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We have shown, through two different arguments, that the density of random walkers
on a one dimensional lattice obeys the diffusion equation,

∂n

∂t
= D

∂2n

∂x2
. (1)

This description is valid whenever examining the dynamics of large quantities of random
walkers on scales much larger than the lattice spacing. As the next step, it is important to
understand how to solve this equation, as the same mathematical problem will arise later on
in our studies of fluid motion. For instance we would like to know the solution to the above
equation, subject to the initial condition n(x, t = 0) = n0(x) and the boundary conditions
that n vanishes at ±∞.

There are two basic techniques for solving this, each of which relies on a different method
for representing the solution. In both cases, the central idea is that since the equation is
linear, it is possible to “break down” any initial state into a linear combination of simpler
problems. By solving the simpler problems explicitly it is then possible to reconstruct the
general solution.

3 Fourier method

This method relies on the fact that it is possible to express n(x, t) in a basis of plane waves1,
i.e.

n(x, t) =
1

2π

∫ ∞
−∞

eikxn̂(k, t)dk. (2)

As a complement to (2), the Fourier coefficients for a given distribution are found using the
Fourier transform

n̂(k, t) =

∫ ∞
−∞

e−ikxn(x, t)dx, (3)

and we define n̂0(k) to be the Fourier coefficients of the initial condition n0(x).
The strength of this approach is that it is simple to solve the diffusion equation for a

single plane wave. For example, integrating the diffusion equation in the following manner∫ ∞
−∞

∂n

∂t
e−ikxdx =

∫ ∞
−∞

D
∂2n

∂x2
e−ikxdx (4)

gives
∂n̂(k, t)

∂t
= (ik)2Dn̂(k, t) = −k2Dn̂(k, t). (5)

Given the initial condition n0(x)→ n̂0(k) the solution of (5) is

n̂(k, t) = n̂0(k)e−Dk
2t. (6)

1An intuitive way of thinking is to note that a plane wave can be written as eikx = cos(kx) + i sin(kx).
The Fourier transform thus can be interpreted as expressing a (complex) function as a superposition of real
and complex sinusoidal waves. The Fourier coefficient n̂(k, t) describes how large the contribution of a wave
with wave vector k ∝ 1/λ, with λ the wavelength, is in this superposition.
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The solution of the original problem is therefore

n(x, t) =
1

2π

∫ ∞
−∞

n̂0(k)eikx−Dk
2tdk. (7)

We note that the high-wavenumber components (which correspond to sharp gradients) are
rapidly damped, emphasising the smoothing property of diffusion.

3.1 Example

Consider a distribution that is initially Gaussian (normal) about the point x = 0 at time
t = 0, with standard deviation σ,

n(x, 0) =
1√

2πσ2
e−

x2

2σ2 . (8)

Note that in the limit where σ → 0, this distribution corresponds to the Dirac delta-
function δ(x), a function which is localized at zero. We come back to this limit again at the
end of the example.

The Fourier transform of the above initial distribution is

n̂0(k) =
1√

2πσ2

∫ ∞
−∞

e−ikx−
x2

2σ2 dx =
1√

2πσ2

∫ ∞
−∞

e
−
(
x2

2σ2
+ikx

)
dx. (9)

Completing the square for the exponent

x2

2σ2
+ ikx =

1

2σ2
(
x2 + 2σ2ikx

)
=

1

2σ2

[(
x+ ikσ2

)2
+ k2σ4

]
. (10)

enables (9) to be rewritten as

n̂0(k) =
e−

k2σ2

2

√
2πσ2

∫ ∞
−∞

e−
(x+ikσ2)2

2σ2 dx. (11)

To calculate the above integral, which involves a complex integrand, we use the Cauchy
integral formula. It states that for a complex function f(z) ∈ C, z ∈ C, integration along a
closed path in the complex plane is zero, provided that f(z) has no poles inside the path:∮

f(z)dz = 0 (12)

Introducing the substitution z = x+ ikσ2, dz = dx, the integral (11) can be rewritten as

n̂0(k) =
e−

k2σ2

2

√
2πσ2

lim
R→∞

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz (13)

Let’s keep R finite for the moment. We can then think of the integral as one segment of a
closed curve with rectangular shape:

