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1 Introduction

Let p be a fixed prime number. Fp the field with p elements. and S3 the unit sphere in R4 considered

as the multiplicative Lie group of norm 1 quaternions. The purpose of this paper is to prove the

following theorem.

1.1 Theorem. If X is any space with H* (X, Fp) isomorphic to H* (BS3, Fp) as an algebra over the

mod p Steenrod algebra, then the p-completion of X is homotopy equivalent to the p-completion of

BS3 .

1.2 Remark. It is easy to see that 1.1 implies that there is up to homotopy only one space B whose

loop space is homotopy equivalent to the p-completion of S3. To get such a strong uniqueness result

it is definitely necessary to work one prime at a time: Rector [R] has produced an uncountable number

of homotopicaliy distinct spaces Y with loop space homotopy equivalent to S3 itself.

Rector's deloopings {Y} have the property that Yp for all primes p. Theorem 1.1

implies that this condition is forced. Thus Rector's classification of the genus of BS3 actually

classifies all deloopings of S3. McGibbon [Mc 1] proved in 1978 that any delooping of S3 is stably

equivalent at each odd prime to the standard B S3. Rector [R] for odd primes and McGibbon [Mc 2]

for p = 2 showed that the existence of a maximal torus in the sense of Rector distinguishes BS3

from other members of its genus. and hence by 1.1. from other deloopings of S3.

'The research of the authors was partially supported by the NSF, and that of the third author by sabbatical

funds from Wayne State University.
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1.3 Remark. Theorem 1.1 is in some sense a delooping of the results of [M] and [D-M]. although

our techniques are somewhat different. especially in the complicated case p=2.

1.4 Organization of this paper. Section 2 contains an account of the main background material we

will need from [La] and [D-Z]. Section 3 treats the odd primary case of 1.1. and section 5 the case

p=2. The intervening section 4 describes a new way of homotopically constructing B53 at the

prime 2. Section 6 is essentially an appendix which contains the proof of an auxiliary result needed

in section 5.

1.5 Notation and terminology. Some of the methods in this paper are based on simplicial techniques.

so we will occasionally use "space" to mean "simplicial set" and tacitly assume that any topological

space involved in the argument has been replaced by its singular complex [Ma]. In particular. X;

(or X", if p is understood) will denote the simplicial p-completion of the space X in the sense

of [B-K.VII.5.1]. The space X is p-complete if the natural map X --> X; is a weak equivalence.

A p-completion X; is itself p-complete iff the map X --> X; induces an isomorphism on mod p

homology: this map does give an isomorphism. for instance. if HI (X, Fp ) = 0 or if X is connected

and 7r1 (X) is a finite group [B-K]. Theorem 1.1 is equivalent to the claim that any p-complete space

with the stated cohomology is homotopy equivalent to the p-completion of B 53.

If X and Yare spaces. then H om(X,Y) denotes the full function complex of maps X --> Yj the

subscripted variant H om(X, Y) f stands for the component of H om(X, Y) containing a particular

map f. As usual. [X, Y] denotes the set of components of H om(X, Y), i.e.. the set of homotopy

classes of maps from X to Y.

If C is a (simplicial) group. then EC --> BC is the functorial universal simplicial principal

C-bundle [Ma.p83]. IfC is abelian. then BG is also an abelian simplicial group and the classifying

process can be iterated to form B 2C = B(BC), B 3C, ... , etc. The symbol 0' will denote the cyclic

group Z / pZ of order p and K, the additive group of p-adic integers. so that. for example. BO' is

equivalent to an infinite lens space and B 2K, to

Unless otherwise specified. all homology and cohomology is taken with simple Fp coefficients.

1.6 Remark. The goal of this paper is to present the complete picture for B53. Obviously the present

techniques carryover to other classifying spaces and exotic loop spaces. The discussion of section

3 applies almost verbatim to other rank 1 loop spaces. and with a few changes to the general case

with p prime to the order of the Weyl group. On the other hand. the work of sections 4.5 and 6 for

p = 2 is special to 53, and must be replaced with new constructions for the small prime cases. As
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yet no general methods for these primes which divide the order of the Weyl group are available.

