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0.1 Local Langlands for GL(n)
References are [B-K93, Hen93, Kud94, Rog00, H-T01, Wed08, Sch13].

Notation (0.1.0.1).
e Let p € Prime.

o Let ¢ € Prime \{p} and an isomorphism ¢, : Q, = C.

o Let (K,Ok,wk, k) € p-NField.

« Fix a square root | — |}(/2 KX = Q" sit.ovo| — |}(/2 is valued in Rsg.
o Let1#£1y e KY.

o Let (K, O, wk,kr)/K be an unramified extension of degree r.

1 Local Langlands for p-adic GL(n)

Remark (0.1.1.1). The local Langlands correspondence for essentially-L? and generalized Speh repre-
sentations of GL(n; K) are realized in the cohomology of the moduli space of 1-dimensional p-divisible
groups of height n.

To construct Galois representations, Harris and Taylor consider the cohomology of the Shimura
varieties associated to unitary groups of signature (1,n — 1) and split at p, uses it to construct ¢-
adic Galois representations associated to certain cuspidal automorphic representations of GL(n), and
proves a local-global compatibility result at places of bad reduction. This is achieved by counting
points on Igusa varieties.

This method and its generalizations allow one to compute the trace of arbitrary Hecke correspon-
dences at p on a Shimura variety. But Scholze restrict attention to Hecke operators at p coming
from the maximal compact subgroup and reduce all counting problems to counting problems for the
maximal compact level structure, for which one can just appeal to the classical work of [?]. _|

Thm. (0.1.1.2) [Test Function Characterization of Local Langlands, Scholze[Sch13]].
(a) For each n € Z, there is a unique map

on ™ (GL(n; K)) — 00y, (W)
s.t. for any 7 € Wi and any “cut-off” function h € C°(GL(n; K)),
tr(frn|m) = tr(r|op(m)) tr(h|m)(0.1.2.4),

Write rec () = o, (1) (152).
(b) If 7 € Irr*¥™(GL(n; K)) is a constituent of 71 X ... X m,, then rec’(r) = rec/(m) @®. .. ®rec (7).

(c) rec’ induces a bijection between Irr®*P(GL(n; K)) and Trry, ((Wk).

d rec’ is compatible with twists, central characters, duals, and L- and e-factors of pairs, hence
p ) p )
rec’ =rec as in??.
_



Proof:  (a) and (b) follow from(0.1.1.3) and(0.1.1.5).

For (c), use computation of Ix-invariant nearby cycles for simple Shimura varieties. This com-
putation leads to a direct proof of the bijective correspondence for supercuspidal representations,
without using the numerical local Langlands correspondence.

Finally, for the proof of (d): By Brauer induction and linearity, it suffices to assume that
7 is induced from characters. It suffices to show that: For any m; € Irr®™(GL(ny; K)),m €
It (GL(ng; K)), there exists F € NField with w € ¥f? st. K = F,, and two potentially
Abelian 7; € Trr®™°(GL(n;)/F), 2 € Irr®°(GL(ny)/F) s.t. (II;), is an unramified twist of 7;. Cf.
proof of[H-T01]VII.2.10.

Then the compatibility follows from Henniart’s method of twisting with highly ramified characters,
cf. Corollary 2.4 of [?]. O

Prop.(0.1.1.3) [Dévissage for Constructing Galois Representations]. For n € Z., suppose (a)
and (b) of(0.1.1.2) hold for all n’ < n and the following hold:
1. If 7 =m x ... x m, € Rep™™(GL(n; K)) where 7; € Irr®*™(GL(ny; K)), then

tr(f’?’,h

) = tr (7" @ U(Wi)(n —in)) tr(h|m).

1<i<r

2. For m € Irr™™(GL(n; K)) that is either essentially square-integrable or a generalized Speh
representation, then there exists a virtual finite dimensional representation o(7w) of Wy with
Q4+ coefficients of dimension n s.t.

tr(frp|m) = tr(r|o(m)) tr(h|m).