0 =

∮
e−

z2

2σ2 dz

=

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz +

∫ R

R+ikσ2

e−
z2

2σ2 dz +

∫ −R
R

e−
z2

2σ2 dz +

∫ −R+ikσ2

−R
e−

z2

2σ2 dz (14)
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In the limit R → ∞, the second as well as the last integral vanish due to the exponential
damping with large R, leading to

lim
R→∞

∫ R+ikσ2

−R+ikσ2

e−
z2

2σ2 dz = lim
R→∞

∫ R

−R
e−

z2

2σ2 dz . (15)

Inserting this into Eq. (13), we obtain

n̂0(k) =
e−

k2σ2

2

√
2πσ2

∫ ∞
−∞

e−
x2

2σ2 dx. (16)

This means that we can basically drop the imaginary part in the original integral, Eq. (11).
From 18.01 we know that ∫ ∞

−∞
e−x

2
=
√
π,

so by making a change of variable y = x/
√

2σ2 we have that

n̂0(k) = e−
k2σ2

2 . (17)

This result is worth keeping in mind: The Fourier transform of a Gaussian is a Gaussian.
To obtain the full solution of the diffusion equation in real space, we have to insert n̂0(k)

into (2),

n(x, t) =
1

2π

∫ ∞
−∞

eikx−Dk
2t−k2σ2/2dk. (18)

We can do a bit of rearranging to get

n(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2(Dt+σ2/2)dk . (19)

As before we complete the square for the exponent,

k2
(
Dt+

σ2

2

)
− ikx =

(
Dt+

σ2

2

){[
k − ix

2(Dt+ σ2/2)

]2
+

x2

4 (Dt+ σ2/2)2

}
, (20)

so that the integral becomes

n(x, t) =
e
− x2

4(Dt+σ2/2)

2π

∫ ∞
−∞

e
−(Dt+σ2/2)

[
k− ix

2(Dt+σ2/2)

]2
dk. (21)

This is essentially the same integral that we had before, so we drop the imaginary part and
change the integration variable, giving the result

n(x, t) =
e
− x2

4(Dt+σ2/2)√
4π(Dt+ σ2/2)

. (22)

This is the solution of the diffusion equation starting from a Gaussian distribution at time
t = 0.
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Note:

• Introducing σ̃2 = 2(Dt+σ2/2), the solution is a Gaussian with a standard deviation σ̃,
i.e. the width of the solution grows like

√
Dt in time. Similarly, the amplitude

decreases like 1√
Dt

.

• Let us substitute td = σ2/(2D). The solution then can be written as

n(x, t) =
e
− x2

4D(t+td)√
4πD(t+ td)

. (23)

Remember that in the limit td = σ2

2D → 0 the initial condition (8) corresponds to
a Dirac delta function. Thus an initially Gaussian distribution of particles that is
diffusing may be viewed as having originated from a delta function a time td ago.
Indeed, it can be shown that diffusion will cause any form of particle distribution
initially localised about zero to eventually look like a Gaussian.

4 Green’s function method

This method relies on another trick for representing the solution, that is somewhat more
intuitive. Now, instead of representing n in a basis of plane wave states, we will express it
as a basis of states which are localised in position. This is done by using the so-called Dirac
delta function, denoted δ(x−x0). You should think of this of a large spike of unit area that
is centered exactly at the position x0. The definition of δ is that given any function2 f(x),∫ ∞

−∞
f(x′) δ(x− x′)dx′ = f(x). (24)

We can represent the initial distribution of particles n(x, 0) = n0(x) as a superposition
of δ-functions

n0(x) =

∫ ∞
−∞

n0(x
′) δ(x− x′) dx′. (25)

This formula decomposes n0 into a continuous series of “spikes”. The idea is to then
understand how each spike individually evolves and then superimpose the evolution of each

2Intuitively, one can obtain the Dirac δ-function from the normalized Gaussian (8) by letting σ → 0.
Derivatives of order n of the δ-function, denoted by δ(n), can be defined by partial integration∫ ∞

−∞
f(x′) δ(n)(x− x′) dx′ = (−1)n

∫ ∞
−∞

f (n)(x′) δ(x− x′) dx′.

