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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 295, Number 1, May 1986 

S1-EQUIVARIANT FUNCTION SPACES 
AND CHARACTERISTIC CLASSES 

BENJAMIN M. MANN EDWARD Y. MILLER AND HAYNES R. MILLER 

ABSTRACT. We determine the structure of the homology of the Becker- 

Schultz space SG(S1) Q(CP+°° /\ S1) of stable Sl-equivariant self-maps 

of spheres (with standard free S1-action) as a Hopf algebra over the Dyer- 
Lashof algebra. We use this to compute the homology of BSG(S1). Along 
the way we give a fresh account of the partially framed transfer construction 
and the Becker-Schultz homotopy equivalence. We compute the effect in ho- 

mology of the ''S1-transfers CP+°° /\ S1 Q((BZpn)+) n > 0 and of the equivariant J-homomorphisms SO Q(RP+°°) and U Q(CP+°° /\ S1). By composing we obtain U QS° in homology answering a question of J. P. 

May. 

Introduction. Let H be a compact Lie group admitting a finite-dimensional 
orthogonal representation W such that H acts freely on the unit sphere sW. H 
must thus be S1, S3) the normalizer of S1 in S3) or one of a known list [13] of finite 
groups with periodic cohomology, including (as subgroups of S3) the cyclic and 
generalized quaternion groups. Let EndH(sW) denote the space of H-equivariant 
continuous self-maps of sW. By joining with the identity map we obtain inclusions 
EndH(s(nW)) C EndH(s((n+ l)W)), and we write G(H) for the direct limit. The 
homotopy type of G(H) was determined by J. C. Becker and R. E. Schultz [2], and 
turns out to be independent of W. If we write SG(H) for the component of G(H) 
containing the identity map (so SG(H) = G(H) if H is connected), then in [3], 
Becker and Schultz (see also [9] in case H is finite) enrich the composition product in 
SG(H) to an infinite-loop space structure. The classifying space BSG(H) classifies 
oriented spehrical fibrations with a fiber-preserving H-action modelled on s(nW), 
stabilized by forming fiberwise joins with the trivial H-fibration with fiber sW. 

In this paper we determine the modp homology of SG(S1) and of BSG(S1) as 
Hopf algebras over the Dyer-Lashof algebra. Along the way, we compute the effect 
in homology of the "forgetful" maps SG(S1) ) SG(Zpn) and of the equivariant 

J-homomorphisms Jz2: SO SG(Z2) and isl U SG(S1). 

The starting point for our analysis is the study of certain "transfer" maps. §1 
is devoted to an account of the constructioll and general properties of these maps. 
In §2 we study certain transfers t associated to an inclusion K c H of compact Lie 
groups. If E is a smooth principal H-space, then 

t: (E/H)¢H Q((E/K)¢K ) 

where W;H is the vector-bundle obtained by mixing E 1 E/H with the adjoint 
representation of H on its Lie algebra, the superscript denotes formation of the 
Thom space and QX is the enveloping infinite loop space of X. 
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Then in §3 we describe a map 

ty: EndH(E) Q((E/H)¢H ) 

generalizing a variant of a construction of Becker and Schultz [2]. We show that 
if K c H) then the inclusion EndH(E) c EndK(E) corresponds under ty to the 
transfer t. If H is a "periodic" Lie group as above, then we obtain from ty a map 

5 G(H) Q(BH¢) 

which was shown by Becker and Schultz to be a homotopy equivalence. In partic- 
ular, SG(S1) = G(S1) is homotopyequivalent to Q(CP+ A S1). 

§4 is devoted to the evaluation in modp homology of the transfer 

tn: CP+ A S1 ) Q(BZ+n)) n > O, 

associated to the inclusion Zpn c S1. This is one of our principal technical results. 
We give the statement here for n = 1. Let ar E H2r+1tCP+ ASl) and er E hr(BZp) 
be the standard generators (see §4), and let X be the canonical antiautomorphism 
on H*(QX) 

THEOREM A . For p = 2, 

tl*ar = E e2>+l * xe2(r_r) + E Qt+let * (xer_t)*2. 

t 

For p > 2, 
tl*ar = E e2>+l * xe2(r_>). 

Since transfers compose well, and the transfer associated to 1 c Zp essentially 
defines the Dyer-Lashof operations, it is easy to deduce from Theorem A the effect 
of to in homology; the formulae are given in Theorme C, and in Theorems 4.4 and 
4.5. An easy filtration argument (carried out in §7) results in the 

C OROLLARY . For p = 2, 

t0*: H*(Q(CP+ A S1)) ) H*(QS°) 
is injective. For p odd, 

tl* H*(Q(CP+ A S1)) H*(QBZ+) 

is injective, while to* is not. 

§5 is dedicated to a study of the equivariant J-homomrphisms 

iZ2 SO ) SG(Z2) QRP+ X is1: U ) SG(S1) Q(CP+ A S1) 

Let 
Ac: CPn-1ASl U(n) 

send a pair (1, z), where I c Cn is a complex line and z E C has lZl = 1, to the 
unitary transformation which is the identity on 11 and multiplies by z on 1. Then 
we have the following theorem. 
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THEOREM B. The composite 

CP+°° A S1 >> U is1 Q(CP+°° A S1) 
is homotopic to the standard inclusion. 

There is a real analogue; see Theorem 5.1. Theorems A and B have as a corollary 
the determination of the image of the generators of H*(U) under the classical com- 

plex J-homomorphism Jc: U QS° in terms of the loop-structure in H*(QS°). 

For p odd, this resolves a problem left open by J. P. May in [5, pp. 121-123]. 
THEOREM C. The image of ar E H2r+l(u; Zp) under Jc* is 

Jc*ar = E Q [1] * XQ ( 8)[1] * [1] 

+ E Qt+lQt[l] * (XQr t[l]) * [1] 

for p = 2, and 

Jc*ar = (-l)k Es dQ8[1] * XQk-8[l] if r = (p - 1)k - 1 
= O otherwise 

for p odd. 

The infinite-loop structure of SG(H) is very different from the natural infinite- 
loop structure on Q(BH¢H). In [11], R. E. Schultz described the composition 
product in terms of the transfer associated to the diagonal embedding /\: H 
H x H. For H finite, this theorem is recovered and extended in [8]; and by the 
Corollary to Theorem A, this case suffices for present purposes. In §6 we combine 
this with Theorem A to prove the following result, which completely determines 
the composition product o in H*(SG(S1)). 

