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§1., Introduction. We have confirmed by calculation that Segal's

conjecture about the cohomotopy of the classifying space BG is
true when G 1is an elementary abelian p-group. Our methods of
calculation depend on the Adams spectral sequence, and so most of
the work goes into computing Ext groups taken over the mod p
Steenrod algebra A . In this paper we will calculate sufficiently
many groups Ext relevant to Segal's conjecture for elementary

A
abelian p-groups.

~We see reason to generalise Segal's original question, so as

to study the groups

here we explain the notation as follows. Gl and Gz are finite
groups. EG is the spectrum-level analogue of the classifying

space BG . That is, we define

-
~G=£(BGu P)

here thé functor . w P adjoins a disjoint base-point, and the
functor 2::' passes from a space with base-point to thg correspond-
ing suspension séectrum. The object 2, is a spectrum which we
choose to use as a "test object”. The notation [z{',gv] means
homotopy classes of maps from ‘}2' to ‘x’ in the category of
spectra.

mo relate this to Segal's original conjecture [16,1]1, we

substitute T = s® and G, =1 ; then BG,u P becomes s® ’
o~ - 2 2



’ . “m,..
and [T A G, , BG,] becomes the Toinciotopy group ;uGl) .
L2 » ~ L

The study of (T A .B..Gl ’ .EGZJ leads to a corresponding

Problem about Ext groups, namely to compute
Exti*(H*(Gz) r MO H*(Gl)) .

Here we write H*(G) as an abbreviation for H*(§§ ; Fp) = H*(BG ; Fp)
since all our cohomology groups will have coefficients Fp , and
since the cohomology of a group G 1is defined to be the cohomology
cf its classifying space BG . The letter M stands for a
suitable A-module, which in the applications becomes the
cohomology of EL.V )
Of course, we only "compute" these Ext groups in thé sense
that we reduce them to other Ext groups. More precisely, we

reduce to Ext groups of the form
Exti*(H*(G3) r M) .
This is analogous to reducing the homotopy problem

[3/\ 261 ’ .B'Gzl

to problems of the form
¢ [3, 3G3] .

For the homotopy problem this is more or less the best one can _
expect, and is in line with the original results of W.H. Lin [6]

for the case T = g™ ’ Gl = Z2 ’ G2 =1 . (In this case ¢

o  aw

3
takes the two values 1 ’ Zz o)

We can now explaiﬁ our main result. Let U,V be elementary
abelian p-groups. (We regard elementary abelian P-groups as
vector spaces over Fp ¢+ We use the letter V and the adjacent

letters U,W for such vector-spaces.) In §11 we shall associate
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to U and V a finite set of indices X . We shall also associate

to each index X an integer s(X) and an elementary abelian

p-group W(X) . We shall then introduce a homomorphism
P mxty SF S ey, w2
X

t

—> Ext5t (mr(v) , Moo H* (U)) .

A

S

Theorem 1.1. If U and V are elementary abelian p-groups,

and if the module M isbounded below and finite-dimensional over
Fp in each degree, then the map
DExeS @50 ey , w -2

X

t

_ Ext:’ (H*(V) , M @ H*(U))

is aHJisomorphism.

This theorem answers the purpose stated above, and we pause
to comment.

First, Theorem 1.1 is an explicit result, adapted for
calculation; it follows immediately from two more conceptual
results, which will be stated in §11 as Theorems 11.1 and 11.2.
These conceptual results involve categorical considerations,
applied in the correct categories. Roughly speaking, in the
homotopy problem [3’ A EG]_ ’ EGZJ is a representable functor of
;S ,“and the represeﬁting object is anunction-spectrum; we
introduce and exploit corresponding considerations in algebra.

We would like to draw the reader's attention to these categorical
considerations, and in particular to a construct which we call

the "Burnside category"; we hope it may be of wider usé. We there-
fore urge the reader to study at least the beginnings of §9, §10
and §11. For the moment, we omit the details needed to make

the statement of (1.1) complete.
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Secondly, it is essential for the applications that the map

which we prove to be iso ip. (l1.1), is the same as one which arises

geometrically. More precisely, in the applications we have an

Adams spectral sequence for computing

-

[T A BU, BV] .
~ A

We also have for each index X an Adams spectral sequence for

computing

[T, BW(X)] ;
4 ~n

-

by summing these (after suitable regrading) we obtain a spectral

* -0

sequence for computing - .

=

| Dz, vl .
- X

By suitable constructions, involving transfer, we set up a

comparison map between these spectral sequences; the source is

the spectral sequence for computing @[3 » BW(X)] , and the
X

target is the spectral sequence for computing [LI; A BU , gV] .

In particular, the map of Ez-terms is an instance of the map

proved to be iso in (1.1). It follows that the comparison map

W

’

of spectral sequence is iso. The fact that w arises geometrically

is thus important to our overall strategy; for the purposes of
the present paper we need not prove it here.

~ Thirdly, the proof of Theorem 1.1 flow§ by a simple and
inevitable induction over the rank of U . We sketch the step
from "rank 1" to "rank.Z". Obviously, if you can compute
Exti*(H*(V) , M é H*(Zp)) for all M , then you can substitute
M=L2® H*(zp) ; since H*(Zp) @ H*(zp) = H*(Zp x Z) , you can

P
compute Exti*(H*(V) s L © H*(zp x Zp)) in terms of groups

Ext:*(ﬂ*(W(x) + L © H*(zp)) » which you can compute by the same

<t



token. The proper proof will be presented in §13; here we make
only three points. (a) This proof requires book-keeping; the
categorical considerations are there to keep the books straight.
(b) As is usual with inductions, the proof depends on formulating
the inductive hypothesis in the correct generality; it is essential

to consider the algebraic analogue of

{T A BG BG2]
~ -

1’ &

rather than the algebraic analogue of the special case

T = é? ' G2 =1 . (c) The proof depends on a prior treatment of

P
the special case U = ZP » to start the induction. This case will
be proved in §12, by deducing it from Theorem 1.3, which we will
state as soon as we cah.

_First we must explain the'language of "Tor-equivalences".

We say that amap 6: L —> M of A-modules is a "Tor-equivalence"

if the induced map
6, Torf*(Fp,L) —> Torﬁ‘*(Fp,M)

is iso. The point of this definition emerges from the following

result.

Proposition 1.2. If 6: L —> M 1is a Tor-equivalence, then

the induced map
Oyt Torf*(K,L) _ Torf*(K,M)

is iso for any (right) A-module K which is bounded above; the

induced map
% xR
g*: ExtA (L,N) <— ExtA M N)

is iso for any (left) A-module N which is bounded below and

-«
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finite-~dimensional over Fp in each degree.

The hypotheses of bodﬁéedﬁess are essential. The proof,
which is easy, will be gi?en in §3.

We now introduce the principle that "localisation makes
life easier".

First let us recall something about the structure of H*(V) .
We may identify Hl(V) with V* , the dual of V . The Bockstein
boundary B8: Hl(V) —> HZ(V) is mono; let its image be
BV* < HZ(V) . Let S Dbe a subset of BV* < Hz(V) . We write
H*(V)S for the result of localising so as to invert all the non-
zero elements of S < BV* ¢ HZ(V) . Inverting s inverts s
for s # o , so we may as well assume that S is closed under
the fo;mation of multiples As (X € Fp) . The ring H*(V)s
is aEEﬁally an algebra over the mod p Steenrod algebra A .

We assume S > 0 and suppose given a non-zero element
X € § . We write <x> for the subspace of BV* generated by

X . In §7 we shall introduce a homomorphism

(V) {resw} s YO .
s SnBwW* '’

. -,

here W runs over certain gquotients of V , so that W* runs
over certain subspaces of V* ; more precisely, AW* runs over
complements for <x> in BV* , that is, subspaces of BV* such
that BV* = <x> @& BW* . If V is of rank n and x is given

there are p" ! choices for W .

Theorem 1. 3. The'map

{resw}

’ HY (V) g > @H* () g 0 g

i8 a Tor-equivalence.



Theorem 1.3 enables one to reduce the calculation of Ext
groups for localised algebras H*(V)S to the unlocalised case.

In fact, if on the right we have an algebra H* (W) with

SnawW*
S n BW* non-zero, then we may choose a non-zero element
X, € S n BW* and apply the theorem again, and so on by induction.
This process must stop in at most n steps, where n 1is the
rank of V , since each step reduces the rank by 1..

Theorem 1.3 is proved in §7 by downwards induction over §
(the more your module is localised, the easier it is to deal with
it). We deduce the special case U = Zp of Theorem 1.1 from the
case of Theorem 1.3 which we reach aﬁ the end of the induction,
that is, the case in which § is smallest, S = <x> . The case
which we need in order to start the induction is that in which
S is-largest, S = BV* . (In this case we write H* (V) ) o
instead of H*(V)BV* to indicaté localisation so as to invert
all the non-zero elements of RBRV* c HZ(V) .) This case of (1.3)
will be proved in §7, by deducing it from the next result,
Theorem 1.4.

For each A-module we can introduce the quotient Fp QA M,

which has trivial Steenrod operations.

Theorem 1.4 (a) The gquotient map

— *
HM,V)loc > Fp QA H (V)loc

E

i1s & Tor-equivalence.
* i : -
(b) Fp eA H (V)loc is zero except in degree n , where
n is the rank of Vv .’

(¢) In degree -n , the rank of Fp OA H*(V)loc is
p?sn(n-l)

(d) The representation of GL(V) = Aut(V) afforded by

Fp o H*(V)loc is the Steinberg representation [17].
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The case n'=1, p=2 of (1.4) is due to (7], while the
case n =1, p>2 is dua:te-[3al. Thus Theorem 1.4 generalises
a step already known to be relevant.

Our proof of Theorem 1.4 is based upon the "Singer construct-
ion" [14, 15, 5]. We will deal with this more fully in §2 and
§3; for the moment we need only explain three points. First, the
Singer construction gives a functor T(M) from A-modules to
A-modules, which comes provided with a natural transformation
€: T(M) —> M . Secondly, the Singer construction allows one to
reduce the calculation of Ext groups for a larger module, namely
T(M) , to the calculation of Ext for a smaller module, namely

M L

Theorem 1.5. The map e: T(M) —> M of Singer's construction

—

is a Tor-equivalence.

This reduction theorem was originally found by the second
and third authors independently.
Thirdly, there is a relation between H*(V)loc and the

iterated Singer construction
THNF ) = T(T(... T(F) ...)) ,
. P P

where n is the rank of v.

Theorem 1.6. There is an isomorphism of A-algebras

T (Fp) H (V)loc .
Here Syl(V) means a Sylow subgroup of GL(V) = Aut(V) P
this group acts on H*(V) and on H*(V)loc in the obvious way.
We write MG for the subobject of elements in M fixed under

G , as usual.



1.9

The case p =2 of (1.6) is due to Singer [15], while the
case p > 2 is modelled on a result of Li and Singer [{5]. More

precisely, Li and Singer prove the corresponding result for the

Bor (V)
loc

Borel subgroup of GL(V) . At this stage we should explain that

subalgebra of invariants H*(V) » where Bor(Vv) is a

for p > 2 our version of the "Singer construction” is not dquite
the same as that of Li and Singer [5]. Theorem 1.5 is true for
both versions; but for the purposes of our proof, a reduction
theorem like (1.5) grows more useful as T(M) grows larger.

Our version of T(M) is (roughly speaking) (p-1) ﬁimes as

large as that of Li and Singer [5], and our subalgebra of invariants
is (roughly speaking) (p-l)n times as large as theirs; this

allows us to get closei to H*(V)loc . Of coﬁrse{ for p=2,

this point disappears.

After our results for the case P = 2 were known to
interested parties, G. Carlsson conceived a remarkable argument,
which shows that the Segal conjecture for finite groups in
general can be deduced from the Segal conjecture for elementary
abelian p-groups [2, 31. By the private communication of
manuscripts, we assured Carlsson that our methods worked as well
for p oddas for p = 2 , and that we stood ready to prove
almost any result he might reasonably require as input for his
argument, subject to two provisocs. First, the only groups G
to be considered weée to be elementa;y abelian p-groups, and
secondly, the results required were to lie in ordinary stable
homotopy rather than ig equivariant homotopy.

Since that time, there has appeared a growing prospect that
an optimised form of Carlsson's argument may require as input
only the calculation of Ext groups, rather than results in

hombtopy. More precisely, it seems that as a minimal input,
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Theorem 1.4 should suffice. It therefore seems reasonable to
accelerate the publication.eof our results on Ext groups.

Priddy and Wilkerson [13] have shown how the deduction of
Theorem 1.4 from (1.5) and (1.6) may be illuminated by their
observation that H*(V)loc is projective as a module over
Fb[GL(V)] . However, we will present our original argument,
which is elementary.

Mitchell [10] and his coliaborators {4, 11] have shown that
the A-modules H*(U) , H*(V) can be decomposed into various
summands. Let N be a typical summand of H*(U) , and let L

be a typical summand of H*(V) ; then
Exti*(L r MO N)
occurs ‘as a direct summand of

Exti*(H*(V) r MO H*(U)) .

Since Theorem 1.1 computes the latter, it would seem regrettable
if one could not identify the former. We leave this question for
a later paper. |

The body of this paper is organised as follows.

§2 and §3 deal with the Singer construction. §2 should

enable the reader to understand the rest of the paper; §3 gives

Syl (V)

the proofs. §4 locates the subalgebra of invariants H*(V)loc '
and also provides a chain of A-submodules between

Syl(v)
loc

later. §5 identifies the subalgebra of invariants with the

H* (V) and H*(V)loc + for use in proving homological results
iterated Singer construction, and so proves (l1.6). §6 completes
the proof of Theorem 1.4 (a) - (c); the proof of part (d), which
is not essential to our purpose, is postponed to §8. §7 proves

Thebrem'1.3; the idea is to take information about objects which
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are more localised and deduce information about objects which
are less localised.

At this point we must say some more about the proof of
Theorem 1.1. We have said that it involves book~keeping. The
art of book-keeping is to establish a correspondence between
entries in a ledger, where the information is easy to find, and
certain aspects of the real world, where things may be harder.
The analogue of the real world, for us, is a category E where
we keep our unknown Ext groups. The analogue of the ledger is
a category A9Y  which is open to inspection. The analogue of
the correspondence between the two (which is vital) is a certain
functor B8 from A9F to E .

In'§9 we shall set up the category A9T + which corresponds
to our iedger. In §10 we set up the functor B8 . This does
take some work; but the effort i§ justified, because the final
proof in §13, which is so short and sweet, depends totally on
the functorial properties of B8 . §ll1 gives the conceptual
restatement of Theorem 1.1.

It remains only to take the special case U = Zp and
reconcile the statements of the pookkeeping system with the facts
proved in §7. This is done in §12.

We are grateful to W.M. Singer for keeping us informed of
his work, and similgrly to G. Carlsson and to Priddy and Wilkerson.
We are grateful to the Sloan Foundation, to the University of
Aarhus, and to the University of Chicago fdr enabling us to

meet in spite of our usual geographical separation.



§2. The Singer Construction: Statements. In this section we

will state some facts about the Singer construction. The statements
we need to use later will be proved in §3. Since our construction
is not exactly the same as that of Li and Singer [5], we must
clearly add something to their work; we will try to make our
account self-contained. (0f course, for P =2, [15] suffices.)
We treat the Singer construction as a matter of pure algebra; we
realise the value and interest of the topological interpretation,
but we neglect that aspect for brevity.

The Singer construction accepts as input an A-module M ,
which may be an A-algebra. The Sinéer construction delivers as
output a diagram of the following form, which we mﬁst explain

below.

e

£ > 2
¢ 1 res
M

If M is an A-module, then this is a diagram of A-modules

T (M)

and A-maps. If M is an A-algebra, then the objects are
A-algebras, and f 1is a map of A-algebras, but ¢ and res
are not.

The map € is needed for the statement of Theorem 1.5.
The map f is needed for the proof of Theorem 1.6.

" Additively, the Singer construction T(M) 1is isomorphic to
the tensor product L O M of M with a fixed object I, .
(However, the A-modulé structure on T(M) is not given by the
usual "diagonal" formula.) Just as one assigns to each cohomology
theory K* the "coefficient groups" K*(P) , so to each functor

T from A-modules to A-modules one assigns the "coefficient
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groups" T(Fp) . ~ In our case T(Fp) is L ® Fp , that is, L ;
thus L plays the role of a "coefficient ring" for our construct-
ion. It is usual to write T for this coefficient ring, and to

write T(M) =T 8 M .

14

This coefficient ring T may be identified with H*(ZP)loc

the case n =1 of the algebra considered in (1.4). We will
describe this algebra explicitly to fix notation. Let e be a
generator in Hl(zp)  and let x = Be ¢ H2(Zp) . Then H*(Zp)

is a free module on two generators 1 , e over the polynomial

algebra Fp[x] . (We state matters in this way to avoid making

too much distinction between cases; for p = 2 we have e2 = X

and for p > 2 we have e2 =0 .) Similarly, H*(Zp)1oc is a

free module on two generators 1 , e over the algebra of finite
1 ,

- Laurent series Fp[x,x- 1.

We next describe the object "?2" in the top right-hand
corner of our diagram. This is a completed tensor product
T8 M .4 We topologise T @ M so that a typical neighbourhood
of zero is

(z 15 eM.
r<-N

A

T ®© M is of course the completion of T @ M ; a typical element

A
of TO®M is a "downward-going formal Laurent series"

t xfem + 1 exFe m; .
r<R rs<R
A
We place a A-module structure on T ® M in the obvious way:

we take the usual (diagonal) actionon T @ M = H*(Zp) oM

loc
and pass to the completion. (We repeat that this is not the
action we intend on T(M) =T @ M .)