2 Background

Fix the prime p, and let K denote the category of unstable algebras over the mod p Steenrod algebra

Jlp [La}. For any two spaces X and Y there is a natural map

[Y,X]----> HomK(H*(X),H*(Y))

2.1 Theorem [La]. If X is a p-complete space with the property that H* (X) is finite in each

dimension, then for each n:::: 1 the map

is an isomorphism.

Lannes has studied the functor T : K -+ K which is left adjoint to the functor given by tensor

product with H* (Bun). It is clear that the evaluation map

induces for any space X a cohomology map

2.2 Theorem [La} If X is a p-complete space with the property that H* (X) is finite in each

dimension, then the above map

is an isomorphism under either of the following two assumptions:

(1) TnH*(X) is zero in dimension 1, or

(2) there is a p-complete space Z and a map

such that the induced cohomology map

is an isomorphism.
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We will need a slight refinement of 2.2. which can be proved by the same argument. If X is any

space and g: H*(X) -+ H*(Bun) (H*(Bun )) @ Fp is a map in K, let g: TnH*(X) -+ Fp

be its adjoint. If RO is the ring (TnH* (X))O, then 9 amounts to a ring homomorphism RO -+ Fp ;

let (TnH*(X))g denote the tensor product (TnH*(X)) @RO Fp, where the action of RO on Fp

is via g. If f : Bun -+ X is an actual map. we will also write (TnH*(X))f for (TnH*(X))g

where 9 = r :H* (X) -+ H* (Bun) is the induced cohomology morphism. It is easy to argue by

functoriality that the natural map

factors down to a map

for each f : Bun -+ X.

2.3 Theorem [La] If X is a p-complete space with the property that H*(X) is finite in each

dimension and f: Bun -+ X is a map, then the map

is an isomorphism under either of the following two assumptions:

(1) (TnH* (X)) f vanishes in dimension 1, or

(2) there is a connected p-eomplete space Z and a map

such that the corresponding cohomology map

is an isomorphism.

There is one situation in which the algebraic functors of 2.1 and 2.3 can be computed. If 11" is a

finite group and G is a compact Lie group. let Rep(11", G) denote the set of G-conjugacy classes of

homomorphisms 11" -+ G. Passing to classifying spaces gives a map

Rep(1I",G) [B1I",BG]



94

If'P : 7T ...... G is a particular homomorphism and ZG('P) G denotes the centralizer of the image of

'P, then the obvious product map

Z ()
inc. X 'P G

G'P X7T -->

also passes to the classifying space level and induces a map

2.4 Theorem [La. Ad. M-W] Suppose that G is a compact Lie group and that n 2: 1. Then

(1) the natural composite

is an isomorphism of sets, and

(2) for each homomorphism 'P: un ...... G the natural map

induces a composite map

which is an isomorphism in the category K.

The following lemma allows 2.1 - 2.3 to be applied in some cases to spaces which are not p-complete.

2.5 Proposition If X is a connected space such that 7Tl (X) is a finite p-group, then for any finite

p-qroup 7T the natural map

Hom(B7T,X) --> Hom(B7T,Xp)

induces an isomorphism on mod p cohomology.

Proof This is a consequence of [B-K.proof of VI1.5.1] and the obstruction theory argument of [D-Z).

We will need to apply 2.5 in one case in which the group 7T involved is not elementary. The

necessary key piece of information for the application comes from the following theorem.

Theorem [D-Z). If G is a compact Lie group and 7T is a finite p-group, then the natural map

Rep(7T,G) --> [B7T,BG]

is an isomorphism of sets.
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3 The odd primary case

In this section we will work under the assumption that p is a fixed odd prime and that X is a p­

complete space with a fixed K­isomorphism H* (X) H* (BS3). Let b2 denote a chosen generator
l±.! l±.!

of H 2(Bu). If x is an element of H 4(X), then p2(x) is either 2x 2 or -2x2 ; let

x4 E H 4(X) denote a chosen generator of the first kind.

3.1 Proposition There exists up to homotopy a unique map f: Ba --> X such that f*(x4) =

(b2)2. The function space component Hom(Bu, X) f is homotopy equivalent to B 2r;, .

Proof It is clear that in the category K there is a unique map g : H*(X) H*(BS3 ) --> H*(Ba)

such that g(x4) = (b2)2; by 2.1. g is f* for a map f : Ba --> X which is unique up to homotopy.

