )

��
Map(S,X) MapRack(FS,X)

Both columns are equalizers, so the top sets are canonically isomorphic. If
Y is in fact an abelian object in Rack/X, then this isomorphism leads to

MapSet/X(S, Y ) = HomX−mod(AbX(FS), Y )

so
FXS = AbX(FS) .
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