Our diagram now loocks as follows.
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A
oM

l res
M

In §3 we will construct the maps f and res by means which are

more or less conceptual. Here we will merely record (for later

use) the explicit formulae which say what £ and res do.

(2.1) £ 1is a map of modules over T = H*(Zp)

loc

It is therefore sufficient to give f on elements of the

form 1@ m.

(2.2) £f(lLem) =

= ¢ (R RED g pk L (-1 KL ex7k(P-1)-1 ¢ gp* m .
k20 k20

The signs in this formula are there for good and sufficient

reason.

(2.3) res(z x*e@em'_+ 5 ex*e m" ) = m"_

r<R r ;SR 1
It is reasonable to think of this map as a "residue", since

it "takes the coefficient of ex-l "

the coefficient of e—l .

, and for p = 2 this becomes

(-1)" P m if r=k(p-1)-1,k 20
0 otherwise
(2.4)

(-0 ep¥ n if r = k(p-1) L, k 2 0

0 otherwise.
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Perhaps we should point out explicitly that res and ¢ are
maps of degree +1 .

We turn to the multiplicative properties of our diagram.

(2.5) The obvious action of T = H*(zp) on T(M) =T M

loc
is an A-action; that is, it satisfies the Cartan formula.

We now consider the special case in which M is an A-algebra.

e M.

In this case we have an obvious product in T @ M = H*(Zp)loc

(2.6) If M is an A-algebra then the obvious product map
for T(M) =T @ M is an A-map; that is, this product satisfies

the Cartan formula.

The product in T 6 M 1is obtained by paSsing to the
completion from the product in T @ M ; this product makes T 3 M
an A-algebra. These are the products with respect to which f
is a map of algebras, as we have stated.

This completes our list of properties of the Singer

construction.

4



§3. The Singer Construction: Proofs. In this section we will

prove those facts about the Singer construction which we need to
use. Our plan is as follows. We will begin with a construction
which is conceptual and a priori; then we will transform it into
the form described in §2. 1In other words, we do not start with
T(M) ; we define T in terms of T' , and T' 4in terms of T" ‘
these being similar constructions which approximate to T . We
start with T" ; here the description makes the A-module structure
transparent, but it does not make any multiplicative structure
transparent. 1In fact, the gradings need to be changed by one unit
before the multiplicative structure can work correctly. So we
next introduce T' ; this is isomorphic to T" , but now the
structure of T'(M) as a module over the coefficient ring T'
becomes transparent. We then identify the coefficient ring T'
with a more familiar object, namely the localisation H*(Zp)loc
of the cohomology of the symmetric group Zp . To make our
construction "bigger" than that of Li and Singer [5] we must
replace H*(Zp)loc by H*(Zp)loc » and in this way we reach T .
As in [7] we use the dual A, of the mod p Steenrod algebra
A [9]. This dual has exterior generators TorTyrees and poly-
nomial generators El,Ez,... - (For p =2 it has only poly-

nomial generators cl,cz,... 7 one should interpret T, as

.)

© We have to use the usual finite subalgebras of the Steenrod

‘ry1 304 & as g

algebra. We write A,(n) for the quotient A,/I(n) , where the

ideal I(n) is generated by the T, with r > n and the

s
55 with r+sz2n+1. (If P =2, I(n) is generated by

28

r With r + s 2n + 2 .) The quotient A,(n) is dual
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to a sub-Hopf-algebra A(n) of A . The subalgebra A(-1) is
to be interpreted as the ground field Fp ; the subalgebra A(0)
is the exterior algebra generated by B . Otherwise A(n) is

generated by B8 and the Pk with k <« pn . (If p=2, a(n)
is generated by the qu with k < 2n+l .)

We also introduce a localised quotient

By(m) = (A,/3(m))E; 7M1 (2 0)

where the ideal J(n) is generated by the T, with r > n and

s .
the gg with r22, r+sz2n+1. (If Pp=2,J(n) Iis

s
generated by the ci with r22 , r+sz2n+ 2 .) The object

A,/J(n) is a left comodule over A,(n) and a right comodule

n
over’/A*(n-l) . Multiplication by Eg preserves both comodule

structures. Since B,(n) may be regarded as the direct limit of

A,/J(n) under multiplication by gin r+ it becomes a left comodule
over A,(n) and a right comodule over A,(n-1) . It is also an
algebra, and is finite-dimensional over Fp in each degree.

We define B(n) to be the dual of B,(n) . This object is
a binmodule; it is a left module over A(n) and a right module
over A(n-1) .

For example, B,(0) has a base consisting of the elements
ET and To 5§ for- k € Z . We take the dual base in B(0) and

k.

cali its elements P and BPk for k € 2 .

Since we have canonical maps A, —> B, (n+l) —> B,(n) ,

we have canonical maps. B(n) —> B(n+l) —> A preserving all the

relevant structure. The element written Pk

P* in A if k20, to 0 if k <0 ; similarly for gp¥ .

in B(0) maps to

e ™
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Lemma 3.1. (i) B(n) is free as a left module over A(n) ;
the elements Pk with k“2 0 mod pn may be taken as a base;

_n
Py

. - n
the left-primitive subobject of B,(n) is chgﬁ ' E]

(11) B(n) is free as a right module over A(n-1) ; the
elements Pk R BPk for k € 2 may be taken as a base.

Equivalently, the map
B(0) @ A(n-1) ——> B(n)
is iso.

Proof. (i) It is clear that as a left comodule over A,(n) ,

B,(n) 1is a direct sum of copies of A,(n) shifted by multiplicat-

n
ion with the powers Eip r T € Z .

-

(ii) First we will show that in A , the elements Pk ’ BPk

with k sufficiently large (say k 2 ko) are linearly independent
under right multiplication by A(n=~1l) . In fact, A has a base

consisting of the admissible monomials

’ € k €

The subalgebra A(n~l) is finite-dimensional over Fp , and
therefore all its elements may be written as Fp-linear combinat-

ions of a finite number of admissible monomials, say ml,mz,...,mS .
+ pk

We have only to arrange that ko 2 € for all the

1 1

monomials m of this finite set; then the products

t

k . k
P m, . gp m, with k 2 ko

will be distinct admissible monomials, and therefore linearly .
independent. This proves that in A + the elements Pk ’ BPk

with k 2 k° are linearly independent under right multiplication
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by A{(n-1) .

Using the canonical map B(n) —> A , we see that the same
result holds also in B{(n) .

We will now deduce that all the elements Pk ’ st in B({(n)

are linearly independent under right multiplication by A(n-1) .

In fact, multiplication by gzrp gives a linear map

B,(n) —> B,(n) which is a map of bicomodules. Its dual is a
linear map B(n) —> B(n) whiéh is a map of bimodules. Suppose
we had any linear relation over A(n-1l) between the elements

Pk ’ BPk in B(n) ; by applying this map for a suitable value of
r , we could shift the relation‘up until it invblved only elements
pX , epk with k 2 k_ .

Thus we see that the map

e

B(0) © A(n-1) —> B(n)

is mono. On the other hand, thé ocbjects B(0) © A(n-1l) and

B(n) have the same dimension over Fp in each degree, namely

on P%n(n—l)

So if the map
B(0) © A(n-1) ——> B(n)

is mono, it is iso.. This proves (3.1).

—

We can now define our first approximation to T . If M is

an A(n~-1l)-module, we define

T"(M) = B(n) @ M;

A(n-1)

this is an A(n)-module. If M is an A(n)-module, then the

canonical map

o
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B(n) @ M —> B(n+l) @ M

A(n-1) A(n)

is iso, since both groups are isomorphic to B(0) @ M by (3.1)
(1i). Thus the definition is essentially independent of n .
If M is an A-module, we can interpret T"(M) as the attained

limit Lim  (B(n) @ M) ; in this case T"(M) is an A-module.
n

A(n-1)
If M is an A-module, the map

B(n) @A M——>a M—>M

(n-1) ®a(n-1)

passes to the limit to give a map of A-modules
E": T"(M) —> M .

The explicit formulae for " are as follows.

- P*n  for k = 0

e"(Pk ® m) =
0 for k < 0.
(3.2)
BP'm for k =z 0
e" (8% @ m) =

0 for k <0 .

We introduce a further structure map. By dualising the

product map of B,(n) we obtain a coproduct map
) » A
B(n) —> B(n) ® B(n) .

(Here and in generai we topologise tensor products L @ M so

that £ @ m is small if either £ or m is small. We topologise
each factor B(n) so that elements of large negative degree are
small.) The coproduct map Y preserves the left action of A(n)

and the right action of A(n-1l) . (Here the actions on
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B(n) 6 B(n) are given by the usual diagonal formulae plus contin-

uity.) The coproduct ¢ induces a map

A

T"(M @ N) > T"(M) © T"(N) ;

this is an A(n)-map or an A-map according to the case. The

explicit formulae for ¥ are as follows.

ve*emen) = : et em o (pJ @ n)
i+j=k

(3.3) ¥(gp* @ m @ n)

= 2 pteme (len + : (-1l gm e (apd o n)

i+j=k K i+j=k
We define the map £" to be the following composite. *
A
- T" (M) = T"(Fp ® M) > T"(Fp) ® T" (M)
A -
19 ¢e"
Vou
T"(F_) @ M
P

By writing €" we have assumed that M is an A-module; then
f" is an A-map. The explicit formulae for £" are as follows.
"X em = : *l e 1) 02
i+j=k,3jz0
(3.4) £ (8p* e m) =

= 5 erto1) epPim+ - I ! e 1) o8pin.
1+3=k,§20 i+j=k,§20

The map £f" is mono; this may be seen by filtering source

and target so as to give
e em = (P*e 1) om

f"(BPk @ m = (BPk ®1l)emn
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modulo less significant terms.

We must now supply a‘coefficient ring. Let T'(n) be the
right-primitive subobject of B,(n) ; the reader may have noticed
that Lemma 3.1 does not mention it explicitly. However, the

maps
eee —™> B,(n+l) —> B, (n) —> ... —> B, (0)
induce
¢ese —™> T'(n+l) —> T'(n) —> ... —> T'(0)

and all these maps are iso, since each T'(n) is dual to a

k k

F with base P BP for ke 2 .

quotient B(n) QA(n-l) P ’

Let us write T' for the (attained) 1limit <Lim T'(n) ; this is
- n

an algebra. It contains an algebra Fp[g,a'l] of finite Laurent
§eries on one generator £ , which maps to gl in B,(0) and
(for example) to & -EIPEZ in B,(2) . As a module over

-1
F
p[£,€
l,To in B,(0) . sSimilarly if p =2 ; we ghould then interpret

T as ¢ and £ as cz .

1, T is free on two generators 1,7 which map to

Multiplication by t' ¢ T" gives a linear map
B,(n) —> B,(n) which is a map of right comodules. 1Its dual

is a map of right modules

B(n) —t

> B(n)

which we think of as "cap product with t' " If we use
cohomological degrees then £ must be given degree -2(p-1)
since "cap product with £ " lowers degree by 2(p-1) ; similarly,

T must be given degree -1 . Cap product with t' defines
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B(n) eA(n-l) M > B(n) 9A(n-l) M
and passes to the limit to give
T —E s ey .
In B,(n) we have the associative law t'(xy) = (t'x)y ;

dualising, we see that the following diagram is commutative.

B(n) L4 >'B(n) 6 B(n)
A

t! t' 91
B(n) —¥—> B(n) & B(n)

It follows that we have a

-

T"(M © N)

In particular, the map

T" (M)
is a map of modules over
We now rewrite T"(M)
map
Tl
by
8(t' © m)

= (-1)

similar diagram for

b4

> T"(M) & T"(N) .

fll

A
T"(F.) @€ M
> (P)

T' -

in the form T' € M. We define a

e M —2

> Tll (M)

Fl

degt' vgem .

Here the sign arises because 6§ is of degree +1 , and we wish

8 to be a map of T'-modules with the usual sign conventions.

As for the presence of 8

, 1t is sufficient for the moment to

note that T"(Fp) is a free T'-module on one generator 8 ,
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but it is not a free T'-module on the generator 1 (at least if
P >2 ). Anyway, the map- '@ 1is an isomorphism of T'-modules.

We now define
T'(M) =T' @ M

and give it an action of A(n) or A , as the case may be, by
using 6 to pull back the action of A(n) or A on T"(M) .
Of course, since o is of degree 1 , this introduces the usual
signs.

By rewriting the source and target of f" , we obtain a

map

£ A

T'(M) =T'O M >T' @M.

This_map f' is a map of modules over T' » and also an A-map
(provided of course that on the right, the A-action on T' is
that which it gets as T'(Fp).) Otherwise the explicit formulae

for f£' are as follows.

f'(l o m =
(3.5) = g (Ej ® 1) @ ij - I (TEj e 1) @ Bbjm (p > 2)
j=20 320
=z (t? e 1) @ sqd (p = 2),
j=0

The minus sign arises from the sign in the definition of ¢ .
The map f' , like £" , is mono.
Now that we have a coefficient ring T' with the correct

products, we have an external product

(T'*' @ M) ® (T' @ N) —> T' ® (M ® N)

given by
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(t] ® m) (t) 8 n) = (-1) (degm) (degtz')tité emen .

Similarly, we have an external product
A A A
(T' ® M) @ (T' @ N) —> T'Q® (M@ N) .

We can check that the map £' given by (3.5) preserves external
products. 1In particular, if M is an A-algebra, then we get
internal products in T' @ M and in T' 3 M , and the map f£'
preserves these products. The shift of degrees by 1 was
essential for all this.

We prepare to replace T' with a more familiar object.
We recall that H*(Zp) contains H*(Zp) . The latter is a free

module on two generators 1 , e p-2 over the polynomial sub-

p-1 . _ , .
algeP;a Fp[x ] . It is natural to define H (Zp)loc by
localising so as to invert xp-l'. Thus H*(Zp)loc contains
H*(Zp)loc i the latter is a free module on two generators

1, ex’! over the Laurent subalgebra Fp[xp-l , x-(p-l)] .

Lemma 3.6. There is an isomorphism of algebras

which is also an isomorphism of A-modules from T'(Fp) to

. The explicit formulae are

H*(zp)loc

$(g) = —x~(P~1) ’ ¢(3) =ex — .

Proof. We have the following A(n)-map of degree -1 .

B(n) —> A X5 H*(Zp)loc

Here y 1is defined by
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“yla) = (-1)989(a) L o07Ly

we introduce the sign because we want an A(n) -map of degree -1

with the usual signs. We claim that in sufficiently high degrees,
this map factors through B(n) QA(n-l) Fp .
isbounded above, say by degree d . So for any element

In fact, A(n=-1l)

a € A(n-1l) of positive degree, a(ex-l) lies in H*(Zp) in the
range of degrees from 0 to d -1 . Now H*(Zp) satisfies the

unstable axiom, so we have

k 1

Pra(ex 7)) =0 R BPka(ex-l

) =0

for k sufficiently large - more precisely for k > %(d-1) .
So the A(n)-map factors as stated.

The A(n)-map we have used is given by the following formulae.

(-1)¥ exk(P-D-1

(k =2 0)
k
P > ¢
0 (k < 0)
(-1 K*L gk (p-1) (k 2 0)
BPkl————>
0 (k < 0) .
Here the sign (—1)k comes from the following calculation.
x
(£ Pk) X = x(1 + xp-l)
k=0
SO
S S 1 1,-1
(Z PV) x =x (1 + «P )
k=0

= x (1 - Pl g2l x3(p-1)

cee ) .
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We have thus shown that in sufficiently high degrees we have a

composite

8
T'(Fp) —_— T (Fp) —_— H*(Zp)loc

which is an A-map and is given by the following formulae.

-k > (-1)k*1 k(p-1)

&
-k > (-1 KL gk (p=1) -1

TE

Up to a sign -1 , this is the map ¢ in the enunciation, so
¢ 1is an A(n)-map in sufficiently high degrees.
But now we can use again the device of shifting elements

into sufficiently high degrees. The map ¢ carries the action
n n
of g"p e T' (on T'(Fp)) into the action of (-xF l)p

n
(on H*(zp) ) . The action of £ P on T'(Fp) is an

loc
-l n
A(n)~-map, and the action of (-xp )P on H*(I ) is an
p’ loc
A(n)-map. These actions can be used to shift elements into

arbitrarily high degrees; therefore ¢ is an A(n)-map in all
degrees. This proves (3.6).

We now use Lemma 3.6 to identify T' with H*(Zp)loc

Of course this changes nothing; everything has the same properties

as before. The explicit formula for f£f' now reads as follows.

f'(1®@m = . s -

(3.7) - - - 1) =
hX (-l)k X k (p-1) ® Pkm + I (-l)k+l ex k(p-1)-1 e BPkm .

kzo i kzo

At this point we have obtained the formula (2.2).
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Lemma 3.8. The external products
T'(M) @ T'(N) —> T'(M @ N)
satisfy the Cartan formula.

Proof. There are two possible interpretations of this lemma.
First we assume that M and N are A-modules, so that the
Cartan formula is asserted for all a € A . In this case we have

the following commutative diagram.
T'(M)  T'(N) —————> T'(M @ N)

£' @ £ ) £!

A A A
(T' @M 8 (T' @ N) >T' @ (M ® N)

Siné; f' 1is mono and the Cartan formula holds for the external
products in T 3 (M ® N) , it must hold for the external products
in T'(M @ N) also.

Secondly we assume that M and N are merely A(n-1)-modules,
so that the Cartan formula is asserted for all a € A(n) . 1In
this case we embed the A(n-1l)-modules M,N in the A-modules

M=2a@8 M,N=2a08

A(n-1) A(n-1) ¥ - The functor T'(M) =T' @ M

preserves exactness, so the map
T'(M ® N) —> 7' (M @ N)

is ﬁono. The required Cartan formulé holds for the external
products in T'(M @ N) , so it must hold in T'(M @ N) . This
proves (3.8). '

In particular (taking M = Fp) we see that the action of
T' on T'(N) satisfies the Cartan formula.