By 2.4. r is the same as (Bcp)* for some (non­trivial) representation cp : a --> S3. Since the

centralizer of the image of cp in S3 is a circle group. it follows from 2.4 that (TH* (X)) f is

isomorphic to H*(B2r;, ). It follows from 2.3 that the same holds true of H*(Hom(Ba,X)f)' The

space H om(Bu,X) f is p­complete in view of the fact that it is H.(­, Fp)­Iocal and has vanishing

first homology group [Bo:12.6.proof of 4.3]). so the proof is finished by observing that B 2r: IS

determined up to homotopy among p­cornplete spaces by its cohomology ring.

For the rest of this section. we will fix a particular f which satisfies the condition of 3.1. Let

e : H om(Bu, X) f --> X be the map obtained by evaluating a function at the basepoint of Ba.

3.2 Proposition The cohomology map

e* : H*(X) ­­+ H* (Hom(Ba, X)f)

is injective.

Proof Construct a commutative diagram

Bu

Hom(Ba,X)f

where the "right translation" map r is given by the formula (r(g))(a) = f(a + g). Here g, a E Ba

and a + g denotes the sum of a and g with respect to the abelian group structure of Be (1.5).
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Commutativity follows from the fact that the basepoint of Ba is the identity for the group structure.

Since r is injective. the proof is complete.

Let W = {I,w} be the group of order 2. Defining w : a ---> a to be the inverse map gives

an action of W on a which passes to a basepoint-preserving action of W on Ba and induces a

right-composition action of W on H omiBa, X).

3.3 Proposition The above action of Won HomiBa, X) carries the component HomiBo; X)!

to itself.

Proof It is necessary to check that f . w is homotopic to f, where

w : Bo --->Bo

is given by the action of W. This follows from 3.1 and the fact that w* is multiplication by (-1) on

H2(Bq), so that w*((b2)2) = (-b2)2 (b2)2.

3·4 Proposition The basepoint evaluation map e: HomiBa, X) f --->X is equivariant with respect

to the above action of W on Hom( Bo, X)! and the trivial action of W on X.

Proof This is a formal consequence of the fact that the action of W on Ba is basepoint-preserving.

3.5 Proposition The automorphism w* of H2(HomlBa, Xl)! induced by the action of W on

Hom(Bq,X)! is multiplication by (-1).

Proof Let r : Be ---> HomiBa, X)! be the map which appears in the proof of 3.2. Since w* :

H2(Bq) --->H2(Bq) is multiplication by (-1) and r* is injective (3.1. proof of 3.2). it is enough to

show that the diagram

Bq .r. Hom(Bq,X)!

w 1 1w

Bq .t, Hom(Bq,X)f

commutes up to homotopy. Taking adjoints reduces this to the problem of showing that the two maps

! -rn- (1 x w) and f -rn- (w x 1) are homotopic as maps Ba x Bo --->X, where m: Bo x Ba ---> Bo

is the group multiplication. Since W acts on Ba by group automorphisms. this follows from the

fact that f .w is homotopic to f.

Proof of 1.1 (assuming p odd).
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Let Y denote the quotient space (H om (Bu, X) / x EW) /W. By 3.4. the basepoint evaluation map

e : HomiBa, X) / -+ X factors through a map e: Y -+ X. By 3.1. 3.2. 3.5 and a calculation with the

Serre spectral sequence. the map e induces a mod p cohomology isomorphism H* (X) -+ H*(Y)

and therefore a homotopy equivalence Yt -+ X{i X. Since the order of W is prime to p and

there is only one non-trivial homomorphism from W to the multiplicative group of p-adic integral

units. it follows from 3.5 that up to homotopy the space Y is just the bundle over BW associated

to the inversion action of W on B 2,.. In particular. Y does not depend on X, so the above proof

that X is equivalent to Yp
A shows also that is equivalent to YpA .

4 Constructing B 8 3 at the prime 2

In this section we will assume that p is 2. The goal of this section is to find an explicit way of passing

from some sort of finite group data to the 2-completion of B83 .

Let 648 S; 8 3 be the binary octahedral group. i.e. the inverse image in 8 3 Spin(3) of the

group 024 in 80(3) of orientation-preserving isometries of the cube. The 2-Sylow subgroup of 648
is the quaternion group QI6 of order 16. Let NT S; S3 be the normalizer of a maximal torus. and

note that there is at least one injective homomorphism QI6 -+ NT.

