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17 Differential geometry of membranes

17.1 Differential geometry of curves

Consider a continuous curve r(t) € R3, where t € [0,7]. The length of the curve is given by

T
L= [ ol (1)

where 7(t) = dr/dt and || - || denotes the Euclidean norm. The local unit tangent vector is
defined by
T
17|

The unit normal vector, or unit curvature vector, is

(I-tt)- 7

TS TR 3)

Unit tangent vector #(¢) and unit normal vector 7i(t) span the osculating (‘kissing’) plane
at point £. The unit binormal vector is defined by

(I—-tt)- (I —mn)- -7

T[T —tt)- (I—nm) -7 (4)

The orthonormal basis {(t), n(t),b(t)} spans the local Frenet frame.
The local curvature x(t) and the associated radius of curvature p(t) = 1/k are defined
by
t-n
R(t) = = ()

7]

and the local torsion 7(¢) by

=0 (6)

Plane curves satisfy, by definition, b = const. or, equivalently, 7 = 0.
Given ||7||, k(t), 7(t) and the initial values {t(0),(0),b(0)}, the Frenet frames along
the curve can be obtained by solving the Frenet-Serret system

1 t 0 ~ O t
—|n]l=|-x 0 7| [n (7a)
171\ 0 -7 0/ \b
The above formulas simplify if ¢ is the arc length, for in this case ||7|| = 1.
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As a simple example (which is equivalent to our shortest path problem) consider a
polymer confined in a plane. Assume the polymer’s end-points are fixed at (x,y) = (0,0)
and (x,y) = (0, L), respectively, and that the ground-state configuration corresponds to a
straight line connecting these two points. Denoting the tension® by «, adopting the param-
eterization y = h(z) for the polymer and assuming that the bending energy is negligible,
the energy relative to the ground-state is given by

E:v[/odeW—L], o)

where h, = h/(z). Restricting ourselves to small deformations, |h;| < 1, we may approxi-
mate

L
E:fy/ dx h2. 9)
0

Minimizing this expression with respect to the polymer shape h yields the Euler-Lagrange
equation

hgy = 0. (10)
17.2 2D differential geometry
We now consider an orientable surface in R?. Possible local parameterizations are
F(81,82) GR?’ (11)

where (s1,52) € U C R2  Alternatively, if one chooses Cartesian coordinates (s1,s2) =
(z,y), then it suffices to specify

z = f(z,y) (12a)
or, equivalently, the implicit representation
O(x,y,2) =2z — f(x,y). (12b)

The vector representation (11) can be related to the ‘height’ representation (12a) by

x
F(z,y)=1| v (13)
fz,y)
Denoting derivatives by F'; = 05, F', we introduce the surface metric tensor g = (g;;) by
gij = F; - Fj, (14a)
abbreviate its determinant by
lg| := det g, (14b)

Ly carries units of energy/length.
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and define the associated Laplace-Beltrami operator V2 by
1
Vgl

for some function h(si, s2). For the Cartesian parameterization (13), one finds explicitly

V2h = (g /19105h), (14c)

1 0
Fac(xvy) = 0 ) Fy(x7y) = 1 (15)
fx fy

and, hence, the metric tensor

. _(F.-F, F,-F,\ l—i—fg fzf

and its determinant
lgl =1+ f2+ f], (16b)

where f, = 0,f and f, = 0yf. For later use, we still note that the inverse of the metric
tensor is given by

-1 _ -1y _ 1 L+ fg —fuf
g _(gij)_]w(_fyfi 1+f§>' (16c)

Assuming the surface is regular at (s1,s2), which just means that the tangent vectors Fy
and F'5 are linearly independent, the local unit normal vector is defined by
FiNFy

N=——""_. 17
[\ A Fa a7)

In terms of the Cartesian parameterization, this can also be rewritten as

Vo 1 —Ja

TV e\ o

Here, we have adopted the convention that {F;, F'o, N} form a right-handed system.