3. If m € Irr***P(GL(n; K)), then o(7) is a genuine representation of Wi.
Then (a) and (b) of(0.1.1.2) hold true for n, by defining o(m) as follows: If 7 has supercuspidal
support {my,...,m }(with multiplicity), then we define

1—ni

on(m) = D om)(—5 ).

|

Proof:  Firstly, the uniqueness of ¢, follows from the fact the elements mapping to a positive power
of o determines a Weil-Deligne representation up to semisimplification.

What is Bernstein center Let f; be the function on the Bernstein center that acts through the
scalar tr(r|o(m)(%52)) on any 7 € Trr2d™ (7).

Then to prove (a) and (b) of(0.1.1.2), it suffices to show that

tr(frnlm) = te(fr * him)

for any w € Irradm(GL(n; K)). If 7 is induced or supercuspidal, then this is true by the hypothesis
listed. By(0.1.1.4), it suffices to check for any generalized Speh representation m = St(mp;t). Choose
ho € C°(GL(n; K)) as in item1 of(0.1.1.4), then

tr(frnolm) = tr(fr x ho|r’)

holds for any tempered 7’ € Irr®*¥™ (GL(n; K)): This is true O
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Lemma (0.1.1.4) [Testing on Tempered Representations and Generalized Speh Representa-
tions].
o Letd € Zy,t € Z>o,n = dt, m € Trr®P"(GL(d; K)) and m = St(mp,t). Then there exists
h € C2(GL(n; Ok)) s.t. tr(h|r) = 0 for any 7 € Irr*¥™ (GL(n; F)) that is tempered but not of
the form 7 = my(iy1) X ... X mo(iy) where y; € R. And for these m, tr(h|m) # 0.

o If h € CX(GL(n; K)) s.t. for all 7 € Im*™(GL(d; K)) that is tempered but non-square-
integrable or m = St(mg,t) for some d € Z,t € Z>9,n = dt,mg € Irr*P"™(GL(d; K)); then
tr(h|m) = 0 for any 7 € Irr®™(GL(n; K)).

_|

Proof:  Kazhdan’s density theorem and O

Prop. (0.1.1.5)[Constructing Galois Representations]. The hypotheses 0f(0.1.1.3) are true for any
n € Z. In particular, (a) and (b) of(0.1.1.2) hold true for any n € Z... J

Proof:  11is proved in Theorem 6.4. of [Sch13], by relating the deformation spaces of one-dimensional
p-divisible groups to the deformation spaces of their infinitesimal parts.

2. Firstly by(0.1.3.3), K can be realized as K = F,, with notation as in(0.1.3.1) and(0.1.3.1).
Then we can apply(0.1.5.2) to 7V to get 77 € Irr®™(G(Aj)) s.t.

o Hi(ms) #0.

e Tpo is unramified.

e Ty =7 ® x for some unramified quasi-character x of K*.
Then we apply(0.1.5.1) to get

tr(flm" @ x) = —— tr (v|[Helrs]) © xm, ) tr (V5" @ X) -

1
a(my)
Then we can take o(7) = (l(%f)[Hg[Wfﬂv ® X;pl,o ® x !, which has dimension n by(0.1.3.7).

3: Tt suffices to show that o () € Ko(Rep(Wk)). For this, Cf.[Sch13]P705. O

Vanishing Cycles

Thm. (0.1.1.6) [Formal Vanishing Cycles on the Deformation Tower]. Consider the formal van-
ishing cycles on the tower {Spf Rg m }mez. :
b= lim H(Spf Rpm, Vi, Qo)
meZ
Then ‘
HO(Spf Rgm, R'spt Ry, Qe) € Rep™ (W, x GL(n; Orc/(w™))).
and it vanishes unless i € [0,n — 1].
In particular W%, [Vj] € Rep(©ntadm) (17 x GL(n; Og)). J
Proof:  Cf.[Sch13]P673.
Def. (0.1.1.7) [Vanishing Cycles on the Lubin-Tate Tower]. Define the vanishing cycles as
\I]n = hg HO(Spf Rn,m) \Péprm@),
m€Z+
with an action of Ak, induced by??. Then ¥, € Rep(adm’alg’com)(GL(n; Ok) x O*DK n X Ir), and

it vanishes unless i € [0,n — 1]. J



Proof:  The smoothness of O, l/n—action follows from comparison theorem Corollary 4.5 of [Van-

ishing cycles for formal schemes. 2, Berkovich], Cf. proof of [H-T01], Lemma II.2.8. The rest follows
from(0.1.1.6). O

