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Slower recovery in space before collapse of
connected populations
Lei Dai1, Kirill S. Korolev1 & Jeff Gore1

Slower recovery from perturbations near a tipping point and its
indirect signatures in fluctuation patterns have been suggested to
foreshadow catastrophes in a wide variety of systems1,2. Recent
studies of populations in the field and in the laboratory have used
time-series data to confirm some of the theoretically predicted
early warning indicators, such as an increase in recovery time or
in the size and timescale of fluctuations3–6. However, the predictive
power of temporal warning signals is limited by the demand for
long-term observations. Large-scale spatial data are more access-
ible, but the performance of warning signals in spatially extended
systems7–10 needs to be examined empirically3,11–13. Here we use
spatially extended yeast populations, an experimental system with
a fold bifurcation (tipping point)6, to evaluate early warning sig-
nals based on spatio-temporal fluctuations and to identify a novel
spatial warning indicator. We found that two leading indicators
based on fluctuations increased before collapse of connected popu-
lations; however, the magnitudes of the increases were smaller than
those observed in isolated populations, possibly because local vari-
ation is reduced by dispersal. Furthermore, we propose a generic
indicator based on deterministic spatial patterns, which we call
‘recovery length’. As the spatial counterpart of recovery time14,
recovery length is the distance necessary for connected populations
to recover from spatial perturbations. In our experiments, recovery
length increased substantially before population collapse, suggest-
ing that the spatial scale of recovery can provide a superior warning
signal before tipping points in spatially extended systems.

Positive feedback is widespread in nature, ranging from cellular
circuits to population growth to the melting of ice sheets. There is
growing evidence that positive feedback leads to alternative stable
states and tipping points in various ecological systems15–18. Closer to
a tipping point an ecosystem becomes less resilient and more likely to
shift to an alternative state19 such as the collapse of fish stocks, eutro-
phication of lakes, or loss of vegetation20. Predicting these undesirable
transitions may sound like an impossible task because of the inherent
complexity underlying these systems. However, recent advances incor-
porating ideas from nonlinear dynamical systems theory suggest that
there may be signatures of ‘‘critical slowing down’’ in the vicinity of
tipping points1,2. At the brink of these sudden transitions, the recovery
of a system after perturbations should slow down14, also leading to
changes in the pattern of fluctuations21. Thus, a set of indicators related
to critical slowing down may provide advance warning of an impend-
ing transition. Empirical tests in the field4 and in the laboratory3,5,6

have revealed some of the early warning signals based on fluctuations
in time series, such as temporal variation and autocorrelation.

However, our understanding of early warning signals in spatially
extended systems is still limited1,2. The studies in time series typically
ignore spatial interactions; in reality spatial coupling between habitat
patches (for example, dispersal of populations or exchange of biomass)
is common and may affect the performance of some warning signals22.
Moreover, temporal warning signals rely on data from long-term obser-
vations, which are scarce and difficult to obtain. Large-scale spatial data,
such as satellite-derived data sets17, could be more readily available.

Spatial data not only provide a greater quantity of information, but
also allow us to study features of the system that are not available
through time series. Statistical indicators based on spatial fluctuations
have been proposed7–10 but empirical studies are limited3,11,12; tests of
these indicators in replicated experiments, which avoid the bias intro-
duced by selective sampling23, are lacking. In addition, previous studies
of vegetation systems discovered emerging spatial patterns preceding
transitions24,25. However, the vegetation patterns are often specific to
the system studied, whereas identifying generic spatial warning signals
would add a powerful tool to the analysis of ecosystem stability. Here
we address these questions using an experimental system of spatially
extended yeast populations with alternative stable states and a tipping
point leading to population collapse.

We grew laboratory populations of the budding yeast Saccharomyces
cerevisiae in sucrose and performed daily dilution into fresh media.
During the daily dilution, a fraction (for example, 1 in 500 for a dilution
factor of 500) of the cells were transferred to fresh media. This is a well
characterized system with an experimentally mapped fold bifurcation
(tipping point)6. Yeast cells grow cooperatively in sucrose by sharing the
hydrolysis products26, creating a positive feedback between cells that
leads to bistability and a tipping point (Supplementary Fig. 1). By
increasing the dilution factor (equivalent to an increase in the mortality
rate), we could drive isolated yeast populations to collapse on crossing
the tipping point (Fig. 1a).

