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22 Boundary layer equations

Consider a flow that’s translationally invariant along the z-direction. Focussing on the
components in the (x, y)-plane, denoted by u = (u, v), the Navier-Stokes equations reduce
to

∂tu+ u∂xu+ v∂yu = −1

ρ
∂xp+ ν(∂2

xu+ ∂2
yu) (1a)

∂tv + u∂xv + v∂yv = −1

ρ
∂yp+ ν(∂2

xv + ∂2
yv) (1b)

∂xu+ ∂yv = 0 (1c)

Assume the flow passes a very large surface of length L, positioned at y = 0 along the
x-axis, while satisfying the boundary condition u = Uex as y →∞. The Reynolds-number
for this problem is then given by

R =
UL

ν
. (2)

Considering the limit R → ∞, we can assume inviscid flow in the bulk, so that Eq. (1)
reduces to

∂tu+ u∂xu+ v∂yu = −1

ρ
∂xp (3a)

∂tv + u∂xv + v∂yv = −1

ρ
∂yp (3b)

∂xu+ ∂yv = 0 (3c)

We have seen that these simplified equations lead to incorrect predictions near the bound-
ary y → 0. To obtain a simplified set of equations that captures the main physical effects
near the boundary, let’s define rescaled coordinates

x′ =
x

L
, y′ =

y

δ
, u′ =

u

U
, v′ =

v

U

L

δ
, p′ =

p

ρU2
, t′ =

t

L/U
(4)

where δ � L is the (still unknown) width of the boundary layer. Then, the Navier-Stokes
equations (1) take the form

∂t′u
′ + u′∂x′u

′ + v′∂y′u
′ = −∂x′p′ +

(
1

R

)
∂2
x′u
′ +

(
L2

Rδ2

)
∂2
y′u
′ (5a)

∂t′v
′ + u′∂x′v

′ + v′∂y′v
′ = −

(
L2

δ2

)
∂y′p

′ +

(
1

R

)
∂2
x′v
′ +

(
L2

Rδ2

)
∂2
y′v
′ (5b)

∂x′u
′ + ∂y′v

′ = 0 (5c)
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This suggest to identify the boundary thickness with

δ =
L

R1/2
, (6)

as, for distances smaller δ, viscous effects can no longer be neglected. Inserting this into (5)

∂t′u
′ + u′∂x′u

′ + v′∂y′u
′ = −∂x′p′ +

(
1

R

)
∂2
x′u
′ + ∂2

y′u
′ (7a)

1

R

(
∂t′v

′ + u′∂x′v
′ + v′∂y′v

′) = −∂y′p′ +
1

R2

(
∂2
x′v
′ + ∂2

yv
′) (7b)

∂x′u
′ + ∂y′v

′ = 0 (7c)

Now letting R→∞, as we did before in the bulk, yields the boundary layer equations

∂t′u
′ + u′∂x′u

′ + v′∂y′u
′ = −∂′xp′ + ∂2

y′u
′ (8a)

0 = −∂y′p′ (8b)

∂x′u
′ + ∂y′v

′ = 0 (8c)

These equations still need to be complemented by boundary conditions: There can be no
flow across the boundary

v′
∣∣
y′=0

= 0 , ∀x′. (9a)

Furthermore, assuming no-slip at the boundary

u′
∣∣
y′=0

= 0 , ∀x′ (9b)

and finally

u′ → 1 as y′ →∞ (9c)

Furthermore, symmetry along the x-axis suggests that pressure gradients along the x-
direction are also small, ∂x′p

′ ≈ 0, so after reinstating coefficients and assuming steady
flow, we end up with the simplified boundary layer equations

u∂xu+ v∂yu = ν∂2
yu (10a)

∂xu+ ∂yv = 0 (10b)

Note that, unlike the bulk equations (3), these equations still contain a viscosity term – as
they should.

93



18.354/12.207
Spring 2014

23 Rotating flows (Acheson, pp. 278-287; Taylor’s paper)

Before leaving the topic of boundary layers, we will discuss one more example, of substantial
geophysical importance. It also gives an example of laminar flow where the boundary layer
actually completely controls the dynamics. In the process of deriving this result we will
also learn about a rather remarkable phenomenon in rotating fluid dynamics.

