SEMI-SIMPLICIAL COMPLEXES AND POSTNIKOV SYSTEMS

By 0ux C. Moorz!

Classically, in algebraic topology, one studied simplicial complexes. However,
many of the spaces which arise naturally in modern algebraie topology are not
simplicial complexes. Tor example, the loop space of a simplicial complex is not a
simplicial complex. This illustrates the fact that simplicial complexes are not,
adequate to deal with homotopy from a modern point of view. In 1950, the concept
of semi-simplicial complex was introduced by Eilenberg and Zilber [1]. At present it
seems certain that the category of semi-simplicial complexes and semi-simplicial
maps is the most convenient category to workin when studying homotopy problems,
Sometimes it is convenient to work with an arbitrary semi-simplicial complex, and
sometimes with one satisfying the extension condition of Kan [21.

In this paper part of the theory of semi-simplicial complexes will be outlined,

_including in particular an outline of the development of homotopy theory for those
complexes which satisfy the extension condition. After this js done, the results will
be used to describe and discuss Postnikoy systems [3].

Much of the material in this baper was presented in a course of lectures af

Princeton during 1955-1956, or in the Cartan seminar of 1054-1955 [4].

§1. Semi-simplicial complexes and homotopy

Drorivrrions 1.1. Let Z+ denote the sot of non-negative integers. Now a semi-
simplicial complex consists of the following:

(1) Aset X=U .. X, where the X ¢ are disjoint sets (an element of X ¢ 18 called
a g-simplex of X);

(2) functions 9,: X, » X e t=0,"-+,g+1, called face operators, and
(3) functions s, : X, —>Xp1=0,--,q called degeneracy operators.
The face and degeneracy operators are assumed to satisfy the relations

9,0, = 0,40, i<
Si85 == 85418 i<,

0;8; = 8,15, = identity,
05;=8;, 1,0, i<j,and
08;=8,0,; 1i>j4 1

We will denote a semi-simplicial complox Dby its set X of simplexes, A simplex

re€X,.; is called degenerate if x— 8;y for some y € X, and some degeneracy
operator s;; otherwise x is called non-degenerate.

! The author was partislly supported by Air Force Contract AT 18(600)-1494 during the
period when the worle on this paper was being done. )
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Exampre 1. Recall that a simplicial complex K is a set whose clements are
finite subsets of a given set &, subject to the condition that if z & K and yisa
non-empty subset of «, then y € K. Sets with 1 element are called vertices, and
sets with (n + 1) elements are called n-simplexes of X.

Linearly order the eloments of X, ie., the vertices of K. Now define a somi-
simplicial complex X(KX) by letting tho n-simplexes of X{(K) be (n -+ 1)-tuples
(@g, * -+, a,) of elements of K such that g, = -+< @, and such that the set

{ag, - - + , @,} is an r simplex of K for some r < n. Define
Oy, "~y @) = (ap, "+ *, @y, 8y, -, a,), and
si(“o’ SEenls) = (aur T By By Byg,t a,).

Exameir 2. Let A, denoto the standard n-simplex, in other words a point of
A,isan (n -+ 1)-tuple (f, - ,¢,,,) of real numbers such that 0 <4<1,i=
0,-++,m,and 3 ¢; = 1. Let 4 be a topological space. A singular n-simplex of 4 is
amap U: A, — A. Denote by S(4), the sot of singular n-simplexes of 4, and set
S(4)= U, 5, S(4),. Define

0;:8(4), —8(4),_,
by aiU(tos Tt by g) = Ul 0 18,4, 0, b+ =+, 1, y), and define
81 (84), —8(4),,,

by 8, U(lg, =+ s¥ppq) = Tllgy s = s s by, 8, + bists Lipar* * "y byyq).  One verifies easily
that S(4) is a semi-simplicial complex; it is known as the total singular complex
of the space 4.

Durinrrion 1.2. A semi-simplicial complex X is said to satisfy the extension
condition if given xy, -+, m g, Hpqy 0, 2, +1 €X, such that 8,2, = 9, ,x, for
i <_j,14,J 7k, thero exists z € X, such that 0;x = x, for ¢ 5 k. Such a complex
will be called a Kan complez.

Prorosrrion 1.3. If 4 is a topological space, then the total singular complex S(A)
satisfies the extension condition. ol

The proposition follows from tho fact that the dnion of (n+1) faces A, ;I8 a
retract of A, ;. '

Although it has long been realized that the total singular complex satisfies the
extension condition, it was only recently that it was pointed out by D. M. Kan that
the extension condition is sufficient for the definition of homotopy groups. In fact,
in the eategory of Kan complexes and somi-simplicial maps, one can treat all
problems involving only questions of homotopy type. The original work of Kan in
this direction was done on semi-cubical comploxes, but it was clear from the outset
that one could work equally well with semi-simplicial complexes. At present
almost everyone is agreed that for various technical reasons the category of semi-
simplicial complexes is more convenient than the category of semi-cubical
complexes,

Dermnrrion 1.4. Let A, denote the semi simplicial complex whose g-simplexes
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are (g -+ 1)-tuples (ay, - - -, a,) of integers such that 0 Sl a, < n,

Suppose further face and degeneracy operations are defined as in Example 1, by

L

Oylag < = i a,) = (d3; TRyl @iy, t v, @), and

R e (A S 8 Bipys " " Cp).
This is just exactly the standard simplicial complex for the n-simplex. Further lot
g A, ;1 —A, and
Nilb, AL

be the simplicial maps such that () = j for § < 3, g)=j+Li=in()=;
forj< i, and nff) =4 — 1,5 > .

