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1 Math basics

1.1 Derivatives and differential equations

In this course, we will mostly deal with ordinary differential equations (ODEs) and partial
differential equations (PDEs) real-valued scalar or vector fields. Usually, non-bold symbols
will be reserved for scalar objects f (e.g., mass density) and bold font f = (f1, f2, . . .)
for vector-valued objects, such as time-dependent position vectors x(t) or velocity fields
v(t,x) = (v1(t,x), v2(t,x), . . .).

ODEs are equations that contain derivatives of scalar or vector-valued or, more generally,
tensor-valued functions f(x) of a single variable x. Depending on context, we will denote
derivatives of such functions by

d

dx
f(x) = f ′ = fx (1)

For time derivatives, we will often use over-dots

d

dt
g(t) = ġ = gt (2)

PDEs are equations that contain derivatives of scalar or vector-valued functions f(x) =
f(x1, x2, . . .) of more than one variable. Depending on context, we will denote partial
derivatives by

∂f

∂xi
= ∂xif = ∂if = fxi = f,i (3)

In standard 3D Cartesian coordinates (x1, x2, x3) defined with respect to some global
orthonormal frame Σ, spanned by the basis vectors (e1, e2, e3), the gradient-operator ∇ is
defined by

∇ = ∂xe1 + ∂ye2 + ∂ze3 =
3∑
i=1

∂iei ≡ ∂iei, (4)

where we have introduced the Einstein summation convention on the rhs. Applying ∇ to a
scalar function f gives a vector

∇f = (∂if)ei = (∂1f, ∂2f, . . .) (5)

whereas application of ∇ to a tensorial quantity depends on the choice of the product: For
instance, in the case of a 3D vector field v(t,x), we can obtain a scalar field called divergence

divv = ∇ · v ≡ ∂ivi, (6a)

another (pseudo-)vector field called curl

curlv = ∇∧ v ≡ (εijk∂jvk) (6b)

and the gradient matrix

∇v ≡ (∂ivj) (6c)
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In particular, we have

tr∇v = ∂ivi = divv (6d)

The (scalar) Laplacian operator 4 in Cartesian coordinates is defined by

4 ≡ ∇2 ≡
∑
i

∂i∂i = ∂ii. (7)

Please recall how these operators look in cylindrical and spherical coordinates.

1.2 Linear and nonlinear objects

A mathematical operator - or, more generally, some property – P defined on vectors or
functions f, g, is said to be linear, if it satisfies

P(αf + βg) = αP(f) + βP(g) (8)

Important examples are derivatives, integrals and expectation values.
A famous linear ODE, is the simple harmonic oscillator equation

ẍ(t) = −ω2x(t) (9)

which has fundamental sin- and cos-solutions, that can be used to construct more general
solutions by superposition.

An important (homogeneous) linear PDE, is Laplace’s equation

∇2f(x) = 0. (10)

Functions f satisfying this equation are called harmonic.
Later on, we will often try to approximate nonlinear PDEs through linear PDEs.

1.3 Linear stability analysis of fixed points for ODEs

Consider a particle moving in one-dimension with velocity v(t), governed by the nonlinear
ODE

d

dt
v(t) = −(α+ βv2)v =: f(v). (11)

We assume that the parameter β is strictly positive, but allow α to be either positive or
negative. The fixed points of Eq. (11) are, by definition, velocity values v∗ that satisfy the
condition f(v∗) = 0; that is, fixed points are constant solutions. For α > 0, there exists only
one fixed point v0 = 0. For α < 0, we find the three fixed points v0 = 0 and v± = ±

√
−α/β.