The Fourier transformation of the δ-function is given by

δ̂(k) =

∫ ∞
−∞

e−ikxδ(x) dx = 1.

Applying the inverse transformation yields a useful integral representation of the Dirac δ-function

δ(x) =
1

2π

∫ ∞
−∞

eikxδ̂(k) dk =
1

2π

∫ ∞
−∞

eikx dk.
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spike to find the final density distribution. We define the Green’s function G(x − x′, t) so
that G(x− x′, 0) = δ(x− x′), and

n(x, t) =

∫ ∞
−∞

G(x− x′, t) n0(x′) dx′. (26)

Plugging this into the diffusion equation we see that∫ ∞
−∞

n0(x
′)
∂G(x− x′, t)

∂t
dx′ = D

∫ ∞
−∞

n0(x
′)
∂2G(x− x′, t)

∂x2
dx′. (27)

Thus G(x − x′, t) obeys the diffusion equation and we have reduced the problem to the
mathematics of solving the diffusion equation for the localised initial condition δ(x− x′).

There are many ways of solving this problem. The one in most textbooks is to actually
use the Fourier decomposition of δ(x−x′) and solve the equation in Fourier space, and then
transform back into real space. This is an advisable procedure as the Fourier transform
of δ is very simple3; see problem 2(a), problem set 1. We will advocate another procedure
however, that is more elegant and uses an idea that we will return to later in our studies of
fluids. The idea is to use dimensional analysis to determine the solution. If we look at the
diffusion equation

∂n

∂t
= D

∂2n

∂x2
(28)

we see that roughly ‘∂/∂t’ ∼ ‘∂2/∂x2’. (I’ve written this in quotes because there is a sense
in which this equality is meaningless.) What I mean by it is that if you have a function
n which obeys a diffusion equation, taking a single time derivative of the function gives
a number of about the same size as when you take two spatial derivatives. This means
that the characteristic length scale over which n varies is of order

√
t. Now, since the

initial distribution δ is perfectly localised, we expect that at time t, G(x − x′) will have a
characteristic width

√
t. Thus, we guess a (so-called) similarity solution

G(x− x′, t) = A(t) F

(
x− x′√

t

)
. (29)

The time dependence of A(t) is determined by the conservation of particles. Since∫ ∞
−∞

ndx =

∫ ∞
−∞

A(t) F

(
x√
t

)
dx = A(t)

√
t

∫ ∞
−∞

F (y)dy (30)

must be constant in time (we have changed variables from x to y = x/
√
t), we see that

A(t) =
A0√
t

(31)

for some constant A0. Now let’s just plug in

G(x, t) =
A0√
t
F (x/

√
t)

3Note that in the limit td = σ2/(2D) → 0 the initial condition (8) approaches a Dirac delta function,
so we have already ‘solved’the problem: equation (23) tells us that an initially Gaussian distribution of
particles that is diffusing may be viewed as having originated from a delta function a time td ago.
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into the diffusion equation. This gives us the following ordinary differential equation for F (y)

1

t
3
2

(
−1

2
F − 1

2
yF ′
)

=
1

t
3
2

DF ′′. (32)

Cancelling out the time factors and integrating this equation once gives

−1

2
Fy = DF ′. (33)

This equation can be immediately integrated to give F (y) = F0e
−y2/4D, and thus

G(x− x′, t) =
F0√
t
e−

(x−x′)2
4Dt , (34)

where the constant F0 = 1/
√

4πD is determined by requiring that
∫
dxG = 1.