Denote by A, the subcomplex of A, such that a g-simplex is a (g + 1)-tuple
(@g, * -+, @,) such that the set {ag, <~ -, a,} has at most » elements, In other words

A, is the boundary of A, or the (n — 1) skeleton of A,. All simplexes of An of
dimension greater than (n — 1) are degenerate.

~ Drrinrriow 1.5. If X, ¥ are semi simplicial complexes the Cartesian product
X X Y of X and Y is the semi simplicial complex such that

MEXTY),={@edscX,be ¥l -

(2) 8;: (X X ¥), — (X X Y),_, is defined by Oa, b) = (0,a, 3.0), and

(3) 8;: (X X ¥),, (X X ¥),, is defined by s,(a, b) = (5,2, ;b).

Prorosrrion 1.6. If A and B aretopological spaces, then8(4 X B) = 8(4) x 8(B).

This proposition follows immediately from the fact that a singular simplex in the
product space 4 X B is uniquely determined by its projections on the factors [6]1.

DerFmvrrion 1.7. If X and ¥ are semi-simplicial complexes and f: X — ¥ is g
function, then f is a semi-simplicial map (or simply map) if

W fX,)=Y, for neZ+

(2) 6.f=f0;, and

(3) . = s, -

Drrvrrion 1.8. If X and Y are semi-simplicial complexes, then the complex of
maps from X to Y is the semi-simplicial complex ¥ such that

1) (M), = {/|f: X x A, Y is a map}, ‘

(2) 9;f=f-=(1 X ¢) for f an n-simplex, and

(3) 8;f = fo (1 X #,) for f an n-simplex.

If 4, X, B, and ¥ are semi-simplicial complexes with 4 < X, B< Y then
(Y, B)%4 js the subcomplex of Y% such that an n-simplex is a map
Fi(X XA, A4dXA,)—>(Y,B).

Tuvorem 1.9. If (X, A) and (¥, B) are pairs of semi-simplicial complexes such
that ¥ and B are Kan complezes, then (¥, BYX4) is g Kan complex.

The proof of this theorem is somewhat long and tedious, but not particularly
difficult. ‘

Drrmvrrion 1.10. Let X be a semi-simplicial complex, a point in X is a zero
simplex of X, i.e., an element of X, and a path in X is a l-simplex, i.e., an element
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of X,. If ¢ is a path in X, then 8,z is the initial point or origin of «, and d,x is the
final or terminal point of . :

Equivalently o point of X is a map of A; into X, and a pathin X isa map of A,
into X. 3

Two points a, b of X are in the same path component of X if there is a path in X
with initial point a and final point b, this will be denoted by @ ~ b.

Prorosrriow 1.11. If X is a Kan complex, and a, b, ¢, are points of X, then

(i)a~a,
(ii) if @ ~ b, then b ~ a, and

(i) if @ ~ b, b ~¢, then a ~ ¢,

NoraTioN. For any Kan complex X let ry(X) denote tho set of path components
of X. Further if x € X, let [x] € 7(X) denoto the equivalence class of .

Drrmvrriow 1.12. If (¥, B) is a pair of Kan complexes, and (X, 4) is a pair of
semi-simplicial complexes, then, f, g : (X, 4) — (¥, B) are homotopic if and only if
both f and g are in the same path component of (¥, B)E4), i, [fi=
[7] € 7o ((¥, B)YE-4). A homotopy between f and g is a path in (¥, B)T4) joining
ftog. In other words a homotopy is a map F: (A, X X, A; X A4) —(Y, B)
such that 3, F = g, 9, F = f. j

Now using the preceding proposition we have that homotopy between maps of a
semi-simplicial pair into a I{an pair is an equivalence relation.

Homorory Exrension Temorem 1.13. If (X, A) is a semi-simplicial pair,
Y a Kan complew, f: X — ¥ and F : A; X A — ¥ maps such that 0, F = f!A, then
there exists F: Ay X X — Y such that F|A; X A= F, and 8,F = §.

Drrrxrrion 1.14. Let X be a Kan complex, and = a point of X. Also let x denote
the subcomplex of X generated by =, i.e., there is a unique g-simplex 8§z in this
subcomplex for every positive integer q. Now define.

(X, 2) = mo((X, 2)dw )

forn > 0.

Lenma 1.15. If X is a Kan complex, = a point of X, ha (A, Aﬂ) — (X, ), and
t, §, I distinet integers, then there exists F Appq— X such that 9,F = f, 0,F =
g, 8, " e for g # i, j, k,and if F’ is another such map, then [0, F] = [0, F'] e m,(X, ).

Dermvrrion 1.16. Let X be a Kan complex,  a point of X, f, g (A,, A'n) —
(X, ) maps, and F: A, , —X a map such that OpiF'=f 0, ;F=g, and
0.F €z for i < n — 1. Define

[f1+[g]1=12,F] e m,(X, ).