We can now proceed to our final construction T(M) . We
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: and we define

. S
define T H (zp)loc

T(M) =T 8 T'(M) =TO M.

Tl
Given Lemma 3.8, T(M) automatically receives an action of
A(n) or A as the case may be, extending the action of A(n)
or A on T'(M) , so that the products yz (y € T, z € T(M))
satisfy the Cartan formula.

Assuming M is an A-module, we have an embedding
A A
T"®@M—>TO@M,

A .
and T ® M is a module over T ; therefore f' extends

automatically to a map

T(M) =T @Q,, T'(M

T >TOeM

of modules over T . This map f is automatically an A-map.
If M is an A-algebra then the obvious product on

T(M) =T ® T'(M) =T @ M makes it an A-algebra, and £ is

o
a map of algebras. This completes our description of the map £ .
We turn to the map res . As an A-module, T = H*(Zp)loc
splits as a direct sum of submodules indexed over the residue
classes mod (p-1) ; the rth summand consists of the groups in
degrees congruent to 2r , 2r-1 mod 2(p-l) . (Clearly B
preserves these summands, and the operations Pk are of degree

congruent to 0 mod 2(p-l).) We therefore have an A-map

loc

T = H*(Zp)loc

—> H*
> H (Zp)

which projects onto the summand in degrees congruent to
0 , -1 mod 2(p-1) . We may compose this with the following

A-map.
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<_L Tl (F _g__> T" (Fp) E"

loc = p)

> F_ .

H*(Zp) P

Clearly the result is an Armap of degree +1 , and it annihilates
the groups in degrees other than -1 . In this degree it carries
ex"1 to -1 . (The sign comes from that in the definition of

® .) However, we still get an A-map if we change the sign of
our map. Tensoring with the identity map of M and passing to

the completion, we obtain an A-map

A
TOM res

> M,

it is given by the formula (2.3).
Finally, we can define e:.T(M)_——> M to be the composite
res. £ , and it is given by the formula (2.4).
’Ee have now justified everything about the structure of the
Singer construction stated in §2. We turn to the reduction

theorem, (1.5).

Lemma 3.9. (1) If M is A-free then T(M) is A-flat.

(ii) If M is A-free then the map

19e '
Fp GA T(M) —— FP @A M

is iso.

Proof. (i) If M is A-free then it is A(n-l)-free. If
M is free over A(n-l) then B(n) ®a(n-1) M is a direct sum
of copies of B(n) , so it is free over A(n) by (3.1) (i).
This shows that T'(M) 1is free over A(n) . Over A(n) ,

T(M) =T @, T'(M) is a direct sum of (p-1) copies of T'(M) ,

n
because multiplication by <P gives a shift map commuting with

A(n) . Therefore T(M) is free over A(n) ;s this holds for all

n. So
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Torg"t(K , T(M)) = L_ix_n> Tor‘:f’é) (K, T(M))

0 for s > 0 .

Thus T(M) is A-flat.
(i1) It is sufficient to prove the special case M = A ’

for the general case follows by passing to direct sums. By (3.1) (i),
n

B(n) @A(n—l) A(n-1l) is A(n)-free on generators Pkp r ke 2 .
n
Thus T'(A(n-1l)) is A(n)-free on generators T kp ; Or
_ n_ n
alternatively exk(p Lp -1 + k € 2 . Using the shift map xP R

: n
as above, T(A(n-1l)) is A(n)-free on generators exkp -1 , kK € 2 .,

Thus Fp QA(n) T(A(n-1)) has a base consisting of the elements

n
exfP 1 » k € 2 . Passing to the direct limit, Fp ®, T(A) has
a base consisting of the single element ex-l . Therefore the
map

F_e, T(A) 28 F g a=rF

P A P A p

is iso. This proves the lemma.

Proof of Theorem 1.5. Take a free resolution of M , say

ce e D Cs —— cs-l 2> eee oo "> Co _—>Mo

We obtain the following ladder diagram.

k]

ser —>T(C) —> T(C__;) —> ... ces —> T(C ) —> T(M)

s e >cs ———>Cs_l 2 ene L >C°_—'>M

Since T preserves exactness and carries free modules to flat
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ones, the upper row is a flat resolution of T(M) . We can

compute Tor from a flat resolution. When we apply Fp @A -_—,

we get the following ladder diagram.

—

1)

l10®c ' 10c
s o @ >‘Fp @A Cs > Fp GA CS-l > o e @

Here the vertical arrows are iso. Therefore the induced map
A A
E*: TOI**(FP ’ T(M)) — TOI**(FP ’ M)
is iso. This proves Theorem 1.5.

~Proof of Proposition 1.2. Suppose that 6: I —> M is a

Tor-equivalence; that is, the induced map

-

Oy Torﬁ*(Fp ¢ L) —> Torﬁ‘*(Fp r M)

is iso. By an obvious 5-lemma argument, we see that

O, Torf*(K,L) > Torf*(K,M)

is iso for any A-module K which is finite~dimensional over
Fp . If K 1is boundedabove, then K is a direct limit of
submodules which are finite-dimensional over Fp  and Tor

commutes with direct limits; therefore

J

_ is iso when K is bounded above.

Passing to duals, we see that the map

(8,)*: (Tor®, (K,L))* < (Torh, (K,M))*



is iso.

Since we have a natural isomorphism

~

(Tor:, (K,L))* EXt}* (L, K*)

this shows that

is iso.

0*: Exti (L,K*) <— Exti*(M,K*)

If N isbounded below and finite-dimensional over

in each degree, then we can write N as the dual K* of a

(right)

is iso.

A-module K which isbounded above; therefore
0*: Exti*(L,N) Exti*(M,N)

This proves Proposition 1.2,

3.18

F

P



§4. Algebras of Invariants. 1In this section we shall prove two

results on H*(V)loc which. are needed in the proof of Theorem 1.4.
The first result identiftes the subalgebra of H*(V)loc invariant
under a Sylow subgroup of GL(V) . The second result allows us

to ascend from this subalgebra to the whole of H*(V)loc by a
chain of A-submodules. Of course, the basic reéults on algebras
of invariants are due to Mui [12]. However, we need our proof of
the first result in order to prove the second.

Let us recall the structure of H*(V) . We have
ul (v) = Hom(V,F_) = V*

the dual of V . Let el,ez,...,en be a base in Hl(V) = V*

Let x_ = Be_ ¢ H2(V) - Then H*(V) contains a polynomial sub-

r r
algehra FpExl,xz,...,xn] 7 this may be written more shortly and
invariantly as S[gvV*] , where 8V* is the image of Hl(V) = V*
under B8: Hl(V) —_> HZ(V) . The whole algebra H*(V) is a free

module over S[gV*] , having as a base the 20 monomials

where each ir is either 0 or 1 . (We state matters in this

way to avoid making too much distinction between cases; for

P = 2 we have ei =x. and for p > 2 we have ei =0 .)

Similarly, H*(V); . 1is a free module on the same 2" generators
*
over the subalgebra S[RV ]loc .
We regard GL(V) ‘as a matrix group by using the base

el,ez,...,e in Vv* , or equivalently the base xl,xz,...,x

n n

in BV* . Our preferred Borel subgroup Bor (V) 4is the group

of upper triangular matrices. Our pPreferred Sylow subgroup
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Syl(V) 1is the group of upper uni-triangular matrices.

We will now introduce the following elements invariant under

Syl(v) .
r-2 r-2
= P P
fr Xy cee X,
P p
Xl * o xr
Xy eee x,
e .es e,
r-1 r-1
= o)
Y, X1 .ee r
2 2
P
x1 . o0 xg
P
£ P
Xy e X,

We pause to comment. These elements and their constructions
go back to Mui [12]. The element fr is displayed as a
determinant, and determinants belong to commutative algebra; but
our algebra H*(V) is not commutative in general. This causes
no Erouble; in the é?pansion of fr gach product involves only
one factor e, , whicﬁ commutes with éll the other factors X .

J
The elements fr and Y, are obviously invariant under
Syl(V) ; an element g e Syl(V) has the effect of adding to each
column of fr or y, a linear combination of the preceding

columns, and this does not change the determinant.
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If = 2 e have f2 = ; if > 2 we have f2 =0
p = we v r Yo ¢ p r .
The determinant Y, is a product of factors which are non-

zero elements of BV* ; thus vy is invertible in H*(V)loc .

r

Theorem 4.1. H*(V)igé(v) is a free module on the 2%
generators
il 12 in
fl. f2 oo fn (where each ir is 0 or 1)

over the algebra of finite Laurent series

1

-1 -1 -
Fp[yl,yl 18 Fp[yz,y2 1 ® ... ® Fp[yn,yn 1.

The localisation required may be accomplished by inverting

o Myl yeovr, y4o0;

this element is fixed under GL(V) ; therefore it makes no differ-
enée whether we localise before or after passing to a subalgebra
of fixed elements.

We shall prove Theorem 4.1 by determining H*(V)?oc induct-
ively for a chain of subgroups G which increase from 1 to
Syl(V) . We will next explain what subgroups we mean. The
quickest way is to give an explicit description in terms of
matrices.

We will call a set G of matrices a "good subgroup" if it
can be obtained in the following way. (It may not be instantly
obvious that the subset we shall define is a subgroup, but~we

shall show that it is.) Take a function
q: {1,2,.-..,n} —_—2 {0,1,2,...,1’!—1}

which has gq(r) < r-1 and is non-decreasing, so that r s s

implies q(r) s q(s) . Then the condition
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_aij = 6ij for i >q(3)

defines a subset G of the matrices A , namely, those which agree
with the identity matrix below a certain stepwise boundary line.
For example, with q(r) = 0 we obtain G =1 + with g(r) = r-1
we obtain G = Syl (V) .

We will state the properties of good subgroups. We need one
piece of notation: we define Ur to be the subspace of U = gv*
generated by XyrXoreeo X . Thus Bor(V) is the subgroup of

elements in GL(V) = GL(U) which preserve the "flag"

0=U0U_cuU

o 10U

5 € ...‘cUn=U.

Lemma 4.2 (a) For each functioﬂ q(r) , the subset G
defined above is a normal subgroup of Bor(V) , and hence normal
in aﬁ}_subgroup G' such that G < G' < Bor (V) .

(b) When G acts on U = BV* , each orbit is a coset of
some Uq ' Mmore precisely, each orbit which is in Ur but not in

U._; is a coset of Uq(r)

(c) Each good subgroup G > 1 contains a good subgroup F

such that G/F = zp .

(d) Conversely, each good subgroup F < Syl(V) 1is contained

in a good subgroup G such that G/F 2 Zp .

() If F c G are good subgroups with G/F = Zp , then F
differs from G only by the imposition of one extra condition
aqr'= 0 for some pair (q,r) with 'q <r . A generator g for
G/F = Zp is given by the elementary matrix which agrees with the
identity matrix except for agy =1 .

Proof. (a) We have an obvious homomorphism

Bor (V) —> GL(Ur/Uq) (@ <r)
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which assigns to each matrix A ¢ Bor(V) the induced automorphism
of Ur/Uq . Let K(q,r) .be the kernel of this homomorphism; a

matrix A ¢ Bor(V) 1lies'in K(q,r) if
aij = Gij for g<is<r, gq<jsr.
The subset G defined above is

c= N K{q(r),r) .
lsrsn
Since G 1is an intersection of kernels, it is a normal subgroup.
This proves part (a).
Parts (b) to (e) follow immediaﬁely from our description of
the matrices in G .
We will call a pair F ¢ G of good subgroups a "good paif"

if G/F = Zp , as in (4.2)(c)—(e). For the purpose of proving

Theorem 4.1, we can descend directly from H*(V)foc to

H*(V)foc i G/F = Zp acts on H*(V)foc » Wwith fixed subalgebra

G

H‘\‘(V)lac

- However, to ascend again in §6 we need a chain of
G F
- * %*
A-submodules between H (V)loc and H (V)loc_' For this purpose
we introduce the following considerations.
Suppose given a group ZP with generator g acting on an

algebra R over Fp . Then we can form
M, = Ker((g-1)J : R —> R) .

In the applications R is an A-algebra and g is an A-map,

(-Ye) Mj is an A-submodule. We have
o _ P
(g-1)" =1 and (g=1)" =0,

so we have a chain
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0= M° c M1 c M2 € ees € MP = R

z z
where Ml =RP ., we will say that the extension R P ¢ R is

"good" if the map

. 2
—1yJ3-1 | - = p P
(g-1) tM /Mg > M) /M = R

is iso for 1 s j s p . In the applications, this ensures that

the A-module R is filtered with p subquotients each A-isomorphic

z
to RP .

Proposition 4.3. If F ¢ G is a good pair of good subgroups,

then the extension

G F
* AV4 * AV
H* ( )loc < H*( )1oc

—

is good.

We record two easy lemmas about good extensions. First,

A
let RP c R be an extension; suppose that by inverting elements

Z .
in RP we obtain an extension

A
P
Rloc < Rloc *

(As before, it does not matter whether we localise before or

after passing to a subalgebra of fixed elements.)

. 2
Lemma 4.4. If the extension R P c.R is good, then so is

3

Z
; p
the extension Rloc c Rloc

This follows immediately from the principle that localisat-
ion preserves exactness.

Secondly, suppose given a pair of algebras R > S , with
zp . acting on both; and suppose that R 1is free as an S-module,

on generators bl’bz""’bm fixed under Zp .
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4
Lemma 4.5. If the extension S P ¢ § is good, then so is

VA
the extension R P ¢ R .

In fact, the module Mj(R) for R is the direct sum of
m copies of the module Mj(S) for S , obtained by multiplying

with bl’bz""'bm - The same goes for Mj/Mj-l . So if
(g-13Y s MM, —s Mo
g M L B 170

is iso for s , then it is iso for R .

Next we will explain the basic lemma which we use to determine
fixed subalgebras and to obtain'good extensions.

Let R be an algebra over Fp - Let the group Zp s With
generator g , act on the polynomial algebra R[x] so that g

fixes R and
g(x) = x + r
where r 1is a constant in R .

VA
Lemma 4.6. If r is invertible in R then R{x] P . R x]

2
is a good extension and R[x] P is a polynomial algebra R[y] ,

where

y= 1 (gix) = P - Py .
o<i<p

" Proof. The element

Yy = I (gix) = x(x+r) (x+2x)...(x+(p-1) x)
osi<p '

is equal to xP - rP7ly | ang is clearly fixed under g ; thus

VA
Rly] ¢ R(x] P .
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It is clear that R[x] is a free module over
Ryl = RCxP - rp-lx] on generators l,x,xz,...,xp-l . The
matrix of (g-1) with respect to this base has the following

form.

S ee 0 (p-1)r

- -

Here the terms r,2r,3r,...,(p-1)r are invertible. It follows

that Mj = Ker(g-1)J is exactly the R[yl-submodule generated

j-1

2
by l,x,xz,...,x . In particular, R[x] P = Ml = R[y] .

It follows next that Mj/Mj- is free over R[y] on one

1

generator x:’_l . The map

-1 : M. M., —> M./M.
d 34175 3™5-1

carries the generator % to jr xj-l » and is iso since jr

is invertible (for 1 < j < p-1) . This proves the lemma.

- To apply this lemma, we work in the "polynomial part"

S[BV*] of H*(V) . Next we must explain the elements which

G

we shall use as generators in our description of S[BV*]loc

Suppose given a vector space U containing a subspace T .
For each coset C of T in U, let 7(C) be the product

(in- S[UJ]) of the elements in C .
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Lemma 4.7. 7(C + D) = nw(C) + w(D) .

Proof. We proceed by induction over the dimension of T .
The result is trivially true if T = 0 , so we assume it true
for T' of codimension 1 in T . A coset C of T breaks

up into cosets of T' of the form
E’ E +F' E +2F' ee o g E + (p-l)F
where F 1is a generator for T/T‘ « So we have

7(C) = w'(E) n'(E+F) n'(E+2F) ... 7" (E+(p~1)F)

It

T'(E)Ln'(E) + w'"(F)Ilr'(E) + 2ﬂ'(F)] ese [ (E) + (p-1)7'(F)]
(by the inductive hypothesis)
= @®P - 1 (@®P g .

By the inductive hypothesis, this is an additive function of E .

This proves the lemma.

We can now formulate a result about fixed subalgebras in

SEBV*]loc = S[U] « Let G be a good matrix group, acting on

loc
S(U] where U is a vector-space with a given basis

xl,xz,...,xn +» Let Ur be the subspace of U spanned by

xl,xz,...,x as above. For each r ¢ {1,2,...,n} we choose

r r
a G-orbit ¢ in ‘U which is not in U .
h o r r=-1

Proposition 4.8 (a) For each such choiqe,the subalgebra

G
loc

of invariant elements .S[U] is

Fp["f(cl) ’ Tl'(cz) r eee g ‘ﬂ'(cn) ]lOC .

(b) If Fc G is a good pair of good subgroups, then the

extension
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G F
S[U]loc c S[U]loc

is good.

Proof. We shall prove part (a) by induction. The result is
trivially true when n =0 or n=1, so we may assume as an
inductive hypothesis that the result is true for n' < n ; in
particular, we have the corresponding result for Ur if r<n.

The result is also true when G =1 . We now argue by
induction over the order of G . If G > 1 then by (4.2) (c)
we may consider a good pair F < G . We assume as our inductive
hypothesis that part (a) holds for F .

Let Cl,Cz,...,Cn be chosen as above for G , so that Cr
is a G-orbit in U, which is not in Uo7 + Since Fc G,
each__G-orbit is a union of F-orbits; choose an F-orbit Dr

in Cr . Our second inductive hypothesis is thus that

Foo_
S[U]loc = Fp[ﬂ(Dl) 4 H(Dz) ’ * s e o ﬂ(Dn)]lOC .