THEOREM D. For p = 2, 

aq o ar = aq * ar + (q - s, r - s)Q2(q+r-8)+la 

+ (q-2t, r-2t)Qq+r+lqq+r-2ta 

For p odd, 
aq o ar = aq * ar + E c(q, r, t):Qtaq+r+1_(p_l)t, 

t 

where 

(q) ) ) #( ) ( r ) ( t - k ) 

We then appeal to results of [8], relating G(H) for H finite to the multiplicative 
structure in a certain EOO-ring space A(H), the "Burnside space" of H, introduced 
(as a space) by G. Segal [12]. By the Corollary to Theorem A, the relationship 
between the Dyer-Lashof operations in SG(S1) and the *-product and loop Dyer- 
Lashof operations in Q(CP+°° A S1) are implied by analogous relationships for Zp. 
These formulae show how the Dyer-Lashof action on ar (given, in view of Theorem B 



236 
B. M. MANN, E. Y. MILLER AND H. R. MILLER 

and the fact that iS1 is an infinite-loop map, by Kochman's formula [7]) determine the action on all of H*(SG(S1)). 
We turn next to a "global" analysis of H*(SG(S1)) by means of a "weight valuation". In §7, we prove 
THEOREM E. H*(SG(S1);Zp) is a primitively generated Hopf algebra. For P = 2 

H*(SG(S1)) -H*(U) X P[ar2: r > 0] 

@ H* (Q(CP+ A S1 ))//P[ar: r > O], and for p odd, 
H* (SG(S1 ))- H* (Q(CP+ A S1 )) 

as Hopf algebras. 
Finally, we follow [10, 5 and 8] in using the classifying-space spectral sequence and Dyer-Lashof operations to prove (using the usual Dyer-Lashof notation [5, p. 16]) 

THEOREM F. As Hopf algebras, for p = 2 
H* (BSG(S1 ))- H* (BU) X E[aQ2r+lar: r > O] 

@ p[Q2r+2ar: r > O] 
XP[aQIar: I admissible, I(I) > 1, e(I) > 2r+2, r > O], and for p odd, 

H*(BSG(S1))- H*(BU) X S[a/3£Qr+lar: E = O or 1, r > 0; 
@ S[aQIar: I admissible, I(I) > 1, e(I) + b(I) > 2r + 2, r > 0;. Here S denotes the free commutative algebra. 

We wish to thank J. P. May for an instructive correspondence about signs. This work was done in 1977-1979, when the authors were at Harvard University (Mann and H. Miller) and M.I.T. (E. Miller). During this time all three authors were partially supported by the NSF. 
1. Generalitie# on the tran#fer. In this section we recall the definition of the transfer, generalized slightly to allow twisting by a vector bundle. We then catalogue various properties which will be used later. All manifolds will be smooth, and we write r(M) for the tangent bundle of M. Let lr: E ) B be a smooth map between closed manifolds. Choose an embedding j: E > -B of E into the trivial vector bundle over B of fiber-dimension k, such that 

(1.1) 
X ", / pr 

B 
commutes. (For example, embed E into Rk by i, and let j have components (lr, i).) Write zJ(;) for the normal bundle of j. The Pontrjagin-Thom construction then yields a map of Thom spaces: 

B+ A Sk- B- Elo(i) 

(1.2) 
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Given any vector bundle ¢ over B, we may compose j with the axis embedding 
_B ) ¢ @ kB; the Pontrjagin-Thom construction then gives a "twisted" form of 
(1.2) 

(1.3) Bf A Sk- B¢@- , Es ¢@v(i). 

Given also a bundle 4 over E, a relative framing of lr, (, ¢ is a bundle isomorphism 

(1.4) 0: X f @ V(j) -( @ kE 

(or, rather, an equivalence class of pairs (j, p)). We then obtain a stable map 

(1.5) t1r = t1r,+: Bf Ee 

called the transfer associated to 7r, (, ¢ (with (j, ) understood). 
If lr is a submersion, we have a natural exact sequence of vector bundles 

(1.6) 0 , r(X) , r(E) X*T(B) , O 

in which r(lr) is the bundle of tangent along the fiber of lr. For any embedding j as 
in (1.1), there is a natural exact sequence 

° ) 7(T) )-E ) >(i) ) ° 

Since k has a natural metric, we have a natural splitting: -E 

(1.7) 7(7T) @ I>(j)--E 

A relative trivialization of lr, (, ¢ is a short exact sequence 

(1.8) 0 (T*¢r(T) ) O. 

A choice of metric in lr*¢ splits (1.8) and gives an isomorphism 

(1.9) GT f-4 @ 7(7T). 

Combining this with (1.7), we have defined a relative framing 
(1.10) 4: lr*¢ @ IJ(j)-( @ T(7T) @ I/(j)-( @-E 

The homotopy class of the associated transfer tX,¢,: Bf ) Ed is independent of 
choice of metric in lr*¢, because the homotopy class of the homeomorphism 

EX ¢@>(i) Ed@T(X)@v(i) 

is. All the relative framings we deal with here arise in this way. 
We now note several features of the transfer. 
Note 1.11. Fundamental classes. In case B is a single point and ¢ = O, the map 

(1.3) gives a stable homotopy class 

[E]ESn(E ( ))) 

where zo(E) is the zero dimensional virtual normal bundle of E and n is the dimension 
of E. This is the stable homotopy fundamental class of E, with twisted coefficients. 
A framing of E gives rise to a class [E] E Sn(E); and pinching E to a point produces 
a class in the stable homotopy of spheres, Sn(*) namely, the usual Pontrjagin- 
Thom class of the framed manifold E. 
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Note 1.12. Fundamental class of a framed map. In case ( = 0 and dim¢-= 
dimE - dimB = n, the transfer (1.5) composed with the pinch map E ) * gives 
a stable cohomotopy class 

e(7r ) E S-n(B¢-n) 
This is the stable fundamental class of lr, with twisted coefficients. A framing 
¢ @ k- n @ k gives rise to a class e E S-n(B), the Pontrjagin-Thom class of the 
framed map ir. 

Note 1.13. Composition with the projection. Suppose that lr is a fibration with 

fiber F, and that we are given a trivialization zJ(j) (k - n)E, n = dimF. Then 

F has a well-defined framing, and so defines [F]: Sk ) sk-n. Then the diagram 

B¢fE3- t EX f@(k n) 

11 1s 

Bf A Sk [ ] Bf A Sk-n 

commutes. 
Note 1.14. Products. Let lr': E' ) B', (',¢' be another relatively framed map. 

Then lr x lr', ( x (', ¢ x ¢' has a natural relative framing, and the diagram 

(B x B)¢x¢ t, (E x E')(X(' 

11 11 
Bf A B'¢' twAtw, Ed A E'( 

commutes. 