We then connected local yeast populations spatially through con-
trolled dispersal between nearest neighbours on a one-dimensional
array (Fig. 1b). Spatial coupling between local populations was intro-
duced by adding a dispersal step during the daily dilution. In the dis-
persal step, 25% (corresponding to a dispersal rate D 5 2 3 25% 5 0.5)
of a local population was transferred to each of its nearest neighbours;
the rest of the population remained in the patch. For each dilution
factor, there were four replicate arrays each consisting of ten patches.
A group of isolated populations (D 5 0) was grown in a similar experi-
mental setting except that there was no mixing between neighbours
(Methods). The isolated populations served as a control group and
allowed us to investigate the effects of spatial coupling on warning
signals. From dilution factor 500 to 1,600, both groups of connected
and isolated populations survived and reached equilibrium densities in
a week; at dilution factor 1,700, most of the populations collapsed
within the timescale of our experiment (insets to Fig. 1a).

After the populations stabilized, we tracked the fluctuations of popu-
lation density around equilibrium for at least five days to calculate
statistical indicators (Methods). Consistent with critical slowing down,
we observed a clear increase in the coefficient of variation (CV) of con-
nected populations towards the tipping point (Fig. 2a); however, the
magnitude of increase in CV was smaller than in the isolated popula-
tions. We then tested lag-1 autocorrelation, a leading indicator for the
temporal correlation of fluctuations. As expected, we found that the
temporal correlation of connected populations increased gradually to
around 0.6 in the vicinity of the tipping point (Fig. 2b). Similar to the
observation in CV, the signal in temporal correlation was weaker than
in the isolated populations. Although fluctuations of population density
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in general became larger and more correlated before population col-
lapse, we found that these two warning signals (CV and lag-1 autocor-
relation) seemed to be suppressed in the presence of dispersal, especially
at higher dilution factors.

One explanation for the observed suppression of the two leading
indicators in connected populations is that flows between neighbours
smooth out the fluctuations across different patches and effectively
reduce the autocorrelation in any local population. Reduced size or
timescale of fluctuations due to dispersal among populations was pre-
dicted in previous theoretical studies of spatially explicit ecological
models8,10,22,27. We note that the smaller warning signals of connected
populations in our experiment may be partly due to a minor shift in the
tipping point (Supplementary Fig. 2). The averaging effect of dispersal
was also found in an independent group of populations subject to
‘100% dispersal treatment’, in which we mixed ten populations com-
pletely each day during the dispersal step. In this extreme scenario, the
populations showed almost no increase in variation before the tipping
point (Supplementary Fig. 3). Moreover, we demonstrated the sup-
pression of CV and lag-1 autocorrelation by dispersal in analytical
derivations based on a spatially explicit first-order autoregressive
model (Supplementary Note 1) and in stochastic simulations using a
phenomenological model of yeast growth6 (Supplementary Fig. 4).

Spatial coupling introduces the possibility of another warning indi-
cator based on spatial fluctuations: spatial correlation. Long-range
spatial correlation has been known to occur in the vicinity of some
phase transitions28; recent theoretical work in spatially explicit eco-
logical models found that increasing spatial correlation could be a
warning signal before transitions to an alternative stable state8. We
tested the two-point correlation between nearest neighbours in the
connected populations but failed to observe any increase near the
tipping point (Supplementary Fig. 5). Simulation results with varying
sample size showed that no statistically significant increase in spatial
correlation should be discerned with the limited samples in our experi-
ment. Thus, our results suggest that to observe the increase in spatial
correlation may require more data than for other indicators.

