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1.3 Matrices Multiplying Vectors : A times x

An m by n matrix A has m rows and n columns

Those columns a1,a2, . . . ,an
are in m-dimensional space

Their combinations are x1a1 + · · ·+ xnan = Ax = matrix A times vector x

A =











a1 a2 · · · an











There is a row way to multiply Ax and also a column way to compute the vector Ax

Row way = Dot product of vector x with each row of A

Ax =

[

2 5
3 7

] [

v1
v2

]

=

[

2v1 + 5v2
3v1 + 7v2

] [

2 5
3 7

] [

1
1

]

=

[

7
10

]

Find 7

Then 10

Column way = Ax is a combination of the columns of A

Ax=

[

2 5
3 7

][

v1
v2

]

= v1

[

column

1

]

+v2

[

column

2

] [

2 5
3 7

][

1
1

]

=

[

2
3

]

+

[

5
7

]

=

[

7

10

]

7 and 10

together

Which way to choose ? Dot products with rows or combination of columns ?

For computing with numbers, I use the row way : dot products

For understanding with vectors, I use the column way : combine columns

Same result Ax from the same multiply-adds. Just in a different order

C(A) = Column space of A = all combinations of the columns = all outputs Ax

The identity matrix has Ix = x for every x





1 0 0

0 1 0

0 0 1









x1

x2

x3



 =





x1

x2

x3





The column space of the 3 by 3 identity matrix I is the whole space R3.

If all columns are multiples of column 1 (not zero), the column space C(A) is a line.

Line containing all cu

cu = −u/2

u

Plane from
all cu+ dv

u
v
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3.3 Independent Columns and Rows : Bases by Elimination

Remember A = CR with r independent columns in C (but how to find them ?)

The good way is elimination on the m rows of A (not the columns)

In Chapter 2, elimination reduced A to the n by n identity matrix : A was invertible

Now elimination will produce an r by r identity matrix inside R

That identity matrix locates the r independent columns of A

Here is an

example of

elimination

A =





1 2 4
3 8 14
0 4 4





two
−−−→
steps





1 2 4
0 2 2
0 0 0





two
−−−→
steps





1 0 2
0 1 1
0 0 0



=
“reduced row

echelon form”

R0

This last matrix R0 reveals the row space and column space and nullspace of A

Basis for the row space of A = Rows of R = Rows 1 and 2 of R0

Basis for the column space of A = Columns 1 and 2 of A. Then A = CR

Basis for the nullspace of A : Solve R0x = 0 to find x =





−2
−1
1



 in Section 3.4

We will show how elimination works to reach this special form R0 : m− r zero rows

Three types of elimination steps All of them can be reversed !

1 Subtract a multiple of one row from another row (below or above)

2 Multiply a row by a nonzero number (to produce pivot = first nonzero = 1)

3 Exchange rows (to move pivot rows in R above any zero rows in R0)

Key point Those steps do not change the row space of a matrix

The result R0 =

[

R

0

]

has the same row space as A : simpler rows and m− r zero rows
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3.5 Four Fundamental Subspaces C(A), C(AT
), N(A), N(AT

)

C(AT) C(A)

Rn 0 Rm0

N(A)
dimension n− r

N(AT)
dimension m− r

row space

all ATy

dimension r

column space

all Ax

dimension r

nullspace

Ax = 0

left nullspace

ATy = 0

The big picture

Fundamental Theorem of Linear Algebra, Part 1

The column space and row space both have dimension r.

The nullspaces have dimensions n− r and m− r.

This tells us the Counting Theorem : How many solutions to Ax = 0 ? n− r

m equations, n unknowns, rank r ⇒ Ax = 0 has n− r independent solutions

At least n−m solutions. More solutions for dependent equations (then r < m)

There is always a nonzero solution x to Ax = 0 if n > m Good to know

Fundamental Theorem, Part 2 : Subspaces are orthogonal : Chapter 4

Fundamental Theorem, Part 3 : Perfect bases = singular vectors v,u : Chapter 7

Row space : Basis v1 to vr Column space : Basis u1 to ur

Nullspace : Basis vr+1 to vn Nullspace of AT : Basis ur+1 to um



Part 7 :
Singular Values and Vectors :

Av=σu and A=UΣV
T

7.1 Singular Vectors in U and V —Singular Values in Σ

An example shows orthogonal inputs v going into orthogonal outputs Av

Av1 =

[

3 0
4 5

][

1

1

]

=

[

3

9

]

= 3

[

1
3

]

and Av2 =

[

3 0
4 5

][

−1

1

]

=

[

−3

1

]

v1 =

[

1
1

]

is orthogonal to v2 =

[

−1
1

]

u1 =

[

1
3

]

is orthogonal to u2 =

[

−3
1

]

Divide inputs v1 and v2 by
√
2 Divide outputs u1 and u2 by

√
10

Four unit vectors with Av1 = 3
√
5u1 and Av2 =

√
5u2 Notice

√
10/

√
2 =

√
5

v1, v2 = orthogonal basis for the row space of A = right singular vectors in V

u1,u2 = orthogonal basis for the column space of A = left singular vectors in U

σ1 = 3
√
5 and σ2 =

√
5 are the singular values of A in the diagonal matrix Σ

Express Av1 = 3
√
5u1 and Av2 =

√
5u2 in matrix form AV = UΣ

V =

[

1 1
1 −1

]

/
√
2 and U=

[

1 −3
3 1

]

/
√
10 are orthogonal matrices

V TV = I

UTU = I

Matrix form

AV = UΣ

[

3 0
4 5

][

v1 v2

]

=

[

u1 u2

][

3
√
5 0

0
√
5

]

Multiply by

V −1 = V T

A = UΣV T is the perfect decomposition of A : orthogonal–diagonal–orthogonal
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