By (4.2)(e), F differs from G only by the imposition

of one extra condition aqr =0, where q < r . It follows that

we have Cs = DS except for s = r ; the G-orbit Cr » Which

is a cosetbcf Uq . decomposes into p F-orbits, which are

2 -1
cosets of U_,, and are D_, gD, g°D, ..., & D, -

We can now apply Lemma 4.6, taking

El

R

Fp[TT(Dl) 7 e e "(Dr-l)]loc [“(Dr+l) r eee N(Dn)]

and x n(Dr) . Of course G/F = Zp acts on R{(x] , fixing

R . We have

g(Dr) = Dr + E
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where the coset E 1is some generator for Uq/Uq-l . Thus

g(mD ) = w(gDr)
= ﬂ(Dr + E)
= w(Dr) + w(E) by (4.7) .

Now E 1is invariant under Syl(Uq) + Since elements of
Syl(Uq) fix Uq/Uq-l - By the inductive hypothesis for

Uq  m(E) lies in

Fp[ﬂ(Dl) ’ T\'(Dz) ! eee g "(Dq)]loc

where q < r-1 . Moreover, w(E) is invertible in this algebra
(being a product of non-zero elements in Uq) . By Lemma 4.6,

our extension is good and the fixed subalgebra is R[y] where

e

I gi(nDr)
osi<p

(V]
i

I n(giDr)
osi<p

ﬂ(Cr) .
This shows that the subalgebra of

Fp[Tl'(Dl) r eee g TI'(D )] [Tl'(Dr) ?t cee g TT(Dn)]

r-1’ "1oc

fixed under G/F is

Fp[ﬂ(Cl) ' osee g ﬂ(Cr_l)]loc CnlC) v ...y m(C)1,

and that this extensioﬁ is good.
Performing the remaining localisation, we see that the sub-

algebra of
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Foo_
S[U]loc = Fp[ﬂ(Dl) ’ n(Dz) ’ eee ‘N(Dn)]loc

fixed under G/F is

Fp[“(cl) 14 Tr(cz) 14 s "(cn)]loc hd

This identifies S[U]°

loc which completes the induction and

proves part (a) of the proposition.

Now that the induction is complete, the argument applies to
any good pair of good subgroupé F ¢ G . The argument shows
that the subalgebra of

)1,

Fp[‘"(Dl) ’ L TT(D lOC

=1 (D) , ..., w(D)]

fixed under G/F is

Fp[ﬂ(cl) 14 L AN ’ ‘”(Cr-l)] [W(Cr) r e s s g W(Cn)]

loc

and that this extension is good. Part (b) of the conclusion now

follows by using Lemma 4.4.

Syl(V)

Corollary 4.9. S[BV*]loc

is the algebra of finite

Laurent series

1

' -1 -1 -
Fp[yl,yl le Fptyz,y2 1® ... @ chyn,yn ]

where yl,yz,...,yn are as in (4.1).

- Proof. By (4.8)1a), S[Bv*]izi(v) is

Fp[zl v Zg ot seey zn]loc

where z, = n(Cr) and we may for example take C,. to be the

coset of U._.; which contains X, - The localisation required

Syl(Vv)

z loc

is to invert Z) Zy eee Z, . So S[BRV*] is the algebra
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of finite Laurent series

1 -1 -1

nd -

The relation between the y's and z's \is

yp = (0 g o

= (_1yI-1
2, = (=1) yr/yr--l

(where we interpret Y., as 1) . The result follows.

We will now climb up from the polynomial part S[BV*] to

the whole algebra H*(V) .

‘Lemma 4.10. H*(V)loc is a free module over S[BV*]loc

"

n
on 2 generators

where each ir is 0 or 1.

Proof. Let S = S[8V*] . By its definition, the generator

loc

fr in (4.1) is already written as an S-linear combination of

el,ez,...,ér . Moreover, the coefficient of e, in fr is -
yr—l . Which is invertible in s .

We can obtain a corresponding result for monomials if we
order the monomials correctly. We order them first by their
degree il + i2 + s.. + in 7 the monomials of a given degree

we order lexicographically, regarding in as the most significant

digit and il as the least significant digit. Then

il 12 i
fl f2 oo fnn is an invertible coefficient times
il' 12 in
e," e .., plus a linear combination of lower monomials.



(This statement remains true for Pp=2.) The lemma follows.

Using (4.10), and the fact that the 20 generators

are fixed under any subgroup G c Syl(V) , it follows that

G X G n
* *
H (V)loc is a free module over S[RV ]1oc on the same 2
generators
fil fiz fin
l 2 L B ) n -

Thus Theorem 4.1 follows from (4.9).

In view of the last paragraph, Proposition 4.3 follows from

(4.8) (b) by using (4.5).



§5. Proof of Theorem 1.6. 1In this section we will prove

Theorem 1.6. We do this by induction. If V is of rank n over

Fb + let W be of rank {n-l) .

Theorem 5.1. There is an isomorphism of A-algebras

T(a* () 720 M) 2 me (VLY

The isomorphism in this theorem is induced by the map

£

A
T @ H*(W)loc >T @ H*(W)loc

of §52. We will exhibit an embedding of H* (V) loc Im

A
T ® H*(W)loc - In fact, we identify the generators e,x for

with the generators in H*(V)loc . We

ey %)
regard - W* as the subspace of V* spanned by €y1€3700. 8

T = H*(Zp)loc

n 7
it follows that we regard BW* as the subspace of BV* spanned
by x2,x3,...,xn . This certainiy identifies H*(V) with a
subalgebra of T 3 H*(W)loc i We must see that this embedding
extends to the localisation. 1In fact, for any element m of
degree 2 in H*(W)loc the element X, +m is invertible in

A
T ® H*(W)loc » an inverse is provided by

- -2 -3 2
xl-x1m+xlm-....

This gives the embedding.

To give formulae for f , we must calculate the Steenrod

E

Syl (W)
*
operations on the generators fr'yr for H (W)loc .
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k p¥_pJ
Lemma 5.2. (i) We have P Y, = 0 unless k = =1 for
some Jj such that 0 < j < r . In this case we have
k. pT pt
Py, = ) e r+l *
xP3+1 PJ+l
2 Xr+1
xpj-l xPj-l
2 r+l
Xy e e
k
(ii) We have gP Yy = o .
k pr-1_p3d
(iii) We have P fr = 0 unless k = ——E:T___ for some

j such that 0 < j s r-1 . In this case we have

r-1 r-1
Pkf = xP e P .
r 2 r+l

Tpitl xpJ+l
) r+l

pI-1 xPJ-l
x2 r+l
) Xr+1
e2 e 0 e er+l




k Pr-l_l
(iv) We have BgP fr =0 unless k = _E:T__ . In this case
we have
ke _
8P fr = yr .
® _k
Proof. Since P = [ P is a homomorphism of algebras,
k=0
we have
r-1 r r-1 r
. . P P P P
P(yr) - X2 t X, ’ ce ’ Xr+1 t X .
2 2
P P P
xz + x2 ’ s e r) xr+l + xr+l
P P
- Xy * X, v e v Xpp1 Y X4

This determinant can be written as a sum of 2% determinants;
in each row we must choose whether to take the first summand in
each entry or the second summand in each. Most of the resulting
determinants are zero because they have two rows equal. The

remainder are those given in the enunciation.

The proof of part (iii) is similar. Parts (ii) and (iv)
follow,

Lemma 5.3. The map

T @ HY (W), _ f 518 H* (W) |

has

£(x, 1) =y,

f(el @ 1)

!
Hh

and



pt

f(xl ® yr) = yr+l
Pr-l

flx, e©f)=£f,

for r21.

Proof. The map f 1is given by (2.1), (2.2). Using the

Steenrod operations given by (5.2), we calculate as follows.

r . 3j r r
P r-j _P P P
£f(x ®y.) = I (-1) X X e X
1l r ossr 1l 2 r+l
¥P3+1 P3+1
2 Xr+l
- xpj’l xPJ'l
2 r+l
x2 > e @ xr+l

= Yr41



r-1 Y oa 3 r-1 r-1
f(xi ® £) = z (-1 T 1-3 xi xg o xi+l
osjsr-1
PJ+1 xP3+1
X2 r+l
pi-1 xpj'l
) r+l
) Xr+l
ez 2 ®» er+l
r-1 r-1
r P P
+ (—1)' el X2 o s @ xr+l
P P
%2 xr+1
x2 o o o xr
= fr+l *

This proves the lemma.

Proof of Theorem 5.1. The subalgebras H*(W)igé(w) ’ H*(V)igé(v)

are identified by Theorem 4.1. We see from (5.3) that the map

3

A
T @ HX (W) £ .re H* (W) )

carries the algebra of finite Laurent series

1

-1 -1 -

(onlthe left) isomorphically onto the algebra of finite Laurent
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series

1 1

-1 - -

Syl (W)
ocC

(on the right). On the left, T ®© H*(W)l is free over the

subalgebra just described, on the 2" generators

Syl(V)

On the right, H*(V)loc

is free over the subalgebra just
described on the 20 generators

k
£ 2

n
1 2 ® & 8 fn L

We see from (5.3) that f carries the one set of 2% generators
to the other, up to invertible factors in the subalgebra just

described. This proves Theorem 5.1.

Theorem 1.6 follows immediétely by induction over n .



6. Proof of Theorem 1.4 (a)=(c). 1In this section we will prove

most of Theorem 1.4. As the proof is by induction, we must
formulate the inductive'hypothesis. Let V be of rank n , and

let G ¢ Syl(V) be a good subgroup, as in §4.

Theorem 6,1 (a) The quotient map

G q G
H*(V)loc > Fp eA H’k(v)loc

is a Tor-equivalence.
G . '
* { -
(b) F GA H (V)loc 1s zero except in degree -n , where it

is of rank |[syl(v) : G| .

Proof. We first remark that this is true for the case

G = Syl(V) . 1In this case we have
Syl(V) ~ .n
*‘7 =
H* ( )loc T (Fp)

by (1.6). By (1.5), we have n Tor-equivalences

n £ n-1 €
TF —>T F—> ,0.. —> TF —=> F
P P P p’

each of degree +1 . Thus we have a Tor-equivalence (of degree n)

syL(v) _* o

*
H (V)loc - P

Consider the following diagram.

loc
q . q'

Syl(Vv) 10¢
* (V7 —_—cr =
Fp QA H* ( )loc > F GA F F

Since ¢ is a Tor-equivalence, 1 @ ¢ 1is iso; also q' is



trivially iso. Thus q is a Tor-equivalence.

We now proceed by downwards induction over G . Let F be
the good subgroup for which we wish to prove the result. By
(4.2) (d) we have a good pair of good subgroups Fc G, and
we suppose as our inductive hypothesis that the result is true

for G . By (4.3) we have a filtration

F
= = *
0 MO,C Ml c M2 € ees © Mp H (V)loc

of H*(V)ioc by A-submodules, in which each subquotient
Mj/Mj¥1 is isomorphic to H*(V)foc - Suppose, as the hypothesis
of a subsidiary induction over -3 , that the quotient map

M. — S F @ M.
J P A ]

is a_.Tor-equivalence, and that Fp QA Mj is zero except in
degree -n , where it is of rank j|Syl(V) : G| . (This is

trivially true for j =0 .) Consider the following diagram.

G
— *
0 > Mj > > H (v)loc > 0

Mj+l

A * G — —_— — * G Jo—
Torl*(Fp,H (V)loc) > Fp @, M, >F 0, M, >F_©, H*(V) >0

A3 P A i+l p A loc

By the hypothesis of the subsidiary induction, Fp @A Mj is zero

except in degree -n.. By the main inductive hypothesis,

3

A

. G
*
Torl’_n(F HH* (V)

loc)

TorA (F_,F)

|syi(v):g| 1L© PP

m

0.



So the lower sequence is short exact. We see that Fp QA Mj+l
is zero except in degree -n , where it is of rank
(3+1) | Syl(V):G|. Now we use the Five Lemma; by our inductive
hypotheses, qj and q are Tor-equivalences, and therefore
qj+l is a Tor-equivalence. This completes the subsidiary
induction, which runs upto j =p and proves the required result
for H*(V)];:oc . This completes the main induction, and proves
Theorem 6.1.

The special case G =1 of (6.1) proves parts (a), (b)
and (c) of Theorem 1.4. The proof of part (d) will be given in

§8. In §7, references to Theorem 1.4 will refer only to the

parts (a), (b), (c) already_proved.



§7. Delocalisation. In this section we shall prove Theorem 1.3,

The theme of our argument is that we take information about objects
which are more localised, and deduce information about objects
which are less localised.

Our first task is to define the map which appears in (l1.3).
This map is defined by using residues. The basic definition of
the residue was éiven in §2. If M 4is an A-module, then the
completed tensor product

A
M

H*(2.) 100 ©

has as its elements the "downward-going formal Laurent series"

I xt e mé + I ext o m" ,
rs<R rs<R T

o

where e ¢ Hl(Zp) and x = Be ¢ HZ(ZP) are the generators.

The residue map

A res
* ——
H (Zp)loc O M > M
is defined by
res( £ x" ®@m' + 1 ex' @ ml) = ml, .
r<R rsR

This is an A-map of degree +1 .

In practice we do not usually need the whole of

loc
A-algebra R and that M is an (A,R)-module. Then

A
H*(zp) @ M . Suppose for example that we have in play an

H*(Zp) @ M is an (A,.H*(Zp) @ R)-module. We define

(H*(Zp) e M)loc

by localising so as to invert x + r for each r of degree 2

in 'R . Then we have an embedding
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>

(B*(2 ) © M)} < H*(Z) M .

loc

For this it is sufficienﬁjto see that x + r acts invertibly on

A
H*(zp)loc ® M ; the inverse is given by

x-l - rx-z + sz.3 = e se o

Thus we have a residue map

(H*(2) © M)i‘oc =22 5 M.

If we have several residue maps in play, then it is
important that the notation should indicate the domain of
coefficients M ; one cannot take the coefficients of a series
without knowing what counts as a coefficient. It is not so
imporEant to display the variable e or x , because in fact
the residue does not depend on that. If we replace e by e

and x by Ax for some X + 0 , then we replace ex™1 by

ex-l i 1f we replace e by e + r for some r of degree 1
in R, and x by x + Br , then we easily check that we get
the same residue. (Heuristically, our "res" is the sum of
the residues at all the finite poles z = -r l)

Later on we have to consider the special case in which M
comes as a tensor product, M =N P , and R acts on N @ P

by acting on N . 1In that case P plays a dummy role, in the

following sense.

el

Lemma 7.1. There is a natural isomorphism

-~

(H*(Zp) © N)loc P > (H*(Zp) ® N® P)loc i

it makes the following diagram commute.

BT
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~

(H*(Zp) 9 N)loc ®P > (H*(Zp) @ NG®@ P)loc

res ® 1 X
N@®P
The proof is easy.

We proceed to the applications. We would like to suppose
given a non-zero element x, as in (1.3). Howeverxr, in this
section, it will be convenient to simplify the notation by ident-
ifying the subspace BV* c HZ(V) with V* (dropping the symbol
B) . So we suppose given a non-zero element x ¢ V* , and

choose a direct-sum splitting
— V* = <x> @ W* .,
This corresponds to a decomposition

H* (V) = H*(Zp) @ H* (W)

(where <x> = Z;) . We can apply the work above by taking
R = H* (W)

where S 1is a subset of V* . By inverting elements x + r we

surely invert all the elements of S which are not in W* , so

E)

we 6btain the following residue map.

res
—_W.> H* (W)

H* (Vg Saw* °

Using these maps res as components, we obtain the map

w

{resw}
g — ? HY (W) g qwe

of Theorem 1.3.
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Theorem 1.3 asserts that the map {resw} is a Tor-equivalence,
and to prove it, we begin with the special case S = v* .,

’

We take a base el,ez,...,en in Hl(V) and set X, = Ber
so that xl,xz,...,xn' is a base in V* ., Without loss of
generality we may suppose that 3 is the element x in (1.3).
We regard GL(V) as a matrix group by using these bases. Our
preferred Sylow group Syl(V) is the group of upper uni-triangular

matrices. We let g run over Syl(V) .

Lemma 7.2. Under the map

res,
H*(V)V* —_— H*(W)w*
the element g(e x"1 e x-l e x_°) maps to zero unless
171 272 °°°" "n"n

all the elements gxz,gx3;...,gxn lie in W* , in which case
-1 -1 -1

—

it maps to g(e2 Xy7 ez XU ... e, X, ) .
Proof. We have
gleg xIl e, le oo o€ x;l) =e; xIl gle, xEl oo e x;l) .

Suppose that after the initial term e, xll r Just d of

gxz,gx3,...,gxn do not lie in W* . 1In this case the expansion

of

-1 -1 -1
e, x1 g(e2 xz ces en xn )

in the form

r r
I xX;0m' + 2 e.x; & m"
r } r r 171 r

only contains terms with r < - d-1 . So the residue is zero

unless d=0. If d=20 , then g(ezx;l...enxgl) lies in

H*(W)W* and counts as a constant in computing the residue,
-1

-1
which becomes g(ezx2 ...enxn ) .
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With suitable interpretation the proof applies also for

P = 2 ; the expansion of ezl g(e;l e;l .o e;l) in the form

r
ﬁ el 9 mr
only contains terms with r < - d-1 . This proves (7.2).
Lemma 7.3 (a) The p%n(n—l) elements
-1 -1 -1
1@ g(el X7 ey X7 ... e, X, )

(where g runs over Syl(V)) form a base for Fp (*] H*(V)V* .
(b) The map

{1 ® res_}
W
F, 8, H*(V), > ?Fp ®, H*(W)_,

P A

(where W* runs over complements for <x.> in V* ) is iso.
1

Proof. For n =1 both parts are contained in Theorem 1.4.
We proceed by induction and assume that part (a) is true for

spaces of dimension (n-1) . By (7.2) the p%n(n-l) elements

-l e x71

-1
e, X, n *p)

10 g(e1 x
* i *

in FP e H (V)V* map to elements in %?Fb @, H* (W), which

form a base there by the inductive hypothesis. Therefore the

elements

. -1 -1
10 g(el X" ey

'l *
are linearly independent in Fp GA H (V)V* .

