Massey-Peterson Towers and Maps from Classifying Spaces
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The "Sullivan conjecture" [10] asserts that, given a finite-dimensional
connected CW complex X and a finite group G, the space XBG of pointed maps

from the classifying space BG to X has the weak homotopy type of a point.
This conjecture was resolved in the affirmative in [9]. It is then natural and
important to ask about the mapping space X2 for infinite dimensional spaces
X, The situation then appears to be far more complex, even, for instance, when

we take X to be the classifying space of a connected topological group. In

this paper I shall stage a2 raid into this area. As proof of the riches to be

found there, I offer the following!:

Theorem A. TFor any elementary Abelian 2-group E, the classifying space

functor B induces a weak homotopy equivalence

BE

Hom(E,SUz) + BSU2

from the discrete space of group homomorphisms from E to 5U to the

2
indicated pointed mapping space. In particular, HOm(E,SUZ) + [BE,BSUZI is

bijective.

The techniques used actually depend only on H*(X;Iz), but operate only
under the assumption that X 1is simply connected. Notice that if X 1is a
simply connected CW complex whose mod 2 cohomology is polynomial on a single

4~dimensional generator, then (X is 2-locally equivalent to SUZ' A natural

question arises: is X 2-locally equivalent te BSUZ? The following result

shows that as far as maps from BE are concerned X and BSU2 are

indistinguishable.

*The author is an Alfred P. Sloan Fellow and was supported in part by N.S.F, Grant
MCS-8108814(A0l) and MCS-8002780.
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Theorem B, Let X be a simply connected CW complex whose mod 2 cohomology
is a polynomial algebra on a single 4-dimensional class. Then [BI/2,X]
contains exactly twoe elements, one of which, call it f, induces a nontrivial
map in mod 2 cohomology. Moreover for any elementary Abelian 2-group E, the

map =

ﬁl(E;z/Z) = [BE,BI/2] + [BE,X]

induced by f 1s a bijection.

I will use the obstruction theory of Massey and Peterson ([8], [11, [7]).
This theory applies to simply connected spaces whose mod p cohomology is "very
nice" [4]. An unstable algebra B over the mod p Steenrod algebra A is
very nice provided that it is of finite type and admits a simple system of
generators whose vector space span is closed under the action of A. This is
admittedly an awkward condition, but it does include the classical Lie groups
and the complex and quaternonic Stiefel varieties, and at 2, the real Stiefel
varieties as well, The Massey-Peterson theory should be regarded as a plece of
light artillery, with which one can move quickly and execute small ambushes
before wheeling in the heavy simplicial guns of Bousfield and Kan [5]. I note
that a very elementary application of this theory shows that the algebraic
theorem from [9], quoted below as (3.1), ylelds the Sullivan conjecture for
elementary Abelian p-groups and simply connected spaces whose mod p cohomology

is finite and very nice; see (3.2) below. This result is in part contained in:

Theorem C, Let E be an elementary Abelian p-group. Evaluation of mod P

cohomology induces a map

* %
[BE,X] + Hom(H X,H BE)
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*
to the indicated set of A-algebra maps. If X is simply connected and H X 1is

very nilce, then this map is bijective.

Conjecture: This 1s still true 1f X 1s any simply connected space whose

mod p homology is of finite type.

The Massey-Peterson theory will be reviewed in Section 1, with some improve-
ments, due largely to J. R, Harper and A. Zabrodsky. A couple of technical
results are proved in Section 2, and a convergence theorem, due to A, K,
Bousfield, appears in Section 4. The theorems stated above are proved in
Section 3, by application of an algebraic result from [9].

1 am very grateful to John Harper, who tutored me patiently on Massey-
Peterson theory, and to Alex Zabrodsky, who suggested a proof of the key Lemma
1.11 in conversation at Aarhus and later proposed the marvellous property (1.7)
of Massey-Peterson towers used here to prove (1.11), I am also indebted to Pete
Bousfield, Gunnar Carlsson, Mark Mahowald, and Jeff Smith, for their help.
Finally, I thank the Mathematics Departments of Northwestern University and the

University of Cambridge for their hospitality.

§l. Obstruction theory.

I shall begin by recalling briefly the theory of Massey and Peterson [8],
[1], with improvements due to Harper [7] and Zabrodsky. Unless otherwise
specified, H*(X) denotes the moed p cohomology of X, p an arbitrary prime.