2 Cyclic Base Change
Prop.(0.1.2.1). K,,/K be the unramified extension of degree r, then for any = € GL(n; K, ), we can

define Nm(z) = z.2%..... 2ot

Then N defines an injection from the o-conjugacy classes of GL(n; K,) to the conjugacy classes
of GL(n; K). In fact, if y = Nm, then G, s is an inner form of G,. i
Proof:  Cf.[Arthur-Clozel|P3. O

Prop.(0.1.2.2) [Cyclic Base Change].If v = Nm(x), we can define orbital integrals and twisted
orbital integrals:

“1e ovdgr
TOrbs(p) = [ ela™"09%) 4
G50\ GL(n;K;) dt
_ dg
Orb = / 15g)=2.
v(f) A\ L) wlgd9) 4,

Then for any ¢ € C2°(GL(n; K,.)), there exists f € C°(GL(n; K)) s.t. for any regular v € GL(n; K),

TOrb., , v =Nmé,é € GL(n: K,
Orbw(f) — r s (SO) ry m € (n ) )
, otherwise
J
Proof:  Cf.[Arthur-Clozel|P20.
Test Functions
Def. (0.1.2.3) [Test Functions]. For any 7 € 0.1k and h € C°(GL(n; Ok); Q), define
tr(r x hY|[¥g]) B € GL(n; Ok, ) diag(wk, 1,...,1) GL(n; Ok, )
%,h(ﬁ) = . .
0 , otherwise
Then ¢, € C:°(GL(n; K,); Q), and is independent of £. J
Proof:  Cf.[Sch13]P674. O

Def.(0.1.2.4) [Base Change Test Function, f;]. Define f.; € C2°(GL(n; K); Q) s.t. it has match-
ing twisted orbital integral with ¢,; € C°(GL(n; K;);Q)(0.1.2.2) w.r.t. the Haar measures that
give the hyperspecial subgroups volume 1. |

Def. (0.1.2.5). For any 7 € Wk, and h € C:°(GL(n; Ok); Q), ' € C(07,; Q), define the function
Grnp () = tr (T x BY x W | [\yﬁ]) ?7.

if H has Dieudonné paramter 6o??, and 0 if there is not such H. Then by(0.1.2.3), @rpn €

CSO(GD(W(/@T)[%])) and is independent of /. J
Prop. (0.1.2.6)[Base Change Test Functions]. ¢, 1/ € CgO(GD(W(/@T)[%]); Q) corresponds to [/, x
h e CE(Gp(Qy); Q). _

Proof:  Cf.[Sch13]P688. O
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3 Simple Shimura Varieties

Notation(0.1.3.1).
o Let Fy € NField be totally real with 2|[Fp : Q).
o Let 7€ E%‘; and zg € E{}g
e Let KL C C be an imaginary quadratic field s.t. the rational prime below xg splits in .
o Let F = FyK and Sp(zo) = {z,2°}.

o Let w € " with u =wN K and p = wN Q s.t. pis split in £ and w ¢ {z,z°}(in particular,
D is split at w).

e Let K = F,, with residue field k. Let n € Z.
4

Prop.(0.1.3.2)[Division Rings and Simple Unitary Groups]. There exists D € Azp of dimension
2

n* with an involution * of second kind, and a homomorphism hgy : C — D, s.t.
e 1 — ho(i)"ta*ho(i) is a positive involution on Dg.
o D splits at all places v € Xp \ {z,x2°}.

o Define Go C Resp,p,(D*) € AlgGrp /Fy representing the functor
Go: R {g € (Deg R)gg" =1},

then Gy is quasi-split at all non-split places of Fp, unitary of signature (1,n — 1) at 7 and
unitary of signature (0,n) at all other infinite places of Fp.
Define

G eRedGip/Q:R—{ge(D®R)"|g9* € R"},

together with the amplitude map v : G — G,, with kernel G;.

|

Proof: ~ Take D = B°? as in [H-T01]Lemma 1.7.1. O

Prop. (0.1.3.3)[Globalization]. Any K € p-NField can be realized as K = F,, for some F' and w with

the setting as in(0.1.3.1) and(0.1.3.1). J
Proof:

U

Prop.(0.1.3.4) [Shimura Varieties]. Situation as in(0.1.3.2), we can regard hg as a map $ — Gg.
Then the datum (G, h™!) defines a tower of Shimura varieties

lim  Shy(G,h™")
KCG(Ay)

with reflex field E = 7(F). 1

Proof: By [?] and[5ch13]P691. O



Automorphic Vector Bundles

Thm. (0.1.3.5) [Matsushima’s formula].

inj hmHi(XU,T(@)’*ij;(D@) = ED Tf ®Hi(Lie G(R),UT,TI'OO ®L€(£))#ker1(Q,G)‘
v r€lrr®™°(G/Q)

Proof:
O

Def. (0.1.3.6) [Cohomology of Automorphic Vector Bundles]. For any £ € Irr@(G), we can get
a lisse sheaf L¢ % C Locq%(Shg{(G)) for any open compact K C G(Ay) that is small enough. The
action of G(Ay) on 8hy(G) extends to L¢ %, and we can consider the cohomologies

H; = lim H, (8hy (G)g, Le ) € Rep ™™ (Galp xG(A)).
K

Then:
o There is a decomposition Hé = D, ® Hg[ﬂ'f], where 7y runs over Irr%m(G(Af)) and
Hg[ﬂ'f] € Repg—é((}alp).

dim Hé[ﬂ'f] = #ker'(Q, G) Z My (1e(7) ® Too) dim H (Lie G(R), Uy, oo @ 14(£)),

where 7o runs through Irr(G(R)) and m(w) is the multiplicity of = in A(G/Q).
. Hg [7f] € Repgg—z((}alp) is pure of weight 7 + w(¢) and deRham.

Proof:  Cf.[H-T01]P104. O
Prop. (0.1.3.7) [Kottwitz]. For any 7; € Irr*™(G(A)) and ¢ € Irr%‘n((}), consider

H{[rs] € Ko(Rep(Galr))(0.1.3.6).

Then either m¢ only appears in odd dimensions or only appears in even dimensions. Thus +H, g‘ (7]
is an genuine representation.

And there exists a(mf) € IN s.t. dim (:l:Hg [7rfD = a(rns)n for any &. J
Proof:  Cf.[?]. O

4 Langlands-Kottwitz Method

Def. (0.1.4.1). Define
f=h" xh x1gz: xfP € CZ(G(Ay))
where .
h o L(n; N ! > */' P——— 1 PgP KP
€ Cc (G (TL,OK),Q), IS C’c (OD aQ)a f VO](KP) KPgPK
where g7 € G(A%) and K? C G(A?) is a sufficiently small compact open subgroup.
Fix m € Z, s.t. hY x I/ x 1z is bi-K"-invariant. J
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For 7 € Wi with deg(7) = r, we want to evaluate tr(r x f|[H¢]) via Lefschetz trace formula.

Cor.(0.1.4.2) [Test Function Trace Formula].

ntr(t x hY x h' x 1z x fP|[He]) = tr(1 x f/), x B’ x 1,z % f7I[He]).
where ' = r.[k : T)p]. 4

Proof:  Cf.[S5ch13]P698. O

5 Global methods

Prop. (0.1.5.1). Notation as in Simple Shimura Varieties, assume that 7y € Irr®¥™(G(Af)) s.t. H¢(mp) #
0(0.1.3.6), and in the decomposition m, = m, ® T, @ mpo corresponding to

G(Qp) = GL(n; Fy,) x (D')* x Q,?7,

assume 7, o is unramified and let x.,, = (wpp o Art@i) lw, be a quasi-character of Wg. Then for
any 7 € Wit and h € C=°(GL(n; Ok)), we have

() = o 0 (7 el © o) (R ).

_
Proof: ~ Take I’ € C°(0h;Q) s.t. tr(h'|my)) = 1, and take m € Z, s.t. both hY x b/ x 1z
and fY), x W' x 17 _,, are both bi-J'-imvariant??, and 7, # 0. And we take K? C G(A}) s.t.
’ P
(W?)g(p # 0, and let K = KPK".

