Polymers

(continued)
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2.1.2 vMF polymer model

Consider an idealized polymer consisting of ¢ = 1,..., N segments of length A\. Each
segment has an orientation u,, so that the vector connecting the two polymer ends is given

by

R(N) = ZRi — AZM. (2.5)

The total length of the polymer is L = N\ and w.l.o.g. we choose R(0) and p; = (0,0, 1).
We assume that the conditional PDF of u, for a given u, , is a vMF-distribution with

spread parameter k,
f(l%;“%—l) = Che"Hiti-1, (2-6)
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von Mises-Fisher distribution

K‘—
k=10
x =100

arrows = mean direction
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We would like to compute correlation functions and statistical moments of R(N) in
the limit of large N. Of particular interest are the mean end-position

E[R(N)|py] = A Elp, | my], (2.7a)

n=1
the squared end-to-end distance
D(N) = E[R(N) - R(N)], (2.7h)
and the excursion PDF

py(r) = ]E[é('r — R(N))} (2.7¢)
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Excursion PDF & thermodynamics

pn(r) =E|[6(r — R(N))

Unfortunately, it is not possible to compute the excursion PDF (2.7¢) exactly for the
vMF model'. However, the central limit theorem combined with (2.18¢) implies that, for
large N, the excursion PDF will approach a Gaussian

3 o2 3r2/(2DN
p(r):(%DAJ e =37/ (2DN), (2.21)

For the remainder of this section, we will assume that the end-points of the polymer are
fixed at 0 and r. To make the connection with thermodynamics, we may consider r
as a macroscopic state-variable, that can be realized by a number of different polymer
configurations referred to as microstates. If no other constraints are known, it is plausible
that each microstate is equally likely and, for large N, the number of microstates realizing
a specific the macrostate r is A*p(r), assuming the spatial resolution is of the order of the
segment length A. The corresponding microcanonical entropy is given by

3r?
2DN’

S ~ kg In[\p(r)] = Sy — k5 (2.22)

D ~ 2)\°k = 2\Lp
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Excursion PDF & thermodynamics

3r?
2DN

S ~ kB 111[)\3p(’l")] — S() — kB

To obtain a prediction for the mean force f required to stretch the polymer by a small
amount dr, we can exploit the general thermodynamic relation

dE = oW + 40, (2.23a)

where work and heat increments are defined as usual by
W =—f-dr, 0Q)Q =TdS, (2.23b)

with 7" denoting temperature. If one neglect self-avoidance interactions, which are present

in real polymers, the energy remains constant during a change of confirmation, dE = 0.
Hence,

ds = % . dr (2.24)

and the stretch force components are obtained as

fi=T <85> = —SkBTn;. (2.25)

@ri DN

— f is the force needed to stretch a polymer in a solvent bath of te_mperature T
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Excursion PDF & thermodynamics

3r?
2DN

S ~ kB 111[)\3p(’l")] — S() — kB

Furthermore, it is also instructive to compute the corresponding free-energy

3r?
F=FE-TS=FE-T T . 2.2
S So + kg DN (2.26)
This is essentially a thermodynamic version of Hooke’s law
K 3kgT
F=F+ —7r? K = . 2.2
0+ 9 o, DN ( 7)

For long stiff polymers we have DN ~ 2ANLp = 2LLp, we find for the spring-constant

 3kgT
- 2LLp

K (2.28)

This means, for example, that the persistence length L, can be inferred from force mea-
surements if temperature 7" and polymer length L are known.
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Self-avoidance (Flory’s scaling argument)

K 3epT
e[t g2 K —
ot 5T DN

e [IDEA: include additional free energy term to account for self repulsion
e ASSUMPTIONS:

(i) N > 1 monomers of volume vy with fixed end-to-end distance r

(ii) for a fixed ||, the N monomers may (very roughly) explore a volume of |r|¢,

(111) overlap probability given by volume filling fraction ¢ = vgN/|r|?

vaN ?}dN |’I"|2d
F o NEgT & — NkgT Y F—F 4 NkoT [ Y42
sl'o=Nksl o 0+ NFp (yr\d ToD,N?
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Self-avoidance (Flory’s scaling argument)

r

2

F=F,+ NksT | 2=
o+ B (\r|d+2DdN2

To obtain the equilibrium distance r,, we must minimize this expression with respect to
r = |r|, which gives

dF UdN d
0=———=—d . 2.31
d|r] a1 T DN (2:31)

and therefore
r. = (Dgvg) /2 N3/ (@+2), (2.32)
Thus, explicitly

d=1: r. X N (2.33a)
d=2: ry o N34, (2.33b)
d=3: ry oc N3/5. (2.33¢)