This means the system undergoes pitchfork bifurcation at the critical parameter value α = 0.
To evaluate the stability of a fixed points v∗, we can linearize the nonlinear equation (11)

in the vicinity of the fixed points by considering small perturbations

v(t) = v∗ + ε(t). (12)
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Inserting this perturbation ansatz into (11) and keeping in mind that f(v∗) = 0 for fixed
points, we can Taylor-expand the rhs. of (11) and find to leading order

f(v∗ + ε) ' f(v∗) + f ′(v∗) ε = f ′(v∗) ε, (13)

The growth of the perturbation ε(t) is therefore governed by the linear ODE

d

dt
ε = f ′(v∗) ε, (14a)

which has the solution

ε(t) = ε(0) ef
′(v∗)t. (14b)

If f ′(v∗) > 0, then the perturbation will grow and the fixed point is said to be linearly
unstable, whereas for f ′(v∗) < 0 the perturbation will decay implying that the fixed point
is stable.

For our specific example, we find

f ′(v0) = −α , f ′(v±) = −(α+ 3βv2
±) = 2α (15)

This means that for α > 0, the fixed point v0 = 0 is stable, indicating that the particle will
be damped to rest in this case. By contrast, for α < 0, the fixed point v0 becomes unstable
and the new fixed points v± = ±

√
−α/β become stable; that is, for α < 0 the particle will

be driven to a non-vanishing stationary speed. Equation (11) with α < 0 defines one of the
simplest models of active particle motion.

1.4 Complex numbers and functions

Although we will mostly deal with real fields in this course, it is sometimes helpful to rewrite
equations in terms of complex quantities, especially, when dealing with 2D hydrodynamic
problems. Complex numbers are 2D extensions of real numbers,

z = x+ iy ∈ C , i2 = −1 (16)

with real part <z = x ∈ R and imaginary part =z = y ∈ R. The complex conjugate of a
real number is given by

z̄ = x− iy (17)

and corresponds to a reflection at the real axis or, equivalently, at the line =(z) = 0.
Addition of complex numbers is linear

z = z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) = x+ iy (18)

corresponding to the addition of the two 2D vectors (x1, y1) and (x2, y2). In contrast,
complex multiplication mixes real and imaginary parts

z = z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + y1x2) = x+ iy (19)
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A complex function is a map

f : C→ C , f(z) = u(x, y) + iv(x, y) (20)

that can be interpreted as a map from R2 → R2. We therefore sometimes also use the
vector notation

f(z) = (u(x, y), v(x, y)) (21)

A function f is said to be complex differentiable (or analytic or holomorphic) if it satisfies
the Cauchy-Riemann equations

∂xu = ∂yv , ∂yu = −∂xv (22a)

By differentiating again, we find

∂2
xu = ∂x∂yv = −∂2

yu = 0 ⇔ (∂2
x + ∂2

y)u = 0 (22b)

∂2
yv = ∂y∂xu = −∂2

xv = 0 ⇔ (∂2
x + ∂2

y)v = 0 (22c)

This means that analytic functions f = (u, v) are harmonic, satisfying Laplace’s equation

∇2f = 0 (22d)

An analytic function that we will frequently encounter is the exponential function

exp(z) =

∞∑
k=0

zn

k!
= 1 +

z

1!
+
z

2!
+ . . . (23)

Euler’s formula

eiφ = cosφ+ i sinφ , φ ∈ R (24)

relates exp to the trigonometric sin-and cos-functions.
When dealing with axisymmetric problems it is often advantageous to use the polar

representation of a complex number

z = reiφ , r = |z| =
√
zz̄ ∈ R+

0 , φ = arctan 2(y, x) ∈ [0, 2π) (25)

From the properties of the exp-function, it follows that the multiplication of complex num-
bers

z = z1z2 = r1e
iφ1r2e

iφ2 = r1r2e
i(φ1+φ2) (26)

corresponds to a combined rotation and dilatation.
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1.5 Fourier transforms

A main advantage of Fourier transformations is that they translate linear (ordinary and
partial) differential equations into simpler algebraic equations.