Note 1.15. Compositions. Let lrl: E1 E, 41, ( be a relatively framed map to 

E. Then lr o lrl: E1 ) B, 41, ¢ has a canonical relative framing, and the associated 
transfer is given by the composite: 

tXoX1 = tX1 o tX 

Note 1.16. Pull-backs. Let f: B' B be a smooth map transverse to lr, and let 

7r': E' ) B', (', ¢' be the pull-back of lr, (, ¢ along f. Then lr', (', ¢' has a canonical 
relative framing, and the diagram 

B'¢ f Bf 
t/ l lt7r 

E'( f Ef 
commutes. 

Note 1.17. Reframings. The transfer can be interesting even in case E = B, lr = 
id, and ( = ¢. One then has the canonical framing : ¢ ) ¢ by the identity. Then 
a smooth map A: B ) O(k) induces a new relative framing 

1 @A: ¢@_ ¢@_, 

where )v(b, v) = (b, )v(b)v), with an associated transfer t1 : Bf ) B¢. If J: O(k)+ 
) S° is the stable map adjoint to the inclusion O(k) c O c QS°, then tl X is the 

composite 

t1,> Bf Bf A B+ 1AJ>+ Bf A S°- Bf 
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Using Note 1.15, the transfer associated to reframings of more general maps may 
also be expressed in terms of J. 

2. Transfers a##ociated to Lie groups. Let H be a compact Lie group and 
E a compact smooth principal right H-space. H acts also from the left on its Lie 
algebra fi by the adjoint action; and E/H thus supports a canonical vector bundle 

¢ = fH = E XH e , 

called the adjoint bundle. In this section we show how the transfer endows the 
formation of the Thom space Ef with new functoriality, and apply the notes of §1 
to verify some properties which will be used in §4. 

To begin, one may easily check the following lemma. 

LEMMA 2.1. There is a natural short exact sequence of vector bundles over 
E/H 

° fH ) T(E)/H ) r(E/H) ) O. g Now let K c H be a closed subgroup, so that 7r: E/K E/H is a fiber bundle 

with fiber H/K. We have a natural commutative diagram of vector bundles over 
E/K, with exact rows and columns: 

o 

T(T) 

1 

O fK f (E)/K) (E/K) o 

1 11 1 

0 * fH * (T(E)/H) x* T (E/H) O 

1 
o 

The serpent lemma then provides a natural short exact sequence 

(2.2) 0 fK X fH (T) °, 

i.e., a relative trivialization (1.8) of 7r, fK, fH. There results a stable "transfer" map 

t: (E/H)¢H ) (E/K)¢K. 

If, for example, K is the trivial subgroup, then 

(2.3) t: (E/H)¢H E+. 

These maps provide the construction (E/H)¢H with the following extended func- 
tionality. Consider the category whose objects are pairs (E, H), where H is a Lie 
group and E a compact smooth principal H-space, in which a morphism from 
(E, H') to (E, H) is a closed inclusion H' O H and an H-equivariant smooth map 

E' ) E. Then (E, H) (E/H)¢H describes a functor into the stable homotopy 

category. 
By approximating BH by manifolds, we may contruct a stable map 

t: (BH)¢H > (BK)¢K 
(2.4) 
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from a closed inclusion K C H which is well defined up to weak homotopy. 
This gives the suspension spectrum of (BH)¢H a contravariant functoriality on 
the cateogry of Lie groups and closed inclusions. 

We now prove three lemmas which will be useful later. 
Let K c H be a closed normal subgroup, and E a smooth principal H-space. 

Then 

E/K x H/K E/K 

(2.5) l pr1 l T 

E/K E/H 

is a pull-back diagram if oe is the H/K-action map oe(xK, h) = xhK. This ac- 
tion lifts to make fK an H/K-equivariant vector bundle over E/K; so we have a 
canonical bundle isomorphism 

°t fK-fK X O 
over E/K x H/K. Thus the pull-back property (Note 1.16) of the transfer asserts 
that the diagram 

(E/K)¢K@T(X) (E/H)¢H 

(2.6) 1 tprl 1 ts 

(E/K x H/K)¢KX_ (E/K)¢K 

is homotopy-commutative. Now lr is a principal H/K-bundle, so a choice of orien- 
tation for H/K determines a natural trivialization for r(lr). Now using Notes 1.14 
and 1.11, the diagram (2.6) leads to the following lemma. 

LEMMA 2. 7. Let K c H be a closed normal subgroup of codimension n, and 
let E be a compact smooth principal H-space. Then, with the above notations, the 
following diagram is homotopy commutative. 

(E/K)¢K A Sn (E/H)¢H 

1 1A[H/ff] 1 ter 

(E/K)¢K A (H/K)+ (E/K)¢K 

Here [H/K] is the class of H/K with the chosen orientation and the corresponding 
right-invariant framing. g 

this is a degenerate form of a "double coset formula", and its proper generaliza- 
tion should be of great interest. 

LEMMA 2.8. Let H be a compact Lie group of dimension n, and let E be a 

compact smooth principal H-space with base point * and projsetion 1r: E E/H. 

The diagonal inclusion /\: H ) H x H iduces /\: (E x E)/H ) E/H x E/H. 

Let j: E ) (E x E)/H be the map e ) (e, *)H and let i: E/H E/H x E/H be the inclusion on the first factor. Note that j* (¢H) _ and i* (¢H X fH) fH @_ 

Under these identifications 

(E/H) fH A Sn (E/H) fH A (E/H) fH 

1 terAl l tz 

E+ A Sn 2 ((E x E)/H)¢H 
commutes up to homotopy. 
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PROOF. The diagram 

E A (EXE)/H 

1s 1t 

E/H E/HXE/H 

is a pull-back, so Note 1.16 gives the result. g 
Now let H be an Abelian compact Lie group with multiplication ,u: HXH )H. 

Since ,u is a group-homomorphism, the classifying space BH inherits a product ,i, 

and the inversion x X-1 in H induces a self-map X of BH.H acts trivially on 

its Lie algebra, so the bundle ¢ has a canonical trivialization. Furthermore, ,u is 
covered by a bundle map ,i: _ x ¢ ) ¢, including an action map 

H BH+ABHF ,BH¢. 

Let t: BHF , S° be the transfer associated to the inclusion of the trivial subgroup. 
The following lemma (due to R. Schultz [11] in the case H is finite) computes the 
transfer t<, associated to the diagonal subgroup HCHXH, in terms of t. 