Prorosrrion 1.17. Let X be a Kan complex, = a point of X, then

(1) 7 (X, %) s @ group for n > 0 and

(2) 7w, (X, x) is abelian for n > 1.

The group w,,(X, ) is the n-dimensional homotopy group of X at the base point .

The homatopy groups of Kan complexes enjoy all the usual properties of homo-
topy groups of spaces. In fact the homotopy groups of a topological space are just
.the homotopy groups of its singular complex. A few of the elementary properties of
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homotopy groups are summarized in the next Proposition. Exact sequences of
homotopy groups will not be considered until the next section which will be
devoted to fibre spaces. s

PRC?POSITIDN 1.18. Let (X ,'a:), (Y, y),4Z, z) be Kan complexes with base point, then

(i f: (X, &) > (Y, y) is a map, § induces a homomorphism f#: 7 (X, z) —
T (Y, y) forn > 0. A

)i f (X x) - (Y, y)and g : (Y, y) — (Z, 2) are ma #

) (Y, ; ps then =
g7 7 (X, 2) =7 ,(Z, 2) for n > 0, e

B f, g : (X, 2) = (¥, y) are maps such that
i s ' at f, g belong to the same component of

((;) if [ (X, x) > (X, x) is the identily map, then f# is the identity homomorphism,
an :

(0) if [ (X, &) —(y, ), then ¥ is the zero homomorphism.

Now fo]lomng'E.ﬂenberg and Zilber {[1]) we will outline the proof that any IKan
complex has a minimal subeomplex which is equivalent to the original complex as
far as homotopy is concerned.

Dermvrrron 1.19. Let X be a Kan complex. The complex X is minimal if
“whenever v, y X, are such that 8@ = 8,y for i 2 k, then Oyt = 0,y. Two maps
fy9: Ay — X are compatible if f |Aq = glAa, and f, g are homotopiec if there exists
F:A; % Ay —X such that F|(0) x A =f, F|(1) x A,=g, and F(o X 7) =
fiz)for 7 € A,

LEMM_:ex 1.20. The Kan complex X is minimal if and only if for each compatible
homotopic pair of maps f, g: A, — X we have f=g.

DEFIN:ITION 1.21. Let X be a semi-simplicial complex and 4 a subcomplex of X.
Then 4 is a deformation retract of X if there is a map F: A; X X — X such that
Flo X r)=7forr EA., F(s§(0) X 7) = 7, and F(sf(1) X ) e A forany + € X.

TaEoREM 1.22. If X is a Kan complex, then there is a minimal subcomplex M of

.?( :whick is a deformation retract of X, and if M’ is another such complex, then M’
18 tsomorphic to M,

§2. Fibre spaces

Now having developed a little of the theory of semi-simplicial complexes, we
now turn to the study of fibre spaces. It is here that the study of Postnikov systems
naturally arises.

Dermvrrrons 2.1 A fibre space (or semi-simplicial fibre space) is a triple (%, p, B)
where & and B are semi-simplicial complexes, and P :E — B is a semi-simplicial
map such that if e € B, gy, - -+, Yr-1 Yes10 " " * 5 Yoy1 € I, are such that p(y,) =
9 and Oy, = 0, 1y, for i < j, i, j £ k, then there exists y € B, such that
0.y =y, for i # k, and p(y) = ». The map p is called a fibre map.

A fibre map p : £ — B is minimal if y, y' & E ., are such that p(y) = p(y’) and
0y = 0y' for i 3£ k, then 3,y — 9,". The fibre space (&, p, B) is minimal if the
fibre map p is minimal and the complex B is minimal.

Let b € By, and let F be the counter image in & of the complex generated by b.
The complex F is called the fibre over b.

Lo
(2]
]
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Prorosrriow 2.2, Let (B, p, B) be a fibre space.

(1) If I' is the fibre over a point of B, then F is a Kan complex.

(2) The complex E is a Kan complex if and only if B i3 a Kan comples.

Derinrrion 2.3. Let (&, p, B) be a fibre space, where B is o Kan complex, b o
point of B and a a point of F the fibre over b.

For ¢ = 2 define

8% : (B, b) — m,_y( F, a).

Recall that o € 7o(B, D) is represented by x & B, such that 0o = s§~1 for all 4.
Since p is a fibre map, there exists y € £, such that p(y) = « and 9,y = s~ "a for
i>>0. Then dyy € F,_; and represents an element of = _,(F, a). Checking
independence of representative, define 07 ([z]) = [d,).

TraroreMm 2.4. Let (B, p, B) be a fibre space, and suppose B is a Kan complez.
Let b € By, F be the fibre over b, and a € Iy, then

(1) 8% : 7w (B, b) —m,_4(F, a) is a homomorphism for q 2> 2, and

(2) The sequence

q-1

i# # o

St By BN e B ) sy (I oy

18 exact, where 1 : F' — I is the inclusion map.

1 Dermrrions 2.5. Let X be a semi-simplicial complex. Define a new semi-

simplicial complex X as follows:

(1) A g-simplex of X™ is an equivalence class of g-simplexes of X, where two
g simplexes =z, &' are equivalent if their faces of dimension less than or equal to »
agree, i.e., ¢, ¢’ : A — X and x|A? = m’|A’; where AP is the n-skeleton of A,

(2) The face and degeneracy operations in X™ are induced by those in X.