Mean square displacement We would like to determine 〈x(t)2〉 for a collection of par-
ticles starting at x0 = 0. Since G(x − x0, t) is the solution of the diffusion equation with
initial condition δ(x− x0), we can compute the mean square displacement from

〈
x(t)2

〉
=

∫ ∞
−∞

dx x2G(x, t)

=

∫ ∞
−∞

dx
x2√
4πDt

e−
x2

4Dt

=

√
α√
π

∫ ∞
−∞

dx x2e−αx
2

(35)

where α = 1/(4Dt). To evaluate the integral, note that∫ ∞
−∞

dx x2e−αx
2

= − d

dα

∫ ∞
−∞

dx e−αx
2

= − d

dα

√
π

α
=

π

2α3/2
. (36)

which then gives 〈
x(t)2

〉
=

1

2α
= 2Dt. (37)

We have thus recovered the fundamental result that the mean square displacement of Brow-
nian particles grows linearly in time.
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5 Generalizations of the diffusion equation

5.1 Sedimentation

Consider spherical particles diffusing under the effect of a constant drift velocity u in one
dimension, described by the conservation law

∂n

∂t
= − ∂

∂x
Jx (38)

with current

Jx = un−D ∂

∂x
n. (39)

Interpreting x > 0 as the distance from the bottom of a vessel and assuming reflective
boundaries at x = 0, we may think of u arising from the effects of gravity

u =
−gm∗
6πηa

(40)

where g is the gravitational acceleration, a and m∗ > 0 denote radius and effective bouyant
mass4 of the particles, and η the viscosity of the fluid. The stationary zero-current solution,
satisfying Jx = 0, is obtained by integrating

un−D ∂

∂x
n = 0, (41)

yielding an exponentially decaying density profile

n(x) = Ce−x/λ (42)

with characteristic sedimentation length

λ = −D
u

=
6πηaD

gm∗
> 0. (43)

Sutherland and Einstein showed in 1905 that the diffusion constant D of a small particle
moving in a fluid is given by

D =
kT

6πηa
, (44)

where k is the Boltzmann’s constant and T the temperature (measured on a Kelvin scale),
implying that

λ =
kT

gm∗
. (45)

Note that particle shape (and mass density) enter through the buoyant mass m∗.

4The buoyant mass m∗ is defined as the difference between the particle mass and the mass of the liquid
that is displaced by the particle. Particles heavier than water have m∗ > 0 whereas m∗ < 0 for gas bubbles.
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5.2 Linear stability analysis for a simple pattern formation model

Warm-up: Linear stability analysis of fixed points for ODEs Consider a particle
(e.g., bacterium) moving in one-dimension with velocity v(t), governed by the nonlinear
ODE

d

dt
v(t) = −(α+ βv2)v =: f(v). (46)

We assume that the parameter β is strictly positive, but allow α to be either positive or
negative. The fixed points of Eq. (46) are, by definition, velocity values v∗ that satisfy the
condition f(v∗) = 0. For α > 0, there exists only one fixed points v0 = 0. For α < 0,
we find the three fixed points v0 = 0 and v± = ±

√
−α/β. That is, the system undergoes

pitchfork bifurcation at the critical parameter value α = 0.
To evaluate the stability of a fixed points v∗, we can linearize the nonlinear equation (46)

in the vicinity of the fixed points by considering small perturbations

v(t) = v∗ + δv(t). (47)

By inserting this perturbation ansatz into (46) and noting that, to leading order,

f(v + δv) ' f(v∗) + f ′(v∗) δv = f ′(v∗) δv, (48)

we find that the growth of the perturbation δv(t) is governed by the linear ODE

d

dt
δv(t) = f ′(v∗) δv(t), (49)

which has the solution

δv(t) = δv(0) ef
′(v∗)t. (50)

If f ′(v∗) > 0, then the perturbation will grow and the fixed point is said to be linearly
unstable. whereas for f ′(v∗) < 0 the perturbation will decay implying that the fixed point
is stable.

For our specific example, we find

f ′(v0) = −α , f ′(v±) = −(α+ 3v2±) = 2α (51)

This means that for α > 0, the fixed point v0 = 0 is stable, indicating that the particle will
be damped to rest in this case. By contrast, for α < 0, the fixed point v0 becomes unstable
and the new fixed points v± = ±

√
−α/β become stable; that is, for α < 0 the particle will

be driven to a non-vanishing stationary speed. Equation (46) with α < 0 defines one of the
simplest models of active particle motion.