But this group is of rank p*n‘“‘l’ by Theorem 1.4, so they
form a base in Fy @ H*(V)ys + and the map {1 © res,} is iso.

This proves (7.3).
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Corollary 7.4. Theorem 1.3 is true for S = Vv* .,

Proof. Consider the following diagram.

{res,_}
H* (V) v " > ?H* (W) (g
q {qw}
{1 ® res,}
W
F, 8, H*(V)y, > EWBFP ®, H* (W),

The lower horizontal arrow is an isomorphism by (7.3). The two
vertical arrows are Tor-equivalences by Theorem 1.4. Therefore
the upper horizontal arrow is afTor-equivalence. This proves
(7.4). |

For technical reasons, we pause to interpolate a homological

—

lemma.

Lemma 7.5. If an A-map 6: L —> M is a Tor-equivalence,

and if K 4is an A-module which is boundedabove, then
8@ 1l: LOEK—> M@K
is a Tor-equivalence.

Proof. If K 1is finite-dimensional over Fp this follows
by an obvious induction over the rank of K , using the Five
Lemma. If K is bounded above then K is a direct limit of
A-submodules finite~dimensional over* Fp i Since Tor commutes

with direct limits, the result follows.

As we have said, we shall prove Theorem 1.3 by downward
induction over S . We must now study the effect of changing
S ; so we suppose given two subsets S c T c V* o With x.¢ S

as before., Let W* run over complements for «<x> in Vv* ;

wmalba s
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for each such complement we can consider the following diagram.

(o)

> H* (V) g ———> H* (V) ——> H* (V)
(g

>0

res res

W W w

Jr \' 7
—> H* (W) —> H* (W) oy —> O

o ToW*
B (W) g e

O ——> H*(W)

SnW* TnW*

Since the square is commutative and the rows are exact, there is

just one map Pu which makes the diagram commute.

We now suppose that T contains just one more line than

S , say

P

T =8 u<y> ,y£S.

We suppose that V is of rank n , and we suppose as an inductive

hypothesis that Theorem 1.3 is true for spaces V of rank n-1 .

Proposition 7.6. Under these assumptions, the map

HY (V) Loy} @H*(W)T..w*
B (V) -

is a Tor-equivalence.

We begin with some remarks. WeJhave said that W* should
run over all complements for' <x> in V* . However, in (7.6)
it is sufficient to run W* over complements for <x> which
contain <y> ; for if <y> is not contained in W* , then

T n WY = SnW* and the summand
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. |
HY (W) 1

HEW gy

is zero. So we can restrict attention to the pn-2 complements

for <x> which do contain <y> .

Lemma 7.7. In (7.6), the truth or falsity of the conclusion

depends only on the image of S in the quotient space V*/<y> .

Proof. We will study the effect of replacing S by s*' ,
where S' is the set of elements s ¢ Ay with s ¢ 8, A ¢ Fp .
Thus S' is the largest set wi;h the same image in V*/<y> as
S . Of course we take T' = S;lu <y> .

* By passing to the quotient from the commutative diagram

resw .
* —_— *
H* (V) > H* (W) pooe
resw
* _—
H (V)Tl > H* (W)Tlnw*

we obtain the following commutative diagram.

{pw}
H* (V) , ————> HE (W) oo
H* (V) g HE (W) g e
{pw}'
H (V)Tl > H*(W)T'ﬂw*
H¥ (V) ¢, CRN T r—

We will show that the two vertical arrows are iso. It will follow

that the upper horizontal arrow is a Tor-equivalence if and only
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if the lower one is. This will complete the proof, because if
Sl,S2 are two choices fdr S with the same image in V*/<y> ,
then they have the same S'..

For this purpose we will show that the elements s' ¢ S°'

act invertibly on
H*(V)T / H*(V)S .
In fact, the series
st - Ay s 422 y2 s™3 - ...
provides an inverse for s + Ay ; on.any particular element of

HY (V) / B* (V) g

this-series converges after a finite number of terms, because
for any z € H*(V)T there is a power y™ of Yy such that

ym Z € H*(V)S .

In the diagram

o0 —> H*(V)S > H*(V)T > H*(V)T >0
0 —> H*(V)S, —_— H*(V)T, —_—> H*(V)T, —> 0
' (Vg

Fs

the lower row is obtained from the upper row by localising so
as to invert §S' ; therefore the right-hand vertical arrow is
iso, because localisation does not change a module on which
S' acts invertibly.
Since we need only consider subspaces W* containing <y> ,

precisely the same considerations show that the map



H* (W) H* (W) .

TaW*

nW*

H¥ (W) B (W) .

SnwW*

is iso. This proves Lemma 7.7.

nwW*

7.10

Proof of Proposition 7.6. Choose a complement V* for

<y> in V* , such that <x> ¢ V* . Then V*

provides one

representative for each coset in V*/<y> , and so Lemma 7.7

allows us to suppose that S ¢ V* . In this way we have cleaned

up the position of S .

As we have said, we need only consider the pn.2

W* for <x> in V* which contain <Yy> .
correspondence with the pn_2 complements

V* ; the correspondence is

T

W* b——s W* 5 V*
W ——> W* 0 <y> .
The diagram which defines

H* (W)
H* (W)

H*(V)T pw
H (V) g

TaW*
SnW*

>

complements

These are in (1-1)

W* for <x> in

can now be rewritten as follows by using Lemma 7.1.

* (U * —_— * (T * —_— v S
O -~H (V)S @ H (zp) > H (V)S ® H (Zp)loc > H*(V)s ® H* (Z )loc >0
: H* (2 )
p
resw ® 1 resw 01 resw 8 1
v \ 4

* (W — * * (T _ * w —
O—H*(W)g s © H*(Zo) S H*(W)g 7y @ HA(Z) ) = H¥(W)g oy 8 H¥ (2 ), 40

H* (2
( P

vl e -
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Here <y> = (Zp)‘”?“%Since V is of rank n-1 , our main inductive
hypothesis, which was_gég%éd as part of the assumptions for (7.6),
says that the map—‘ |

{res=}

H*(V)* ____Jl_q.g?H*(W)SnW*
W

is a Tor-equivalence. Since H*(Zp) /H*(Zp) is bounded above,

loc
Iemma 7.5 shows that the map

H*(V)S @ H*(Z )

H*(ZS loc

is a Tor-equivalence. This shows that

HY (V) {p,} . H*(W)

TnW*
* > 69 *
(V) g S U —

is a Tor-equivalence, which proves Proposition 7.6. '

Proof of Theorem 1.3. We prove this result by induction over

n. For n=1 there is only one way to localise, and the
result is true by (7.4). We therefore assume the result true

in dimension (n-1) . We.now proceed by downward induction over
S . Corollary 7.4 shows that the result is true for § = V* ;
for the inductive step, we must assume that T contains just
one.more line than S.,, say T =S u.<y> as in (7.6), and
assume that the result holds for T . We now have the following

commutative diagram.



(o]} > H*(V)S ———— H*(V)T —_——> H*(V)T > 0
H*(V)S
fres } {resw} {pw}
(Vg v H*(W)
Tnw*
0 — ?H* Wgaws — ?H* (W) poygs —> ? W o — 0

Here the middle vertical arrow is a Tor-equivalence by the

inductive hypothesis, and the right-hand vertical arrow is a
Tor-equivalence by Proposition 7.6. So the left-hand vertical
arrow must be a Tor-equivalence, by the Five Lemma applied to

the obvious ladder diagram of Tor groups. This completes the

induction and proves Theorem 1.3.

Corollary 7.8. The map

{resw}

H* (V) ) > @ H* (W)
]

is a Tor-equivalence.

This follows immediately from Theorem 1.3; if s = <x>

then S n W* =0 for each W .

7. 12
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58. The Steinbexg,representation. In this section we will prove
™

that Fp QA H*(V)loc affords the (mod p) Steinberg represent-

ation of GL(V) - We will also comment on related results.

First we explain the definition which we use for the
Steinberg representation, in terms of the Tits building. The
Tits building TB (for V*) is a certain finite simplicial
complex. For each subspace of V* (other than the trivial

subspaces 0 and V*) it has a vertex. For each flag

%* * * *
0 < Vl < V2 < vee < Vr <V

it has a simplex whose vertices are the ones corresponding to

Vi,

(r-1) . In particular, the maximum dimension of a simplex is

V§ 4 eee 4 V; ;7 the dimension of this simplex is thus

(n-2) -. By "the homology of the Tits building" we mean
ﬁh_z(TB) » the integral homology of TB in the top dimension
(n-2) , taken reduced if n-2 =0 .

The Tits building for V* is isomorphic to that for V ’
because there is a (1l-1) correspondence between linear sub-
spaces in V and linear subspaces in V* , given by passing to
annihilators.

Our object is to prove the following result.

Proposition 8.1. There is a canonical isomorphism

* =
F, @ H* (V) ZF_ e, " _,(mB) .

We shall subdivide the proof by introducing an alternative
construction of the Steinberg module. For this we present a
Z-module M = M(V*) by generators and relations, as follows.

We take one generator

m(xl 1 Xy q o eeey xn)



for each base (xl v Xy eeey xn) of v+ .,

following relations.

8.2

We prescribe the

(1) m 1is antisymmetric in its arguments, that is,

m(xpl P Ky r eeey xpn)

= e(p) m(xl ¢ Xy s eee xn)

for each permutation op .

(ii) If A 4is a non-zero scalar, then
m(kxl 1 Xy .o ,~xn)

= m(xl ’ xz', cee s xn),'

(1ii) Suppose that V* comes as the direct sum

V* =-X* & Y* of a subspace X* of dimension

2 and a sub-

space Y* of dimension n-2 . Suppose that any two of

Xy 0 Xy 4 X5 form a base for X* , while Yy o+

form a base for Y* . Then

m(xll le Y3l Y4l vee g Yn

+ m(x3 ’ xl ’ y3 ’ y4 1 eee 4 yn

2! X300 Y30 Yy eee s ¥y

y4’ s e g Yn

)
)

) =0 .

It is clear how Aut(V) = GL(V) acts on M .

Our object is now to prove the following two results.

Proposition 8.2. M = M(V*) is canonically isomorphic to

‘ﬁn_z(TB) + the homology of the Tits building.

Proposition 8.3. There is a canonical map from Fp Oz M

to H*(V)loc such that the composite
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—— *
Fp 837> HY (V) > Fp ® B* (V) 100

is an isomorphism},-, -
Proposition 8.3 shows that the quotient map

* — *
H (V)loc > Fp eA H (V)loc

has a canonical splitting. Thus, for example, the result of
Priddy and Wilkerson [13], that H*(V)loc is projective over
H* (V)

Fp [GL(V)] , implies that the quotient Fp e is also

A loc

projective over Fp[GL(V)] .

We will begin by giving the canonical map

14

—_— *
Fp QZ M > H (V)loc

for this will motivate and explain the construction of M .

We give the map on the generators and check that it preserves
the relations. Let (xl 1 Xy g eeey xn) be a base for Vv* ,
and let e, € Hl(V) be such that Ber =X, € HZ(V) . Then
we send the generator

to

It is clear that the relations (i) and (ii) are preserved, so
we turn to relation (iii). Let X0 X, and X3 be as
assumed, so that any two of them form a base for X* . By
relation (ii) we may assume that the linear dependence between

xl . x2 and x3 has the form

n
o

xl+x2+x3

+e,=0.

+ e 3

e 2
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Dividing the first equation by X) Xy X3 we find
-1 -1 -1 -1 -1 -1 _ .
Xy Xg + X" ox; 7+ X7 xy0 = 0 ;

multiplying the second by ey e, and e, we find

e2e3=e3el=ele2.

Thus

This sets up the canonical map

| -
FpezM > H* (V)

loc

We will now analyse the structure of M , and give a base
for it. Let (xl v Xy eeey xn) be one base for V* , and

let g run over the (corresponding) upper uni-triangular matrices.

Proposition 8.4. Then the generators

m(gxl 19Xy 4 eee gy gxn)
form a Z-base for M .
We will begin by showing that the generators
m(gxl 19Xy 4 eee gxn)

span M . For this we need a lemma.. Let W* be a subspace of

dimension (n-1) 4in V* .,
Lemma 8.5. M 1is spanned by generators
m(yl ’ Yz 4 eee Yn)

in 'which all but one of the Y, lie in w* .
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Proof. Conséder a generator

ST n,

st T

MYy Yy e y)

in which two of the Y, do not lie in W* ; by relation (i),
we may assume that Y, and Yo do not lie in W* . Since
V*/W* is of dimension 1 , there is a linear dependence between
Yy Y, and some element w e W*¥ . Then relation (iii) allows

us to replace

myp s ¥y s ¥ e, y,)
by

- m(y2 v W Ygo ;.. ' yn)

— - n(w , Yll Y3l ---ryn)-

In this way we can reduce the number of the v, which do not

lie in W* , and the result follows by induction.

We may re-express (8.5) as follows. For each yn which

is in V* but not in W* we have a map

M(W*) ——> M(V*)

which carries

)

m(Yl t Yo 1 eee ’_. Yn-l

to
m(yl ? y2 ’ e s e g yn-l ' Yn)

(for this clearly preserves the relations (i), (ii), (iii).)

Replacing vy by Ay (for A 0) gives the same map. We
n n
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. n- .
may now run Yy, over the p 1 representatives w + S where

W runs over W* and xn is a fixed element which is in V*

\ i but not in W* ., We thus obtain a map
O X% A
[—?’—V/\'/:\\ | n-1 V

o qwy —2 >M(V;‘)
& '

and Lemma 8.5 shows that this map ¢ is epi.

B

Consider the generators
m(gxl ’ gxzrl ese gxn)

named in (8.4). The statement that they span M follows
immediately by induction over n ; the result for W+ implies

that for vv* ,

At this stage we can already deduce (8.3). 1In fact, we

have shown that Fp @Z M is spanned by the elements

- gm(xl, Xy 1 eee s xn) H

i *
the images of these elements in Fp @Z H (V)loc are
-1 -1 -1
g(el X7 ey XU ... e X, ) -,
. * .
and these images form a base in Fp QA H (V)loc according to

the work in §7.

We still have to show that the generators
m(éxl r 9%y 4 ...A, gxn)

are linearly independent over 2 . The way to do this is
suggested by the last paragraph; we will define "residues" which
work over 2 .

For each base Xy o Xy eee s X in V* and each maximal

flag F there is at most one permutation p such that
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X

xpz r e o g pn

= —rage, 7\ x

pl !

is a base adapted to thé flag F . We will define a homomorphism

GF: M= M(V*) —> Z

which carries m(x, ., x,, ..., x,) to elp) =41 if there
is such a permutation p , to 0 otherwise. We just have to
check that GF preserves the relations used to define M .
For the relations (i) and (ii) this is clear, so it remains to

consider a typical relation (iii). Let x Xyr X5 € X* be

l ’
as assumed in relation (iii).

Suppose that the maximal flag F is

0 =V* < V¥ < V¥ <« [, < V* = V&
o) 1 2 n

—"

Consider the resulting filtration
0 =V* n X* ¢c V¥ n X*¥ ¢ ,,. c V¥ n X* = Y*
o 1 n
of the subspace X* . Suppose that V; n X* has dimension

0 for 0 sr<i
1 for 1isr«<ij

2 for jsrsn.

We may divide cases as follows.

(a) None of the three given elements x lies in

1'%27%3
VI n X* (although some non-zero linear combination of them

does so). In this case the homomorphism eF is zero on all

three of



. m(x, , Xy 4 Yz o een Y,

m(x2 ’ x3 ' y3 7 eee g yn)

m(x3 ' xl ’ y3 r ees o yn) o

(b) Just one of x b4 x3 lies in Vz n X* , say

1’ =2/

Xy . In this case both Xy and X, map to generators for

* %* i

Vj/vj-l . The homomorphism eF is zerxro on
m(xll x2' Y3l ceo Yn) i

it takes equal and opposite values on

Xy s Xy0 Y30 eoes y,)

m(x3 4 xl [4 Y3 [4 oo Yn) hd

e

This sets up the homomorphism GF .

We can now complete the proof of (8.4). With the notatio

of (8.4), consider the maximal flag F determined by the base
(g‘xn ’ gxn_l r e g gxz ’ gxl) -
The corresponding homomorphism GF mabs the generator

(gxl, Xy 1 eeey g9X . _q1 v gx )

to *1 , and all the other generators

L 1 t ]
(g xl f g X2 Y e e s ¢ g xn- l ' g xn)
to zero. Therefore the generators named in (8.4) are linearly

independent; this completes the proof of (8.4).

The same considerations lead to the proof of (8.2). By

using the homomorphisms eF as components, we obtain a map

8.8

n
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Kemel (V¥) ——— @z =cC_ _,(TB) .

BT
e

Since the subgroup of boundaries is zero, ﬁ;_z(TB) is the sub-
group of cycles E;_Z(TB) . We will show first that {eF}
maps into this subgroup 2;_2(TB) » and secondly that it maps

onto Z _(TB) .