23.1 The Taylor-Proudman theorem

Consider a fluid rotating with angular velocity Ω. The equation of motion in the frame of
reference rotating with the fluid is

∂u

∂t
+ u · ∇u + Ω× (Ω× r) = −1

ρ
∇pΩ + ν∇2u− 2Ω× u, (1a)

∇ · u = 0. (1b)

There are two additional terms: the first Ω× (Ω× r) is the centrifugal acceleration, which
we have discussed before. This can be thought of as an augmentation to the pressure
distribution, using the identity

Ω× (Ω× r) = −1

2
∇(Ω× r)2. (2)

Henceforth, we will simply absorb this into the pressure by writing

p = pΩ −
ρ

2
∇(Ω× r)2. (3)

For the rotating earth, the effect of this force is to simply distort the shape of the object
from a sphere into an oblate ellipsoid. The second term is the Coriolis acceleration which
is velocity dependent. Hopefully you have heard about it in classical mechanics. In the
exercises you are asked to show that it arises naturally when you start from the Navier-
Stokes equations and transform into a rotating reference frame.

We are going to be interested in flows which are much weaker than the rotation of the
system. If U is a characteristic velocity scale and L is a characteristic length scale, then the
advective term is of order U2/L whereas the coriolis force is of order ΩU . We will assume
that ΩU � U2/L so that the equation of motion is effectively

∂u

∂t
= −1

ρ
∇p+ ν∇2u− 2Ω× u, (4a)

∇ · u = 0. (4b)
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23.2 Steady, inviscid flow

Now let’s consider flow at high Reynolds number. The Reynolds number is now ΩL2/ν
within this framework. Following our previous example with boundary layers, the first step
is to write down the inviscid equations (since the viscosity is small), and then the next step
is to correct them with boundary layers.

Following Acheson, let’s write the flow velocity as u = (uI , vI , wI) and Ω=(0,0,Ω). The
steady, inviscid flow satisfies

2ΩvI =
1

ρ

∂pI
∂x

, (5a)

2ΩuI = −1

ρ

∂pI
∂y

, (5b)

0 =
1

ρ

∂pI
∂z

, (5c)

∂uI
∂x

+
∂vI
∂y

+
∂wI
∂z

= 0. (5d)

The third equation says that the pressure is independent of z. Hence, the first two equations
say that uI and vI are independent of z. Then the last equation says that wI is independent
of z. Thus, the entire fluid velocity is independent of z ! This result, which is remarkable,
is called the Taylor-Proudman theorem. Proudman discovered the theorem, but Taylor
discovered what is perhaps its most remarkable consequence.

23.3 Taylor Columns

In his paper “Experiments on the motion of solid bodies in rotating fluids”, Taylor posed
the simple question: given the above fact that slow steady motions of a rotating liquid must
be two-dimensional, what happens if one attempts to make a three dimensional motion
by, for example, pushing a three dimensional object through the flow with a small uniform
velocity? At the beginning of his paper he points out three possibilities:

1. The motion in the liquid is never steady.

2. The motion is steady, but our assumption that uI is small relative to the rotation
velocity breaks down near the object.

3. The motion is steady and two dimensional.

He remarks that the first possibility is unlikely, since it must settle down eventually. The
realistic possibilities are (2) and (3). His paper, which can be downloaded from the course
page, demonstrates that actually what happens is possibility (3). This is really rather
remarkable (as Taylor notes) because there is only one way that it can really happen: An
entire column of fluid must move atop the object.

23.4 More on rotating flows

Above, we wrote the equations of a rotating fluid assuming that the rotation frequency
dominated the characteristic hydrodynamic flows in the problem. In other words, if Ω
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is the characteristic rotation frequency, L is a horizontal lengthscale, and U is a typical
velocity in the rotating frame, we assumed that

Ro =
U

ΩL
� 1. (6)

This dimensionless number is called the Rossby number. The equations were

∂u

∂t
= −1

ρ
∇p+ ν∇2u− 2Ω× u, (7a)

∇ · u = 0. (7b)

We will use these ideas to revisit the famous problem of the spin-down of a coffee cup that
we discussed at the very beginning of class. You might recall that the problem we had
was that our simple theory of how the spin-down occurred turned out to be entirely false.
We shall now construct the correct theory, while learning a bit of atmospheric and oceanic
physics along the way.