LEMMA 2.9. With the above notation, the following diagram is weak homotopy- 
commutative: 

BH¢ABHF (B(HXH)¢HXH 
1 hA1 

BH¢ABH+ABHF 
1 lAX+Al l tz 

BH¢ABH+ABHF 
1 1Ay 

BH¢ABHF lAt BH¢AS° BHF 

PROOF. Apply the composition property (Note 1.15) of the transfer to the 
commutative diagram 

BH BHXBH 

il X 1 a 

BHXBH 

where a(x, y) = (x, x(x)y) and i1(x) = (x, 1). Of course the transfer associated to 
the diffeomorphism a is just the inverse of the map a induced on Thom spaces; so 

ta =ti1 oa. 
Now the left leg of Lemma 2.9 is a, and the bottom composite, by Note 1.14, is 
til. O 

3. The Becker-Schultz map. We now describe the "graph" construction 

ty: EndH(E) ) Q((E/H)¢)) 

which is a variant of a construction of Becker and Schultz [2]. Here H is a Lie 
group, E a compact smooth principal H-space, EndH(E) denotes the space of H- 
equivariant conditions self-maps of E, and QX is the enveloping infinite loop space 
of the space X. 
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Choose an embedding of B = E/H in a Euclidean space R8, and let Iv denote 
the normal bundle. We have the usual Pontrjagin-Thom collapse 

(3.1) c:Ss yB>. 

Let f: E --> E be an equivariant map, and form the "graph" f': E > E2 by 

f'(e) = (e,f(e)). This is equivariant, and we get a map f': B E2/H of orbit 

spaces. If pr1: E2/H > B is induced from projection to the Srst factor, then 
_ 

prl o f' = 1. Thus f' is covered by a bundle map v > prlao, and we get a map 

f': Bv (E2/H)prllo 

on Thom spaces. This construction depends only on continuity of f, and depends 
continuously on f, so we get a map 

(3.2) EndH(E)+ A Bv (E2/H)Prlt9. The reduced diagonal i\: B E2/H has normal bundle isomorphic to 7(E)/H, 

which, by Lemma 2.1, is isomorphic to r(B) (E3 ¢. Since A prlao = >, we get a 
transfer 

(3 3) ti,: (E2/H)PrlM --> B>@T(B)@3¢- Bf A Ss 

The composite of EndH(E)+A (3.1), (3.2), and (3.3), gives a pointed map 

ty: EndH (E)+ A Ss > Bf A Ss . 

The map ty is obtained by composing the adjoint of tYs with the inclusion Q8S8Bf 
QB¢, and is, up to homotopy, independent of choices. We may also compose with 

a map B > BH classifying E B, to obtain a map ty: EndH(E)+ QBH¢. 

The following naturality result is due essentially to Becker and Schultz [2, 5.16]. 

THEOREM 3.4. Let K be a closed subgroup of the Lie group H, and let E be a 
compact smooth principal H-space. Then 

EndH(E) a Q((E/H)¢H ) 
l inc 1 t 

EndK (E) 5 Q((E/K)¢K ) 

commutes up to homotopy if t is the infinite-loop extension of the transfer t as- 

sociated to the canonical framing (2.2) of 1r: E/K E/H. 

PROOF. BY Notes 1.12, 1.15, and 1.16, we have a homotopy-commutative dia- 
gram (in which the subscripts indicate the groups involved) 

Ss (E!H) H t (E2/H)Pr*> a (E/H)¢H A S 

CK \ l t l t l t 

(E/ff)>K f (E2/ff)pr;>K (E/K)¢K A Ss 

from which the theorem follows. O 
We will usually study ty by mapping some compact smooth manifold M into 

EndH(E), in such a way that the reuslting equivariant map f: M x E E is 
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smooth. Moreover we will arrange that the reduced graph f': M x B E2/H given by f'(m, e) = (f (m, e), e) is transverse to A: B E2/H. Then the pull-back 

property (Note I.16), applied to the pull-back diagram 

r A B 
41 1 A 

(3 5) p { M x B t E2/H 
\ 1 prl 

M 

shows that 
M+ 2 Qrs*¢ 

1 f Qs 
EndH (E)+ < QB 

commutes up to homotopy. 
In [2], Becker and Schultz consider principal H-spaces arising as the unit sphere 

sV of an orthogonal representation V of H. They construct a map 

A: EndH(sV)+ > Q(sV/H). 

The description [2, 5.6] of A shows that it is identical to ty except that i\ is 
replaced by the antidiagonal A-(u) = (u,-u); the identification (Theorem 3.4) is 
essentially the transfer t\-. Let A(u) = -u denote the antipodal map. We have a 
commutative diagram, for any f E EndH(sV), 

(E2/H)Prlv 
f jt \ tzs- 

(3.6) Bl' 1 lxA Bf A Ss 
Af- \-, /7 tiv 

(E2 /H)Prlv 

so we find that 

EndH (sV)+ 

(3 7) 1 (Ao) QBf 
/X r 

EndH (sV)+ 

commutes up to homotopy. 
When H admits a finite dimensional orthogonal representation V such that the 

unit sphere sV is a principal H-space, the maps ey are compatible under joining 
with the antipodal map, and given, in the notation of the introduction, a map 

(3.8) q: G(H) > Q(BH¢)* 

THEOREM 3.9 (BECKER-SCHULTZ [2]). ty is a homotopy-equivalence. 

We refer the reader to [2] for the proof. 
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THEOREM 3.10. LetH = id. If dimV is even, then (f) = 1- [f] whereas -if 
dim V is odd, then (f ) = 1 + [f] . 

PROOF. [2, 6.13] shows A(f) = 1- [f]. (There is amistake in the original 
proof of this fact in [2] but Becker (private communication) has given a correct 
proof.) The corrected proof shows that A(f) = 1 + [f] when dimV is odd. The 
even dimensonal case follows directly from (3.7) and [2, 6.13]. 

Finally, we recall R. E. Schultz's expression for the composition pairing o: G(H) 
xG(H) ) G(H). Let i\: H ) H x H be the diagonal inclusion, and let 

#: QBHf x QBHf t Q(B(H X H)¢HXH) t QBHf 

where ta is the transfer associated to 1\. Then 

THEOREM 3.11 (SZHULTZ [11]). The composition pairing o is homotopic 
(under the identification ) to the composite 

(QBH¢)2 /\2 (QBH¢)4 1x#xl (QBH¢)3 QBHf 

4. The homology of the U(1)-transfer. Let U(1) act by multiplication on 
S2m-1 c cm. There results (2.3) a stable transfer map 

cp+m-1 A S1 ) S2m-1 

using the canonical trivialization of the adjoint bundle to identify the source. Pinch- 
ing S2m-1 to a point gives an "Euler class" CP+m-1 A S1 ) S°. These are com- 
patible over m, and give a stable map 

(4.1) CP+°° AS1 S°. 