Mod p cohomology in its richest form is a functor from pointed spaces to
the category Cl* of augmented unstable algebras over the Steenrcd algebra A.
Let Cl;t denote the full subcategory of those of finite type. Formation of the
augmentation ideal gives a functor I to the category 24;t of unstable left
A-modules of finite type, and this functor has a left adjoint U [B8], [1]. It
is easy to verify that an object of Cl* is very nice in the sense of the

ft
#
introduction 1ff it is of the form U(M) for some M € z‘ft‘
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*
The functor U helps to relate algebra to geometry. The category z‘ft
has enough projective objects, and there is a contravariant assoclation P &
*

K(P} of a mod p generalized Eilenberg-MacLane space to a projective in 2{ft’

equipped with compatible natural isomorphisms
[
(1.1) “t(K(P)) 2 HomA(P.S(t))

(1.2) H (K(P)) = U(P),

=% t
where S§(t) = H (S$7).

* *
There is a functor I : Zlft * Zift left adjoint to suspension [ :
(1.3) HumA(ﬂH,N) = HomA(M,EN).

Since I 1s exact, 0 carries projectives to projectives, and the isomorphism

(1.2) is naturally compatible with Q:
(1.4) K(QP) = QK(P).
*
Now let X be a simply connected space such that H (X) = U(M), and let

*
M + P, be a projective resolution of M in zzft' There is a tower of

principal fibrations under X:

(1.5)

such that
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(1.6) ker(n*(xs) + 0 (X)) = ker(H*(XS) > H*(Xs+l)); and

(1.7) ks is induced by a null-homotopy of dsks-l' That is, there exists a

commutative square

hs 5-1
X,y —— BR(TP_))
ks—l m
d
s-1 5 s-1
K(fR Ps)-————+ K(Q P5+1),

in which 7 is the path-space fibration, such that the induced map
XS + K(ﬂsPs+l) of homotopy fibers is homotopic to ks. Here and below I write
d5 for any map induced by ds.

Property (1.7) was suggested by Zabrodsky. It appears to be a fundamental
feature of Massey-Peterson towers, and 1t may be possible to give a treatment
of the subject in which it occuples a central position. For the present,
however, I give a derlvation of it from other known properties in the next
section, and treat it as an axiom in this section.

By applying w, to (1.5) one obtains a spectral sequence with

5,0

E

= Exe®0L5(0) = T (0.

The Ext group here, and below, is computed in the category ZL;t, or,
equivalently, i1in 1lf. The goal of the present paper 1s to show that under
certain circumstances, the Massey-Peterson machinery allows one to draw
conclusions about [Y,X] for Y mnot even a suspension, given the assumptions

one expects to demand by analogy with thils spectral sequence.
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Theorem 1,8, Let Y be a connacted CW complex such that ﬂ*(Y;I) is of
finite type and p-torsion, and let X be a simply connected space such that
*

H (X) 1s of finite type and isomorphic to U(M). Consider the map

* %
H : [Y,X] ~+ HomA(M,H (¥)).

Then H* is (a) monic if ExtS(M,ﬁ*(ESY)) =0 for all s >0 and (b) epic
1f ExeStlo,E (25)) = 0 for all s > 0.

This theorem and the method of proof presented below are for the most part
due to Harper ([7] 2.2,1, for example). 1 have chosen a different set of
convergence conditions. Moreover, an improvement will be noticed in part (a),
for Harper proves only that, under the stated assumptions, f =% if £ = 0.
That proof is easier, requiring, aside from (l1.6), only the elementary fact
that ksis = ds’ where iS 5 K(HSPS) + XS is the inclusion of the fiber over
%, This restricted form of Theorem 1,8(a) is in faet all that is needed to
prove the cases of the Sullivan conjecture considered here, Theorems 3.2 and
3.3. The full stremgth of (1.8) is required, however, to prove the theorems
stated in the introduction.

Before starting the proof of Theorem 1.8, it is convenient to record a
couple of consequences of Zabrodsky's observation (1.,7). They both involve
principal actions, for which I need some notation. Given a map k : X + B, I
shall write «, : 1B x E + E , or just a, for the action of B on the

k k k

homotopy fiber Ek of k. Also, given £ : Y + Ek and h : Y + OB, I shall

write h * £ for the composite

vy xyMfop g & F,

k

The following lemma is a restatement of "primitivity of the principal action"

{7] 1.2.6.
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Lemma 1.9. The k-invariants are linear over the algebraic differential.

is, the following diagram is homotopy commutative.

