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17 Differential geometry of membranes

17.1 Differential geometry of curves

Consider a continuous curve r(t) ∈ R3, where t ∈ [0, T ]. The length of the curve is given by

L =

∫ T

0
dt ||ṙ(t)|| (1)

where ṙ(t) = dr/dt and || · || denotes the Euclidean norm. The local unit tangent vector is
defined by

t =
ṙ

||ṙ||
. (2)

The unit normal vector, or unit curvature vector, is

n =
(I − tt) · r̈
||(I − tt) · r̈||

. (3)

Unit tangent vector t̂(t) and unit normal vector n̂(t) span the osculating (‘kissing’) plane
at point t. The unit binormal vector is defined by

b =
(I − tt) · (I − nn) · ...r
||(I − tt) · (I − nn) · ...r ||

. (4)

The orthonormal basis {t(t),n(t), b(t)} spans the local Frenet frame.
The local curvature κ(t) and the associated radius of curvature ρ(t) = 1/κ are defined

by

κ(t) =
ṫ · n
||ṙ||

, (5)

and the local torsion τ(t) by

τ(t) =
ṅ · b
||ṙ||

. (6)

Plane curves satisfy, by definition, b = const. or, equivalently, τ = 0.
Given ||ṙ||, κ(t), τ(t) and the initial values {t(0),n(0), b(0)}, the Frenet frames along

the curve can be obtained by solving the Frenet-Serret system

1

||ṙ||

 ṫ
ṅ

ḃ

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b

 . (7a)

The above formulas simplify if t is the arc length, for in this case ||ṙ|| = 1.
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As a simple example (which is equivalent to our shortest path problem) consider a
polymer confined in a plane. Assume the polymer’s end-points are fixed at (x, y) = (0, 0)
and (x, y) = (0, L), respectively, and that the ground-state configuration corresponds to a
straight line connecting these two points. Denoting the tension1 by γ, adopting the param-
eterization y = h(x) for the polymer and assuming that the bending energy is negligible,
the energy relative to the ground-state is given by

E = γ

[∫ L

0
dx
√

1 + h2x − L
]
, (8)

where hx = h′(x). Restricting ourselves to small deformations, |hx| � 1, we may approxi-
mate

E ' γ

2

∫ L

0
dxh2x. (9)

Minimizing this expression with respect to the polymer shape h yields the Euler-Lagrange
equation

hxx = 0. (10)

17.2 2D differential geometry

We now consider an orientable surface in R3. Possible local parameterizations are

F (s1, s2) ∈ R3 (11)

where (s1, s2) ∈ U ⊆ R2. Alternatively, if one chooses Cartesian coordinates (s1, s2) =
(x, y), then it suffices to specify

z = f(x, y) (12a)

or, equivalently, the implicit representation

Φ(x, y, z) = z − f(x, y). (12b)

The vector representation (11) can be related to the ‘height’ representation (12a) by

F (x, y) =

 x
y

f(x, y)

 (13)

Denoting derivatives by F i = ∂s1F , we introduce the surface metric tensor g = (gij) by

gij = F i · F j , (14a)

abbreviate its determinant by

|g| := det g, (14b)

1γ carries units of energy/length.
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and define the associated Laplace-Beltrami operator ∇2 by

∇2h =
1√
|g|
∂i(g

−1
ij

√
|g|∂jh), (14c)

for some function h(s1, s2). For the Cartesian parameterization (13), one finds explicitly

F x(x, y) =

 1
0
fx

 , F y(x, y) =

 0
1
fy

 (15)

and, hence, the metric tensor

g = (gij) =

(
F x · F x F x · F y

F y · F x F y · F y

)
=

(
1 + f2x fxfy
fyfx 1 + f2y

)
(16a)

and its determinant

|g| = 1 + f2x + f2y , (16b)

where fx = ∂xf and fy = ∂yf . For later use, we still note that the inverse of the metric
tensor is given by

g−1 = (g−1ij ) =
1

1 + f2x + f2y

(
1 + f2y −fxfy
−fyfx 1 + f2x

)
. (16c)

Assuming the surface is regular at (s1, s2), which just means that the tangent vectors F 1

and F 2 are linearly independent, the local unit normal vector is defined by

N =
F 1 ∧ F 2

||F 1 ∧ F 2||
. (17)

In terms of the Cartesian parameterization, this can also be rewritten as

N =
∇Φ

||∇Φ||
=

1√
1 + f2x + f2y

−fx−fy
1

 . (18)

Here, we have adopted the convention that {F 1,F 2,N} form a right-handed system.
To formulate ‘geometric’ energy functionals for membranes, we still require the concept

of curvature, which quantifies the local bending of the membrane. We define a 2 × 2-
curvature tensor R = (Rij) by