Stability analysis for PDEs The above ideas can be readily extended to PDEs. To
illustrate this, consider a scalar density n(x, t) on the interval [0, L], governed by the diffusion
equation

∂n

∂t
= D

∂2n

∂x2
(52a)
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with reflecting boundary conditions,

∂n

∂x
(0, t) =

∂n

∂t
(L, t) = 0. (52b)

This dynamics defined by Eqs. (52) conserves the total ‘mass’

N(t) =

∫ L

0
dx n(x, t) ≡ N0, (53)

and a spatially homogeneous stationary solution is given by

n0 = N0/L. (54)

To evaluate its stability, we can consider wave-like perturbations

n(x, t) = n0 + δn(x, t) , δn = ε eσt−ikx. (55)

Inserting this perturbation ansatz into (52) gives the dispersion relation

σ(k) = −Dk2 ≥ 0, (56)

signaling that n0 is a stable solution, because all modes with |k| > 0 become exponentially
damped.

Swift-Hohenberg model As a simple generalization of (52), we consider the simplest
isotropic fourth-order PDE model for a non-conserved real-valued order-parameter ψ(x, t)
in two space dimensions x = (x, y), given by

∂tψ = F (ψ) + γ0∇2ψ − γ2(∇2)2ψ, (57)

where ∂t = ∂/∂t denotes the time derivative, and ∇ = (∂/∂x, ∂/∂y) is the two-dimensional
Laplacian. The force F is derived from a Landau-potental U(ψ)

F = −∂U
∂ψ

, U(ψ) =
a

2
ψ2 +

b

3
ψ3 +

c

4
ψ4, (58)

where c > 0 to ensure stability. The appearance of higher-order spatial derivatives means
that this model accounts for longer-range effects than the diffusion equation. This becomes
immediately clear when one writes a (57) in a discretized form as necessary, for example,
when trying to solve this equation numerically on a space-time grid: second-order spatial
derivatives require information about field values at nearest neighbors, whereas fourth-order
derivatives involves field values at next-to-nearest neighbors. In this sense, higher-than-
second-order PDE models, such as the Swift-Hohenberg model (57), are more ‘nonlocal’
than the diffusion equation (52).

The field ψ could, for example, quantify local energy fluctuations, local alignment, phase
differences, or vorticity. In general, it is very challenging to derive the exact functional
dependence between macroscopic transport coefficients (a, b, c, γ1, γ2) and microscopic in-
teraction parameters. With regard to practical applications, however, it is often sufficient
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to view transport coefficients as purely phenomenological parameters that can be deter-
mined by matching the solutions of continuum models, such as the one defined by Eqs. (57)
and (58), to experimental data. This is analogous to treating the viscosity in the classi-
cal Navier-Stokes equations as a phenomenological fit parameter. The actual predictive
strength of a continuum model lies in the fact that, once the parameter values have been
determined for a given set-up, the theory can be used to obtain predictions for how the
system should behave in different geometries or under changes of the boundary conditions
(externally imposed shear, etc.). In some cases, it may also be possible to deduce qualita-
tive parameter dependencies from physical or biological considerations. For instance, if ψ
describes vorticity or local angular momentum in an isolated ‘active’ fluid, say a bacterial
suspension, then transitions from a > 0 to a < 0 or γ0 > 0 to γ0 < 0, which both lead to
non-zero flow patterns, must be connected to the microscopic self-swimming speed v0 of the
bacteria. Assuming a linear relation, this suggests that, to leading order, a0 = δ−αv0 where
δ > 0 is a passive damping contribution and αv0 > 0 the active part, and similarly for γ0. It
may be worthwhile to stress at this point that higher-than-second-order spatial derivatives
can also be present in passive systems, but their effects on the dynamics will usually be
small as long as γ0 > 0. If, however, physical or biological mechanisms can cause γ0 to
become negative, then higher-order damping terms, such as the γ2-term in (57), cannot be
neglected any longer as they are essential for ensuring stability at large wave-numbers, as
we shall see next.