Let X(®) = X, and let p} : X — X® be the natural map for n > k, where
oo 22 & for every k. When there is no danger of confusion, p} will be.abbreviated
by p.

TrEOREM 2.6.' Let X be a Kan complex, then
b (1) X™ is @ Kan complex for every n,

; (2) (X, p, XB) is a fibre space for n > k, and, . -
(3) if x is @ point of X, then 7 (XP, z) = 0 for'q > n, and

P i a (X, 2) Eiq-rq(X”"), x) for ¢g< k.

I In the context of comploxes satisfying the extension condition, the proof of the

1 preceding theorem is very easy. This theorem contains many eclassical results.

For example, consider the case (X, p, X*). We then have that p” : 7 (X, z) —
7 (X®), 2) for ¢ < k, and 7, {X®), 2) = 0 for ¢ > k. In other words the fibre spaces
(X, p, X)) are the precise analogue of the construction (II) of Cartan and Serre [8].

DerFmvrrion 2.7. Let X be a Kan complex, and x a point of X, Let E (X, x)
denote the fibre over the point 2 of p : X — X ("1, The complex £ (X, z) is the
2t Eilenberg subcomplex of X based at x, and is that subcomplex of X consisting of
simplexes whose faces of dimension less than » are at the base point =, [9].
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Prorosirion 2.7, Let X be a Kan complex with base point x. We then have

(1) my(Eo(X, 2), 2) = 0 for g < n, and
d (2) R Tl B (X, 2)x) v m(X;.) for q=n, where i: B (X, x) X is the
tnclusion map. i
ThDEm:NITION 2f.8. If X is o Kan complex, let #* be the fibre gpace (X1, g X ()

© sequence of fibre spaces y = (39, 41,+ -+, " - - -} iz by definit; Bk -
Postnikov system of X, [3]. d * AR o
. DEF;;TI;)N 2;]2; Let X be a connected Kan complex with base point . Then X
18 an Lnlenberg-MacLane complex of type (m, n) if and only if r) =
g5, and m(X, 2) = . o L

Tazorem 2.10. If X is a Kan complexs with base point z, y is the natural Postnikoy
System of X, and FD) 4s the fibre of the map p: XD o X0 gohich is the pth
term f’f % t.henF‘"""l’ 1$ an Eilenberg-MacLane complex: of type (m,, (X, ), n 4- 1).

With this Fheorem we see that any Kan complex may be constructed in some
sense from Eilenberg-MacLane complexes. The process of so doing will be studied
furthel: Ia,ter..HoweW%r, before doing so we want to consider a generalization of the
Pn?cedmg 1Evh.mh a:p.phes to a fibre map. It may well at this stage to point out that if
Xisa sem}-smlphcla.l complex and 2 the complex of a point, then the unique map
f:X —wis a fibre map if and only if X is a Kan complex.,

Drrmvrrion 2.11. Let p : B — B be a fibre map, e a point of B, b = p(e) and F
the fibre over b Suppose that B and F are connected and that B is a Kan complex
(1-'aca,]l that this means % is connected and a Kan complex), Define a new semi-
simplicial complex B as follows:

(-1) A g-simplex of B is an equivalence clags of g-simplexes of E where two
g-simplexes x, =’ are equivalent if

(i) p(z) = p(a’), and

(i) 2|A7 = ='|An,

(2) The face and degeneracy operations in E(™ are induced by those in &

i :

L<etkE‘ Y= E, and let p} : B(" 5 E® be the natural map for » > k, where
e =

TamorEM 2.12. Let (B, p, B) be a Jibre space of connected Kan complexes, e a point
of B, b = ple), and T the fibre over b. Then ;

(1) B is @ Kan complex for every n,

(2) B = Bif By={e},

(3) (B™, p, B®) is a fibre space for n =k,

(&) 7B, &) S (B, ¢) for g < n,

(5) m( B, €) Sor (B, ) for ¢ > n -+ 1, and
ﬁb(S) ﬁfke fibre of p: B™ — B i3 F™, the n!™ term, in the Postnikoy system for the

re F,

Drrrvirion 2.13. Let (#, p, B) be a fibre space of connected Kan complexes,
and let &" bo the fibre space (E(™+1), p, E(m). The sequence of fibre spaces & =
(e &l, -+, g" + -+ ) is by definition the natura] Postnikov system of (E, p, B).

THEOREM 2.14. If (E, p, B) is a fibre space of connected Kan complexes, e a point
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of B, b = ple), and I the fibre over b, then the fibre over b in &*, the n'™ term of the
Postnikov system of the fibre space (H, p, B) is an Eilenberg-MacLane complex of
type (1 (F, e), n 4 1).

Consequently as a result of this theorem we see that a fibre space may be con-
structed by giving a base complex B, and then “adding” in the homotopy groups of
the fibre one at a time. In fact one has given a fibre space (¥, p, B) an infinite
sequence of fibre spaces, B —»+++ > EB") 5 FW ... S FU B, and the
special case of this were B is the complex of a point gives exactly the ordinary
Postnikov system of Z.