Facing the potential difficulty of observing a strong warning signal
based on fluctuations in spatially connected populations, we set out to
look for possible new indicators. The existing warning signals can be
classified into different categories, based on the nature of the perturba-
tions and measurements (see Fig. 3). Measuring the recovery time after
a pulse perturbation (Fig. 3a) can provide a robust indicator of the
distance to a tipping point5,14. In large complex systems, it is often
impractical to perform such temporal perturbations repeatedly and
measure recovery time. However, owing to stochastic perturbations
such as demographic noise, population density constantly fluctuates
around the equilibrium. Changes of fluctuation patterns such as an
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Figure 1 | Yeast populations with a tipping point: an experimental system to
study the collapse of connected populations. a, Isolated yeast populations
collapse after crossing a tipping point. The distribution of population density
around equilibrium is shown in spread points; the red square denotes the mean.
Insets are traces of replicate populations at dilution factor 1,000 (stable) and
1,700 (collapsed). b, Yeast populations are spatially connected by controlled
daily dispersal. Each circle corresponds to a habitat patch where a local
population grows. A fraction of the local population is transferred to each of its
two nearest neighbours, and the rest to itself.
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Figure 2 | Early warning signals based on fluctuations show suppressed
increase in connected populations. a, Coefficient of variation (CV).
b, Temporal correlation (lag-1 autocorrelation). The coefficient of variation
and temporal correlation of both isolated populations (red squares) and
connected populations (blue circles) increased before the tipping point. The
signals were suppressed in the connected populations, possibly owing to the
averaging effect of dispersal. Error bars are standard errors given by bootstrap
for isolated populations and standard errors of the mean (n 5 4) for connected
populations.
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increase in variation and correlation (Fig. 3c, d), measured either in
time or in space, are also signatures of critical slowing down and
consist of another two categories of leading warning signals3,4,6–10,21.
Surprisingly, there is one remaining category that has not been pro-
posed: find or create a ‘pulse perturbation in space’ (Fig. 3b) and
measure the spatial counterpart of recovery time14. Adjacent to a
region of poor quality, the neighbouring good patches will not imme-
diately have reached their carrying capacity; instead the carrying capa-
city will be reached only further from the bad region (Supplementary
Fig. 6). Rather than an increase in the timescale to recover, critical
slowing down here manifests itself as an increase in the spatial scale to
recover (Supplementary Note 2), that is, an increase in ‘recovery
length’ as compared to ‘recovery time’.

To test our ‘recovery length’ hypothesis, we performed another set
of experiments with spatially connected yeast populations (dispersal
rate D 5 0.5), now with two different regions: a relatively good (lower
dilution factor) region of five patches and a bad (high dilution factor)
region of one patch (Fig. 4a). Given this sharp boundary between two
regions of different quality, population density in the good region
recovered gradually in space to the equilibrium value. As the condition
of the good region deteriorates, we expect an increase in the spatial
scale over which the populations recover. Indeed, we observed a clear
change in the steady-state recovery profile of populations with increas-
ing dilution factor of the good region (Fig. 4b). In agreement with our
hypothesis, the spatial recovery spanned a much longer distance closer
to the tipping point.

We quantified this spatial scale using two different indicators
(Fig. 4c). The first indicator, the ‘half-point recovery length’, measures
the distance between the bad region and the location of half recovery
(Methods). The half-point recovery length increased gradually with
dilution factor from less than 0.5 to around 2. The second indicator,
the ‘exponential recovery length’, is obtained by fitting the recovery
profile with an exponential function (Methods). Similar to the first
indicator, the exponential recovery length increased more than three-
fold as the tipping point was approached. Thus, both measures suggest
that the recovery length provides a strong warning signal before popu-
lation collapse in our system. We also observed an increase in both
indicators as we slowly caused the good region to deteriorate by
increasing the dilution factor and induced the collapse of connected
populations in real time (Supplementary Fig. 7).

Recovery length completes the four categories of early warning sig-
nals and can help improve our assessment of spatially extended systems.
Our results suggest that stronger spatial coupling (higher dispersal rate)
suppresses early warning signals in CV and temporal correlation
(Supplementary Fig. 4). In contrast, the magnitude of recovery length
increases with the level of spatial coupling (Supplementary Note 2).
These two categories of early warning signals are therefore comple-
mentary: when one signal is weak the other is strong. Also, although
our experiment was conducted on a linear array, the use of recovery
length can be readily generalized to two-dimensional systems by map-
ping the profile perpendicularly to contours of population density.
Unlike the specific spatial patterns found in two-dimensional vegeta-
tion systems24,25, recovery length may provide a generic measure given
that the spatially coupled units by themselves would recover more
slowly near the tipping point.