5 o
————
K(n PS) x xs X
+d xk + k
5 =1 5

s s ¥ s
K(Q Ps*l} x K(Q Ps+1) K({Q P5+1).

Proof. Use naturality of the principal actions resulting from (1.7), and

the fact that 1y = @ - 0O

Corollary 1.10, Let f : Y > XS and h : Y K(QSPS). Then
* & *
ks(h £) dsh ksf. O
Lemma 1.11. The following diagram is homotopy-commutative.

dsxl
s 5
R(E__|) *x Xg=— K(AP)) * X_

prz a

X

It is In order to prove Lemma 1.1l that property (l1.7) was introduced

here. However, the proof of this lemma involves a technical result about

compatibility of varlous principal actions which, in order not to further delay

presentation of the proof of Theorem L.8, I have placed in the next section.

Proof of Theorem 1.B. I shall preve part (d), end leave the proof ef part (b),

which is similar and somewhat easier, to you. So let Y be a connected
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complex such that H,(Y) 1s of finite type, let X and M be as in the
statement of the theorem, and suppose that f,g : Y + X induce the same map in
cohomology. Then the composites fU'gU t Y+ X > K(PD) are homotopie, T will

and B

-1

now show that fs’gs Y + X + Xs are homotopic provided fS 1

are. By principality of XS + Xs-l’ thereris a map h : Y + K(QSPS) such
— * = *
that By h fs. Thus by (1.10), ksgs dsh ksfs. Now fs and g, both

1lift to X so ksf5 and ksgs are both null-homotopic, and since

s+l’
[Y,K(USPS+1)] is a group under *, it follows that dh = *. Thus

* 8 5, =% =% 5
h |R Ps € HomA(ﬂ PS,H (¥Y)) = HumA(PS,H (£7Y)) 1is a cocycle. By assumption, it
is therefore also a coboundary; that is, h factors through ds—l H K(ﬂsPsﬂl)
+ K(RSPS). Lemma 1.1l then implies that h * fS is homotopic to Es’ as
claimed.

Now the issue of whether the homotopies fS a B, together yield a

homotopy f = g 1s a question of convergence, and will be dealt with in

Section 4. This finishes my treatment of Theorem 1.8. []

§2. Two proofs.

It is now time to prove (1,7), The proof is based on:
Lemma 2.1. The composite

1KJS

§ : K(2°P ) x X —— k(A% ) x X+ X
s 5 ] s
induces a monomorphism in cohomelogy.

Proof. This follows from a comparison of the "fundamental sequences" [7]

associated to the vertical fibration sequences in the homotopy commutative

diagram
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K(2%p )xX —— K (%P )xx 2 x
s s S []
B ' n
s-1 s-1 PTy
PR(2°TP )X ——  PR(@TTP )X —= X
' ' ¥
L3
s-1 ini

k@ 'e ) — K(ns'lps)xx(ns'lps) . x(ns“lps)',

by analogy with the proof of [7] 1.2.6. [J

Lemma 2.2, The k-invariant kS may be characterized as the unique map k

such that (a) the diagram

k(%P yxx — ¥
-1 5 s
4 d xk + k
s

k®p  yxk(ep ) ¥ K(nsps+l)

5+1) s+}

is homotopy commutative and {(b) ki _ : X + K(°P ) 1is null-homotopic.
s s+l P

Proof. The k-invariant ks satisfies {(a) by virtue of primitivity of the

principal actiom, [7], and (b) since js lifts to j . On the other hand,

s+l

(a) and (b) together allow one to compute that

®

*
§ k = ds+1prl : K(QSPS)XX + K(QSP )Y; but 6 is monic by Lemmaz 2.1. [J

s+l
Proof of (1.7). It follows easily from the compatability of the splitting of
the fundamental sequence with the k-invariant ks—l that dsks—l *= %, Pick a

null-homotopy h, and lock at the commutative diagram




+ ks-l +

d
s=1 s-1
K(Q PS)———E K(S Ps+l)'

Any such k satisfles (a) of Lemma 2.2, as noted in the proof of -Lemma 1.9.
To complete the proof, it therefore suffices to alter h to another
null-homotopy hs such that the map k' induced on homotopy fibers satisfies

' = % s .
k js . Since js—l is epic in cohomology, k]s factors as EJS_I for

some & : X + K(QSP
s~-1

then hs = ¥ * h has the desired property. [}

5+1). If yx reverses paths and * juxtaposes them,

Proof of Lemma 1.l1l1. This is based on the following technical result about

principal actioms.