First we wish to show that d{eF} =0 , where d 4is inter-
preted as the augmentation if n = 2 ., We consider the component
of d{eF} corresponding to a typical simplex of dimension

(n-3) in TB , or equivalently to a flag

* * *
0 < ... < Vi—l < Vi+l < see <V

in which there is no subspace of dimension i . This simplex

e

is a face of just (p+l) simplexes of dimension (n-2) ,

corresponding to the maximal flags

* * * *
0 < ... < Vl -1 < U ‘< Vi+1 < eee < V*

The incidence numbers are the same in each case, sO we wish to

prove

where the sum runs over these (p+1l) maximal flags F .

Consider the value of this sum ZF GF on a typical generator

A

m(xl ¢ Xy g ey xn) .

All the homomorphisms 6 will be zero on this generator unless

F
the question can be reduced, by permuting the x's , to the case

m(yl: y2, oo yn)



{
' ¥ Uh
v' .
i

gpo'u'.§

<T—;;‘;—;;;I;—;uch that

where yl 0 y2 ? eee g Yr

In this case we get just
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form a base for V; provided r # i .

two non-zero values

Op B(Y) s ¥y s wen s )

corresponding to the flags with U* spanned by

Wyor eeen Yyope ¥y) 0 e eee vy ¥y y)

respectively. These two values cancel. Thus d{GF} =0 as

claimed.

We turn to the proof that .{BF}' maps onto E;_Z(TB) .

Let us say that two maximal flags

e - * * * —3 *
Fo' 0 Vo < Vl < eae < Vh v
= W * * = Uk
G 0 Wo < Wl < vee < Wn v
are complementary if V* n wx =0 foreach r . Let us fix

n-r

a maximal flag Fo - In proving (8.4), we have seen that

elements U € M = M(V*)
GG take assigned values

So it will be sufficient

Lemma 8.6. Let {c

can be found on which the homomorphisns
eG(p) for G complementary to F_ .

to prove the following.

} EGE;{;:)

e
to a fixed maximal flag

= 0 whenever G is camp lementary

F « Then ¢

F - 0 for all F .

The proof is by induction over n , so we assume the result

true for spaces of dimension (n-l) . We assume that {cF} is

a cycle and that Cg = 0

whenever G is complementary to Fo .

We now remark that the single condition

* *
Vl n Wh -1 =90
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is sufficientrtongngure g = 0 . In fact, by restricting

attention to the maximsi-flags G with a fixed value of the
final space w;_i"}'we obtain a corresponding problem with V*

* * * * .
replaced by Wh-l and Vi replaced by Vi+l n Wn__1 ; and by

the inductive hypothesis, our data ensure that Cg = 0 for all

such G .

We will now show, by a subsidiary induction downwards over

j , that the condition

is sufficient to ensure ¢, = 0. Suppose as an inductive

G
hypothesis that the condition Vi n WS = 0 is sufficient for

some Jj <n . Consider a maximal flag

. - * * %* =
G: 0 WS < een < wj-l < wj < W§+l < ... % W; v*
in which
* * -
Vl n wj-l 0
but
* *
Vl n Wj #0 .

Consider the flags K

H: 0 = W* < ... < W* _ < U* < W*
o j=-

* = *
1 341 < 4a. < Wn vx .

There are just (p+l) of them, and we have

since ¢ 1is a cycle. For just p of the flags H we have

Vi n U* =0
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and therefore cyg = 0 by the inductive hypothesis. The remain-
ing one flag is G , and the cycle condition gives cg = 0 .
This completes the induction over j . At the end of the

induction over j we conclude that the condition

Vv*

i 0 =0

is sufficient; this proves that cg = 0 for all G . This
completes the induction over n and proves (8.6). This completes
the proof of (8.2) and (therefore) of (8.1).

For completeness we add that these considerations lead

also to a canonical map

-~

"2 (rB) —> M

which becomes an isomorphism upon localising at p . Since

~

ﬁn_z(TB) and M = Hn_z(TB) enjoy a pairing (the Kronecker

product of ﬁn-z and ﬁn-z) ¢+ We see that 'ﬁncz(TB) carries
a bilinear product which is non-singular in the sense that its
determinant is prime to p . This product is symmetric;

equivalently, the map
~ -2 o~
' °(TB) —> H _,(TB)

is self-dual. Since these considerations are not essential to

our purpose, we will not spend more space on them.



§9. The,Buras¢da5g§tegory and its associated graded category.
Before we can prove Theserem 1.1, we must certainly define the
map « which appears in it. For this purpose we require the
categorical considerations we hinted at in §1, and we will begin
by giving some motivation.

In §1 we introduced the homotopy=-theoretic problem of

studying

qz'A‘EQl ,‘292] .

Q

Let us consider the special case ‘E =‘§ :» So that the problem

is to study
E.B.Gl ’ §G2] .

The most reasonable approach is to follow the ideas which Segal
proposed for the special case G2 = 1 . The first step should
be to define an algebraic construct A(Gl ' GZ) and a homo-

morphism
A(Gy s G,) ——> [BG, , BG,] .

Here the construct A(G Gz) sﬁould play the same role

1’
as the usual Burnsidé:iring does in the special case G2 =1;
it should be the closest approximation to PBGl ' 392] that
can be constructed by algebraic means (without using analytic
methods such as completion).

We should expect to give the groups A(Gl ’ G2) any
further structure which we find in the groups gggl .‘592] .
To begin with, we can form composites

‘BGl ———>‘~§G2 -——>‘£§3 v
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in other words, we have a category S in which the objects are
the finite groups Gl,G re+«+ and the hom-set from Gl to G2
is the set of stable maps Qggl '45G2] . Therefore we should
expect to make the groups A(G1 ' GZ) into the hom-sets of a
category A . .Similarly, we should expect to introduce further
structure into the category A., copying what one can do with
smash-~products of spectra.

We will in fact set up such a category A ; we call it the
Burnside category, because our definition is modelled on the
usual definition of the Burnside ring. In the special case
Gl = G2 . our consﬁruct A(G , G) already appears in the work
of C.M Witten [18] , for the same reason and purpose.

It is essential to our overall strategy that one can define

a furictor a: A —> S , that is, a set of homomorphisms
a
-A(Gl ’ G2) —> [RGJ_ ’ ,BGZJ

which preserve the structure. This is done using transfer. It
is not needed for the algebraic purposes of the present paper,
and so we omit it.

Our remarks about the special case ;5 =‘§f apply with
suitable modifications to the general case also; however, it is
necessary to discuss the special case first in order to provide
the correct categorical setting for a discussion of the general
case.

Our first business in this section is to give details of
the Burnside category .A . Once this is done, our second
business is to restrict to the full subcategory of elementary
abelian p-groups and introduce a filtration. It is important
to our overall strategy that the algebraic filtration of a

morphism f ¢ A(U,V) is in fact the Adams filtration of the

Ne



resulting map ofwspectra

: EU of

- A

> BV ;
-

for the purposes of the present paper we do not need to prove it.
Using the filtration, we can pass to an associated graded
category A9 |
After that we shall defing a functor B from A9 to an

Ext category & . The idea is that if f ¢ A(U,V) , then
Bf ¢ Exti* (H*(V) , H*(U))

gives the position of

of

BU

> BV
~r A
in the Adams spectral sequence for computing [EU v gV] ; more

formally, if f is of filtratign s in A(U,V) , then
BE ¢ Exty’'S(H*(V) , H*(U))
is a permanent cycle in the Adams spectral sequence
Ext3*(H*(V) , H*(U)) = (BU, BV] ,
and of , Bf have the same imagg in E, -

We cannot expeét a statement of this form to define gx
uniquely except for' s = 0,1 ; in general, differentials might

cause some permanent cycles in E2 to map to zero in E, -

For the purposes of the present paper, we need not prove
any assertions about the Adams spectral sequence; we need the
functor B8 for algebraic book-keeping. By using B we can
introduce and manipulate elements of the Ext category; thus
welcan define the map w in Theorem 1.1 and establish its

properties.



We postpone further discussion of the functor B to §10
and of the bookkeeping to §11, and proceed to business.

The objects of the Burnside category A will be the finite
groups G,H,... . We wish to describe the hom-set of morphisms
from G to H in A . We consider finite sets X which come
provided with an action of G on the left of X and an action
of H on the right of X , so th;t these two actions commute
and the action of H on the right of X is free. Such sets
X we call "(G,H)-sets". We take the (G,H)-sets and classify
them into isomorphism classes. The operation of disjoint union
passes to isomorphism classes, and ﬁurns the set of isomorphism
classes into a commutative monoid. This monoid is a free
commutative monoid; we obtain a base by considering the isomorphism
classes of (G,H)-sets X which are irreducible under disjoint
union. (It is equivalent to say that the action of G on X/H
is transitive.) We define A(G,H) to be the Grothendieck group
or universal group associated to this monoid. This is a free
abelian group; we obtain a base by considering the same irreduc-
ibles as before.

For example, if H = 1 , then a (G,1)-set is essentially
just a G-set, and so A(G,l) reduces to the usual group A(G) .

We define the set of morphisms in A from G to H to

be A(G,H) . We have to define the composition product
A(G,H) ® A(H,K) —> A(G,K)

(where the notation reveals that we shall compose morphisms
from left to right).
Let X be a (G,H)-set and Y ~an (H,K)-set; then
X *4 Y is a (G,K)-set. This operation passes to isomorphism
classes and is biadditive with respect to the disjoint union;

SO it defines a product as stated. This product is associative
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and has unit97m~§a§£ A(G,G) 1is the class of G , considered as
a (G,G)-set with the '®bvious left and right actions. This makes
A into a categorfzr }

We also define particular morphisms in A . For each homo-
morphism 6: G —> H , we introduce an element 8, ¢« A(G,H) ;
this is the class of H , with G acting on its left via 8 and
H acting on its right. For each monomorphism ¢: H —> G ,
we introduce an element ¢* ¢ A(G,H) ; this is the class of G ,
with G acting on its left and H acting on its right via ¢ .
This action of H is free because we assume that ¢ 1is mono.

We can now give more motivation for the category A. . A functor
T defined on A provides a functor on the usual category of
finite groups: on objects G we take T(G) and on morphisms
8: G=—> H we take T(9,) . But beyond this we get homomorph- '
isms T (¢*) , which correspond to the possibility of "induction".
(For example, the "homology of groups" is such a functor T ’
essentially because it factors as a composite of two functors:
the functor o from A to spectra, and the homology-functor
from spectra to graded groups.) If T is a functor defined on
A , then the homomorphisms T(6,) and‘ T(¢*) satisfy all the
usual axioms for "induction" and "restriction", including the
double coset formula. However, we do not have to state these
axioms explicitly; Fhey are implicit in the structure of the
category A . We regard the category A as the place where one
can do "universal" calculations with induction and restriction
subject to the usual axioms.

We now proceed to make A into a monoidal category [81].
The product on objects is the cartesian product G x H of groups.

(In the ordinary category of groups and homomorphism this is a
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categorical product; it is no longer a categorical product in A .)
The product on morphisms is defined as follows. Let X, bea
x X is

(Gl ’ Hl)—set and let X be a (G, , Hz)-set; then X

2 1l 2
a (Gl x G, , Hl x Hz)-set. This construction passes to isomorphism
classes and is biadditive with respect to disjoint union; so it

defines a product

A(Gl ’ Hl) ® A(G2 ' Hz)" — A(Gl x G H, x H

2’ 71 2)
as required.
These products in A are associative, up to the canonical

isomorphism
(Gl x G2) x G3 <—> Gl x (G2 x G3) H

and they have the trivial group 1 as unit, up to the canonical

isomorphisms
1 x G<—> G <—>G x 1.

These canonical isomorphisms are coherént,'and we shall run no
risk if we neglect them.
However, it is usually inadvisable té neglect the switch

map; this is of course the isomorphism

G, x G I 56, xG

1 2 2 1

given by t(9;,9,) = (g,.,9,) .

We should list the basic formal properties of the things

we have mentioned.

Lemma 9.1 (i) 1. x 1

G H ™ “GxH °

(11) Suppose given



then

X

(a x b)(c x d) = (ac) x (bd) .

(1i1) 1,(f x @) = (g x f)1, .
(iv) We have

e =1, (aB)y = auBy 4 (@ x B), = a, x B,

where «,8 are homomorphisms of groups.

(v) We have
1* =1, (aB)* = B*a* , (a x B)* = g* x g*

if o,B are mono.

(vi) If & : G—> H is an isomorphism then

0,0% = 1., 6*g, =1

H *

Parts (i), (ii) are basic fqrmal properties of a monoidal
category. Part (vis'"s:ays that although there are two ways to
interpret an isomorphism of groups as an equivalence in A ,

these two ways agree.

' We pass on to results which give more specific information

about the structure of A .

Lemma 9.2. Each irreducible (G,H)-set X has

[X] = ¢*e,
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¢

for some monomorphism G <—— K and some homomorphism

K LN H ; these are determined by [X] wup to an isomorphism

of K.

Sketch proof. Pick a particular element X, € X . Let
Kc Gx H be the subgroup of pairs (g,h) such that
gx, = xoh ; then the obvious map ¢: K —> G is mono because
the action of H on X is f;ee. We define a map

N
G_ XK H—> X by

(g.h) —> gx h ;

this map is injective, and surjective since we assume X

irreducible.

Conversely, if [X] = ¢*8, then X 1is up to isomorphism
i

G XK H and K is (essentially) the stabiliser in G x H

A

of some point x e X .

For the next lemma, we suppose given a diagram

| v
b
® v

>

T

in which ¢ 4is mono. We form the following pullback diagram.

!

n

It follows that ¢ 1is mono.
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Lemma 9.3,.,§£ U 1is abelian then

o7t ind
0, 4% = (i—gd—zz—%) v*y, in  A(T,V)

where index ¢ = |U: ¢(V)| and similarly for vy .

Proof. 0,¢* is the class of the (T,V)-set U , with
T acting on the left via 6 and V acting on the right via
$ . Since U is abelian, all the (T,V)-orbits are isomorphic
to any one of them, say the one containing the identity element.
This one is isoﬁorphic to T Xg V , and the isomorphism class
of that is y*y, . Since IU['felements fall into orbits of

size (|T| |v|)/|S| , the number of orbits is

- (Jul |sD/(Iv] |T]) = (index ¢)/(index ¥) .

We pass on to results about a particular element in A .
Corresponding to the injection i: 1 —> zp we have an element

i* ¢ A(Zp,l).

Lemma 9.4. This element has the following properties.

(a) If @o: Zp -—>@zp. 1s an automorphism,  then

8, i* = i* |

(b)..x* (L x i*) = (i* x 1) .

(c) Let o: Zp x zp —_> zp x zp be the homomorphism

0(x,y) = (x + XAy, ¥)
(for some fixed )\ ¢ Fp) . Then

0,(1 x i*) = (1 x i*) .
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(@) i,i* =p e A(1,1) .

Proof. All four parts can be viewed as instances of (9.3)
(using (9.1) (v) as needed).

We will now move towards our associated g;aded category.
First we take the full subcategory of the Burnside category in
which the objects are elementary abelian p-groups. Next we
shall define a filtration on its hom~sets A(U,V) .

If X 4is an irreducible (U,V)-set, we define s(X) by

ps (x) = IWVl R

Clearly this depends only on the isomorphism class of X . By

(9.2) we can write [X] in the form ¢*g, ; then
— pS(X) = index ¢ .
We define the filtration subgroup

Fs A(U,V) < A(U,V)

to be the subgroup generated by the elements pA[X] , Wwhere X

runs over the irreducible (U,V)-sets and A, X satisfy
A +s8(X) 2s .

Lemma 9.5. Composition and cross product preserve this
filtration. More precisely, if X is an irreducible (U,V)-set
and” Y is an irreducible (V,W)-set then X1yl = pAEZJ

where 2 is an irreducible (U,W)-set with
A+ 8(2) = s(X) + s(Y) ;

similarly for the cross product, with A =0 .
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Proof. Writq& (X1, [Y] in the form ¢iel* ' ¢562* .
By (9.3) we have

: index ¢2
* = e 1
81443 (index ¥ ) VEXx
where Yy and x come from a suitable pullback diagram. Thus

[x1(Y] = p*(z]

where
A ‘index ¢2
P' <. Indexv and  [2] = (Y4;)*(x05) 4
thus
index ¢
+ .
PA s(2) . IKE€§_$2 (index y¢,)

(index ¢l)(index ¢2)

. ps(x) + s(Y)

The assertion about the cross product is easy to verify.

We can now define the associated graded category AST
The objects of ASY  are to be the elementary abelian p-groups
U,V,W,... . The hom-set Aa9°(U,V) from U to V is to be

a graded vector-spacé*over Fp + wWhose sth component is

FSA(U,Vb/%s+lA(U,V) .

Lemma 9.5 shows that éomposition and cross product pass to the

quotient and give operations in A9T .
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§10. Construction of the functor 8 . In this section we will

set up the functor B promised in §9. We have already defined
the source category AS% 7 We must beginiby defining the target
category E .

The objects of E are A-modules L,M,N,... which are
bounded below and finite-dimensional over Fp in each degree.
The hom-set E(L,M) from L to M in E is the bigraded
Ext group Extﬁ*(M,L) « (Thus E is the opposite of the
usual Ext category; this makes some formulae look better. In
particular, cohamology is a covariant functor with values in
E .) Composition in E is given by-the usual Yoneda product.

We make E into a monoidal category. On objects the
monoidal operation is the usual tensor product L @ M. On
morphisms it is the usual external tensor product in Ext groups.

We need to name a particular element in E . In §7 we

considered the A-module H*(zp) . Let E be the submodule

loc
of H*(Zp)1oc which consists of the groups in degrees =2 =1 .

It takes part in the following short exact sequence.

res

0 —> H*(2Z >E > F  —> .
(p) b 0

Here the map res is of degree +1 ; thus the class of this

extension is an element

[E] e Extl’

1 :
A’ (Fpe HY(Z)) .