Finally, from a practical perspective, boundaries between regions
of different quality are ubiquitous in nature, thus providing many
opportunities to measure the recovery length in populations of inter-
est. One specific example of recovery length would be the ‘‘distance of
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edge influence’’ in landscape ecology29: it quantifies the spatial scale of
edge influence on biota in fragmented landscapes. Data of edge influ-
ence for forests at different sites suggest a longer recovery length in the
Australian tropical forests30, which seems to be borne out by the recent
forest collapses in Western Australia. In principle, the recovery length
can also be measured when spatially extended populations ‘recover’
from a region of higher quality (Supplementary Figs 6 and 8), suggest-
ing that boundaries may be introduced by conservation efforts (for
example, setting up marine reserves).

Our experiments were performed in the simplest spatial setting pos-
sible: homogeneous environments and dispersal rates, a large popu-
lation size and a safe distance away from the tipping point. In the
presence of environmental heterogeneity, measurement of recovery
length may fail if the desired sharp boundary between regions of dif-
ferent quality is blurred. However, in such a case we would expect
enhanced signals in spatial correlation8 and spatial variation before
population collapse (Supplementary Fig. 9). Our experiments have also
not explored the effects of spatial coupling on the global stability of a
meta-population. On the one hand, spatial coupling may reduce fluc-
tuations and the probability that a random shock will trigger a state
shift22; on the other hand, stochastic local extinctions or the introduc-
tion of a bad region may drive the connected populations to collapse
before the tipping point of a local population (Supplementary Note 3).

Our work illustrates the important role of spatial coupling, such as
the dispersal of populations, in our understanding of how to apply the
current toolbox of warning indicators to natural populations. More
empirical studies are required to confirm the generality and applic-
ability of different indicators, but being able to observe warning signals
in connected populations suggests that we may be able to develop
quantitative metrics for assessing the fragility of spatially extended
complex systems.

METHODS SUMMARY
We grew the budding yeast Saccharomyces cerevisiae in 200ml batch culture on BD
Falcon 96-well Microtest plates at 30.7 uC (60.2 uC, standard deviation) using
synthetic media supplemented with 2% sucrose6. Serial dilutions were performed
daily with variable dilution factors. Population densities were recorded each day
before the serial dilution by measuring optical density at 600 nm. Statistical indi-
cators were calculated after the populations stabilized. The coefficient of variation
was calculated as the sample standard deviation divided by the sample mean. The
temporal correlation was estimated by the Pearson’s correlation coefficient
between the population densities at subsequent days. In the experiment to measure
recovery length, the half-point recovery length was estimated by performing a
shape-preserving interpolation to the steady-state recovery profile of population
density and then locating the position of half-recovery. The exponential recovery
length was estimated by fitting an exponential function to the recovery profile. For
further details, see the online-only Methods.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Experimental protocols. We grew the budding yeast Saccharomyces cerevisiae in
200ml batch culture on BD Falcon 96-well Microtest plates at 30.7 uC (60.2 uC,
standard deviation) using synthetic media (yeast nitrogen bases 1 nitrogen,
Complete Supplement Mixture) supplemented with 2% sucrose6. Cultures were
maintained in a well-mixed condition by growing on a shaker at 825 r.p.m. Serial
dilutions were performed daily (23 h of growth) with variable dilution factors.
Population densities were recorded each day before the serial dilution by mea-
suring optical density at 600 nm using a Thermo Scientific Varioskan Flash
Multimode Reader. The calibration between optical density and cell density was
based on the previous characterization of this system6.

In the group of connected populations, for each dilution factor there were four
replicate arrays each consisting of ten patches. Populations were connected by
controlled dispersal between nearest neighbours (dispersal rate D 5 0.5, which is
defined as the fraction of population going out of a patch). Reflecting boundary
conditions were adopted, meaning that a population on the edge would have 75%
of its cells remaining in the patch during the dispersal step. In the group of isolated
populations, the experiment was performed in a similar spatial setting except that
there was no dispersal (D 5 0); for each dilution factor there were four arrays each
consisting of five patches, giving a total of 20 replicate populations isolated from
each other. The dilution factors for the data presented in Fig. 2 are 500, 1,000,
1,200, 1,400 and 1,600. In the experiment to measure recovery length, populations
were connected by nearest-neighbour dispersal (D 5 0.5, reflecting boundary con-
ditions). The dilution factor for the bad region (one patch) was 2,500; the dilution
factor for the good region (five patches) was varied as the environmental driver.
The dilution factors for the data presented in Fig. 4 are 500, 750, 1,000, 1,133,
1,200, 1,266, 1,350 and 1,400.
Calculation of statistical indicators. Statistical indicators for the connected
populations were calculated among ten populations in one array on each day
and averaged over a span of at least five days, after the populations stabilized.
The mean value of four replicate arrays and the standard error of the mean (n 5 4)
are shown in Fig. 2. For the isolated populations, statistical indicators were calcu-
lated on each day among 20 populations over five days. We used bootstrap to
compute the standard errors of the indicators by resampling 1,000 times the
ensemble of replicate populations (for the coefficient of variation and the temporal
correlation) or arrays (for the spatial correlation).