Proposition 2,3, Let h be a null-homotopy of a composite gf, and construct

homotopy fibers to produce a commutative diagram

F 5 oaz
4 4
B o+x % ez
YL 4E i

Then the homotopy fibers of k and of & are identical, and if we call this

common space E, then the following diagram is homotopy commutative.
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ﬂug*l‘*g
Sza%ﬁxE-f————)—a ﬂzzxﬂGXE————4 IGXE
™~ 1xa
R
S \‘21 ) uk
1"ZxE ——m E

To prove this proposition, draw pictures of the elements of the spaces
involved; you will see that the homotopy required is similar to the one showing
that a double loop space is homotopy commutative. It is convenient to remember
that when @Z 1is regarded as the homotopy fiber of =, it maps to PZ by
sending a loop to the reverse of its second half.

By including * inte 0G, we find that a, factors as ul(ﬂixl)

4
where {1 : 0Z + G 1is the natural map. Since 1 o Qg = %, this implies:

Corollary 2.4. Let h be a null-homotopy of a composite gf, and comstruct

homotopy fibers to produce a commutative diagram

E 5 F S oz

% +

& oz

+f 12

y Bz

Then
ngxl
q2yxE ——— 0°ZXE
pr2 +[1k
E

is homotopy-commutative. 0
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Lemma 1.1l follows from-an application of this Corollary to (1.7). []

§3. Applicationms,

To apply Theorem 1.8 when Y is a suspension of the classifying space BE

of an elementary Abelian p-group, I recall from [9] a basic vanishing theorem.

3

Theorem 3.1.

Let M be an unstable left A-module of -finite type. Then

%
Ext® (8,8 (Z"BE)) = 0

(a) forany s>nz20 and for s =n > 0; and

(b) for any s,n 20 if M 1is finite.

Theorem C follows immediately from this and Theorem 1.8,

Notice, by the
way, that since

n (PR, %) = (27 BE,X],

these theorems also imply:

Theorem 3.2, If E {s an elementary Abelian p-group and X a simply
connected space whose mod p cohomology is finite and very nice, then XBE is
weakly contractible.

Moreover:

Theorem 3.3. The Sullivan conjecture is valid for elementary Abelian p-groups
and spheres.

Proof. Since [En BG.SI] = ﬁl(En BG;Z) = 0 for any n 2 0 and any finite

group G, the Sullivan conjecture for G

arbitrary is trivial for X = 51.

The case of X = S® for m>1 with m odd or

P = 2 1is covered by Theorem
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3.1. The remaining case is dealt with using the following trick, which I owe

to J. R. Harper.

Let Jp—ISZk denote the skeleton of the James construction on S2k for
*
which H (JP_ISZk) = U(5(2k)). Let F2k be the homotopy fiber of the natural
*
map 82k + JP_ISZk. Then an easy computation shows that K (FZk) = U(M) where

M iz 0>

= Fak-17Y (2pk-2)pl

with trivial A-action. Since Ext 1is additive, we find that

s =% n
Ext”(M,H (£~ BE)) = 0, n,s 2 0,

SZ]()BE

and so, from Theorem 1.8, F&E 1s weakly contractible. Since (J is

p-1
too, from Theorem 3.2, the result follows from the homotopy long exact sequence
of a fibration. [J

Many other spaces which are not U(M)'s may be handled by analogous

tricks.

To prove Theorem B, let Mk be the A-module generated over ¥
i

i 2
{x, : 12k}, with |xif =2 and 5q° x; =x

g by

N Then U(Mz) is the
unique A-algebra which as an Fz—algehra 1s polynomial on a single 4-dimensional

generator. Thus Theorem C shows that
& —*
[BE,X] — HomA(MZ,H BE).