23.5 More on the Taylor-Proudman theorem

Let’s consider the Taylor-Proudman theorem again, this time using another method. We
consider the viscosity to be small so that we can use the limit of a stationary, inviscid fluid.
More precisely, we consider the ratio

Ek =
ν∇2u

Ω× u
=

ν

ΩL2
� 1. (8)

This dimensionless number is called the Ekman number. The flow is then strictly two
dimensional. A simple derivation is just to notice that

−1

ρ
∇p = 2Ω× u. (9)

Taking the curl of both sides, and noticing that

∇× (Ω× u) = Ω∇ · u− u∇ ·Ω + u · ∇Ω−Ω · ∇u = −Ω
∂u

∂z
(10)

where we have used the fact that the fluid velocity is divergence free. Hence we have that
∂u/∂z=0, or that the fluid velocity is independent of z. A major consequence of this (Taylor
columns) was discussed above.

Before leaving this topic, I want to make one other remark about it. Taking the dot
product of the equations of inviscid flow with u, we get

u · ∇p = −ρu · (2Ω× u) = 0. (11)

This formula states that the velocity field moves perpendicular to the pressure gradient,
which is somewhat against one’s intuition. Hence, the fluid actually moves along lines
of constant pressure. Pressure work is not performed either on the fluid or by the fluid.
Geophysicists call this fact the geostrophic balance.
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There is an entertaining fact that one can deduce about atmospheric flows. For an
atmospheric flow, the analogue of Ω is not the earth’s rotation speed ω, but instead Ω =
ω sinφ, where φ is the longitude. Now, this shows that the effective Ω changes sign in
the northern and southern hemisphere. What does this imply for the dynamics? When
Ω > 0 the velocity moves with the high pressure on the right. Conversely in the southern
hemisphere, the velocity moves with the high pressure on the left. It is also true that because
of this change in sign, Naval warships have to adjust their range finding when crossing over
the equator. However, the myth about the bathtub vortex does not hold because one
cannot throw out inertial and viscous terms in solving this problem. The Coriolis force is
only important on large scales.
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24 The Ekman layer

We would now like to return to our coffee cup problem, to get the right answer. To do
so, we shall consider the effect of walls on the inviscid flow we calculated in the previous
lecture. For starters, lets consider a jar with the top moving at angular velocity ΩT and
the bottom moving at angular velocity ΩB. Clearly, if ΩT = ΩB then our inviscid solution
applies. Let’s try and figure out what happens when ΩT becomes different from ΩB.

24.1 A small deviation

Suppose ΩT=Ω and ΩB = Ω + ε. Now there is no way to satisfy the no slip condition on
both the top and bottom while having the whole flow spin at angular velocity Ω. Let’s move
first to the rotating frame, and try to compute the secondary flow that is induced. Clearly,
without viscosity it is impossible to solve this problem because the Taylor-Proudman theo-
rem states that inviscid flow is two dimensional (and so no gradient in Ω across the cylinder
axis is possible). We therefore anticipate that even though the Rossby number is small,
there will be boundary layers. Let’s divide the flow into three regions: (1) A boundary
layer at the top plate; (2) a boundary layer at the bottom plate; and (3) a central inviscid
region.

In the inviscid region we would expect that the solution is (uI , vI , wI), where

−2ΩvI = −1

ρ

∂pI
∂x

, (1a)

2ΩuI = −1

ρ

∂pI
∂y

, (1b)

0 =
1

ρ

∂pI
∂z

. (1c)

In the same way as before, we expect the pressure gradient of the outer flow to force the
boundary layer at the rotating wall. Let’s consider the structure of the boundary layer at
the bottom wall, z = 0. There the equations are

−2Ωv = −1

ρ

∂pI
∂x

+ ν
∂2u

∂z2
, (2a)

2Ωu = −1

ρ

∂pI
∂y

+ ν
∂2v

∂z2
, (2b)

0 =
1

ρ

∂pI
∂z

+ ν
∂2w

∂z2
, (2c)

∇ · u = 0. (2d)

Here we have made the boundary layer approximation that ∂/∂z � ∂/∂x, ∂/∂y.
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From the continuity equation we deduce that w is much smaller than the velocity com-
ponents parallel to the boundary so that ∂pI/∂z = 0, and the equations become

−2Ω(v − vI) = ν
∂2u

∂z2
, (3a)

2Ω(u− uI) = ν
∂2v

∂z2
. (3b)

These are the equations we must solve. Acheson has a good trick. Multiplying the second
equation by i and adding the two yields

ν
∂2f

∂z2
= 2Ωif, (4a)

where

f = u− uI + i(v − vI). (4b)