To reassure the reader, we remark that E does indeed
give (up to a sign) the position in the appropriate Adans

spectral sequence of the map

a(i*): Bz, —> Bl = ff .
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(The map a(i*) ‘#m the "transfer" corresponding to the covering
map Bl = 52; ———? sz .) For our present purposes we do not
need to prove this. '

In case the reader worries about signs, we remark that the
results of this paper remain true if [E] is replaced by A[E]

for any non-zero scalar A € Fb . For definiteness we stick

to [E] .

Proposition 10.1. There is a functor

g: A9 — 5> |

with the following properties.

(a) B 1is given on objects by B(V) = H*(V) .

/Tb§ For each morphism 6: U —> V we have
B(6,) = H*(8): H*(V) —> H*(U) .

(c) B 4is additive and preserves the monoidal structure.

(d) For the injection i: 1 —> zp we have

B(i*) = [E] € Extﬁ* (H* (1), H*(Zp) ) B

s

All the rest o}”this section will be devoted to proving
Proposition 10.1. 1In effect we will show that the category
A9Y  can be presented by generators and relations, giving as
genérators the morphism 8, (of filtration 0) subject to their
obvious formal properties, and in addition one generator i*
(of filtration 1) subject to the relations (9.4) (a)-(c). If
s0, then the functor g must exist provided that the element
(E] satisfies the corresponding relations in E . For convenience,

however, we do not present matters in this way; we just build
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up the construction and properties of B8 on successively larger
parts of A .

The functor B 1is given on objects by (10.1)(a). It is
given on morphisms of the form 8, by (10.1)(b); 4if

0: U —> V is a homomorphism of groups then

B(8,) = H*(8) e Exty’® (H*(V), H*(U)) .

Lemma 10.2. This satisfies

B(L,) =1

B((8,0,),) = (8(8)),) (8(6,),)

BU(By x 8,),) = (B(6,),) © (B(6,),) .
This~is clear.

Before going any further, we must check that the element

[E] satisfies relations corresponding to those in (9.4).

Lemma 10. 3.

(a) If +o: Zp —_ Zp is an automorphism, then

. (B8,)[E] = [E] .

(b) Let «t: zp x'zp —_— zp x zp be the switch map,

T(u,v) = (v,u) . Then
(Btye) (1 © [E]) = ([E]1 @ 1) .

Let HE A 2 ——> Z b h
(c) e ] p x‘ p zp x B e the homomorphism

8(u,v) = (u + Av, v) (for some fixed A ¢ Fp) . Then

(80,) (1 ® [(E]) = (1L @ (E]) .
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The reason oge can predict this is as follows. The relations
2=
hold in A by (9.4). Applying o , we see that the correspond-

ing relations hold@ in homotopy, and so in E, of the Adams

spectral sequence. But more precisely they hold in Ei’l ’
and Ei’l c E;’l as we have said: so they hold in Exti’l .

As the previous paragraph uses considerations we have not
given in detail, we need a purely algebraic proof, and this is
easy. Indeed, we dismiss parts (a) and (b) as trivial, and
give the proof for part (c). It is sufficient to construct a

diagram of extensions of the following form.
1@res
H* @ H* (2 —_ *(2 ® E ——————> H* (2 ®@F
(Zp) ( p) > H*( p) > ( p) b
—-H*(8) - ¢ 1

l@res
* 9 H* Z —— H* Z @ E —— H* Z @ F
H (Zp) ( p) > ( p) > ( p) b

Let us write €y 1% 185,%, for the cohomology generators in the
two copies of H*(Zp) ; then we construct ¢ by copying the
formulae for H*(8) , setting -

%, ¢|E =1

e, + )e

¢ (e;) 1 2

¢ (x;) = X +ax, .

It remains to see that the right-hand square commutes. We have

i, 3
1 1 -1
(1 e res)¢(el X7 e, X, )

h 3y -1
(18 res)(el + Aez) (xl + sz) e, X,
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since the remaining terms give no residue. A similar proof works
for p=2.

We proceed with our cdnstruction. Because of the formal
properties of the object 1 , the hom-sets Agr(U,V) are graded

modules over the polynomial ring
a%(1,1) = F el .

They are even free modules; the canonical base consists of the
elements [X] , whe:e X runs over the irreducible (U,V)-sets.

By (9.4) we have
P = i,i*;

so we are committed to the definition

i

- Blpl = B(i,) .[E] € Extl’

1 .
A (Fp, Fb ) .

(This extension is the obvious one, namely the class of

”~ o 1 '
F — H* S e ——— F .
b ( up ) P )

The hom-sets E(U,V) are graded modules over Fp[BCp]] ; we
shall make B preserve this module structure. It will thus
be sufficient to prescribe B on the irreducibles [X] .

We now embark on our programme of enlarging the class of
morphisms on which B is defined. We begin by considering

monomorphisms of the special form

: Zd —_— Zd'“’-e

I = x1 x x2 X cee X xd+e P p

where just d of the Factors xj are 1: zp —_— zp and just

e of the factors .xj are i: 1 —> zp . For such an I the

construction is forced; we must define
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B(I%) = Bx} © Bx§ © ... O Bx4,_ .

- where B8l* =1 and B8i* = [E] .

Lemma 10.4. If Il: zp —_— zp and 12: p

are monomorphisms of this special form, then
* - * *
BO(Iy x I,)*) = B8(I}) @ B(I%) .
This is clear.

Lemma 10.5.'VSuppose given a commutative diagram

d X d
Z -~ > 2
P = P
- I J
Zd+e 3 5 Zd+e
P = P

in which x,® are isomorphisms and I,J are monomorphisms of

the special form considered. Then

(B6,) (BIJ*) = (BI*)(BX,) .
' The proof is”?n several steps.

Step 1. The result is true if x =1 and

I=0=19%3%=1x1x...x1x41ix4ix...x1i, where

d kactors l come first and e faétors i come second.
In this case 6 is an iscmorphism of the vector space
Zg+e which leaves the subspace zg fixed; by the theory of
"elementary operations" in linear algebra, we can write 6 as
a composite of elementary automorphisms, and so it is sufficient

to consider the cases in which 6 is an elementary automorphism.
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(1) Suppose first that 6 takes the jth coordinate

- of Zd+e for some j > d and multiplies it by some non-zero

P
scalar, leaving the other coordinates as they are. Then the
result follows from (10.3) (a) by pPassing to tensor products.
(ii) By taking the relation (10.3) (b) and composing with

Bi* , we see that
(BT,) (Bi* @ Bi*) = (Bi* @ Bi*) .

Passing to tensor products, we see that the result is true when
® interchanges coordinates j and j+1 for j>a, leaving
the other coordinates as they were. By composition we see that
the result is true when 6 permutes the last e coordinates
in any manner.

—<iii) By taking the relation (10.3) (c) and passing to
products, we see that the result is true when 6 takes the
(i - l)th coordinate and adds to it a scalar multiple of the

jth coordinate, provided j > d . Let us write @' for such

»

an elementary automorphism. Consider now the more general case

in which 6 takes the ith coordinate and adds to it a scalar

multiple of the jth coordinate, where i #3,3>da. Then

we can write

-1

0 = (p x c-l)e'(p x o)

whe;e p and o permute the first d and the last e coordinates

respectively. Then we have
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(80,) (1% @.(81%)®)

= (8o71 @ Ba7h) (BOL) (Bp, ® 80,) (1% & (8i%)9)

-

(Boyt @ 8o;1) (88)) (1 @ 80, (19 @ (81%)®) (8p,)

= (8071 @ 807Y) (86} (1% @ (81%)®) (8p,)
| (paragraph (ii) above)
= Byl @ soyh (1% @ (8Bi%)®) (Bp,)
(special case above)

= 1e s hade (8in®)

1% o (819 ;
' (paragraph (ii) above).
This covers sufficiently many elementary automorphisms,

and completes Step 1.
a e
Step 2. As in Step 1, consider the special case K = 1" x i .

Then for any x there is some 6 for which we have both the

data xK = K8 and the conclusion

(BO,) (BK*) = (BK*) (Bxyu)

e

In fact, we have only to take 6 = x x 1% . We have
":., _
B((x x 1%,) (1% & (8i*)®)
= Uex,) @ 1% (1% @ (8i%)®) (10.2)

4

(Bx,) © (Bi*)®

(1% e (81%)®) (8y,) .

Step 3. For any I and J with the same d,e there is some

@ for which we have the data I8 =J and the conclusion
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(Be,) (BJ*) = BI* .

We can get from any monomorphism I of the special form
considered to any other by a sequence of steps, each of which
interchanges two consecutive factors of which one is 1 and
the other is i . We will proceed by induction over the number

of steps. Suppose that for some I,J we have found 6 so that
I8 = J and (Bo,) (BJ*) = gI* ,

Suppose further that K is obtained from J by interchanging
two consecutive factors of which one is 1 and the other is
i , and let p be the homomorphism which interchanges the

corresponding factors of Zd+e . Then clearly we have

P _
Jp = K , and by passing to tensor products from (10.3) (b) we
get '
(BJ*) = (Bp,) (BK*) .

So for I and K we have

and

(B(6p),) (BK*) = (BO,) (Bp,) (BK*) (10.2)
= (Bo,) (BJ*) (above)
= gI* .’

This completes the induction and finishes Step 3.

Step 4. The result is true in general.
Suppose given the data I8 = XJ . From Step 3 we can

construct a diagram of data



X 5 zd
=~ p
K
J
e e
d+e 2 d+e
> 2 > 2
=~ P = P

, and so that

(BO,,) (BI*) = (BK*) ,
(B8,) . (BK*) = (BI*) .
From Step 2 we get the diagram
-1
d X d
pA > 2
//J p g
K K
4 o3 4
gate > gdte
P > P

and the equation |
(893*)(BK*)(Bx*) = (BK¥*) .

So Step 1 applieé‘ko the isomorphism

. ,d+e d+e
108,85 Zp p

¢

and'gives (using (10.2))
(Bel*)(66*2(892*)(893*)(BK*) = (BK*i .

Multiplying on the right by B8x, and substituting, we get

10.10
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that is

(891*)(89*)(63*) (Bel*)(BI*)(Bx*) ’
so that

(BI*) (Bx,) -

(B8,) (BJ*)
This completes the proof of Lemma 10.5.

We proceed to define B on morphisms ¢* . Let ¢: V—> U
be a monomorphism. Then we can find (in many ways) a diagram
of the following form, in which I is a monomorphism of the

special form considered above.

a X
Z= —>V
— Pz
1 l¢
d+e 0
2 > U
P =

We define
-1
Bo* = (B8, ) (BI*) (Bxs) -

The only point td check is that this is independent of the choice

of the diagram; this follows immediately from (10.5).

Lemma 10.6. This construction of B¢* secures the following
properties.

(a) If ¢ is an isomorphism then

Bo* = 3¢:1 .

- {b) If W —I—> V and V —2—> U are monomorphisms then

B(Y)* = (Bo*) (ByY*) .



(c) I1If ¢3+.Vy —> U; and 9y V, —> u,

" isms then

BUoy x ¢5)* = (Be]) © (Be%) .
(d) Suppose given a pull back diagram

v
s
U

. SN

va(————— 0

LN
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are monomorph-

in which ¢ is a monomorphism (and therefore Y 1is mono).

Then

(88,) (Bo*) = (BIP1)*(BY*) (Bx,)

where -

o}

A _ index )
- (index w) :

Proof. We begin with (a). Suppose ¢ is iso; then in the

construction above we have

then BI* =1 anﬁ the deflnltlon reduces to
'f’

Bo* = (8071) (Bx,)

Boz T

We turn to (b). Suppose given monomorphisms

W L] >V $ >0 .

We easily find a commutative diagram of the

(10.2).



following form.

a 13
2 > W
p =
1d x 1 ¥
v v
gd+e n >V
P =
ld+e x if ¢
v J$
gd+e+f g > U
P =

The definitions are

(Bo*) (BY) *

i

-7 = (8gyh) (14 e (81 ) (8n,) (8n7h (1% @ (81M)®) (8E,)

(827 Y (1% o (Bi*)®*E) (g,
BLYO)* .

We turn to (c). Suppose given the following diagrams.

a X d X
1 1 2 2
z, =V z, ~ >V,
I | : J’¢1 I, l L2
zdl+el o0 ¥ zd2+e2 0 . >
P -~ 1l P ~ 2

K3

These give the following diagram.

10.13
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174, 1 %%
%o ~ >V x ¥

I, I, ¢ * 9
Zdl+el+d2+e2 8, x 0, b
P = 1 %9

The definitions give

(B4%) © (8%)

[(807,) (BIP) (Bx;,) 1 @ [(867D) (BI%) (Bx,,) ]

(BO], © 863) (BIY @ BI%) (By,, @ Bx,,)

-1 :
(BB x 8;)7"W) (B(I] x I,)%) (BlXy % X))

P

((10.2) plus (10.4))
= By x 4,)* .

We turn to (d). Suppose given a pullback diagram as in
the enunciation. By choosing bases appropriately in S,T,U and
V, we can obtain a commutative diagram of the following form,

in which «¢: ZP —> 1 1is the constant homomorphism.
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Zd+e cd x 1% x if > ze+f
p f; w p
o~
A -
= s X >V
ld+e x 19 " ¢ le+f x ig+h
T 9 > U
,/jlify 3 v
Vv d e £ h =
d+e+g c® x 1% x 4% x 19 x 4 e+f+g+h
Zp > Zp

Using the definitions, we get the

following warking.

(B6), (B) * =

(8n37) (Beg @ 1° @ 8if @ 19 0 81%) (85,) (8c; 1) (1°¥F & (B1%) I (gy,)
= 8n;h) (el 8 1° @ 8if @ (81%)T o 8Cp1™) (Bu,) |

(BY*) (Bxy) =

(el (1%*% o (81%)9) (82,) (825 (8% @ 1° @ 81F) (8u,)

= Bn;1y(8cd 0 1% @ Bif o (81%)9) (Bwr)

Since h here is equal to ) in the enunciation, the result

follows. This completes the proof of (10.6).

We proceed to define B on [X] for each irreducible
(U,V)-set X . By (9.2) we can write [X] = ¢*8, for some
diagram

. ¢ ' e
U < TOno W >V.
Of course we define
BLX] = (B¢*) (Be,) .
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The only point to check is that this is independent of the choice
of the diagram. By (9.2) we have ¢iel* = ¢58,, exactly when

we have a diagram of the following form.

EE// 1 Gh
€
%/e,’

Then we have

(B9%) (Bo,,) = (B(E9,)*) (Be,,)

= (Bo3) (BE*) (86,,) (10.6b)
- = (Be3) (BELT) (8o, ) (10.6a)
= (8¢%) (B0,,) (10.2).

This shows that BLX] 1is well-defined.

As we explained earlier, we now define
BIp*x1 = (BLpD*(BLXY) .

We have to checﬁ%that 8 , as defined on'generators [plx] P
preserves camposition ahd the monoidal operations. This follows
easily from the results obtained above, using especially

(10.6) (b), (c) and (d), which have to be compared with (9.1) (v)
and (9.3).

Finally, we define 8 on all elements of Agr(U,V) by
linearity over Fp . This completes the construction of 8 ,

and ensures that it has the properties stated in (10.1).
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§11. Categorical book-keeping. 1In this section we will show

“how the categorical considerations introduced in §9, §10 enable
us to give a conceptual statement of Theorem 1.1. We will carxy
the work just far enough to provide a foundation for the work in
§12.

In homotopy-theory, the group EEI\ 291 ’ 592] is a
representable functor of 2'; the representing object is the
function-spectrum of maps from BGI to BGZ s and information
about the functor is equivalent to information about the
function-spectrum. Roughly speaking, we seek the algebraic
analogue of a function-spectrum.

Suppose given a monoidal category C . We have in mind
the following examples. (i) The Burnside category A of §9.
(11)-The associated graded category A9 of §9. (iii) The
Ext category E of §10. We bear in mind that the hom-sets of
C may be abelian groups, or graded abelian groups, or bigraded
vector spaces over 'Fb + for definiteness we will give the
details for E whenever the grading makes a difference. 1In any
case, our category C 1is.at least preadditive.

We will explain the notion of a "function-object" in C .
Let L and M be given objects in C ; we plan to consider
functions from L to M. Suppose given further a finite
number of objects LA in C and morphisms

Wy

Wi ©L >M.

In the bigraded case, the morphisms W, may be of any bidegrees
(81 ’ ti) . For each "test object" T in C we get a map

c (TW) ——>c** (rerL, m

which carries



,{w' w;.} ’ {wn-

11,2

> W

N TR , T

to the composite

vy
>W, 8 L —=—> M.

TOL—£—9—1—

With these maps as components we get a map

s-s, t-t
Dc i e, wp L cStren, w .
1

(All these maps, of course, will be maps of abelian groups, or
of vector spaces over Fp s according to the nature of the
hom-sets in C .) If this map w 4is an isomorphism for all
objects T in C , we will say that the data {Wi ’ wl are

a "function-object" from L to M. >

" In this case the data {w, , w;} allow us to express the
group C(T @ L , M) in terms of representable functors of T .
Of course, if thexre were in C( a categorical product of
the objects Wi suitably regraded, then this object (with a
suitable map) would be a function-object in the us_ual sense;
but we do not assume that any such .object exists in C .
If we have twé distinct function-objects
i Jue wg} for the same L and M , then one can
be thrown onto tI;e other by an invertible matrix of maps
Wi'. —_ wg (of suit.able degrees).
Suppose given a suitable functo;: from one monoidal category

to another; in our applications it will be the functor
B: 'Agr —> E

of §10. Suppose given a function-object from U to V in

AST , say
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RLAA eAgr(Wi xU, V.