The result is trivial for d = 1, seems to be exact for d = 2 when compared to simulations,
and is very close to best numerical results N%*%- for d = 3.
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Next: mechanistic model


mailto:dunkel@math.mit.edu

w72
Rouse model (wiki) @®WWe, & 2

2.2 Bead-spring model PO

(N o
single bead is governed by the over-damped Langevin equation @ N=13
dX (1) = =V, U{X,}) dt + V2D x dB,(1), (2.34)

where D is the thermal diffusion constant of a bead. The potential U contains contributions
from elastic nearest neighbor interactions U,, from bending U, and, to implement self-
avoidance, steric short-range repulsion U:

U=U,+ U, + U, (2.35)
Defining (N — 1) chain link vectors R, and their orientations pu, by Hatt
R
R,=X.,1—X., W, = —— (2.36)
| Ra |l Ha

the potentials can be written as sums over 2-body and 3-body interactions

N-1 N-2 N N
Ue = D ull[Rall) Up = > bk tasr) U = > D, s(1Xa—Xel))
a=1 a=1 a=1 pg=1,0#«a

Specifically, the elastic spring potential u(r) and the steric repulsion potential s(r) en-

code 2-body interactions, whereas the bending potential b(q) involves 3-body interactions.?
Plausible choices are

/o
wr)= SN M= gD, sr) =

(2.38)

/'nl/
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2.2 Bead-spring model

o ©
single bead is governed by the over-damped Langevin equation @ N=
dX o (t) = =V, U{X.,}) dt + V2D x dB,(1), (2.34)

where D is the thermal diffusion constant of a bead. The potential U contains contributions
from elastic nearest neighbor interactions U,, from bending U, and, to implement self-
avoidance, steric short-range repulsion U:

U=U,+U,+ U, (2.35)

Needs to be solved numerically but stationary distribution known

pn({za}) = . exp (2.39)

4N

[_U({ga})lj

where

In :/ (ﬂl d%a> exp [—U({ga})]. (2.40)
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continuum model

0

http://www.uni-leipzig.de/~pwm/web/?section=introduction&page=polymers
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2.3 Continuum description

2.3.1 Differential geometry of curves

Consider a continuous curve r(t) € R3, where t € [0,7]. Assume that the first three
derivatives 7(t), 7(t), 7 (t) are linearly independent. The length of the curve is given by

L:/O dt ||#(t)]] (2.41)

where 7(t) = dr/dt and || - || denotes the Euclidean norm. The local unit tangent vector

is defined by
r
7]

The unit normal vector, or unit curvature vector, is

(I —tt) -
T =) -]

n (2.43)

Unit tangent vector £(¢) and unit normal vector fu(t) span the osculating (‘kissing’) plane
at point ¢. The unit binormal vector is defined by

(I—tt)-(I —mn) -7

N (I —tt)- (I —nn)- 7| (2.44)

b

The orthonormal basis {t(t),n(t),b(t)} spans the local Frenet frame. For plane curves,
7 (t) is not linearly independent of 7 and #. In this case, we set b =t A n.
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(I —tt) - 7
(I —tt) - 7]

(I—tt)-I—mn) -7
(L —tt)- (I —nn)- 7|

dunkel@math.mit.edu


mailto:dunkel@math.mit.edu

The local curvature (t) and the associated radius of curvature p(t) = 1/k are defined
by

k(t) = t|Tﬁ’ (2.45)

and the local torsion 7(t) by

7(t) = . (2.46)

For plane curves with constant b, we have 7 = 0.

Given ||7||, k(t), 7(¢) and the initial values {£(0),n(0), b(0)}, the Frenet frames along
the curve can be obtained by solving the Frenet-Serret system

| t 0 k 0 t
LRV 0 —r 0/ \b

The above formulas simplify if ¢ is the arc length, for in this case ||7|| = 1.
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2.3.2 Stretchable polymers: Minimal model and equipartition

Ezyl/OLda:m—L], (2.48)

where h, = h/(x). Restricting ourselves to small deformations, |h,| < 1, we may approxi-
mate

N
E ~ —/ dx hZ. (2.49)
2 Jo

3~ carries units of energy/length.

dunkel@math.mit.edu
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v L
B~ —/ dx hZ. (2.49)
2 Jo

Taking into account that A(0) = h(L) = 0, we may represent h(x) and its derivative
through the Fourier-sine series

h(z) = ni;Ansm(%) (2.50a)

ho(z) = f: An%” COS($). (2.50b)

Exploiting orthogonality

L nmx Mmmx L
dr sin| —— | si = — Onm 2.01
/0 T Sm( 7 ) sm( 7 ) 5 (2.51)

we may rewrite the energy (2.49) as

E

|2
DO |2
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= Y E, (2.52a)

where the energy E,, stored in Fourier mode n is

2,2

A2 ynoT
E, = A2 ( 7 > . (2.52b)
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v (" - yn’n’
E:§/ drh? = > E, En:A§< )
0 n=1