The Fourier transform of a function f(t) is defined by

f̂(ω) =
1√
2π

∫ ∞
−∞

dt e−iωt f(t), (27a)

its the inverse is given by

f(t) =
1√
2π

∫ ∞
−∞

dω eiωt f̂(ω) (27b)

In particular, for the Dirac delta-function δ(t)

δ̂(ω) =
1√
2π

∫ ∞
−∞

dt e−iωt δ(t) =
1√
2π
, (28a)

yielding the useful Fourier representation

δ(t) =
1

2π

∫ ∞
−∞

dω eiωt (28b)

These definitions and properties extend directly to higher dimensions.

Example Consider a Gaussian distribution centered about the point x = 0 with standard
deviation σ,

n(x) =
1√

2πσ2
e−

x2

2σ2 . (29)

Note that in the limit where σ → 0, this distribution corresponds to the Dirac delta-
function δ(x), a function which is localized at zero.

The Fourier transform of the above distribution is

n̂(k) =
1√

2πσ2

1√
2π

∫ ∞
−∞

dx e−ikx−
x2

2σ2 =
1

2πσ

∫ ∞
−∞

dx e
−
(
x2

2σ2
+ikx

)
(30)

Completing the square for the exponent

x2

2σ2
+ ikx =

1

2σ2

(
x2 + 2σ2ikx

)
=

1

2σ2

[(
x+ ikσ2

)2
+ k2σ4

]
(31)

enables (30) to be rewritten as

n̂(k) =
e−

k2σ2

2

2πσ

∫ ∞
−∞

dx e−
(x+ikσ2)2

2σ2 (32)

To calculate the above integral, which involves a complex integrand, we use the Cauchy
integral formula. It states that for a complex function f(z) ∈ C, z ∈ C, integration along a
closed path in the complex plane is zero, provided that f(z) has no poles inside the path:∮

dz f(z) = 0 (33)
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Introducing the substitution z = x+ ikσ2, dz = dx, the integral (32) can be rewritten as

n̂(k) =
e−

k2σ2

2

2πσ
lim
R→∞

∫ R+ikσ2

−R+ikσ2

dz e−
z2

2σ2 (34)

Let’s keep R finite for the moment. We can then think of the integral as one segment of a
closed curve with rectangular shape:

0 =

∮
dz e−

z2

2σ2

=

∫ R+ikσ2

−R+ikσ2

dz e−
z2

2σ2 +

∫ R

R+ikσ2

dz e−
z2

2σ2 +

∫ −R
R

dz e−
z2

2σ2 +

∫ −R+ikσ2

−R
dz e−

z2

2σ2 (35)

In the limit R → ∞, the second as well as the last integral vanish due to the exponential
damping with large R, leading to

lim
R→∞

∫ R+ikσ2

−R+ikσ2

dz e−
z2

2σ2 = lim
R→∞

∫ R

−R
dz e−

z2

2σ2 (36)

Inserting this into Eq. (34), we obtain

n̂(k) =
e−

k2σ2

2

2πσ

∫ ∞
−∞

dx e−
x2

2σ2 (37)

This means that we can basically drop the imaginary part in the original integral, Eq. (32).
From 18.01 we know that ∫ ∞

−∞
dx e−x

2
=
√
π,

so by making a change of variable y = x/
√

2σ2 we have that

n̂(k) =
1√
2π
e−

k2σ2

2 . (38)

This result is worth keeping in mind: The Fourier transform of a Gaussian is a Gaussian.
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2 Dimensional analysis

Before moving on to more ‘sophisticated things’, let us think a little about dimensional
analysis and scaling. On the one hand these are trivial, and on the other they give a simple
method for getting answers to problems that might otherwise be intractable. The idea
behind dimensional analysis is very simple:

Any physical law must be expressible in any system of units that you use.

There are two consequences of this:

• One can often guess the answer just by thinking about what the dimensions of the
answer should be, and then expressing the answer in terms of quantities that are
known to have those dimensions1.