The coefficient of variation (CV) was calculated as the sample standard devi-
ation (Supplementary Fig. 3c) divided by the sample mean. Because the local
populations in our experiment were grown in a homogeneous environment, in
principle they could all be treated as replicates. Assuming the system is ergodic, the
CV calculated over an ensemble of replicates can be interpreted either as the spatial
CV of many populations at one time point or the temporal CV of a single popu-
lation over many time points. The temporal correlation, defined as the lag-1
autocorrelation, was estimated by the Pearson’s correlation coefficient between
the population densities at subsequent days. To correct for negative bias in small
samples, we used a modified estimator with an additional term 1/N for lag-1
autocorrelation31. The sample size N 5 10 for connected populations and

N 5 20 for isolated populations. N is a fixed number for different dilution factors,
so using the modified estimators would not affect the trend of indicators. The
spatial correlation, defined as the two-point correlation between all neighbouring
pairs, was estimated by the Moran’s coefficient8,32. The expectation of Moran’s
coefficient is 21/(N – 1) in the absence of spatial correlation33; we used a modified
estimator with an additional term 1/(N – 1) so that the expectation is 0. In this case,
the sample size N is the number of patches in an array: N 5 10 for connected
populations and N 5 5 for isolated populations. For detailed formulae of the
statistical indicators, see Supplementary Note 4.

In the analysis we ensured environmental homogeneity by removing the linear
gradient of population density observed in connected populations. This small
gradient is presumably caused by some heterogeneity in experimental conditions
(temperature, dilution errors, and so on) across the plate. Removing gradient-type
spatial heterogeneity before statistical analysis is similar to the detrending proced-
ure commonly used in time-series analysis; it prevents spurious signals such as
positive spatial correlation (Supplementary Fig. 10).
Recovery length. After the recovery profile stabilized, we tracked the population
density profiles of at least six replicates over several days. The half-point recovery
length Lhalf was estimated by performing a shape-preserving interpolation (Matlab
function PCHIP, piecewise cubic Hermite interpolating polynomial) to the recov-
ery profile and then locating the position of half-recovery, at which
n(x 5 Lhalf) 5 (1/2)n(x 5 5). The population density of the bad region (dilution
factor 2,500) in our experiment was close to 0 (Fig. 4 and Supplementary Fig. 7). In
the more general scenario with a sharp boundary between two regions of different
quality (Supplementary Figs 6 and 8), the position of half-recovery can be defined
as the midpoint between the equilibrium population density of the region of
interest and the population density at the boundary.

The exponential recovery length Lexp was estimated by fitting an exponential
function with three parameters c1exp(2x/Lexp) 1 c2 to the recovery profile n(x).
The data points used for exponential fitting are from positions 1 to 5 (except for
dilution factor 500, the data for fitting are from positions 0 to 5). We note that our
definition of exponential recovery length is phenomenological, because: (1) the
deviation is expected to be exponential only close enough to the equilibrium;
(2) at higher dilution factors the profile can deviate from an exponential form
(Supplementary Fig. 11). The ‘kink’ in the fitted exponential recovery length
(Fig. 4c) may be due to the limited data points used in fitting or experimental
errors. For both the half-point recovery length and the exponential recovery
length, we used bootstrap to compute standard errors for the indicators by resam-
pling the ensemble of steady-state profiles 100 times and fitting the average recov-
ery profile.

31. DeCarlo, L. T. & Tryon, W. W. Estimating and testing autocorrelation with small
samples: a comparisonof the c-statistic toa modifiedestimator. Behav.Res. Ther.
31, 781–788 (1993).

32. Legendre, P. & Fortin, M. J. Spatial pattern and ecological analysis. Vegetatio 80,
107–138 (1989).

33. Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37,
17–23 (1950).
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