Just as any Kan complex has a minimal complex, which is a deformation retract,
any fibre space has a minimal fibre space. The situation however is somewhat better
than this as will be seen by the following theorems,

TrrortM 2.15. Let (B, p, B) be a fibre space of connected Kan complexes, and let
B' be a minimal subcomplex of B which is equivalent to B. Define B’ = p=(B’). Then

(1) (B', p, B’) is a fibre space, and

(2) there exists a commutative diagram

B x AILE

pXx1 P

B x Al—-f—a-B

such that  F(g, 7) = o for o € ',
F(a, 8§ 0) = o for 0 € B, and
Flo,s§1) e B, foro ek,
TaeoreM 2.16. Let (B, p, B) be a fibre space of connected Kan complexes, and
suppose B is mintmal. Then there exists B' = B such that ¥
(1) (B, p, B) is @ minimal fibre space, and
(2) there exists a commutative diagram

B X AILE

i

p X1 P

BXAI———>f B

such that F(o, 7)== o foro e B, 7€ A,,
F(o, s{0) = o for ¢ € B,
F(o, 8§1) € B, for o € B, and
flo,T)=cforceB, relA;. |
Henceforth when we speak of a minimal subcomplex of a complex X we will
usually mean one which is a deformation retract of X, and similarly in the case of
fibre spaces minimal sub fibre spaces will usually mean one which is a deformation

retract of the original.
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'_;[‘HEORZ’EM 2.17. ”Let (&, p, B) be a fibre space of connected Kan complexes, and let
(E', p, B') and (B", p, B") be minimal Jfibre spaces which are deformation retracts of
(B, p, B), then (B', p, B') and (E*, p, B") are isomorphic.

Prorosrrion 2.18. If (B, p, B) is a ‘minimal Jfibre space of connected complexes
and e = (B, p. B s the nt term in the natural Postnikov system & tke,
P EUHD o B i3 g minimal fibre map. o

.We have now reduced the problem of studying either complexes or fibre spaces
with the extension condition to the problem of studying minimal ones. Further we
have seen that all of these things are put together out of Eilenberg-MacLane
cor.nple:.cf. Cogsequently we wish to make this process more explicit, to see how
unique 1t is, and to see its relationship wi i i
N sy B p without homotopy type. These questions will

DE:F]:NITIDN 2.19. I.f (E, p, B) and (E', p, B') are fibre spaces then a map of the
first into the second is a commutative diagram

f

B —

lp lp’
B —f—> B’

of semi-simplicial complexes. Such a mapping (f, f) is homotopic to a mapping
(¢, g) if there exists a commutative diagram of semi simplicial complexes

I
Ex A —E

lp x1 lp‘
BN g
such that

(1) F(o, $§0) = /(0), and

(2) F(a, s81) = (o).

DEEINITIONS: 2.20. Two semi simplicial complexes X and ¥ have the same
hm.notopy typ.? if and only if there exist maps f: X — ¥ and g: ¥ — X such that
J;g is homotopic to the identity map of ¥ and gf is homotopic to the identity map of

Tw‘o fibre spaces (£, p, B) and (', p', B') have the same homotopy type if and

~only if there exist maps (f, f): (B, p, B) — (&', ', B')and (§, g) : (B',p’, B') —
({.f}', p, B) l?uch that (f, £)(§, g) is homotopic to the identity map of (£, p’, B') and
(7, 9)(f, f) is homotopic to the identity map of (B, p, B).

Levma 221, If X and ¥ are connected minimal complexes such that T (X)) =
'n'q(.Y) =0 for g#n, and @ : m (X) —7,(Y) is a homomorphism, then there is a
uraque map f : X — ¥ such that f* = ¢ : m,(X) — 7, (7).

CoroLrary. If X and Y are connected minimal complexves such that 7, (X) == 7,(¥)
and 7(X) = 7 (¥) = 0 for q == n, then X is isomorphic with ¥,
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Thus we see that two minimal complexes of type (7, n) are isomorphic. Later we
will see how to prove the existence of such complexes after the fashion of Eilenberg-
MacLane.

Prorosrrron 2.22. If X and Y are connected minimal complevesand f: X —~Y isa
map such that f% : 7 (X) —m (Y) for all g, then f is an isomorphism.

TaEOREM 2.23. Let X and Y be connected Kan complexes. The following conditions
are equivalent:

(1) X and Y have the same homotopy type,

(2) there is a map f: X — Y such that

I# o (X) oy w (Y) for all g, and

(3) X and Y have isomorphic minimal subcomplexes.

The fact that conditions 1 and 2 in the preceding theorem are equivalent is in
the framework of CW-complexes a well-known theorem of J. H. C. Whitehead [10].
We now give the analogue of this theorem for fibre spaces.

TurorEM 2.24. Let (B, p, B,) and (E', p', B') be fibre spaces of connected Kan
complexes. The following conditions are equivalent:

(1) (B, p, B) and (E', p’, B') have the same homotopy type,

(2) there isamap (f, f) : (B, p, B) — (&', p’, B') such that at least lwo of the following
conditions are verified. :

Q) 7# : w (B) Sm (B') for all ¢
(i) f# : 7 (B) S 7 (B') for all g
(iii) # : 7 (F) S 7w (F') for all ¢

where F and F' are the fibres in the respective fibre spaces, and

(8) (B, p, B) and (&', p', B’) have isomorphic minimal sub fibre spaces,

With this theorem we complete our study of fibre spaces from an elementary
point of view. Now we pass on to study them in more detail using cohomeology and
twisted Cartesian products. The notion of twisted Cartesian product is not an
invariant one, but any principal fibre space, or any: minimal fibre space may be
given such a structure. Further any Postnikov system which is minimal may be
constructed as a series of twisted Cartesian products.