Linear stability analysis The fixed points of (57) are determined by the zeros of the
force F (ψ), corresponding to the minima of the potential U , yielding

ψ0 = 0 (59a)

and

ψ± = − b

2c
±
√

b2

4c2
− a

c
, if b2 > 4ac. (59b)

Linearization of (57) near ψ0 for small perturbations

δψ = ε0 exp(σ0t− ik · x) (60)

gives

σ0(k) = −(a+ γ0|k|2 + γ2|k|4). (61)

Similarly, one finds for

ψ = ψ± + ε± exp(σ±t− ik · x) (62)

the dispersion relation

σ±(k) = −
[
−(2a+ bψ±) + γ0|k|2 + γ2|k|4

]
. (63)

In both cases, k-modes with σ > 0 are unstable. From Eqs. (61) and (63), we see im-
mediately that γ2 > 0 is required to ensure small-wavelength stability of the theory and,
furthermore, that non-trivial dynamics can be expected if a and/or γ0 take negative values.
In particular, all three fixed points can become simultaneously unstable if γ0 < 0.
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Figure 1: Numerical illustration of structural transitions in the order-parameter ψ for sym-
metric (a) mono-stable and (b) bi-stable potentials U(ψ) with b = 0. (c) Snapshots of the
order-parameter field ψ at t = 500, scaled by the maximum value ψm, for a mono-stable
potential U(ψ) and homogeneous random initial conditions. (b) Snapshots of the order-
parameter at t = 500 for a bi-stable potential. For γ0 � −(2π)2γ2/L

2, increasingly more
complex quasi-stationary structures arise; qualitatively similar patterns have been observed
in excited granular media and chemical reaction systems.

Symmetry breaking In the context biological systems, the minimal model (57) is useful
for illustrating how microscopic symmetry-breaking mechanisms that affect the motion of
individual microorganisms or cells can be implemented into macroscopic field equations that
describe large collections of such cells. To demonstrate this, we interpret ψ as a vorticity-
like 2D pseudo-scalar field that quantifies local angular momentum in a dense microbial
suspension, assumed to be confined to a thin quasi-2D layer of fluid. If the confinement
mechanism is top-bottom symmetric, as for example in a thin free-standing bacterial film,
then one would expect that vortices of either handedness are equally likely. In this case,
(57) must be invariant under ψ → −ψ, implying that U(ψ) = U(−ψ) and, therefore, b = 0
in (58). Intuitively, the transformation ψ → −ψ corresponds to a reflection of the observer
position at the midplane of the film (watching the 2D layer from above vs. watching it from
below).

The situation can be rather different, however, if we consider the dynamics of microor-
ganisms close to a liquid-solid interface, such as the motion of bacteria or sperms cells in
the vicinity of a glass slide (Fig. 2). In this case, it is known that the trajectory of a
swimming cell can exhibit a preferred handedness. For example, the bacteria Escherichia
coli and Caulobacter have been observed to swim in circles when confined near to a solid
surface. More precisely, due to an intrinsic chirality in their swimming apparatus, these
organisms move on circular orbits in clockwise (anticlockwise) direction when viewed from
inside the bulk fluid (glass surface). Qualitatively similar behavior has also been reported
for sea urchin sperm swimming close to solid surfaces.

Hence, for various types of swimming microorganisms, the presence of the near-by no-
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slip boundary breaks the reflection symmetry, ψ 6→ −ψ. The simplest way of accounting for
this in a macroscopic continuum model is to adapt the potential U(ψ) by permitting values
b 6= 0 in (58). The result of a simulation with b > 0 is shown in Fig. 2a. In contrast to
the symmetric case b = 0 (compare Fig. 1c), an asymmetric potential favors the formation
of stable hexagonal patterns (Fig. 2a) – such self-assembled hexagonal vortex lattices have
indeed been observed experimentally for highly concentrated spermatozoa of sea urchins
(Strongylocentrotus droebachiensis) near a glass surface (Fig. 2b).

Figure 2: Effect of symmetry-breaking in the Swift-Hohenberg model. (a) Stationary hexag-
onal lattice of the pseudo-scalar angular momentum order-parameter ψ, scaled by the max-
imum value ψm, as obtained in simulationsof Eqs. (57) and (58) with b > 0, corresponding
to a broken reflection symmetry ψ 6→ −ψ. Blue regions correspond to clockwise motions.
(b) Hexagonal vortex lattice formed spermatozoa of sea urchins (Strongylocentrotus droe-
bachiensis) near a glass surface. At high densities, the spermatozoa assemble into vortices
that rotate in clockwise direction (inset) when viewed from the bulk fluid.
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