To formulate ‘geometric’ energy functionals for membranes, we still require the concept
of curvature, which quantifies the local bending of the membrane. We define a 2 x 2-
curvature tensor R = (R;;) by

N

Rij = N - (Fy) (19)
and local mean curvature H and local Gauss curvature K by

1
H = Str (g'R), K=det(g ' R). (20)
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Adopting the Cartesian representation (12a), we have

0 0 0
F,,=120 ) F,y=F,=| 0 ) F, =| 0 (21a)
fzm f:vy fyy
yielding the curvature tensor
N .- F N .- F 1 oz [
Ri' _ T :ry) _ < Tx my) 21b
( J) (N'Fyff»‘ N - Fy, fyz fyy ( )

L'V R by k1 and ko, we obtain for the mean

Denoting the eigenvalues of the matrix ¢~

curvature
1 1+2zm_2:c a:+1+32:
1= L gy = (LD en = 2oy + (4 D )
2 201+ f24 f2)3/?
and for the Gauss curvature
2
K — Ky - kg = fmfyy Ty (23)

I+ f2+ 1)

An important result that relates curvature and topology is the Gauss-Bonnet theo-
rem, which states that any compact two-dimensional Riemannian manifold M with smooth
boundary 0M, Gauss curvature K and geodesic curvature k, of OM satisfies the integral
equation

/ KdA—l—?! kg ds = 2m x(M). (24)
M oM

Here, dA is the area element on M, ds the line element along M, and x(M) the Euler
characteristic of M. The latter is given by x(M) = 2 — 2g, where g is the genus (number of
handles) of M. For example, the 2-sphere M = S? has g = 0 handles and hence x(S?) = 2,
whereas a two-dimensional torus M = T? has g = 1 handle and therefore x(T?) = 0.

Equation (24) implies that, for any closed surface, the integral over K is always a
constant. That is, for closed membranes, the first integral in Eq. (24) represents just a
trivial (constant) energetic contribution.

17.3 Minimal surfaces

Minimal surfaces are surfaces that minimize the area within a given contour M,
A(M|OM) = / dA = min! (25)
M

Assuming a Cartesian parameterization z = f(z,y) and abbreviating f; = 9;f as before,
we have

dA = /|g|dxdy = \/1+ f2 + f2 dvdy =: £ dxdy, (26)

73



and the minimum condition (25) can be expressed in terms of the Euler-Lagrange equations

A oL
=57 = _aia—fi. (27)

Inserting the Lagrangian £ = \/|g|, one finds

0

S D R
JI+12+ 12 Ji+R2+5

which may be recast in the form

(L4 £ fan — 2o b + (L4 £
N ERY ) )

0=— |08, (28)

Thus, minimal surfaces satisfy
H=0 = K1 = —Ka2, (30)

implying that each point of a minimal surface is a saddle point.

17.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich proposed in 1973 the following geometric curvature energy per unit area for a closed
membrane

ke
€= (2H - c0)? + ko K, (31)

where constants k., kg are bending rigidities and ¢y is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Ec—/dAe—l—a/dA—i—Ap/dV, (32)

where o is the surface tension and Ap the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation?

Ap — 20H + ko(2H — ¢9)(2H? + coH — 2K) + k. V?*(2H — ¢p) = 0, (33)
where V2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (33) uses
our earlier result

JA

Sf

2The full derivation can be found in Chapter 3 of Z.-C. Ou-Yang, Geometric Methods in the Elastic
Theory of Membranes in Liquid Crystal Phases(World Scientific,Singapore, 1999).

—2H, (34)
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and the fact that the volume integral may be rewritten as?

V:/dV:/dA:l))F-N, (35)

which gives
v _
5f
corresponding to the first term on the rhs. of Eq. (33).

For open membranes with boundary M, there is no volume constraint and a plausible
energy functional reads

1, (36)

EO:/dAe—i-U/dA—F’y?{ ds, (37)
oM

where ~ is the line tension of the boundary. In this case, variation yields not only the
corresponding shape equation but also a non-trivial set of boundary conditions.

3Here, we made use of the volume formula dV = %h dA for a cone or pyramid of height h = F - N .
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