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Abstract. In 1972 Rafe Zahler noted that complex bordism thinks
that the Hopf map eta is non-nilpotent, and asked what the η-
localization of the Novikov E2-term was. Some forty years later,
Guillou and Isaksen asked the analogous question about motivic
homotopy groups over the complex numbers, where also η is non-
nilpotent. I will describe joint work with Michael Andrews in
which both questions are resolved.

Thanks for this invitation, it’s great to be back in Princeton, and great to
have the chance to pay respects to the memory of a great homotopy theorist
and a great contributor to the spirit and development of homotopy theory,
and to help Martin celebrate his birthday.

I want to talk about several localization theorems in homotopy theory.
Some are old - dating back to a time even before Martin and I overlapped
in Seattle, in the early 1980s - and some are newer, representing work of
Michael Andrews and some joint work I’ve done with him.

I guess the starting point is Serre’s observation that in the stable range
– that is, for spectra – rational homotopy can be computed, and it is just
the rational homology. (Of course he had a lot to say about arithmetic
localization, too.)

The Adams spectral sequence lets us make this more quantitative. This
talk is going to be all about the Adams spectral sequence, so let me draw it
for you. It has the form

H∗(A;H∗(X)) = E2(X) =⇒ π∗(X
∧)

where A is the dual of the Steenrod algebra, and H∗ denotes its cohomology
with coefficients in the comodule given by the mod p homology of a spectrum
X. It’s traditionally displayed with the topological dimension along the
horizontal axis and the filtration degree along the vertical, so dr goes one
step left and r steps up. Let me write

v0 ∈ E1,1
2 (S)
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for the element representing p on the sphere. It acts on E2(X) for any X,
and we can localize by inverting it. The claim is that if M is a bounded
below A-comodule then

v−10 H∗(A;M) = H(M ; β)⊗ Fp[v±10 ]

and, moreover, the localization map

H∗(A;M)→ v−10 H∗(A;M)

is an isomorphism above a line of slope 1/(2p − 2). In fact above this line
the entire Adams spectral sequence concides with the homology Bockstein
spectral sequence.

Now suppose that p is odd. Then S/p is a ring spectrum, there’s a nonzero
class v1 ∈ π2p−2(S/p), and we can localize by inverting it. While a postdoc
at Northwestern, I proved

Theorem. π∗(v
−1
1 S/p) = Fp[v±11 ]⊗ E[α1].

where α1 is the first element of order p on the bottom cell of S/p. This was
supposed to be obvious from the Novikov spectral sequence, which Doug and
Steve and I had been studying under the tutelage of Peter Landweber and
Jack Morava. Jack had in effect proven that

v−11 E2(S/p;BP ) = Fp[v±11 ]⊗ E[α1]

which is the right result but there’s a convergence problem (pointed out to me
by a student of Arunas Liulevicius named Ron Ming): the operator v1 acts
horizontally in this spectral sequence, so you could infinitely many torsion
bits assembling by extensions to an unexpected v1-torsion free summand.
This is a case of the “telescope conjecture.”

An idea of Novikov’s lets you have your cake and eat it too: There’s a
square of spectral sequences

H∗(P ;Q/v0) +3

��

E2(S/p;BP )

��
E2(S/p;H) +3 π∗(S/p)

Here
P = Fp[ξ1, ξ2, . . .]

2



is the Milnor dual of the algebra of reduced powers, and Q is the associated
graded of the p-adic (or Adams) filtration of BP∗,

Q = Fp[v0, v1, v2, . . .]

The top spectral sequence comes from the p-adic filtration of BP∗ and is
called the “algebraic Adams-Novikov spectral sequence.” The left spectral
sequence comes from an extension of Hopf algebras. They are both purely
algebraic.

Novikov understood that the left spectral sequence collapses, because the
Steenrod algebra at an odd prime is actually bigraded by the Novikov degree
or “number of Bocksteins.” He hoped that this would show that the right
hand spectral sequence would collapse. This was too ambitious, but there is
a relation. I proved (and Michael and I now have a clearer proof) that d2 in
the bottom spectral sequence is given up to filtration by d2 in the top (and
purely algebraic) spectral sequence. These are the “BP -theoretic” Adams
differentials.

I was able to calculate the v1-localization of the left E2 terms:

v−11 E2(S/p;H) = Fp[v±11 ]⊗ E[hn,0 : n ≥ 1]⊗ Fp[bn,0 : n ≥ 1]

where hn,0 is a class related to ξn and bn,0 is its transpotence.

Invert v1 and write K = Fp[v±11 ]. Then:

K ⊗ E[hn,0]⊗ Fp[bn,0]
d2hn+1,0=v1bn,0 +3

=
��

K ⊗ E[α1]

��
v−11 E2(S/p;H)

d2hn+1,0≡v1bn,0 +3 π∗(v
−1
1 S/p)

The differential in the algebraic Novikov spectral sequence comes from a fairly
elementary fact from the theory of formal groups. Novikov’s comparison
principle then implies the Adams differential, up to a certain filtration. But
that’s enough to conclude that

E3(S/p;H) = E∞(S/p;H) = K ⊗ E[h1,0]

So there can be no Adams differentials, and the localizaton theorem follows.

The localization map

E2(S/p;H)→ v−11 E2(S/p;H)
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is an isomorphism above a line of slope 1/(p2 − p− 1). The E2 term for the
sphere in that range looks like a complete mess. But the cofiber sequence
S→ S→ S/p gives us a “Bockstein” spectral sequence starting with E2(S/p)
and converging to E2(S). This spectral sequence can be localized, and using
it Michael Andrews, in his thesis, was able to compute the odd-prime Adams
E2 page for the sphere above a line of slope given by powers of b0; that is,
a fraction of the E2 term converging to 1 as p → ∞. I have them written
down here; perhaps you will take my word for it when I tell you that they
are very simple.

p[n] = pn−1 + · · ·+ 1 , an = v−p
[n]

1 hn,0.