4·1 Theorem Assume that 'PI : QI6 -+ NT is an injective homomorphism and that 'P2: QI6 -+°48 is the inclusion of a 2-8ylow subgroup. Let P be the homotopy pushout of the induced diagram

- B'P2 B'Pl
B048 <--- BQI6 --r BNT

Then the completion P{- 0/ P is homotopy equivalent to

Proof Let i : NT -+ S3 be the inclusion. Up to conjugacy the group QI6 has two faithful repre-

sentations in 8 3 8U(2). These two representations have essentially the same image (since they

differ by an outer automorphism of Q16 ) so we can assume that the composite i'Pl extends over

'P2 to the representation 048 -+ 8 3 which was used above to define 048' This gives a commutative

diagram of classifying spaces

and leads to a map P -+ BS3. To complete the proof it is enough to show that this map induces

an isomorphism on mod 2 cohomology. Taking homotopy fibers over BS3 reduces the problem to
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showing that the homotopy pushout of the diagram

is mod 2 acyclic. This can be directly verified by a calculation with one-dimensional integral coho-

mology. since S3/ QI6 and S3/ 04S are orientable 3-manifolds while S3 /NT is RP2.

Since the group S3 is a double cover of SO(3) , the following corollary is just a restatement of

4.1. Recall that the 2-Sylow subgroup of the octahedral group 024 is the dihedral group DS of order

8. and that the normalizer of a maximal torus in S3 is isomorphic to 0(2).

4·2 Corollary Assume that epl: DS -+ 0(2) is an injective homomorphism and that ep2 : DS -+

024 is the inclusion of a 2-Sylow subgroup. Let P be the homotopy pushout of the induced diagram

Bep2 Bepl
B024 +- BDS ---> BO(2)

then the completion pi is homotopy equivalent to .

..pi Remark The octahedral group 024 is isomorphic to the symmetric group on four letters. as

well as to the semi-direct product constructed out of the natural action of the general linear group

GL2(F2) on F2 x F2'

5 The case of the prime 2

In this section we will assume that p is equal to 2 and that X is a 2-complete space with the property

that H* (X) is isomorphic in the category K to H* (BS3). (Note that there is a unique way to choose

the isomorphism). Let x4 E H4(X) and bl E HI(Ba) label the generators of these groups.

5.1 Proposition There exists up to homotopy a unique map f : Bo -+ X such that r(x4) = (bl)4.

The basepoint evaluation map e: Hom(Ba,X) j -+ X is a homotopy equivalence.

Proof By 2.1. there is a unique map j up to homotopy with the stated cohomological property and

by 2.3 - 2.4 the cohomology ring H*(Hom(Ba,X)j) is isomorphic to H*(X). As in the proof of

3.1. then. we will be done if we can show that the cohomology map e* is bijective or even injective.

Injectivity of e" follows as in the proof of 3.2 from the existence of a commutative diagram
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Fix a map! as in 5.1. The right translation action of BO' on itself (1.5) induces an action of

BO' on the function space component Hom(BO',X)!. Let Y be the associated bundle over B 2O',

so that there is a principal fibration sequence

BO' - ....... X Y.

5.2 Proposition The space Y is 2-complete, and there is a unique K<isomorphism H* (Y) --->

H*(BSO(3)).

Proof The fact that Y is 2-complete follows from [B-KJ. By calculation. the E2- term of the

Rothenberg-Steenrod spectral sequence [R-S 1

H*(Y)

is a polynomial algebra on classes Y2 and Y3 in positions (1.1) and (1.2) respectively. For positional

reasons. then. the spectral sequence collapses and Y2, Y3 lift to unique classes (of the same name)

in H*(Y) which generate H*(Y) as a polynomial algebra. The formula Sq IY2 = Y3 holds already

at E2, and it is a priori clear that Sq2Y2 = (Y2)2 and Sq3Y3 (Y3)2. The class Sq2Y3 does not

vanish, because SqlSq2Y3 = Sq3Y3 = (Y3)2 =I OJ inasmuch as there is only one non-zero cohomol-

ogy class in H 5 (y ), it follows that Sq2Y3 = Y2Y3' These formulas completely determine the action

of the Steenrod algebra on H* (Y) and lead immediately to the desired result.