§3. Twisted Cartesian products and monoid complexes

DervrrioN 8.1, A twisted Cartesian product is a triple (F, .B, &) such that
F, B, E) are semi-simplicial complexes with &, = {(a, b)}|a € F, and b € B}
Defining p : E — B by p(a, b)) = band i, : F — E by i,{a) = (a, s§0) for b a point of
B and a € F', we assume further

(1) p is a semi-simplicial map,

(2) 1, is a semi-simplicial map for any point b in B, and

(3) 0,(a, b) = (d,a, @) for i > 0, and

8m, b) = (s,@, 8,b) fori = 0.

— s
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I ig called the fibre of the twisted Cartesian product, B the base, and E the tota]
space or total complex. Usually, but not always, the map p will be a fibre map as
defined earlier. Notice that E i4 the Cartesian product of F and B if and only if
Oola, b) = (Bga, Bgb) for (a, b) a positive dimensional simplex of .

Prorositron 3.2. Let (F, B, E) be a twisted Cartesian product, and define
7 Boyy — F, by the equation 9y(a, b) = (t{a, b), Gub), then T satisfies the identitics.

(1) (048, 8:0) = 7(v(a, b), BD),

(2) 7(0;418, 04410) = Oy7(a, b) for i > 0
{3) 7(sy2, s;0) = a,

(4) 7(8;448, 8;410) = 8;7(a, b), and

(8) 7(a, s§b) = dya for b a point of B.

Further of F and B are semi simplicial complexes and T : (FXB)y,—~F isg
Junction satisfying identities 1 through 5 above, then one can define a ::;aigue t;)z'.sted
Cartesian product (F, B, E) so that in B Oola, b) = (7(a, b), Igh).

The function = of the preceding proposition is known as a Lwisting function, and
_the Pproposition establishes a one to one correspondence hetween twisting fu.uc’tions
T X B — I and twisted Cartesian products (¥, B, E).

DEFmirIons 3.3, A semi-simplical complex I is a monoid complex if

(1) Ty is a monoid with identity for each ¢, and

(2) 0,: Ty > T and s, : Fe—=Tos
are homomorphisms of monoids with identity elements. We will denote by e_or 1
the identity of T',. e

I'is a group complex if T is a monoid complex and each I', is a group. When each
T, is abelian, T will be called an abelian monoid complex, or an abelian group
complex as the case may be. When I'is g group complex and x € I'_, the inverse of
x will be denoted by #. q

Notice that if @ is a topological space and there is given a map of @ X G — @
jarhich maltes ¢ into & monoid with identity, then the total singular complex of &
~ 18 a monoid complex which is abelian if and only if @ is abelian. Further if G is a

topelogical group, then the total singular complex of @ is a group complex.

TeEoREM 3.4. If I is a group complez, then T is a Kan complex.

A proof of this fact may be found in [4].

Drrmvrrion 3.5. A monoid complex with homotopy is a monoid complex which is a
Kan complex. In this case (I, &) will be denoted by ().

Prorosrriox 3.6. If T is a monoid complex with homotopy, then (') 75 abelian,
and if x, y €', are elements such that 0= 0y=e,, for i=0,---, q, then
(2}, 4] € (L) and [al[y] = ). i e

The preceding proposition gives the analogue of the classical results that the
group operations in the homotopy groups of a topological group come from the
group operation in the group, and that the fundamental group of a topological
group is abelian.

; II\]TJ ow for group complexes we wish to define homotopy groups in an alternative
ashion. : ;
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Dermwrrion 3.7. If I' is a group complex, define
# () = NY_jkernel 3, : T', —T"_;, and

=0
(L) = 2 ¢7(I).

Prorosirion 3.8, If T' is a group complex, then image 0,1 : 7gsq(I) =Ty is a
normal subgroup of I'; contained in kernel 8, : #,(I') —#,_,(T').

Drrmnirion 3.9. For any group complex T', consider #(I') as a chain complex
(not necessarily abelian) with respect to the last face operator. Define

my(T) = H(#T)).

Prorosrriow 3.10. If I' is a group complex, then

(1) m(T') = 7 (') for all g, and

(2) I' is minimal if and only if 0, : 7 4q(I") — 7 (T") is zero for all q.

DrrmvrTIoNs 3.11. A twisted Cartesian product (I', B, E) is principal if

(1) I' is o monoid complex, and

(2) the funection f:I' X E — F defined by f(e’, (a, b)) = (&', b) iz a semi-
simplicial map.

Prorosrrion 3.12. If (I, B, E) is a principal twisted Cartesian product and  its
twisting function,then T(a,b) = dyav(e,, b). Defining ="+ B,—T'_, by ', (b) = 7(e,.b)
we have

(1) 7(8,0) = 3,7 (B)'(2p)0),

(2) 7'0,yy = O fori > 0,

(3) '(8p)b = e, for b € B, and

(4) 7’8, = 8;7'.