Because dim H*(Shy, L¢ ) < 0o, there are only f.m. 7, € Irr™(G(A)) that is invariant under
K and H{[rf] # 0. So we can choose fP € C°(G(A%)) bi-invariant under K? s.t. tr(f?|r}) = 1,
and satisfying the following: whenever 7’ € Iir®™(G(Ay)) is K-spherical and tr(f? ]W;?) # 0, we
have 7'f =}, thus also 77 = 7 by (0.1.5.6).

Applying(0.1.4.2), we get

ntr(7|[HE [mg]]) tr(hY |mw) = na(mp) tr( £ |m)mpo (07",

and the assertion follows. O

Thm. (0.1.5.2) [Globalization, Harris-Taylor].If 7 € Irr®™(GL(n)/K) that is either essentially

square-integrable or generalized Speh, then there exists 7; € Irr®™(G(Ay)) and & € It (G) s.t.
(notation as in(0.1.5.1)):
e Hi(ms) # 0(0.1.3.6).

e m,0 is unramified.
p7

e Ty is an unramified twist of .
_

Proof:  Cf.[H-T01]6.2.5 and 6.2.11. O

Cor.(0.1.5.3) [A variant Globalization].If 7 € Irr®™(GL(n)/K) is essentially square-integrable,

then there exists II € Irr®"*P(GL(n)/F) s.t.



o IIV TIC.
IT is regular C-algebraic(0.1.6.8).

I, is supercuspidal.
e II, is an unramified twist of .
_|
Proof:  Cf.[H-T01]Cor. 6.2.6. O

Thm. (0.1.5.4)[Clozel’s Base Change]. Suppose 7 € Irr®*P(G/Q) is cohomological for ¢’ € Irre(G),
then there is a unique BC(7) = (¢,1I) € Irraum(ResK/Q Gm x Resp/q D) s.t.

* 'QD = ¢7r‘f,c-
If p € Prime is split in K, then BC(7), = BC(m,).

o For a.e. p € Prime that is inert in IC, we have BC(m),) = BC(n),,.

IT is cohomological for &j-.
[¢ _ -1
¢H’IE = U)C/@Z)

_
Proof:  Cf.[H-T01]6.2.1. O

Cor.(0.1.5.5). It follows from strong multiplicity one?? and the theorem that: if m, 7' € Irr*"*°(G/Q)
are cohomological for ¢ € Trrg(G) and 7, = 7, for a.e. p € Prime, then m, = 7, for any p € Prime
that is split in /C. J

Cor. (0.1.5.6) [Harris-Taylor]. If 7,7" € Irr*™™(G(A/)) and ¢ € Irrg(G) s.t.
o TP (7')P.

o [H{[ms]] # 0.
o [H )] £0.
Then 7 = 7. _

Proof: Tt follows from(0.1.3.6) that both 7, 7" are automorphic and cohomological for ¢s(£). Then

the assertion follows from(0.1.5.5), noticing that p is split in /(0.1.3.1). O
Thm. (0.1.5.7) [Clozel’s Descent]. Suppose I € Irr®*° (D> /F) and 1 is a Hecke character of K s.t.
o II=II%.
© Yl = ¥°/Y.

o II is cohomological for &j-.
. ¢ ]Eéo = ¢|C x -
Then there is a 7 € Iir*™°(G/Q) s.t.
« BC(r) = (,10).
o m is cohomological for &'

° dlm Hbzl(fl)[Le_lﬂ-f] 7& 0.
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Proof:  CL[I1-T01]6.2.9. O

Prop.(0.1.5.8) [Descending from D* to G].Let II € Irr®*°(D*) s.t. I = II* and II is regular
C-algebraic, then there exists a Hecke character ¢ of K and ¢’ € Irr(G/C) s.t.

o Ynle =v°/y.
o II is cohomological for .
/-1 _

o P(Og,,) =1
_

Proof:  Cf.[HH-T01]Lemma6.2.10. O

Cor.(0.1.5.9) [Jacquet-Langlands plus Base Change, Harris-Taylor]. Let II € Irr®*P(GL(n)/F)
s.t.
o IIV TIC.

o II is regular C-algebraic(0.1.6.8).

o II, is square-integrable.
Then there exists
« Some 7; € ™™ (G(A})),

« Some ¢ € Rep™(G) s.t. HE[ms] # 0(0.1.3.6).
e Some algebraic Hecke character ¢ of K??7 satisfying the following: For any w € Zf}n with
u=wNK and p’ =wNQ s.t. p'is split in K and w ¢ {z,2°}, we have
Tw 2 Ty, 0 = 1, (0.1.5.1).