5.3 Proposition There exists up to homotopy a unique map g: BO'2 ---> Y such that g*(Y2) =

ui + uIvI + vi and g*(Y3) = uIvI(uI + VI)'

The map r : BO'2 ---> H om(BO'2, X)g constructed as in the proof of 3.2 is a homotopy equivalence.

Proof The existence and essential uniqueness of g follows from 2.1 and 2.4: g corresponds cohomo-

logically to the unique faithful representation
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'P : u2 SO(3). To finish the proof. observe that for any space S and map h* : H*(S) --->

H*(Bu2), the Hopf algebra structure of H*(Bu2) provides a map T 2(H*(S))h* ---> H*(Bu2).

By 2.4 this map is an isomorphism if h = B<p : Bu2 ---> BSO(3); it follows that the map is

also an isomorphism in the algebraically indistinguishable case h g. The desired conclusion fol­

lows from 2.3. since the isomorphism T 2(H*(Y))g ---> H*(Bu2) is derived from an actual map

Bu2 ---> IIom(Bu2, Y)g.

Fix a map as in 5.3. let W denote the general linear group GL2(F2); the group acts naturally

on u2 and therefore also on Bu2 as well as on IIom(Bu2,Y). The following proposition is proved

by the arguments of propositions 3.3 ­ 3.5.

5.4 Proposition

(1) The action of Won Hom(Bu2, Y) restricts to an action of Won IIom(Bu2, Y)g.

(2) The basepoint evaluation map

e : II om(Bu2, Y)g ­­­+ Y

IS W-equivariant with respect to the trivial action of W on Y.

(3) The action of Won Hl(IIom(Bu2,Y)g) is equivalent to the standard action of Won (F2)2.

Proposition 5.4 immediately gives a map

e: (EW x IIom(Bu2, Y)g)/W ­­­+ Y.

A short calculation shows that the cohomology group H2(GL2(F2)' (F2)2) vanishes if (F2)2 is given

the standard GL2(F2)- action; it follows. again by 5.4. that the fundamental group of the domain

of e is the octahedral group 024 (4.3). Recall that the 2­Sylow subgroup of 024 is the dihedral

group DS of order 8. let s : BDS ---> B024 correspond to the inclusion of a 2­Sylow subgroup and

c : Ba ---> BDS to the inclusion of the center.

5.5 Proposition There exists a map

h: B024 ­­­+ Y

Proof The map h is the map e described above. The formula for the restriction of Y2 to Bo follows

from 5.3 and the fact that. as in the proof of 3.2. h . s . c can be factored as a composite
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in which the map Be --> Bu2 induces an inclusion a --> u2.

Let r : Ba --> Y denote the composite h . s . c above.

For the moment. use the map c above to identify o with the center of D8. The multiplication

homomorphism D8 x o --> D8 gives rise to a composite

s h
BD8 X Bo -----> BD8 -----> B024 -----> Y

The adjoint of this composite is a map

k : BD8 -----> HomiBa, Y)r

5.6 Proposition The following diagram commutes:

BD8 .s. H omiBa, Y)r

s L Le

B024 h Y

Here, as usual, the right vertical map e is evaluation at the basepoint of Bu.

5.7 Proposition The function space component Homi Ba, Y)r is homotopy equivalent to

This will be proved in section 6.

Proof of 1.1 (for the prime 2). We will show that the space Y constructed above is homotopy

equivalent to and leave it to the reader to deduce that X is equivalent to

Since c*k* e" = c* s* hteztstyle. = r* i' 0 (5.5) the map k corresponds (2.4. 2.5) to an injective

homomorphism D8 --> 0(2). Let P be the homotopy pushout of the diagram

B024 BD8 L BO(2)

in which k is a lift (2.5) of k to BO(2). It follows from 4.2 that we will be done if we can show

that the evident map I : P --> Y induces an isomorphism on mod 2 cohomology. It is clear that

1* (Y2) i' 0, since the restriction of Y2 to the center of D8 is already non-zero: this implies that

1* is an isomorphism in dimension 1. A calculation with Sql immediately shows that 1* is also an

isomorphism in dimension 2. The fact that both of the cohomology rings involved are polynomial

algebras on generators of dimension 1 and 2 now completes the proof.
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6 A function space calculation

In this section we will prove proposition 5.7. Notation and terminology will be taken from section 5.