Further if ' : B, — 1", 1s a function satisfying the preceding identitics, then there is
a unique twisted Cartesian product (I, B, E) such that y(a, b) = (d,ar’(b), db).

Prorosrrion 3.13. Let (F1, BY, B%) and (FZ%, B, BY) be twisted Cartesian products,
such that B* and B have a single vertex, with twisting functions 7,, and 7,. Denote
by iy : F* — B* the inclusion map. Then there are twisted Cartesian products (2, F1,
FL2) with twisting function * and (FY?, B, B3) with twisting function 7%, where
™a, b) = 7(a, i,(b)) and T3a, b, ¢) = (ru(a, b, c),'m,{b, ¢)).

This proposition is the analogue of the well-known theorem that if B® — B?isa
fibre map and B* — Blis a fibre map, then B — B! by composition is a fibre map.

Prorosrriox 3.14. If (1", B, E) is a principdl twisted, Cartesian product where T is
a group complex, then B — B is a fibre map.

DrrmvrrionN 3.15. Let (F, B, E) and (F, B, E') be twisted Cartesian products.
A map of (F, B, E) into (F', B’ F')isamapf: F— F,amapg: B— B anda
map k: E —E’ such that (g, b) = (fla), g(b)). Any such map A is said to be
compatible with the map f: F — F' of the fibres.

DerrnrrioN 3.16. A principal twisted Cartesian produet (I', B, E) is of type
(W) if B, has a single element and 0, : e,,; X B, — B, is one to one.

TrroreM 3.17. Let (I', B, E) and (I, B’, E') be principal twisted Cartesian
products, the second being of type (W), and suppose f: T' — T be ¢ map of monoid
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Compleaes, then there is a unique map F (DB BY (T, B, E’) compatible with f.

CoroLLary 3.18. If (I', B, B) and (I', B, E') are twisted Cartesian products of
type (W) there is a unique isomerphism between them compatible with the identity
map 1: I' - T, ~¥ L

TuEorEM 3.19. If I is @ monoid complex, then there is a twisted Cartesian product
(T, W(I), W(T) of type (W), and W(I) is acyclic.

This theorem was originally proved by MacLane [11], and is an extension of work
of Eilenberg and MacLane who gave an explicit description of W(I')[6], without
introducing W(I'). More details concerning the W-construction (I, TW(T), W(T))
may be found in [4]. Geometrically one thinks of I as corresponding to g
topological group, W(I') to its classifying space, and W(I') as the contractible
fibre bundle over W(I") with fibre T

Tumorem 3.20. Let I be a connected monoid complex. Then

(1) if I is minimal, T' is group complex and (T, W(T), W(T)) is @ minimal Jibre
space,

(2) f I is a group complex, then W(T') and W(I'y are Kan complexes, and

(8) if I is abelian there is a unigue map of the twisted Cartesian product (I' x I
W) x W(I), W(I) x W(I)) into (T, W(I), W(T)) compatible with the madlt.
plication map T X I' T, and this map makes W(I') and W(T') into abelian
monoid complexes. ;

DEermrrion 3.21. If I'is an abelian monoid complex, let W(I')° = T, W(I')t =
W(I), and W(I)"+1 = W(W ()™,

Dermvrrion 3.22, If wis o group, let K(mr, 0) be the group complex such that
H(m, 0)y=m and 9,;: K(, 0)g41 — K(m,0), s;: K(m, 0), — K(m, 0),41 are iso-
morphisms.

TrrorEM 3.23. If m is an abelian group, then W(EK(m, 0))* = K(m, n).

Recall that K(m, %) was the unique minimal complex with its n-dimensional
homotopy group 7 and all others zero. Then the preceding theorem ([6]) gives the
existence of such complexes. There is also a well-known explicit description of
K(m, n) by letting K(m, n)g= Z™A,, 7) (for details concerning this see [6]).

Now we want to reconstruct Postnikov systems, but before doing so it is neces-
sary to introduce the notion of induced twisted Cartesian product,

Drrmvrrion 3.24. Let (F, B, E) be a twisted Cartesian product and f : X —» Ba
map. Define (F, X, E,) to be the twisted Cartesian product with twisting function
= 7(i X f) where i X f: F X F—F X B and T: F' X B — I is the twisting
function of the twisted Cartesian product (F, B, E).

Henceforth we will assume familiarity with the homology and cohomology theory
of semi simplicial complexes.

NoraTron. If X is a semi simplicial complex C(X), denotes the normalized chain
complex of X. Further if 7 is an abelian group we will denote by ('%(X; =) the
group of normalized ¢-cochains of X i.e., an element of CYX; ) is a function on
X, with values in = which vanishes on degenerate g-simplexes. Let Z9(X; =) be
the sub-group of C%X; 7) consisting of cocycles, i.e. such that if z € X, and
f € Z4X; «), then >(—=1)¥(8,x) = 0.
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Now we are in a position to state the well-known theorem of Eilenberg-MacLane
concerning mappings into K(m, n).

TeroREM 3.25. Let X be a semi-simplicial complex. For any map f: X —
W(E(mr, n)) let f be the n-cochain of X which s ¥ IX n Then we have

(1) the correspondence f — f between maps of X — W(K(m, n)) is one to one,

(2) f: X — E(m, n) if and only if f e Z"(X; 7), and

(3) the correspondence induces a natural isomorphism between homotopy classes of
maps of X into K(m, n) and HYX; 7).