This is precisely the map considered by K. Knapp in [6]. We will compute the 
homology of its adjoint, the pointed map 

(4n2) to: CP+°° A S 1 QS° . 

Actually, the same work yields a computation of the homology of the transfer 
associated to an inclusion Zpn c U(1). If Ln denotes BZpnx then this is a pointed 
map 
(4 3) tn: CP+°° A S1 , QLn+. 

To state the results, let H* denote modp homology, p any prime. Let x E 
H2(CP°°) be the canonical generator, let ar E H2r(CP°°) be dual to xr, and let 
ar E H2r+l(CP+°° A S1) be the suspension of ar. Let u E Hl(Ln) and v = -:nu E 
H2(Ln) be the natural generators, and let er E Hr(Ln) be the dual of the monomial 

in dimension r. Embed Zpn into S1 so that the resulting map 7r: Ln CP°° pulls 

x back to v; then 7r*e2n = an 

THEOREM 4.4 . Let p = 2 and let tn be as in (4.2) and (4.3) . Then 
(a) to*ar = E ¢ Q28+1[1] * XQ2(r 8)[1] + St Qt+lQt[l] * (xQr t[l])*2. 

(b) tl*ar = E 3 e28+l * xe2(r_s) + St Qt+let * (xer-t)*2. 
(c) For n > 2, tn*ar = E 3 e2s+l * xe2(r_s) + St Q2t+le2t * (Xer-2t)*2 

THEOREM 4 . 5 . Let p be odd and let tn be as in (4.2) and (4.3). Then 
(a) tO*ar = (-l)k Et dQt[l] * XQk-t[I] for r = (p - 1)k - 1, and = O otherwise. 
(b) For n > 1, tn*ar = , e28+l * xe2(r_8). 
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PROOF. We apply Lemma 2.7 to Zpn c U(1) with E = S2m-1. As a framed 
manifold, the quotient group U(l)/Zpn is S1 with its nonbounding framing. The 
lemma thus adjoints to give (taking m = oo henceforth) a homotopy-commutative 
diagram: 

Ln+ A S1 CP+°° A S 

lA[Sl] S 

(4.6) Ln+ A QS+ ol tn 

A t 

Q((Ln A S1)+) Q+ QL+ 
Here A is the usual smash product map, and a is the action map. Since 7r*e2r = ar, 
we can compute tn*ar from (4.6). 

To begin with, let 
h:1r*QS+ ,HQS1 

be the Hurewicz homomorphism. Then h[Sl] E H1QS+ is characterized by three 
properties: 

(1) It is a coalgebra-primitive and is killed by all Steenrod operations. 
(2) It reduces in H1QS° to the Hurewicz image of 71 E 1rlQS°, by Note 1.11. 

This is Q1 [1] * [-2] for p = 2 and 0 for p odd. 
(3) It reduces in H1Sl to the fundamental class a. 
It follows that 

(4.7) h[Sl] = a * [-1] + Q1[l] * [-2] for p = 2, 

(4.8) h[S1]=a*[-l] forpodd. 

We now restrict attention to p = 2, leaving the rather degenerate case of p odd 
to the reader. We first treat the case n = 1, so that the diagonal and Steenrod 
action in H*L1 = H*RP°° are given by 

.9) i\er= E eE)et, 
s+t=r 

(4.10) Sqtier = ( t ) er_t. 

Recall the distributivity formulae [5, p. 15]: 

(4.11) x A (y * z) = ,(x' A y) * (x" A z), 

(4.12) x A Q y = EQ ((Sq*x) A y), 

where i\x = Ex' X x". From (4.7) and (4.11), 

er A h[Sl] = er A (a * [-1] + Q1[l] * [-2]) 

= ,(es A a) * (er_ A [-1]) + ,(es A Ql[l]) * (er_ A [-2]). 
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From (4.11), (4.12) and (4.10), 
er_ A [-1] = Xer-) 

er_ ¢ A [-2] = (xet) 2 if r-s-2t, 
=0 if r-sisodd, 

e, A Q1 [1] = tet*2 if s = 2t-15 
= Qt+1et if s-2t. 

Thus (replacing r by 2r) 
(4.13) e2r A h[Sl] = ,(es 2) a) * xe2r_49 + E Qt+let * (xer_t)*2. 

t 

Finally, in cohomology 
a*x = x X 1 + 1 X x, 

so dualizing, 

(4.14) *(er X 1) = er, *(er C) a) = (r + l)er+l. 
Theorem 4.4(b) now follows by applying a* to (4.13) and recalling the diagram 
(4.6). 

The proof for p = 2, n > 1, is completely analogous, using the different structure of H*Ln, namely 
i\e2r = E e28 C) e2t, 

t3+t=r 
i\e2r+l= E e¢@etX 

t3+t=2r+ 1 

Sqt*er = ( t ) er_t for t even, 

= 0 for t odd. 

Part (a) follows from part (b), since transfers compose well (Note 1.15), while 
the transfer t: RP+°° ) QS° is given in homology by 

t*er = Q [1] 
by definition of the Dyer-Lashof operation Qr This completes the proof. O 

REMARK 4. 15. The odd cells in BZ+n map to 0 in CP+°°, and hence in QBZp+n 
and in QS° This results in the following amusing identities for all n > 1 and r > 0: 

(4.16) In H* (QBZ2+n; Z2 ) X 

E e243+l * xe2(r-43)+l + E e2t2+l * (Xer-2t) 2 = 0 

t 

(4.17) In H*(QS°; Z2) 
E Q2s+1[1] * XQ2(r-8)+1[1] + E(Q2t+ [1]) * (XQ [1]) 

t 

(4.18) In H* (QBZp+n; Zp) for p odd, 

E e24¢+l * xe2(r_8)+l = °- 
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(4.19) In H* (QS°; Zp) for p odd, 

E /3Qt[1] * X/3Qr t[1] = 0 
t 

REMARK 4. 20. A similar analysis may be applied to compute the transfer 

t : (HP°°)¢, QRP+ 
in mod2 homology, where HP°° is quaternionic projective space and Z2 C Sp(1) 
is the center. The Thom complex (HP°°)¢ is then James' "quasiprojective space". 
The computation is substantially more tedious here, however, since by the same 
argument as above, the Hurewicz image of the stable homotopy fundamental class 
of Sp(1)/Z2 = S0(3) in H3Q(S0(3)+) has nine terms: 

h[S0(3)] = e3 + el * e2 * eO 1 + Q2el * eO 1 

+Q3eo*eol +el *Qlel *eO2+Q2Qleo *eO3 

+ Q eO * Qlel * eO 3 + QleO * Q2eo * eO 3 + Q1eo * QlQ1 -7 
where en generates HnSO(3). 