Now assume the polymer is coupled to a bath and the stationary distribution is canonical

1
)] (253)

p({A}) = —exp(~pE)
with 8 = (kgT)~!. The PDF factorizes and, therefore, also the normalization constant

1 it fyn27r2
- — _ A2

z =] 2, (2.54a)
1=1

00 2.2 1/2
o [ yNTT Am L
— /OO dA, exp [—5An ( 17 )] = <5V’FL2W2> . (2.54b)

where
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Y . 2 S 2 yn
[ £ (5

Now assume the polymer is coupled to a bath and the stationary distribution is canonical

1
)] (253)

p({A}) = - exp(—AE)

1 it fyn27r2
— = _ A2

We thus find for the first to moments of A,

E[A,] = 0 (2.55a)
2kpTL

E[A? 2.55b

A5 Tt (2.55b)

and from this for the mean energy per mode

’}/71271'2

E[E,] = ( 07 )E[Ai] = %kBT. (2.56)
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0 L

We may use the equipartition result to compute the variance of the polymer at the
position x € [0, L]

E[h(z)?] = iiE[AnAm]sm(?> Sm(mzx>

n=1 m=1

— > S Bz sin (5 ) i)

n=1 m=1

<2l-cBTL) i sin® (nma/L) (2.57)

777-2 n2

n=1

If we additionally average along x

(kBTL

Y

(E[h(z)7]) =

(2.58)

kBTL 7T2 B kBTL
6 67y

Thus, by measuring fluctuations along the polymer we may infer ~.
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2.3.3 Rigid polymers: Euler-Bernoulli equation

A L
E~=— [ dxr? (2.59)
2 0

where A is the bending modulus (units energy xlength). For plane curves h(z), the curva-
ture can be expressed as

ha::c
K = (1_|_h2)3/2 (260)

Focussing on the limit of weak deformations, h, < 1, we may approximate x ~ h,,, and
the energy simplifies to

A [E 5
0

dunkel@math.mit.edu
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Boundary conditions

A [F 5
E ~ 5 dx (hes)”. (2.61)
0

The exact form of the boundary conditions depend on how the polymer is attached to the

plane x = 0. Assuming that polymer is rigidly anchored at an angle 90°, the boundary
conditions at the fixed end at x = 0 are

h(0)=0,  hy(0)=0. (2.62a)

At the free end, we will consider flux conditions

haw(L) =0,  hgee(L) =0. (2.62b)

(minimal absolute curvature at the free end)
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Boundary conditions

A [T ,
N A A (2.61)
0

By partial integrations, we may rewrite (2.61) as

A i L L

2 ] 0 0

A B L

21 Jo

A i L L A L
2 I 0 0 2 0

dunkel@math.mit.edu
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0,z) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation
dynamics h(t, z) will be of the over-damped form*

ok

hy = —— 2.64
Uiz 6h ) ( 6 )
where 7 is a damping constant, and the variational derivative is defined by
E E —y)| — F
SEl)] _ . Elh(x) + bz — y)] ~ E[hz)] 065
oh(y) —0 €
Keeping terms up to order ¢, we find for the energy functional (2.61)
A [* 5
Elh(z)+ed(x —y)| — Elh(z)] = 5/ dx [(h + €0)ze(h + €0)pe — (hae)?]
0
A [* 5
= — dx [2€h430.0 + O(€7)]
2 Jo
Using the integral identity
9(x) 0y0(x —y) = (=1)"d(z —y) 0y g(x) (2.66)
for any smooth function g, one obtains
OEh(x)] / -
—— = =A dx hppee () 0(x — y) = Ahprrs(Y), 2.67
Sh(y) O () d(x —y) () (2.67)
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If the polymer is surrounded by a viscous solvent, an initial perturbation h(0,z) will
relax to the ground-state. Neglecting fluctuations due to thermal noise, the relaxation

dynamics h(t, z) will be of the over-damped form*

ok

B, — ———
e = =5

where 7 is a damping constant, and the variational derivative is defined by

0E[n(z)] _ . Elh(z) +ed(z —y)] — E[h(2)]
Oh(y) &0 € |

so that Eq. (2.64) becomes a linear fourth-order equation

A
ht = aha::mcx ) o= —.
n
Inserting the ansatz
—t/T 1 —t/T —t/T
h=ce Qf)(il?) ; ht = ——€ (b ; h.mcxx = € ¢xa:xx7
T

gives the eigenvalue problem

(2.64)

(2.65)

(2.68)

(2.69)