In other words (W(E(w, n)¥),=0"X;7) (K(m, n)¥)g= Z™X; =), and
mo(K(m, n)*) = HYX; 7). Notice that since K(m, n), W(K(w, n) and
K(m,m + 1) are group complexes, the space of mapping of X into one of these
complexes is a group complex, and the above isomorphisms are isomorphisms of
groups. Further the map W(K(w, n)) —K(m, n 4+ 1) just induces the map
0: C"X; @) —C" Y X; 7).

Tazorewm 3.26. Let X be a connected minimal complex, 7, = 7o(X), and F"t2 g
cocycle representing the obstruction to a cross section of the Jibre map p: X+ _, yo,
Then

(1) XD = W(K(wmy, 0)), and

(2) if f*F2 X0 > R(m, 0 n 4+ 2) is the mapping corresponding to k"2, there
is an isomorphism between XY and the total space of the twisted Cartesian pro-
duct (K(m,, n), X™, Wn + 2)induced by f**+2 from the twisted Cartesian product
(K(m,n), K(m,, m 4 1), W(E(wr,, n))), and this isomorphism makes the fibre spaces
(X@HD, p, XM) dnto @ twisted Cartesian product (K(m,, n), Xt Xn+1))

Now it is clear how one ean construct any minimal complex. Suppose there is
given an infinite sequence (my, my, * -+, 7, + - ) of groups such that 7, is abelian for
¢ > 1, then let XV = V}(K(m,, 0)). Suppose %3 is a 3-cocycle on X1 with coeffi-
cients in o, we have f3 : XU . K(r,, 3) and an induced twisted Cartesian product
(K(my, 2), X, X)) Now if * is a 4-cocycle on X¢* with coefficients in 3 we have
J1: X — K(my, 4) and a twisted Cartesian product (K (g, 3), X3, X3 ete,

As always, a theorem such as the preceding one is a special case of a more general
theorem involving a fibre map instead of the specjal-fibre map into a point. We,
therefore proceed to the general case. '

TeroreM 3.27. Let (B, p, B) be a minimal Jibre space with connected base and
fibre, let F denote the fibre, and Ty = 7,(F). Suppose further that k™2 is a cocycle
representing the obstruction to a cross section of the Jibre map p: B Bl g
then have

(1) B'W = B, and

(2) of [t B — K(m, 1, 0 - 2)
is the mapping corresponding to k™2, there is an isomorphism between B gnd
the total space of the twisted Cartesian product (K(m, 4, n -+ 1), EM W, n+ 2)
induced by f**%, and this isomorphism makes the fibre space (B'"H) 5 B into g
twisted Cartesian product. :

Cororrary 3.28. Any minimal fibre space (B, p, B) with connected fibre and base
may be given the structure of a twisted Cartesian product.
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This corollary says only that the structure of a twisted Cartesian product may
be given to any minimal fibre space. The way of doing this is by no means unique,
In fact suppose that each fibre space (B, p, B™) in the preceding theorem has
been given the structure of a twisted Cartesian product. We then have the twisted
Cartesian product (K(mw,,,, n + 1), B, ED), Suppose 7 is its twisting function
define k"% X) = 7(X) for Xann + 2 simplex of B("), then k™2 is a cocycle which
is the obstruction to a cross section. Further define Er+l(a, z) to be a, for (a, z) an
(n + 1) simplex of B"). Then $£"1 = p*(£"+2), Therefore we have "2 chosen
and an (n + 1) chain &1 e O™ (B#1); 7y whose coboundary is the cochain
p*(k™%): Tt is not difficult to see that in order to make (E®+D), p, E'™) into
a twisted Cartesian product it suffices to choose k"2 and fn+l go that pn+e €
ZMA(E™; a7, .,) is the obstruction to a cross section and Fn+l e o P oL T )
has the property that E™H — p*kn+2, In other words so that with the obvious
notation we have a commutative diagram

AL

Bin+l) T o W(K(Trﬂ_'_l, n - 1))

UE o

B > W (B L om oF 2),

There are many applications of the preceding theory, but we will not go into them
here. Instead we will content ourselves with one not particularly surprising result
which uses only a small part of the preceding theory. Namely, if one has an abelian
group complex, then all of its k-invariants are zero.

TeEoRrEM 3.29. Let I' be a connecied abelian group complex, and let 7w, = ().
Then T' has the homotopy type of the infinite Cartesian product X2, K(m,, n).

To prove this theorem it suffices to produce a mapping of H (I') — 7 (T") so
that the composite of this map with the natural map of = (I") — H (") is the
identity. For then we can choose an n-cocycle f" € ZMT', mw,) corresponding to this
map, and this determines a map f*: I' —» K (7 m) which maps the n-dimensional
homotopy group isomorphically. The fact that we can choose such a map follows
easily from the following proposition.

Prorosrrion 3.30. Let T' be a connected abelian group complex, and define
6: T, T, by dz= S(—1)i 3z, then 7,(T') is the kernel of 9 : ', — I',,_, modulo
the imageof @ : I',.; —T,.
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