Rij = N · (F ij) (19)

and local mean curvature H and local Gauss curvature K by

H =
1

2
tr (g−1 ·R) , K = det(g−1 ·R). (20)
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Adopting the Cartesian representation (12a), we have

F xx =

 0
0
fxx

 , F xy = F yx =

 0
0
fxy

 , F yy =

 0
0
fyy

 (21a)

yielding the curvature tensor

(Rij) =

(
N · F xx N · F xy

N · F yx N · F yy

)
=

1√
1 + f2x + f2y

(
fxx fxy
fyx fyy

)
(21b)

Denoting the eigenvalues of the matrix g−1 · R by κ1 and κ2, we obtain for the mean
curvature

H =
1

2
(κ1 + κ2) =

(1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy

2(1 + f2x + f2y )3/2
(22)

and for the Gauss curvature

K = κ1 · κ2 =
fxxfyy − f2xy

(1 + f2x + f2y )2
. (23)

An important result that relates curvature and topology is the Gauss-Bonnet theo-
rem, which states that any compact two-dimensional Riemannian manifold M with smooth
boundary ∂M , Gauss curvature K and geodesic curvature kg of ∂M satisfies the integral
equation ∫

M
K dA+

∮
∂M

kg ds = 2π χ(M). (24)

Here, dA is the area element on M , ds the line element along ∂M , and χ(M) the Euler
characteristic of M . The latter is given by χ(M) = 2− 2g, where g is the genus (number of
handles) of M . For example, the 2-sphere M = S2 has g = 0 handles and hence χ(S2) = 2,
whereas a two-dimensional torus M = T2 has g = 1 handle and therefore χ(T2) = 0.

Equation (24) implies that, for any closed surface, the integral over K is always a
constant. That is, for closed membranes, the first integral in Eq. (24) represents just a
trivial (constant) energetic contribution.

17.3 Minimal surfaces

Minimal surfaces are surfaces that minimize the area within a given contour ∂M ,

A(M |∂M) =

∫
M
dA = min! (25)

Assuming a Cartesian parameterization z = f(x, y) and abbreviating fi = ∂if as before,
we have

dA =
√
|g| dxdy =

√
1 + f2x + f2y dxdy =: L dxdy, (26)
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and the minimum condition (25) can be expressed in terms of the Euler-Lagrange equations

0 =
δA

δf
= −∂i

∂L

∂fi
. (27)

Inserting the Lagrangian L =
√
|g|, one finds

0 = −

∂x
 fx√

1 + f2x + f2y

+ ∂y

 fy√
1 + f2x + f2y

 (28)

which may be recast in the form

0 =
(1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy

(1 + f2x + f2y )3/2
= −2H. (29)

Thus, minimal surfaces satisfy

H = 0 ⇔ κ1 = −κ2, (30)

implying that each point of a minimal surface is a saddle point.

17.4 Helfrich’s model

Assuming that lipid bilayer membranes can be viewed as two-dimensional surfaces, Hel-
frich proposed in 1973 the following geometric curvature energy per unit area for a closed
membrane

ε =
kc
2

(2H − c0)2 + kGK, (31)

where constants kc, kG are bending rigidities and c0 is the spontaneous curvature of the
membrane. The full free energy for a closed membrane can then be written as

Ec =

∫
dA ε+ σ

∫
dA+ ∆p

∫
dV, (32)

where σ is the surface tension and ∆p the osmotic pressure (outer pressure minus inner
pressure). Minimizing F with respect to the surface shape, one finds after some heroic
manipulations the shape equation2

∆p− 2σH + kc(2H − c0)(2H2 + c0H − 2K) + kc∇2(2H − c0) = 0, (33)

where ∇2 is the Laplace-Beltrami operator on the surface. The derivation of Eq. (33) uses
our earlier result

δA

δf
= −2H, (34)

2The full derivation can be found in Chapter 3 of Z.-C. Ou-Yang, Geometric Methods in the Elastic
Theory of Membranes in Liquid Crystal Phases(World Scientific,Singapore, 1999).
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and the fact that the volume integral may be rewritten as3

V =

∫
dV =

∫
dA

1

3
F ·N , (35)

which gives

δV

δf
= 1, (36)

corresponding to the first term on the rhs. of Eq. (33).
For open membranes with boundary ∂M , there is no volume constraint and a plausible

energy functional reads

Eo =

∫
dA ε+ σ

∫
dA+ γ

∮
∂M

ds, (37)

where γ is the line tension of the boundary. In this case, variation yields not only the
corresponding shape equation but also a non-trivial set of boundary conditions.

3Here, we made use of the volume formula dV = 1
3
h dA for a cone or pyramid of height h = F ·N .
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