Then
dp[n]v

pn−1

1 = vp
n−1

1 an , dpn−1an = v−p·p
[n]

1 bn,0

He had to understand the structure of Bockstein spectral sequences such as
this one in detail. Andrews was then able to go on to analyze the Adams
spectral sequence in this range. The first differential, d2, kills off everything
except what’s needed to produce the known representation of the Image of
J . To produce ImJ requires differentials of arbitrarily high order; as far
as I know this is the first verification of the failure of the Adams spectral
sequence for the sphere to collapse at any finite stage.

Now, what about p = 2? The BP -based Adams spectral sequence seems
much dumber than the classical H-based Adams spectral sequence at the
prime 2. Right off the bat, it thinks that η is non-nilpotent. In fact, Novikov
knew that the 1-line was cyclic in each odd topological degree (and used that
to prove the Hopf invariant one theorem, so BP wasn’t so dumb). Write
αn for those generators, so α1 represents η. Doug, Steve, and I showed that
α3, α4, etc, all support η-towers. Rafe Zahler asked what η−1E2(S;BP ) was.
But the question was left open, because we knew that η4 = 0 in homotopy.
(This is accomplished by the differential d3α2 = η4.)

Andrews and I can now answer this question: there are no more towers.
The proof is pretty simple: Localize the algebraic Novikov spectral sequence
by inverting η:

η−1H∗(P ;Q) =⇒ η−1E2(S;BP ).

But at p = 2, P is just A with degrees doubled. Under this doubling opera-
tion, η corresponds to v0, and I explained at the outset how to compute the
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v0-localization of H∗(A;M). Then it’s a simple matter to compute

η−1H∗(P ;Q) = L[v21, v2, v3, . . .] , L = F2[η
±1].

Then some elementary facts about formal groups (which actually go right
back to my very first paper, with Steve Wilson!) give

d2vn+1 = ηv2n , n ≥ 2

and so
η−1E2(S;BP ) = L[v21, v2]/v

2
2

You can see the monomials in v1 and v2 along the zero line, generating αn
by multpling by η. Still not so interesting; the Adams differential

d3v2 = η3

kills a unit, so E4 = 0.

But now we know that there are other universes, parallel to the standard
homotopy theory and sometimes quite close to it, containing the “motivic
homotopy theories” over fields. In them, it turns out that η is not nilpotent!
So it turns out that far from being blind, BP somehow knows about the
motivic world. The element η enters explicitly into Fabien Morel’s definition
of Milnor-Witt K-theory, which he showed to be isomorphic to the “co-weight
zero” part of the motivic stable homotopy ring over any field of characteristic
not 2. He observed that

η−1KMW
∗ (F ) = W (F )[η±1].

Several years ago Dan Isaksen asked what η−1π∗(SMot) was, at least over C,
and he and Bert Guillou made a conjecture and did a lot of computation in
that direction. We’ll restrict to F = C.

Po Hu, Igor Kriz, and Kyle Ormsby explained that there are analogues
of the spectral sequences in play above, and that the motivic BP -based
Adams E2 term is simply a polynomial extension of the classical one. This
polynomial generator corresponds to the element τ in the coefficient ring of
motivic cohomology. So we have

H∗(P ;Q)[τ ] +3 E2(SMot;BP )

��
π∗(SMot)
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The computation Michael and I did gives us the top line in

L[τ, v21, v2, . . .]
d2vn+1=ηv2n , n≥2 +3 L[τ, v21, v2]/v

2
2

d2v21=τη
3

��
L[v41, v2]/v

2
2

and again it’s easy to determine the d2 in the localized Novikov spectral
sequence. This gives us the result predicted by Guillou and Isaksen:

Theorem. (Andrews, Miller) Over C, π∗(η
−1SMot) = F2[η

±1, v41, v2]/v
2
2.

G&I’s approach was via the motivic Adams spectral sequence. We can
fill that in: Localize

H∗(P ;Q)[τ ] +3

��

E2(SMot;BP )

��
E2(SMot;H) +3 π∗(SMot)

Again, it’s not hard to compute the left hand d2, and we recover the compu-
tation of G&I of η−1E2(SMot;H). Then the transfer of differentials principal
lets us verify the conjecture they made about the Adams d2:

L[τ, v21, v2, . . .]
d2vn+1=ηv2n , n≥2 +3

d2v21=τη
2

��

L[τ, v21, v2]/v
2
2

d2v21=τη
3

��
L[v41, v2, . . .] d2vn+1=ηv2n , n≥2

+3 L[v41, v2]/v
2
2

So there are non-nilpotent operators in motivic stable homotopy theory
which are not “chromatic”: η does not correspond to a generator of BP∗.
It corresponds to ξ21 in the dual Steenrod algebra, rather than to one of the
generators. It’s natural to conjecture that the is a whole series of periodic
operators, corresponding to the squares of the ξn’s. The first one is η. Next
one should consider the mapping cone of η and ask for an operator there
of topological dimension 5 times a power of 2. This operator occurs in the
context of the Steenrod algebra in Margolis’s work and was well known to
Mahowald. Michael Andrews has in fact constructed such an operator. Mo-
tivic homotopy has a second “weight” gradation. η has weight 1. Michael’s
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operator has dimension 20 and weight 12. It’s the second “technicolor” oper-
ator, and will no doubt be followed by others. But perhaps there are just two
rows of operators, rather than the one present in classical homotopy theory.
Are there analogues of Morava K-theory whose role in life is to detect them?
And there are the other fields to think about.
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