• The scientifically interesting results are always expressible in terms of quantities that
are dimensionless, not depending on the system of units that you are using.

One example of a dimensionless number relevant for fluid dynamics that we have already
encountered in the introductory class is the Reynolds number, which quantifies the relative
strength of viscous and inertial forces. Another example of dimensional analysis that we will
study in detail is the solution to the diffusion equation for the spreading of a point source.
The only relevant physical parameter is the diffusion constant D, which has dimensions of
L2/T . We denote this by writing

[D] =
L2

T

Therefore the characteristic scale over which the solution varies after time t must be
√
Dt.

This might seem like a rather simple result, but it expresses the essence of solutions to the
diffusion equation. Of course, we will be able to solve the diffusion equation exactly, so
this argument wasn’t really necessary. In practice, however, we will rarely find useful exact
solutions to the Navier-Stokes equations, and so dimensional analysis will often give us
insight before diving into the mathematics or numerical simulations. Before formalizing our
approach, let us consider a few examples where simple dimensional arguments intuitively
lead to interesting results.

2.1 The pendulum

This is a trivial problem that you know quite well. Consider a pendulum with length L and
mass m, hanging in a gravitational field of strength g. What is the period of the pendulum?
We need a way to construct a quantity with units of time involving these numbers. The only
possible way to do this is with the combination

√
L/g. Therefore, we know immediately

that
τ = c

√
L/g. (39)

This result might seem trivial to you, as you will probably remember (e.g., from a previous
course) that c = 2π, if one solves the full dynamical problem for for small amplitude
oscillations. However, the above formula works even for large amplitude oscillations.

1Be careful to distinguish between dimensions and units. For example mass (M), length (L) and time (T )
are dimensions, and each of them can be measured in different units (e. g. length may be in feet or meters)
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2.2 Pythagorean theorem

Now we try to prove the Pythagorean theorem by dimensional analysis. Suppose you are
given a right triangle, with hypotenuse length L and smallest acute angle φ. The area of
the triangle is clearly

A = A(L, φ). (40)

Since φ is dimensionless, it must be that

A = L2f(φ), (41)

where f is some function we don’t know.
Now the triangle can be divided into two little right triangles by dropping a line from

the right angle which is perpendicular to the hypotenuse. The two right triangles have
hypotenuses that happen to be the other two sides of our original right triangle, let’s call
them a and b. So we know that the areas of the two smaller triangles are a2f(φ) and b2f(φ)
(where elementary geometry shows that the acute angle φ is the same for the two little
triangles as the big triangle). Moreover, since these are all right triangles, the function f is
the same for each. Therefore, since the area of the big triangle is just the sum of the areas
of the little ones, we have

L2f = a2f + b2f,

or
L2 = a2 + b2. (42)

2.3 The gravitational oscillation of a star

It is known that the sun, and many other stars undergo some mode of oscillation. The
question we might ask is how does the frequency of oscillation ω depend on the properties
of that star? The first step is to identify the physically relevant variables. These are the
density ρ, the radius R and the gravitational constant G (as the oscillations are due to
gravitational forces). So we have

ω = ω(ρ,R,G). (43)

The dimensions of the variables are [ω] = T−1, [ρ] = ML−3, [R] = L and [G] = M−1L3T−2.
The only way we can combine these to give as a quantity with the dimensions of time, is
through the relation

ω = c
√
Gρ. (44)

Thus, we see that the frequency of oscillation is proportional to the square root of the density
and independent of the radius. The determination of c requires a real stellar observation,
but we have already determined a lot of interesting details from dimensional analysis alone.
For the sun, ρ = 1.4 × 103kg/m3, giving ω ∼ 3 × 10−4s−1. The period of oscillation is
approximately 1 hour, which is reasonable. However, for a neutron star (ρ = 7×1011kgm−3)
we predict ω ∼ 7000s−1, corresponding to a period in the milli-second range.
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2.4 The oscillation of a droplet

What happens if instead of considering a large body of fluid, such as a star, we consider a
smaller body of fluid, such as a raindrop. Well, in this case we argue that surface tension γ
provides the relevant restoring force and we can neglect gravity. γ has dimensions of en-
ergy/area, so that [γ] = MT−2. The only quantity we can now make with the dimensions
of T−1 using our physical variables is

ω = c

√
γ

ρR3
, (45)

which is not independent of the radius. For water γ = 0.07Nm−1 giving us a characteristic
frequency of 3Hz for a raindrop.