We will say that B ‘"preserves this function-object" if

is a function-object from BU to BV in E . That is, in
our applications, we have BU = H*(U) ¢ BV = H*(V) and we
wish the appropriate induced map
sT8; bty s,t
@ E.xtA ’ (H* (Wi) r M) —> ExtA' (H* (V) , MRH* (U) )
i - .
to be iso for every A-module M which is bounded below and

finite-dimensional in each degree.

If B preserves one function-object from U to V , then

-

it preserves all function-objects from U to V ¢ Since they
are all equivalent and B8 carries an invertible matrix to an
invertible matrix. _

We will éhow that the category AT has function-objects,
and we will show that the functor B of §10 preserves them.

Let U,V be any two objects of A9F ,» that is, any two
elementary abelian p=groups. Let X run over a set of
representatives for the isomorphism classes of irreducible
(U,V)-sets. For each X , let W(X) be the automorphism group
of X ; of course, we mean "automorphisms of X " to preserve
the left G-action and the right H-action. We can consider

X as a (W(X) x U,V)-set; let
wix) e A% wW(x) x U, v)

be the class of X .
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Proposition 11.1. The data {W(X) , w(X)} constitute a

 function-object from U to V in A9F .

Theorem 11.2. The functor B8: AST 5> E preserves function-

objects.

These considerations explain those points about Theorem 1.1
which were left unexplained in §1. 1In particular, in Theorem 1.1,
the homomorphism

@O exeSsF S (puwin)), M) L
X v

_— Extz't (H* (V) , MGH* (U) )

is the one whose components are induced by the elements
Bw(x)”, in the way described above. The results (11.1) and
(11.2) between them show that this map w is iso; when this is
proved it will complete the proof of Theorem 1.1.
We devote the rest of this section to the proof of (11.1).
First we begin with the work which shows that function-
objects exist in A . Let G and H be finite groups, and
let X run over a set of representatives for the isomoxphism
classes of irreducible (G,H)-sets. Let F be a further

finite group, an@ let Y be a typical (F x G,H)-set. Let
Zx = InJ(G,H)(x’Y)

be the set of injective (G,H)-maps from X to Y ; this is

an (F,W(X))=-set. This construction assigns to each Y a

collection {Zx} indexed by the representatives X .
Conversely, suppose given a collection {zx} in which

each Zx is an (F,W(X))-set. Then we can form
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Y ="§IZX XW(X) X,

and it is an .(F x G,H)-set.

Lemma 11.3. These constructions are natural for isomorphisms
of Y or isomorphisms of each zx as the case may be; the
two constructions are inverse up to natural isomorphism, and

they preserve disjoint union.

The verification is elemehtary.

Let us now restrict attention to irreducible sets Y .
Then clearly all the sets ZX must be empty except one which
is irreducible; that is, if we consider Y as a (G,H) -set,
it will be isotypical for the type of just one X (as is
obvioué directly). Conversely, if zX is an irreducible
(F,W1Rf)—set, then 2z, “W(x) X 1is irreducible as an

(FxG, H)-set.

Lemma 11.4. These constructions give a (1l-1) correspondence
between isomorphism classes of irreducible (FxG , H)-sets Y

and isomorphism classes of irreducible (F,W(X))=-sets 2 (for

X
all possible X) .-

This follows immediatély from the discussion.
We now restrict attention to elementary abelian P-groups.
Lemma 11.5. Corresponding irreducible sets Y, Zx have

s(Y) = s(zx) + s(X) .

Proof. p°(¥= l(zX % (X) X) /H|
= [ (2, M(x)] |x/H]
s(zx)

=p p® X
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Proof of (11.1). The map

Pr%(r, wix) L 2% (Fxc, B)
X

ylelds a (l-1l) correspondence from an Fp[p]-base of the left-

hand side (given by the sets zx) to an Fp[p]-base of the

right-hand side (givén by the sets Y) .
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§12. The case U = zp_. In this section we will prove the

following result. .

Theorem 12.1. Theorem 1.1 is true in the special case

The work will be arranged as follows. First we note an
easy lemma from homological algebra. Secondly we explain how
the general machinery of §11 specialises in the particular case
U = Zp + Thirdly we set up a certain diagram, Diagram 12.3,
which is used in the proof. It takes two or three lemmas to
discuss the commutativity of this diégram; but once that is done,
Theorem 12.1 follows by easy diagram-chasing.

We begin with the lemma from homological algebra. Let
L, M, P be left A-modules; let P* be the dual of P ,
made into a left A-module in the usual way so that the

evaluation map

P* @p SV 5 p
» P

is A-linear. We have a natural transformation
Exti* (L, MOP* ) ——> Exti* (LepP, M)

which sends an element of the Ext category
L —£—> M @ p*

£l

to the composite

£f01 l ® ev

LOP > MO®@P* Q9P —-=Y 5 M.

Lemma 12.1. Suppose P is bounded above and finite-
dimensional over Fp in each degree, and M is bounded below:

then the natural transformation
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. Exts*'(L, MP* )

> Exti* (LOP, M)
is iso.
Sketch proof. The conditions ensure that the obvious map

M @ P* > Hom (P, M)

is iso. Thus the result for Ext° is an instance of the

adjunction

HomA(L , Hom(P,M)) < > HomA(L P, M .

In this result for HomA we can replace L by the modules

Cs of a free resolution-for L ; thgn we pass to cohamology
groups.

—We now explain how the general machinery of §11 specialises
to the present case. Suppose that U = zp and V 1is of
rank n . Then ‘pn of the indices X correspond to the

homomorphisms

.> v

(k = 1,2,...,pn) . There is one more, which corresponds to the

diagram

i

2 < l —>vVv;
P ’

we assign it the number k =0 .

E ]

The group Wo corresponding to k 0 is V x Zp « The
group W, corresponding to k > 0 is V.

For k = 0 the element

xo e A(V x Zp x Zp s V)

v

A
cid.:\k JUNA VR BN

is 1_ x (ui*) , where u: zp x zp —_ zp is the multiplication
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map and i* € A(zp ¢+ 1) 1is as in §9. For k > 0 the element

is the homomorphism of groups V x Zp —> V which carries

(v,z) to v + e (z) .

We turn to the diagram we need, and we begin with the

following exact sequence.

0 —> H*(zp) — H*(Z )

P’ loc : > loc
H*(Zp5

Tensoring with H* (V) , we obtain the following exact sequence.

0 —> BY(V) @ H¥(z)) —> (V) @ H¥(z,) 28 me(v)7e B (25) 10¢ —> 0
e ! T H*(Z ) ’
. P

This yields a long exact sequence of Ext groups, which provides

the vertical sequence for the following diagram.

T n
{resk} S
ExtS (H*(V) © H*(z )loc' M) <— K @ Ext (H*(W ), M)

k=1
T o %}

Ext (H* (V) ® H*(2 )loc' M) <

‘T H*(Z)

Ex (H*(V) ® H*(Z ), M)

]\ Diagram 12. 3.

mnijo

Exti (H*(V), MBH*(Z,) )
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We wild.explain the remaining maps. The maps labelled
X xo are induced by the elements X X, o+ as in §11.

The map

res, : H*(V) @ H*(Zp) _ H*(Wk)

loc

is a residue of the sort described in §7. In fact, the group

Wk is a quotient of V x zp via the map

%

V x ZP > Wk

which carries (v,z) to v + ekz y therefore H*(Wk) is a
subalgebra of H*(V) © H*(Zp) "énd we can consider formal
Laurent series with coefficients in H*(Wk) .

The map marked D (for "duality") 4is an instance of the

map‘in (12.2). Here we must explain how we consider H*(Zp)

* * 1
as the dual of H (Zp)loq/H (zp) . We define a map

A: 2 —> 2 Z
A 2 p " °p

by
a(z) = (-2, 2) .

(The sign is necessary in order to get the details correct in

what follows.) This map induces

Ak . : * —— *
A*: H*(Zp) @ H (zp) > H (Zp) '

4

so that

e, —>-e , e, > e

(with an obvious notation). Localising, we get
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Nk, * — *
A*; H*(Zp) © H (Zp) > H (Zp)

loc loc loc

We now have the following A-map (of degree +1) , which is also

a dual pairing.

_A* H*(zp, _res . p

H*(zp) loc P

) H*(Zp)

loc loc

Since H*(Zp) annihilates H*(zp) » this map yields the follow-

ing A-map (of degree +1) , which is again a dual pairing.

e
H*(Zp) @ H*(2 )loc —_— Fp .
H*(2.)

We now apply the work of (12.2) with the map

P*opP -V, F

—

replaced by e .
Lemma 12.4. The upper square of Diagram 12.3 is commutative.

Proof. It is sufficient to consider the kth summand of

the sum. Given k , we have a map
ek: Zp —_—> VvV
and a map
Xk: vV x Zp -_> Vv

carrying (v,z) to v+ ek(z) . Wejhave the followiné diagram

of groups.



12.6

X
VvV x Zp —_—> Vv
N
%e * 3
VA
prxzp 1
1 x A ]\
™
vV x 1

Z ——>V

(Here of course we have ﬂl(v,z) = v .) Passing to cohamology

and localising on the left,we get the following diagram.

H*(V) © H*(Zp) loc <——xk—-— H* (V)
X ©1
b

H* (V) © H*(Zp) ® H*(Zp)loc 1
108 A*
v
H* (V) Z H*(Z_) <———1—r-l-*—'H* (V)
’ p’ loc :

" At the top we have a subalgebra 1Im > which is the subalgebra
H*(Wk) embedded in H*(V) ® H*(Zp) via Xk . This corresponds,
under the isomorphism on the left, to the subalgebra H*(V) at

~the bottom. This shows that res, is the following composite.

]
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H*(V) @ H*(zp)loc

Xk.@ 1l

H*(V) @ H*(ZP) G'H*(Zp)loc

1 & Aa*
l ® res

H*(V) ® H*(zp)lpc —> H*(V) .

This composite can be factored as in the following diagram.

S H*(Z_) |
10 j loc
BN © me(z ) gl cwan
x}; ® 1 X el
! ) . H* (2 )
103 loc
HA(V) 0 HY(z) @ H*(z), >N 0 ur(z,) @ i
18 B* l18e
l © res ¢’

> H* (V)

H* (V) ® H*(Zp)loc

On the other hand, composition with
(1@ 3)(x 81)(10e)

gives the other three sides of the upper square in Diagram 12.3.

This proves Lemma 12.4.

i

Before going on to the lower triangle of Diagram 12.3,
we need an intermediate result. In the Ext category we can

form the following composite.



Fp @ H*(Z )1oc
H*(Zp)

Bi* @ 1

H*(Zp) ® H* (2 )loc

H* (Z
(p)
u* @ 1
H*(zp) e H*(zp) ® H* (2 )loc
H* (2
(p)
l®e
H* (2 ®F
¢ P) P

Herq/déi* = [E] , as in 8§10, and u* is the map of cohomology

induced b 2 Z Z —>Z .
n Y WP Sy i D

Lemma 12.5. This element of

is, up to a fixed sign, the class of the extension

0 —> H*(Zp) —_— H*(Zp) —> H*(Z )loc —>0 .

*
H (ZP)

loc

Proof. We shall construct a diagram of extensions of the

following form.

12.8

0 —> H*(zp) © H*(Z_);  —>E @ H*(Z ), —> F, 0 H*(2 ) o —> 0
*(Z H*(2 H*(Z
H (p) | (p) D
6 ! xJ’
0 ———> H*(Z ) > H*(2_) —> H*(2 |
T P p

loc __,p(l_l_?s_
2
AL
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Hexe E 1is the extension introduced in §10; thus the top line
is the extension [E] ® 1 = 8i* ® 1 . Of course the map 6 has
to be the composite of the maps Bu ® 1l and 1 ® e in the
enunciation, and x has to be 1.

We begin as in the proof of (12.4), using the following

diagram of groups.

Z
px
- I

A x

Z
P
1>:'A'1~ :
x Z > 2

3 2p * 2p p

Z -_L>z
P
1

2 g

x 2 . ‘

P
T

Passing to cohomology and localising on the left, we get the

following commutative diagram.

* * __u*
H (Zp) ® H (zp)loc < H*(Zpu

e 1 l

H*(Zp) ) H*(Zp) e H*(Zp)loc

10 A* 1
v

H* (2
( p)

™

* y *
H (Zp) @ H (Zp)loc <
As in the proof of (12.4), we have at the top a subalgebra
Im u* ; this corresponds, under the isomorphism on the left,
to the subalgebra H*(Zp) at the bottom. Let res be the

u
residue corresponding to the subalgebra Im u* . As in the



proof of (12.4), J:es]'l is the following composite.

H*(Zp) e H*(zp)loc

H* 8 1
* *
H (zp) @ H (zp) e H*(zp)1°c

1 ® A*

1l @ res
H*(zp) ® H*(zp)loc —_——— H*(zp) .

Thus resu will certainly pass. to the quotient and define the

reqguired map

g
%* * — *
H (Zp) ® H* (2 )loc >H (zp) .
- H* (2
. ( p)
Now resu ‘certainly extends to
res
* * —_H 5 g«
H (Zp)loc ®H (Zp)loc > H (Zp)loc !

and in particular to ) '

—
E® H*(Zp)loc > H* (2 )

Unfortunately, it does not pass to the quotient to give a map

E © H*(2Z )loc —_—> H*(Zp)
-H*(Zp) s

loc

In fact, with the obvious notation we have

-1 r. _ r
resu(e1 xl ® xz) = { X (r =2 0)
0 (r < 0)
-1 r. _ r
resu(el Xy @ e, xz) = { ex (x ; 0)
0 (r <0) .

12.10
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Therefore, we define 7 -
= resu - res © 1.

This agrees with resu on H*(Zp) e H*(Zp) » Since res © 1

loc
is certainly zero there. It does pass to the quotient and

‘define a map

E ® H*(2)), .
H* (2Z
(z.)

¢
— H*(zp)loc

Thus we obtain the required diagram, with X ==1. This

campletes the proof of Lemma 12.5.

Lemma 12.6. The upper triangle of Diagram 12.3 commutes

up to a (fixed) sign.

e

Proof. By the properties of g (§10) plus our account of
X, + the element on is the following composite in the Ext
category.
H*(V) © Fp
l® Bi*
v

* *
H*(V) @ H (ZP)

1l 0 u*

* *
H*(V) @ H (zp) e H*(ZP)

From this and (12.5), we see that (up to a sign) the maps
xo D and A in (12.3) both carry
f ¢ Exti* (H*(V) ® H*(zp), M) to the following composite in

the Ext category.



12.12

H* (V) © H*(2 )loc
H*(Zp)

l1©@gi* o9 1

H* (V) @ H*(Zp) ® H* (2 )loc

H*(zp)

1@ u*o1

\f

H* (V) © HY(Z,) @ H*(Z,) ® H*(Z ),
~ H¥ (2.
foe
4
MerF,

This_gtoves Lemma 12.6.

Proof of Theorem 12.1. By (12.4) and (12.6), Diagram 12.3

is commutative, up to a fixed sign for the triangle. 1In this
diagram, the map {resk} is iso by Corollary.7.8 plus (1.2).
Therefore the map 1 ® j is epi, and the left-hand vertical
sequence is short exact. Now the result follows by diagram-

chasing.
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§13. Proof of the M@n Theorem. 1In this section we will complete

the proof of Theorem ;i{f“and so camplete the proof of
Theorem 1.1. )

First we will return to the considerations of §11, and show
how to make new function-objects from old. Suppose given a
monoidal category C , .and suépose given three objects

F, G, H in C . Suppose that we have a function-object
W,
{wj, wjeG—-'L->H}

from G to H , and that for each Wj we have a function-object

. v, .
I
{vj_j ’ vij @ F > Wj}
from F to wj . Then we can form the moxrphism

"

v

vi. ® 1 w.
ijeFeG—J———>Wj@G—J—>H.

Lemma 13.1 {Vij ’ (vij @ 1) wj} is a function-object

from FO® G to H.

In fact, the assumptions give us isomorphisms

>@C(E9F, W
j

>C(E®@ F® G, H ;

r V.. .
2 C(E iJ) J)

@DcEer, w)

j ]
and their composite is the map which has to be proved iso, for
its components are induced by the elements (vij @ 1) wj .

We will call this construction of a function-object from

FO®G to H the "product construction".

Lemma 13.2 Suppose that a functor 8 preserves the function-

object {wj ' wj} from G to H and also preserves the
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function-object .{Vij ¢ Vij} from F to wj for all j .
- Then it preserves'ﬁhe function-cbject {Vij ’ (Vij ® 1) wj}

from F® G to H given by the product construction.

Proof. Let us write E for the target category of B8 .

Then the assumptions give us isomorphisms

Dewm, av,) —> Pruwesr, oy
J

i,j

Dew e er, sw > E(M® §F ® 6G, BH)

)
3 J

and their composite is the map we need to prove iso.

Proof of Theorem 11.2. Let us consider a function-object

in A% from U to V. If U is of rank 0 the result is
trivial; the map we need to prove iso is essentially the
identity map from E(M, H*(V)) to itself. If U is of

rank 1 then the result is true by Theorem 12.1. We may therefore
proceed by induction over the rank of U . Suppose
U =1U' x U" where U' and U" are of less rank. Then by
(11.1) there is a functicn-object {wj ' wj}_ from U" to
V and there is also a function-object {Vij ' vij} from U

to Wj for each j . By the inductive hypothesis B8 preserves
these function-objects; so by (13.2) it preserves the function-
object from U' x Uf to V given by the product construction.
Therefore it preserves any other function-object from U' x U"
to V . This completes the induction and proves Theorem 11.2.
This finishes the proof of all the results stated.
In the proof above, it can be shown that the class of

function-objects given by (11.1) is closed under the product
construction. The argument we have given makes it unnecessary

to show this, so we omit it.
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