REMARK 4.21. The restriction map G(S1) ) G(Zpn)) regarded as a map 

Q(CP+ A S1) QBZ+nx is by Theorem 3X10 the infinite loop extension of the transfer tn: CP+ A S1 QBZ+n In homology it therefore commutes with loop 

products and loop Dyer-Lashof operations. Since these generate H* (Q(CP+ A S1 )) 
from H*(XP+ A S1), we have completely analyzed the homology of the restriction 
maps G(S1) ) G(Zpn ) and G(S1) > G(1) 

5. Equivariant J-homomorphisms. We shall study maps 

jz2 ° > QRP+ X jSl U ) Q(CP+ A S1) 

arising from the fact that orthogonal transformations are Z2-equivariant and uni- 

tary transformations are S1-equivariant. Define a map AR: RPn-l O(n) by 

sending a real line I c R.n to the reflection through the hyperplane perpendicular 

to 1. Define a map CP+n-1 A S1 U(n) by sending (I,z), where I C Cn is a 

complex line and z E C has lZl = 1, to the unitary transformation which is the 
identity on 1l and multiplication by z on 1. Also, let A: RPn-l ) SO(n) be AR 
composed with the reflection R through the hyperplane x1 = 0 (if x1, . . ., xn are 
the coordinates in Rn). These maps are compatible as n varies, and give maps 

AR: RP ) 0) A RP ) S0) Ac CP+ ASl U. 

Let i: S° ) RP+ be induced by the inclusion 1 C Z2, and let t: RP+ ) QS° 
be the associated transfer. Let t>: RP+ ) QRP+ be the transfer associated to 
the identity map of RP°° with the framing twisted by A (as in Note 1.17). Any 
infinite loop space has an involution X obtained by smashing with -1 E QS° Let 

l: X ) QX denote the standard inclusion, and i\: X X x X the diagonal map, 

for any space X. 

THEOREM 5.1. With these notations, 

(a) jZ2 ° AR Xt: RP+ QRP+ b 

(b) The following three maps are homotopic. 
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(i)RP+ A SO JZ2 QRP+, 
(ii)RP+A&QRP+XQRP+ ttX QRP+ ()QRP+ 

(iii)RP+ tA QRP+*(1)QRP 

(C)jS1OACt:CP+AS1Q(CP+AS1). 

Before giving the proofs, we note some corollaries. 

COROLLARY 5.2. In the stable category, CP+°° AS1 is a retract of U. a 
COROLLARY 5.3. (a) In mod2 homology, 

jZ2er = E Q8eo *xet *eOl. 
s+t=r 

(b) In homology with any coefficients, 

jSl*ar = ar. 2 

Here we are writing er for A*er and ar for AC*ar 

PROOF OF 5.1(a) Let -AR: RP2n-1 0(2n) be AR composed with the 

antipodal map A E S0(2n). Since S0(2n) is connected, ->R iS homotopic to AR. 
We apply (3.5) to the map 

f JZ2 ° (-aR): RP2n 1 > Endz (S2n-1) 

The adjoint map f: RP2n-l x s2n-l s2n-l is smooth, and the associated map 

f/ is transverse to the diagonal i\ (see (3.5)), with pull-back s2n-1/Z2 

S2n-l/Z2 S2n-l/Z 

/ 1^ 1t 
P ( RP2n-l X S2n-1/z2 g (s2n-l x s2n-l)lz2 

< 1 prl 

> Rp2n-1 

The composite p is clearly the identity. The framing, however, is nontrivial; it is 
twisted because Io(A) is pulled back across the degree -t map f. Thus 

jZ2°>RXt 

by Note 1.17. 
The proof of 5.1(c) is similar, except that the analogue of f/ has degree +1. 
PROOF OF 5.1(b). By Lemma 2.8, we have a homotopy-commutative diagram 

QS° x QRP+ ix1 QRP+ x QRP+°° 
],lAt Jr# 

QS° QRP+°° 

where # is the diagonal transfer as in Theorem 3.11. Thus the map (-1)#: QRP+°° 

QRP+°° is homotopic to itX. By Theorem 3.11, therefore, the lower right-hand 
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box in the following diagram commutes. 

QRP+ x QRP+ 
t Xxx > 

QRP+ x QRP+ ) it*x 

t itX*l v 

-1) QRP++ 

RP+ QRP+ 

4 t AR t X 

> ( 0 JZ2 QRP 
X >, Ro >, (-l)o 

< o JZ2 QRP *l 

The upper left-hand box commutes by (S.l)(a), and the rest of the diagram com- 
mutes for trivial reasons. This proves (i)(ii). 

To see that (ii)(iii), we recall that E. H. Brown has proven [4] that tx is 
homotopic to the composite 

RP+ QRP+ / QRP+ x QRP°° it-*X QRP°° 

The result follows. L 
Theorem 3.10 implies that 

JS1 Q(CP+ A S1) 

Q(S ) 

- u 

/ S Jc 

c ( Q1(S°) 
k t*(-1) 

iQo(S°) 
commutes up to homotopy. Adjoint to this is the stable diagram: 

U CP+ A S 

(5.4) S jc 

so 

t 

id S° 
) 

Theorem C of the Introduction follows from this and Theorems 4.4 and 4.5. 
Also, (5.4) together with S.l(c) yield the homotopy commutative stable diagram: 

CP+ A S1 > U 
S t t jc 
S° id S° 

6. The local structure of H*(SS(Sl);Zp). In this section we describe for- 
mulae sufficient to characterize the R-Hopf algebra structure of H*(SS(S1); Zp). 
We rely on [8]. There we construct, for a finite group H, an EOO-ring space A(H), 
called the Burnside space of H. There is a homotopy equivalence of infinite loop 
spaces 

K 

Q(BW+)K) A(H), 

(6.1) 

where K ranges over a set of subgroups of H representing its conjugacy classes of 
subgroups, and Wk is the quotient by K of the normalizer of K in H. There is thus 
a map 

i: QBH+ , A(H), (6.2) 
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which is up to homotopy a split monomorphism. The ring-structure map ,u in A(H) extends the transfer # induced as in Theorem 3.11 by the diagonal inclusion A: H ) H x H; that is to say, the diagram 

QBH+ x QBH+ # QBH+ 
(6.3) L ixi , i 

A(H) x A(H) 4 A(H) 
is homotopy-commutative. 