One final question we might ask ourselves before moving on is how big does the droplet
have to be for gravity to have an effect? We reason that the crossover will occur when the
two models give the same frequency of oscillation. Thus, when√

ρG =

√
γ

ρR3
(46)

we find that

Rc ∼
(

γ

ρ2G

) 1
3

(47)

This gives a crossover radius of about 10m for water.

2.5 Water waves

This is a subject we will deal with in greater detail towards the end of the course, but for
now we look to obtain a basic understanding of the motion of waves on the surface of water.
For example, how does the frequency of the wave depend on the wavelength λ? This is
called the dispersion relation.

If the wavelength is long, we expect gravity to provide the restoring force, and the
relevant physical variables in determining the frequency would appear to be the mass density
ρ, the gravitational acceleration g and the wave number k = 2π/λ. The dimensions of these
quantities are [ρ] = ML−3, [g] = LT−2 and [k] = L−1. We can construct a quantity with
the dimensions of T−1 through the relation

ω = c
√
gk. (48)

We see that the frequency of water waves is proportional to the square root of the wavenum-
ber, in contrast to light waves for which the frequency is proportional to the wavenumber.

As with a droplet, we might worry about the effects of surface tension when the wave-
length gets small. In this case we replace g with γ in our list of physically relevant variables.
Given that [γ] = MT−2, the dispersion relation must be of the form

ω = c
√
γk3/ρ, (49)
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which is very different to that for gravity waves. If we look for a crossover, we find that the
frequencies of gravity waves and capillary waves are equal when

k ∼
√
ρg/γ. (50)

This gives a wavelength of 1cm for water waves.

3 Dimensionless groups

A formal justification of the dimensional analysis approach in the previous section comes
from Buckingham’s Pi Theorem. Consider a physical problem in which the dependent
parameter is a function of n − 1 independent parameters, so that we may express the
relationship among the variables in functional form as

q1 = g(q2, q3, ..., qn), (51a)

where q1 is the dependent parameter, and q2, ..., qn are the n− 1 independent parameters.
Mathematically, we can rewrite the functional relationship in the equivalent form

0 = f(q1, q2, ..., qn). (51b)

where f = q1 − g(q2, q3, ..., qn). For example, for the period of a pendulum we wrote
τ = τ(l, g,m), but we could just as well have written f(τ, l, g,m) = 0. The Buckingham Pi
theorem states that given a relation of the form (51), the n parameters may be grouped into
n−d independent dimensionless ratios, or dimensionless groups Πi, expressible in functional
form by

Π1 = G(Π2,Π3, ...,Πn−d), (52a)

or, equivalently,
0 = F (Π1,Π2, ...,Πn−d), (52b)

where d is the number of independent dimensions (mass, length, time...). The formal
proof can be found in the book Scaling, Self Similarity and Intermediate Asymptotics by
Barenblatt. The Pi theorem does not predict the functional form of F or G, and this must
be determined experimentally. The n − d dimensionless groups Πi are independent. A
dimensionless group Πi is not independent if it can be formed from a product or quotient
of other dimensionless groups in the problem.