(2.70)
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Eigenvalue problem

1
T
for the one-dimensional biharmonic operator (9?)?, which has the general solution

¢(x) = Bycosh(z/A) + Bysinh(x/\) + Bz cos(x/\) + Bysin(z/\)

where

(2.70)

(2.71a)

(2.71D)
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h(z)

Inserting the first two conditions into the last two, we obtain the linear system
0 = Bjlcosh(L/A) 4 cos(L/A)| + Bylsinh(L/\) 4 sin(L/\)] (2.73a)
0 = Bi[sinh(L/\) —sin(L/A)] + Bg|cosh(L/\) + cos(L/)\)]. (2.73b)

For nontrivial solutions to exist, we must have

— e [cosh(L /) + cos(L/\)] [sinh(L/X) + sin(L/\)]
0 = dt([sinh(L/)\)—sin(L/)\)] [cosh(L/)\)Jrcos(L/)\)]) (2.74)

which gives us the eigenvalue condition

0 = cosh(L/X)cos(L/\) + 1. (2.75)

This equation has solutions for discrete values A,, > 0 that can be computed numerically,
and one finds for the first few eigenvalues

L
5y~ = {094, 2.35, 3.93, 550, ...} (2.76)

For comparison, for purely sinusoidal excitations of a harmonic string

L/\, xn.
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The full time-dependent solution can thus be written as

h(t,z) = Z By, 6t/7”{cosh(:1:/)\n) —cos(x/A,) +

=1 cos(L/\,) + cosh(L/N\,) . . |
Sn(L/A,) + smh(L/n,) Sn(E/An) = sinh(z/ An)]}a (2.77)

Limit n—o00 or t—0

h(z) = Z Bin {COSh(ﬂC/)\n) — cos(x/\,) +

cos(L/A,) + cosh(L/\,) v il
sin(L/\,) + sinh(L/\,) sin(z/An) h( /)\n)]}
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The full time-dependent solution can thus be written as

h(t,z) = Z By, 6t/7”{cosh(:1:/)\n) —cos(x/A,) +

=1 cos(L/\,) + cosh(L/N\,) . . |
Sn(L/A,) + smh(L/n,) Sn(E/An) = sinh(z/ An)]}a (2.77)

Limit n—o00 or t—0

h(z) = Z Bin {COSh(ﬂC/)\n) — cos(x/\,) +

cos(L/A,) + cosh(L/\,) v il
sin(L/\,) + sinh(L/\,) sin(z/An) h( /)\n)]}
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hz) — f:Bln{Cosh(x/)\n)—cos(x/)\n)+
n=1
AT onn(E/v e/ ~sunta
This expression can be inserted into (2.63), and after exploiting orthogonality of the bi-
harmonic eigenfunctions
E ~ ;En . E,= g)\%Bi, (2.79)

i.e., the energy per mode is proportional to the square of the amplitude, just as in the
stretching case discussed in Sec. 2.3.2. It is therefore possible to compute thermal expec-
tation values exactly from Gaussian integrals. In particular, from equipartition
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Actin in flow

week ending

PRL 108, 038103 (2012) PHYSICAL REVIEW LETTERS 20 JANUARY 2012
(c)
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’ \\\Yttr2r/// h(x=L/2.t)

FIG. 1 (color online). Experimental setup. (a) Microfluidic cross-flow geometry controlled by a pressure difference A P between inlet
and outlet branches. (b) Close-up of the velocity field near the stagnation point, showing a typical actin filament. (¢) Raw contour (red)
of an actin filament and definition of geometric quantities used in the analysis.

Kantsler & Goldstein (2012) PRL
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Actin in flow

outlet, AP

Kantsler & Goldstein (2012) PRL
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Actin in flow

Kantsler & Goldstein (2012) PRL
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Theory

1 L/2
£ = j dx{AR, + o ()R} (1)
2J-Lp

where subscripts indicate differentiation. The nonuniform
tension induced by the flow [19],

_ 2wy B
o (x) In(1/e2e) (L*/4 — x°), (2)
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Theory

of eigenfunctions W (and eigenvalues A,) with boundary
conditions W, .(=L/2) = W, .. (*L/2) = 0 [3,21]. Under
the convenient rescaling & = 7rx/L, these obey

Wi = Sol(m2 /4 — E)WI = AW (3)
The eigenvalues A, = L*A, /7*A are functions of [22]

2uyL?
mAIn(l/€e%e)

2 = (4)

When 3 = 0, the W are eigenfunctions of the one-
dimensional biharmonic equation

Ws_o = Asinkx + Bsinhkx + D coskx + E coshkx. (5)

dunkel@math.mit.edu
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Theory vs. experiment

(and we assume they are normalized). Equipartition then
yields {(a,,a,) = 68,,L*/7*€,A,, and the local variance
V(x) = ([h(x) — hJ) is

dunkel@math.mit.edu
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