If H admits a finite-dimensional orthogonal representation W such that the unit 
sphere sW is a free H-space, then a map p: G(H) ) A(H) is constructed. This 
map carries the infinite loop-space structure [3, 8] on SG(H) to the multiplicative 
structure in A(H). Furthermore, if *(-1) denotes the evident component-shifting 
self-map of A(H), then 

G(H) ; QBH+ 
P S S i 

A(H) *(-1) A(H) 
is homotopy-commutative. In particular, p is (up to homotopy) a split monomor- 
phism. 

It follows that relations between the composition structure and the loop structure 
in H*(SG(H)) can be obtained by translating the usual distributivity and mixed 
Cartan and Adem relations valid in H*(A(H)). To describe the translation, let 

# F* (A(H)) C) H* (A(H)) ) H* (A(H)) 
be the multiplicative product ,u*; on elements in the image of H*(QBH+) it is in- 
duced by the diagonal transfer. Let Qr be the multiplicative Dyer-Lashof operation in H*(A(H)), while * and Qr denote the additive (loop) product and Dyer-Lashof 
operation. Let o and Qr denote the (composition) product and (composition) Dyer- 
Lashof operation in SG(H). Then 

LEMMA 6. 5 . Omitting "p* ", 

x ° Y = (-1)1S 1 IY Ix' * y' * (x//#y//) 

Qr(x * y) = E Qix' * Qj(x #y ) * Q (y ), 
i+j+k=r 

where /\x = EX' @ x" and /\y = Sy' @ y". 
PROOF. The first expression is due (in the more general case of a periodic 

compact Lie group) to R. E. Schultz [11]; it follows from his Theorem 3.11 above. It follows also from (6.3) and Hopf-ring distributivity: 

(x o y) * [1] = (x * [l])#(y * [1]) 
= (-1)1x 1 IY Ix' * y' * (x"#y") * [1]. 

The second expression follows similarly from (6.3), the mixed Cartan formula, and 
the fact that QU[1] = O for u > O. O 
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In principle, the structural formulae valid in the homology of an EOO-ring space 
could now be translated into formulae relating o and Qr to * and Qr. These would 
determine the structure of H* (SG(H)), give x o y and Qrx for x, y C H* (BH). In 
view of the complexity of the mixed Adem relation, however, we shall not complete 
this exercise here. 

We turn now to S1. 
Since the infinite loop map i: SG(S1) > SG(Zp) is injective in homology, the 

formulae considered above hold also in H* (SG(S1 )) . Indeed, since i* was computed 
in §4, while the R-Hopf algebra structure of H*(SG(Z2)) was computed in [8], we 
"know" the R-Hopf algebra structure of H*(SG(S1); Z2); and similarly, for p odd, 
we "know" the Hopf algebra structure of H*(SG(Sl);Zp) and some information 
about its R-module structure. We wish to be more explicit, however; and, by the 
indicated formulae, it will suffice to compute aq o ar and QqarX where as in §4, ar 
is the canonical generator of H2r+l(CP+ /\ S1; Zp). 

THEOREM 6.6. Let p = 2. In H*(SG(S1)) H*(Q(CP+ /\ S1)), 

(a) aq o ar = aq * ar + ,(q - s, rS)Q2(q+r-S)+la 

+ , (q-2t, r-2t) Qq+r+ 1 Qq+r-2t a 
t 

(b) Q r ( r ) q+rn Q2q+la =° 

THEOREM 6.7. Letpbeodd. InH*(SG(Sl))_ H*(Q(CP+ ASl)), 

(a) aq o ar = aq * ar + E c(q, r, t):Qtaq+r+l_(p- l)t t 

where 

(q' ' ) ( ) ( r ) ( t - k ) 

(b) Qqar = (-l)q+r+l (q r ) ar+q(p-l) 

PROOF OF THEOREM 6.6. We apply Lemma 2.9 with H = S1. Note that 

X H*(CP°°) H*(CP°°) is the identity (with mod2 coefficients), and that 

*: H*(CP+ ) (23H*(CP+ /\ S1) > H*(CP+ /\ S1) is given by 

,i* (aU X ar)-(U, r)ar+u 

Thus, 

(6.8) aq #ar = E (u, r)aq-u /\ t* ar+U 
u 
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According to Theorem 4.4, t*ar+U is a sum of two sorts of terms. For the first, we 
use 

i\aq-u = aq-u X 1 + 1 8) a 

1 /\ XQt[l] = bo, 

2t- ( q - u - t ) _ 

to find 

(6.9) aq-u /\ (Q28+1 [1] * XQ2(U+r-8) [1]) 

= bu+r E ( q u t ) Q2s+2t+laq-u-t 

Similarly, for the second we find 

aq-u /\ (Q8+lQ8[l] * (XQU+r-8[1])*2) 

E ( t ) ( t ) Qs+2i+1Qs+2ta 

Now Q8+2i+1 kills this dimension unless 2i > q - u, while the first binomial coeffi- 
cient is zero unless 2i < q - u. The expression is thus trivial unless q - u is even, 
and then 

(6.10) a2V /\ (Q8+lQ8[1] * (XQU+r-8[1])*2) 

= bu+r E ( V t ) Q8+q-u+l Q82tav-t a 

Substituting (6.9) and (6.10) into (6.8), 

aq#ar = (u,r) (q t t) Q2(u+r+t)+la 

+ (q-2v, r) ( t ) Qq+r+lQq+r-2(t+t)av-t 

v,t 

Now, for fixed s, 

E (u, r) ( t ) = (q - s) r - s), 
u+t=q-s 

E (q-2v,r) ( t ) = (q-2s,r-2s), 
v-t=s 

so we conclude that 

aq#ar = ,(q- s,r - s)Q2(q+r-8)+la 

+ ,(q-2s, r-2s)Qq+r+lqq+r-2sa 
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Now aq and ar are primitive, so by Lemma 6.5, 
aq o ar = aq * ar + aq#ar, 

and part (a) of the theorem follows 

Part (b) follows from Kochman's formula [7] and the fact that jsl: U SG(S1) 

is an infinite-loop map [3]. 0 
The proof of Theorem 6.7 is analogous and is left to the reader. O 
REMARK 6.11. From (6.6) we find that 

ar ° ar = ar * ar + Q2r+lar = ° 

which is consistent with Corollary 5.3. Indeed, it can be used to prove that is1* ar = 

ar at p= 2. 
7. The global structure of H*(SG(S1)) and of H*(BSG(S1)). Recall the 

weight val?lation 
w:H(QS°;z)N 

where N = {0,1, . . ., x}. It is the smallest function with this source and target 
satisfying 
(7.1) w(x * y) > w(x) + w(y), 

(7.2) w(x + y) > min{w(x), w(y)}, 
W(QI [1]) = pl(I) for I admissible with e(I) > O. 