3.1 The pendulum

To develop an understanding of how to use Buckingham’s Pi theorem, let’s first apply it
to the problem of a swinging pendulum, which we considered in the previous lecture. We
argued that the period of the pendulum τ depends on the length l and gravity g. It cannot
depend on the mass m since we cannot form a dimensionless parameter including m in our
list of physical variables. Thus

τ = τ(l, g), (53a)

or alternatively
0 = f(τ, l, g). (53b)
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We have n = 3 and d = 2, so the problem has one dimensionless group

Π1 = τ lαgβ. (54)

The relevant dimensions are [τ ] = T, [l] = L, [g] = LT−2, so for Π1 to be dimensionless
equate the exponents of the dimension to find

1− 2β = 0,

α+ β = 0,

which are satisfied if α = −1
2 and β = 1

2 . Thus

Π1 = τ
√
g/l. (55)

We thus see Π1 is just the constant of proportionality c from above. Thus we have

c = τ
√
g/l (56)

where c is a constant to be determined from an experiment.

3.2 Taylor’s blast

This is a famous example, of some historical and fluid mechanical importance. The story
goes something like this. In the early 1940’s there appeared a picture of an atomic blast on
the cover of Life magazine. GI Taylor, a fluid mechanician at Cambridge, wondered what
the energy of the blast was. When he called his colleagues at Los Alamos and asked, they
informed him that it was classified information, so he resorted to dimensional analysis. In a
nuclear explosion there is an essentially instantaneous release of energy E in a small region
of space. This produces a spherical shock wave, with the pressure inside the shock wave
several thousands of times greater than the initial air pressure, that can be neglected. How
does the radius R of this shock wave grow with time t? The relevant parameters are E, the
density of air ρ and time t. Thus

R = R(E, ρ, t) (57a)

or
0 = f(R,E, ρ, t). (57b)

The dimensions of the physical variables are [E] = ML2T−2, [t] = T, [R] = L and [ρ] =
ML−3. We have n = 4 physical variables and d = 3 dimensions, so the Pi theorem tells us
there is one dimensionless group, Π1. To form a dimensionless combination of parameters
we assume

Π1 = EtαρβRγ (58)

and equating the exponents of dimensions in the problem requires that

1 + β = 0,

α− 2 = 0,

2− 3β + γ = 0.
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It follows that α = 2, β = −1 and γ = −5, giving

Π1 =
Et2

ρR5
. (59)

Assuming that Π1 is constant gives

R = c

(
E

ρ

) 1
5

t
2
5 . (60)

The relation shows that if one measures the radius of the shock wave at various instants in
time, the slope of the line on a log-log plot should be 2/5. The intercept of the graph would
provide information about the energy E released in the explosion, if the constant c could
be determined. Since information about the development of blast with time was provided
by the sequence of photos on the cover of Life magazine, Taylor was able to determine the
energy of the blast to be 1014 Joules (he estimated c to be about 1 by solving a model
shock-wave problem), causing much embarrassment.

3.3 The drag on a sphere

Now what happens if you have two dimensionless groups in a problem? Let’s consider the
problem of the drag on a sphere. We reason that the drag force on a sphere D will depend
on the relative velocity, U , the sphere radius, R, the fluid density ρ and the fluid viscosity
µ, which has dimensions M/(LT ). Thus

D = D(U,R, ρ, µ) (61a)

or
0 = f(D,U,R, ρ, µ). (61b)

Since the physical variables are all expressible in terms of dimensions M,L and T , we have
n = 5 and d = 3, so there are two dimensionless groups. There is now a certain amount
of arbitrariness in determining these, however we look for combinations that make some
physical sense. For our first dimensionless group, we choose the Reynolds number

Π1 =
ρUR

µ
, (62)

as we know that it arises naturally when you nondimensionalize the Navier-Stokes equations.
For the second we choose the combination

Π2 = DραUβRγ , (63)

which, if we replaced D with µ, would just give the Reynolds number. Equating the
exponents of mass length and time gives, α = −1, β = −2 and γ = −2. Thus

Π2 =
D

ρU2R2
, (64)
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and this is called the dimensionless drag force. Buckingham’s Pi theorem tells us that we
must have the functional relationship