Moreover, for any p’ € Prime that is split in K, we can arrange (7¢,&,v) s.t. my o is unramified.
J

~

Proof:  Use global Jacquet-Langlands correspondence?? to obtain p € Irr®™°(D*) s.t. J-L(p)
I1(0.1.3.2), then p = p* and p is regular C-algebraic. Then(0.1.5.7)(0.1.5.8) and the properties of
the base-change map(0.1.5.4) finish the proof. a

Cor.(0.1.5.10)[Deligne-Brylinski(86) /Carayol(86) /Harris-Taylor[H-T01] /Scholze[Sch13]]. Let
IT € Irr*"*P(GL(n) / F) s.t.
o IIV XTIC.

o II is regular C-algebraic(0.1.6.8).

o II, is square-integrable.
Then there exists a € Z and R(II) € Rep%(GalK) s.t. for any v € ¥\ S(¢), we have

R(II)|w,p, = aop(11,)(0.1.1.2).
Moreover, for each v € S the representation II, is tempered. N

Proof:  This is Theorem C of Harris-Taylor.
Take 7y, as in(0.1.5.9), a = a(my)(0.1.5.1). Take xy be a character of Galp corresponding to
1 under the global class field theory. And let

R = [H ()Y @ X"
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Then the assertion is trivial if v € i\ (Sp(¢) U {z,z°}) is split over Fy and 7, o is unramified,
where p’ = v N Q. Then by Chebotarev density theorem, this determines %R(H) uniquely. But for
any such p’ € Prime, we can arrange that my o is unramified, so this condition can be dropped.

Now for an arbitrary v, we can take a real quadratic field R that is linearly disjoint with F' s.t.
the rational prime under z splits in R, and the completion of R and K at the rational prime under v
are isomorphic. Let F[) FyR and F = FR, and choose ¥ and  above v and z in F s.t. & ¢ {z,z°}.

Then we can take II € Irr®"*°(GL(n)/F) to be the cyclic base change of II, which contlnues to
have the properties listed. Hence we get an R(II) that satisfies the assertion for any o € Eﬁn\( (HU
{%,7°}) split over Fy. By Chebotarev density theorem, f};R( ) = S R(I )‘Gal;- Then applylng the
above split case to v finishes the proof.

Using p-adic Hodge theory, it would be no problem to show that one can choose a = 1, cf. proof
of Proposition VII.1.8 in [H-T01]. Also, this holds for any CM field F', cf. proof of Theorem VII.1.9
of [H-T01]. 0

Cor.(0.1.5.11). Let IT € Irr®"*P(GL(n)/F) s.t

o IIV II°.

o II(251) is regular C-algebraic(0.1.6.7).

o II, is square-integrable for some = € Eﬁn that is split over Fj.
Then there exists a € Z and R(II) € Rep (GalK) s.t. for any v € ¥\ S(¢), we have

R(ID) |y, = arec)(IL,)
|

Proof: Tt suffices to find a Hecke character y of F s.t. ™! = x© and Xoo("T_l) is C-algebraic, which
can be done as in the proof of Corollary 7.2.8 of [H-T01]. O

6 Geometric Galois Representations

Def. (0.1.6.1)[Geometric Representations, Fontaine-Mazur[?]]. (p,V) € Rep (Galp) is called a

geometric representation if it satisfies
e Forae. ve Z%“, Py is unramified.

o For any v € Sp(p), the representation p, is deRham??.
J

Def. (0.1.6.2) [Algebraic Weil Representations]. For 7 € X%, an admissible Weil representation
r: Wg, — LG(Q) is called
o an L-algebraic Weil representation if \, € X*(T').

« a C-algebraic Weil representation if A\, — 0 € X*(T).