With E = I/2, the latter set clearly has order two, proving the first

*
assertion. Note that H (BZ/2) = U(MO), and that the nontrivial map BZI/2 + X
induces U(1) in cohomology, where 1 : M2 * Mo is the inclusion. Now the

rest of Theorem B follows from the commutative diagram
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= —k
[BE,BZ/2} — Hom, (M,,H (BE))
£+ 1+=

[BE,X ]—= HomA(Mz,ﬁ*(BE))

in which the bottom arrow is iso by Theorem C. 0O
Theorem 3.4. In the situation of Theorem B, the component of XBE which

contalns the trivial map is weakly contractible.

Proof. There are short exact sequences

of A-modules, with Mg_l finite, The long exact sequence induced in

" d
Ext (-,H (EnBE)). together with Theorem 3.1, shows that
s =* .n s % n,
Ext (Mk,H (L” BE)) -+ Ext (MO,H (L BE))

*
is an isomorphism. But MO is projective in the category U, so we

conclude that for all s> 0, n 2 0, and k2 0,
5 =%..n _
Ext (Hk,H (£ BE)) = 0.

Tt is easy to see that for n > 0, this group is also zero when s = 0; so,
putting k = 2, Theorem 1.8 gives

BE ,

m (X,%) = 2" BE,X] = 0, 0

It would be interesting to get information on the homotopy type of the

other components of XBE. When X = BSUZ' one may argue as follows., Since

the center of SU2 is 22, there is a group homomorphism 22 % SU2 + SUZ’

“"""""'WW-"I-.-l"llll'llllllll'Illlll'-l"I'.l.l!ll"ll.'.lll-llllll.lllIlllllllllﬂglﬂﬁfgﬁillllf
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inducing a pointed map B22 x BSU2 * BSUZ' Pass to spaces of pointed maps
BE

from BE; the Abelian group BZEE acts on BSU2 . If h : E + 22 is a

homomorphism, then the action by Bh provides a homotopy equivalence from the

E
component of BSUg containing the trivial map to the component containing

hf, where f : E22 o BSU2

proof of Theorem A.

is induced by the inclusion. This completes the

§4. Convergence,

The final task 1s to prove a convergence theorem. While Massey and
Peterson [8] did important work on this issue, it seems better to appeal to the
now standard work of Bousfield and Kan [5]; so move to the simplicial framework
by passing to singular simplicial sets. To relate a Massey-Peterson tower for

X to the p-adic completion (Z/p) X of [5], we have:

*
Lemma 4.1. Let X be a simply~connected space such that H (X) is of finite
type and very nice. Let (l.5) be a Massey-Peterson tower for X. Then {Xi}

and {(I/p)iX} are weakly equivalent prosystems,

Proof. By [5] IIT §5.5, p. 84 and induction, each X, is 1/p-nilpotent. By
(1.6), the first image prosystem {Im(H,(X,) » H, (X, |))}} is the constant
system (H,{(X)}. Thus {Xi] is a Zfp-tower for X, so the result follows
from [5] TIII §6.4, p. 88. I}

According to [5] VIII §3, homotopy classes of maps agree in the categories
of €W complexes and of simplicial sets; so the following theorem is

sufficient for our purpose.

Theorem 4.2. Suppose that X is connected and nilpotent and that Y 1is
connected with ﬁ*(Y;z[%]) = 0., Then the map X + (Z/p)_X induces an

equivalence of pointed mapping spaces
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X > (/e 1Y,

The statement of the theorem in this generality and the proof piven here

are both due to A. K, Bousfield, and I anm grateful to him for allowing me to

reproduce them.

Proof. Recall from [6] that there is, up to homotopy, a fiber Square

X My Xp/9
+ +
Xm (HE lel)w

where XA denotes the Bousfield H,(-;A)-localization of X [2]., Thus there

is, up to homotopy, an analogous fiber square of pointed function spaces with

source space Y, Now Proposition 12.2 of [2] easily implies that CB is

contractible whenever B 1g h,-acyclic and C 1is h,-local. Taking h () =

H*(w;z[%]): it follows that (ZA)Y = * for any space Z, where A = Q or

A=1/0 with 1 prime to p. Thus the fiber square implies that the map

)Y

Y
X" (lep

is an equivalence, and the proposition follows since XZ/p = (Z/p)mx by §4 of
(21. a
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