(Wereferto [5, pp. 16, 42] fordefinitionsoflength, admissibility, andexcess, for 
Dyer-LashoSoperations.) Thus in particular w(O) = x and w([n]) = O. 

Similarly, we define 

w: H*(QBZp+; Zp) N 

respectively 
w: H* (Q ( CP+°° /\ S 1 ); Zp) > N, 

to be the smallest such functions satisfying (7.1), (7.2), and, for I admissible, 

w(QIer) = pl(I)+l for e(I) > r > O, and l(I) > O, 
w(er) = p for r > O, 
W(eO) = °, 

respectively, 
W(QIar) = pl(I)+l for e(I) > 2r + 1 > 1. 

In all three cases it is clear that 

(7 3) w(x1 * * xr) = w(xl) + + w(xr) 
if x1 * * xr is nonzero and each xi is such an element, QI[1], QIer, or QIar. 

It is easy to check, using Theorems 4.4 and 4.5, that the transfer map 

H*(Q(CP+ /\S )) wH*(QBZp+) 
],tF 

toF H* (QS° ) 

preserve weight: w(0*(x)) > w(x) for 0 = to,t1, or t. Thus it makes sense to 
compute them modulo higher weight, and we have the following lemma. 
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LEMMA 7.4. For any p, 

tl*QIaT--QIe2r+l * e 

and for p = 2, 
to*Q ar _ QIQ2r+l[l] * [_21(I)+1] 

mod higher weight. 
PROOF. For I empty, these are immediate from Theorems 4.4 and 4.5. The 

Adem relation for QnQO implies that for any n > O and any k E Z, w(Qn[pk]) > p2. 

It follows by induction that 

Q (Q [1] * [_p] ) _ QI Q2r+ l [l] * [_ pl (I )+ l ] 

mod higher weight. The assertion for to* follows, and the other case is similar. O 
As a corollary, we have the injectivity needed in §6: 

COROLLARY 7.5. For p = 2, 

to*: H* (Q(CP+°° /\ S1 )) > H* (QS°) 
ts injective, and for p arbitrary, 

t1*: H*(Q(CP+ A sl)) H*(QB:Z+) 

is injective. O 
Next we note the behavior of the weight valuation with respect to the composi- 

tion product in SG(S1) Q(CP+ /\ 51). 

LEMMA 7.6. In H*(Q(CP+ /\ 51)), 
(a) w(x#y) > w(x) + w(y), with equality if and only if p = 2 and w(x) = 2 = 

w(y); i.e., x = as,y = at 

(b) w(x o y) > w(x) + w(y). 
(c) x o y--x * y modulo higher weight unless p = 2, x = as, y = at 

PROOF. (a) By the mixed Cartan formula, QIa¢#QJat is a sum of terms of 
the form QK(ai#a;), where l(K) = I(I) + I(J). Substituting in the value of a#aj 
from Theorems 6.6 and 6.7 we find that each term in this sum has sveight at least 
pl(I)+l(J)+2. NOW 

pl(I)+l(J)+2 > pl(I)+1 + pl(J)+2 

and the inequality is strict unless p = 2 and l(I) = O = I(J). This proves (a) for 
such elements. If xl, . . ., xq, Y1, . . ., Yr) are such elements, then each is primitive, so 
the distributivity formula implies that 

(xl * * xq)#(y1 * * yr) = O if q 7& r 

= 2, i(Xl#Ya(l)) * * * (xq#ya(q)) if q = r 

aCSq 

and the result holds by (7.3). 
(b) and (c). Since QIaS and QJat are primitive, 

QIa, o QJat = QIa, * QJat + QIa,#QJat 

by Lemma 6.5. By (a), this is congruent to QIaS * QJat mod higher weight, with 
the noted exceptions. Again, the extension to monomials is easy. O 
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As a corollary, we have 

THEOREM 7.7. H*(SG(S1)) is a primitively generated Hopf algebra. For p = 
2, 

H*(SG(S1)) H*(U) X P[ar*2: r > O] 

X H*(Q(CP+ /\ s1))//P[ar: r > O], 

and for p odd, 

H*(SG(S1)) H*(Q(CP+ /\ sl)), 

as Hopf algebras. C] 

We now study H* (BSG(S1 )) by means of the classifying space spectral sequence 

(7.8) TorHF (SG(S1)) (Z Zp) > H* (BSG(S1 )) 

This is a first quadrant homology spectral sequence of Hopf algebras. Consider first, 
among the generators with s > 1, the divided powers of the suspension var of ar. 
The equivariant J-homomorphism is1: U > SG(S1) maps onto these elements, by 
Corollary 5.3. Since the spectral sequence 

Tor ( )(Zp,Zp) > H*(BU) 

collapses at E2, we conclude that these generators are permanent cycles. 
For p =-2, there are no further generators with s > 1, so the spectral sequence 

(7.8) collapses at E2. For p 7& 2, each odd generator in H*(SG(S1)) leads to a 
divided power sequence in E2. These are connected by the universal differential [5, 
p. 125] 

dP- 1 ap+ j (ax) = - (ff:Q 1 x) Aj (5x) . 

Here, if 2s = Ixl + 1, then Q1x = uQSx for some unit u E Zp. To compute Q1, we 
have 

LEMMA 7.9. In H*(SG(S1)), for I admissible with e(I) > 2r+ 1 and l(I) > O, 

QlQIar-QlQIar 

mod higher weight. 

This is a routine exercise with the weight valuation, and is described in more 
detail in [9], so its proof is omitted here. This lemma results in 

EPr[var: r>O]@E[ff:Qsar: str>O] 

X D[aQIar: l(I) > 1, e(I) > 2r + 1, r > O], 

where D denotes the free commutative algebra truncated at height p. No further 
differentials are now possible: EP = E°°. 

Lemma 7.9, together with the equivariant J-homomorphism, and the next lemma 
when p = 2, determines the multiplicative extension, and Theorem F of the Intro- 
duction results. 
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LEMMA 7.10. Forp= 2 
Q4r+3Q2r+l a = O 

in H* (SG(S1 )) . 

PROOF. Using Lemma 6.5 and the fact that ar is primitive, we expand 
Q4r+3 Q2r+ 1 a = Q4r+3 (a*2) 

into a sum in which each term appears exactly twice. Since we are working mod2, 
the lemma follows. O 
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