Prop. (0.1.6.3) [Algebraic Weil Representations and Galois Representations]. 4

Automorphy of Galois Representations

Def. (0.1.6.4)[Admissible Representations attached to Galois Representations]. For a geomet-
ric p-adic Galois representation(0.1.6.1) p : Galp — GL(n;Q,) and an isomorphism ¢, : Q, = C, we
can associate a II(p) = @ I1,(p) € Irr®¥™(GL(n)/F) s.t.
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o For any v € 2"\ Sp(p), I1,(p) corresponds to the Weil-Deligne representation attached to the
restriction of p to the Weil group W,,.

o For any v € Sr(p), we can also associate a Weil-Deligne representation WD, (p) via Fontaine’s
D, functor.

e For any v € X%, we can also define Hodge-Tate numbers and thus an irreducible (g,, K,)-
module IL,.

|

Conj.(0.1.6.5) [Automorphy of Galois Representations, Clozel[?]/Fontaine-Mazur[?]]. For
any irreducible geometric p-adic Galois representation(0.1.6.1) p : Galp — GL(n; Qy),

° w(p) = dlimp ZaEH-T(p) a€Z,

o mi(p) = My p)—i(p) for all i.

o II(p) € Irr®*P(GL(n)/F)(0.1.6.4).
o II,(p) is C-algebraic(0.1.6.8).

|

Conj.(0.1.6.6) [Langlands-Fontaine-Mazur]|. Any geometric representation of Galy(0.1.6.1) is auto-
morphic(0.1.6.5). J

Proof:
O

Def. (0.1.6.7) [Algebraic Automorphic Representations]. For v € X%, an irreducible representa-
tion m, of G(F),) is called an L-algebraic representation(resp. a C-algebraic representation)
if the Weil representation associated to it by Langlands correspondence is so(0.1.6.2).

And II € Trr*™°(G/F) is called an L-algebraic representation(resp. a C-algebraic repre-
sentation) if II, is so for any v € X%. -

Def. (0.1.6.8)[Regular Algebraic Automorphic Representations]. For v € X%, IT € Irr®*P(GL(n)/F)
is called a regular C-algebraic automorphic representation at v if Afj, is just the highest weight
of an irreducible algebraic representation of GL(n; Fy).

A regular C-algebraic representation is C-algebraic. _I

Proof:  This follows from the definition of the Harish-Chandra isomorphism, Cf.[Kna02]5.43. and
[B-G14]Section2.3. U

Example (0.1.6.9) [Algebraic Representations for GL(n)].II € Irr**P(GL(n)/F) L-algebraic if
II(%51) is C-algebraic(0.1.6.7).

The notion of L-algebraic and C-algebraic coincides for n odd and differs by a twist for n even.
J

Proof:
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Galois Representations attached to Automorphic Forms

Conj.(0.1.6.10)[Automorphic Galois Representations(weak version), Buzzard-Gee[B-G14]].
If w7 € Iir®™*°(G/F) is L-algebraic(0.1.6.7), then for any p € Prime and ¢, : Q; = C, there exists a
continuous geometric Galois representation

pr = pry, : Galp — LG(@)

s.t.
« The composition of p, with the natural projection *G(Q,) — Gal is the identity map.
o Forae. veXin prlwp, is unramified and ¢ o pr(0y) is G(C)-conjugate to ¢(m,).
e For v € Sp(p), the Hodge-Tate character of pr|cal,, can be read off 7(Cf.[3-G:14]P156).
o Ifv e XR then 1o pg(c,) is G(C)-conjugate to the element o, = Ag, (i) Ar, ()77, ()
4
Proof:
|

Conj.Cor. (0.1.6.11)[Automorphic Galois Representations for GL(n), Clozel[?]]. For p € Prime
and any II € Irr®*P(GL(n)/F) that is isobaric?? and C-algebraic(0.1.6.7), then
o 7y is defined over a number field £/ € NField(i.e. 7§ =y for any o € Aut(C/E)).

o there exists an irreducible geometric p-adic Galois representation
perr : Galp — GL(n; Qp)

s.t.
1—n

T (pp.r1) 2 TI( )(0.1.6.4).

« Moroever, such {p, 1} form a strongly compatible system R of representations of Galp.
Such representations p, 1 and p, 1 (its reduction modulo p) are called automorphic Galois repre-
sentations. N

Proof:
O
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