Recall from section 5 the cohomologically non-trivial map I : Ba -+ X and the natural action of Bo

on H om tBa, X)I' It is easy to produce a similarly non-trivial map If : Bo -+ B Z«, as well as a

corresponding action of Bo on Hom(Ba, B Z"')If, Basepoint evaluation gives homotopy equivalences

Hom(Bu,X)1

Hom (Bu, B Z",) If

Let Z denote the bundle over B2u associated to the diagonal action of Bo on H omiBo;X) I x

H omiBa, B Z",)If' Note that Z is just the analogue in this function space setting of the standard

construction of U(Z) as the quotient of 8U(Z) x 8 1 by ZjZZ.

6.1 Proposition The space Z is 2-complete, and there is a (unique) K-isomorphism H* (Z) -+

H*(BU(Z)).

Proof The fact that Z is 2-complete follows from [B-K]. It is easy to argue that the bundle over

BZu associated to the action of Bo on HomiBo, B Z",) I' has a total space homotopy equivalent

to B Z", itself. As a consequence. the Ba-equivariant projection map

gives up to homotopy a fibration

The Serre spectral sequence of this fibration collapses and shows that H* (Z) is a polynomial algebra

on classes Zz and z4 of dimensions 2 and 4 respectively. To show that H* (Z) is K-isomorphic

to H*(BU(Z)), it is necessary to check that 8 qZ(Z4) is either zZz4 or zZz4 + (ZZ)Z (these two

possibilities differ by the substitution of the alternative polynomial generator z4+ (ZZ)Z for z4)' This

calculation can be made by examining the Eilenberg-Moore spectral sequence of the evident fibration

This spectral sequence also collapses. and the residue class of z4 modulo (zZ)Zis represented at E1

by the bar construction cycle z4 = YZ 0 is +1 0 8 qSiS (here is E H S(B S"') is the generator.) The

fact that 8q1i S = 0 combines with the Cartan formula to give
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This formula implies the desired result, since the restriction of Y2 to Z is z2'

6.2 Proposition The map T: BO' -> Y of 5.5-5.6 lifts to a map f: BO' -> Z which is unique up

to homotopy. The space H om(BO', Z); is homotopy equivalent to B 2",2.

Proof This follows from 2.1, 2.3 and 2.4. The map f corresponds cohornologically to the map

Bo -> BU(2) derived from the regular representation of a.

6.3 Proposition The loop space OHom(BO', Y)r is homotopy equivalent to the space a x B",.

Proof The fibration

gives rise to a function space fibration

Hom(BO',Z);

(the fiber is as described because the map r : BO' -> Z composes to a null-homotopic map Bo ->

B 3",). The homotopy groups of Hom(BO',B3",) are given by the table

7"(;Hom(BO',B3",) 1:::
* otherwise

so the proof can be completed by showing that the boundary homomorphism

remains non-zero after tensoring with F2' Consider the diagram

0' x B2", Hom(BO',B2",)

el 1
B 2",

Hom(Ba,Z); B 2",2

1 e2

Z

in which the vertical arrows are obtained by evaluation at the basepoint of Bo and the horizontal

arrows from the fiber inclusion in the shifted fibration

(*) B2", Z.......--;Y

The map a induces a morphism on 7"(2 which is essentially the boundary homomorphism of interest.

and the map el restricts to a homotopy equivalence from either component of ax B2", to B2",. A
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look at the Serre spectral sequence of (*) shows that b* : H4(Z) is surjective. which

implies that a* induces epimorphisms H4(B2k2) ---+ H 4({c} x for each e in a. This directly

implies the desired result.

Proof of 5.7 By 6.3. the space H omiBa, Y)r is equivalent to the 2-completion of one of the following

th ree spaces

a) Ba x BS1

b) BO(2)

c) BNT

where NT <:::; S3 is the normalizer of a torus. Possibilities (a) and (c) are ruled out by combining 5.6.

2.1. 2.4 and 2.5. since there is no homomorphism DB ---+ a x Sl or DB ---+ NT which is non-trivial

on the center of DB'
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