The solution is obtained by guessing f ∼eαz, which yields α2 = 2Ωi/ν. Hence,

f = Ae(1+i)z∗ +Be−(1+i)z∗ , z∗ = z
√

Ω/ν. (5)

We require that as z∗ → ∞, f → 0. This implies that A = 0. We are in the frame
of reference moving with the bottom plate, so the no slip boundary condition at z = 0
requires that f(z = 0) = −uI − ivI . Splitting f into its real an imaginary parts implies

u = uI − e−z
∗
(uI cos(z/δ) + vI sin(z/δ)), (6)

v = vI − e−z
∗
(vI cos(z/δ)− uI sin(z/δ)). (7)

This is the velocity profile in the boundary layer.
What about the z-component? From the divergence free condition, we have(

Ω

ν

) 1
2 ∂w

∂z∗
=
∂w

∂z
= −∂u

∂x
− ∂v

∂y
=

(
∂vI
∂x
− ∂uI

∂y

)
e−z

∗
sin z∗. (8)

Integrating from z∗ = 0 to ∞ gives

w =
1

2

(
Ω

ν

)− 1
2
(
∂vI
∂x
− ∂uI

∂y

)
=
ωI
2

√
ν

Ω
, (9)

where ωI is the vorticity in the inviscid flow. Thus if ωI > 0 (i.e., the bottom boundary is
moving slower than the main body of fluid) then there is flow from the boundary layer into
the fluid.

24.2 Matching

Now we have these Ekman layers at the top and the bottom. What we just did assumed
that the boundary was moving at frequency Ω. If it is not, but instead moving at an
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angular frequency ΩB relative to the rotating frame, then we need to change the boundary
conditions a little in the rotating frame. In this case

w =
( ν

ΩB

)1/2
(

1

2
ωI − ΩB

)
. (10a)

We could derive this, but it is intuitive since (ωI − 2ΩB) is the vorticity of the interior flow
relative to the moving lower boundary. Similarly, if ΩT denotes the angular velocity of the
rigid upper boundary relative to the rotating frame, then there is a small z-component of
velocity up into the boundary layer

w =
( ν

ΩT

)1/2
(

ΩT −
1

2
ωI

)
. (10b)

Now in our container both are happening. Since uI , vI and wI are all independent of z
then so is ωI . Thus, the only way the experiment could work is if the induced value of ωI
from both cases matches. This implies that

ωI = ΩT + ΩB. (11)

With ΩB = 0 and ΩT = ε we have that ωI = ε. Thus, the flow in the inner region has a
velocity which is entirely set by the boundary layers. Note that there is no viscosity in this
formula, but viscosity plays a role in determining the flow. We have completely different
behaviour for ν = 0 and in the limit ν → 0.

24.3 Spin-down of this apparatus

We now want to finally solve the spin-down of our coffee cup. To do so we assume the coffee
cup to be a cylinder with a top and a bottom both rotating with angular velocity Ω + ε.
At t = 0 the angular velocity of the boundaries is reduced to Ω. How long does it take to
reach a steady state ?

We use the time dependent formula

∂uI
∂t
− 2ΩvI = −1

ρ

∂pI
∂x

, (12)

∂vI
∂t

+ 2ΩuI = −1

ρ

∂pI
∂y

. (13)

Then differentiate the first equation with respect to y and the second with respect to x.
Subtracting the latter from the former, and using the continuity equation, we obtain the
vorticity equation

∂

∂t

(
∂vI
∂x
− ∂ui
∂y

)
=
∂ωI
∂t

= 2Ω
∂wI
∂z

. (14)

Since ∂wI/s∂z < 0 we see that vorticity is decreasing in the interior.
Now ωI is independent of z, so∫ L

0

∂ωI
∂t

dz = L
∂ωI
∂t

= 2Ω(w(L)− w(0)). (15)
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The velocity is equal and opposite at the two boundaries (flow is leaving both boundary

layers), and has magnitude (ν/Ω)
1
2ωI/2. Thus

∂ωI
∂t

= −2
√

ΩνωI
L

. (16)

We see that the characteristic decay time is L/2
√

Ων. For the coffee cup this gives us a
much more realistic spin down time compared to our experiments. In real life we should
note that diffusion of the no-slip condition also will play a role, and there will be competition
between the two depending on the particular shape of your coffee cup. If you go look at the
corresponding flow in Acheson, you can now also understand the deep reason why coffee
grounds end up at the centre of your cup.
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