Π2 = G(Π1) (65)

or alternatively
D

ρU2R2
= G(Re). (66)

The functional dependence is determined by experiments. It is found that at high Reynolds
numbers G(Re) = 1, so that

D = ρU2R2. (67)

This is known as form drag, in which resistance to motion is created by inertial forces on
the sphere. At low Reynolds numbers G(Re) ∝ 1/Re so that

D ∝ µUR. (68)

This is Stokes drag, caused by the viscosity of the fluid.
The power of taking this approach can now be seen. Without dimensional analysis, to

determine the functional dependence of the drag on the relevant physical variables would
have required four sets of experiments to determine the functional dependence of D on
velocity, radius, viscosity and density. Now we need only perform one set of experiments
using our dimensionless parameters and we have all the information we need.

4 Hamiltonian dynamics and Liouville equation

Why do we study applied mathematics? Aside from the intellectual challenge, it is rea-
sonable to argue that we do so to obtain an understanding of physical phenomena, and
to be able to make predictions about them. Possibly the greatest example of this, and
the origin of much of the mathematics we do, came from Newton’s desire to understand
the motion of the planets, which led to him formulate his Newtonian dynamics. Over the
last two centuries, Newton’s ODE-based approach has been generalized and reformulated
to describe many classical mechanical (and other) systems. A particularly economical and
fruitful reformulation is Hamiltonian dynamics, which played an essential role in paving the
way for Schrödinger’s theory of quantum mechanics.

In this section, we will briefly review Hamiltonian dynamics, and then use it as starting
point to the derive the Liouville equation, which provides a linear PDE-based description
of a nonlinear mechanical systems. The Liouville equation and its relatives shall become
important later in class, when we will derive hydrodynamic equations for many-particle
systems.

We first demonstrate the main ideas and concepts for a basic example, the harmonic
oscillator; the generalization to more complex systems will then be straightforward.

4.1 Harmonic oscillator revisited

Newton’s equation of motion for a one-dimensional harmonic oscillator (mass m, spring
constant k) reads

mẌ = −kX, (69)
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where X(t) is the oscillator position at time t. Defining the oscillator frequency

ω =

√
k

m
(70)

we can rewrite (69) as

Ẍ = −ω2X (71a)

The solution to this linear second-order ODE with initial conditions

X(0) = x0 , Ẋ(0) = v0 (71b)

is given by

X(t;x0, v0) = x0 cos(ωt) +
v0

ω
sin(ωt). (72)

Hamiltonian formulation. An equivalent description of this system can be given
within Hamiltonian dynamics. There one starts from the Hamiltonian

H(P,X) = T (P ) + U(X) =
P 2

2m
+
kX2

2
(73a)

and the associated Hamilton equations of motion

Ẋ =
∂H

∂P
, Ṗ =

∂H

∂X
(73b)

The pair (X,P ) is called phase space coordinates, whereas X alone is often referred to as
comfiguration space coordinate. In the case of the oscillator, the first-order ODE system for
(X,P ) is explicitly given by

Ẋ =
P

m
, Ṗ = −kX (74)

which is of course equivalent to (69). The solution to this ODE system with initial conditions
X(0) = x0 and P (0) = p0 is given by

X(t;x0, p0) = x0 cos(ωt) +
p0

mω
sin(ωt) (75a)

P (t;x0, p0) = −mx0ω sin(ωt) + p0 cos(ωt) (75b)

The time-dependent vector (X(t;x0, p0), P (t;x0, p0)) describes a curve in phase space, called
the trajectory of the system.

Energy conservation. The Hamiltonian H has a natural interpretation as the energy
of the oscillator. Indeed it is conserved in time as can be seen by computing its total time
derivative

dH

dt
=

∂H

∂P
Ṗ +

∂H

∂X
Ẋ

=
∂H

∂P

(
−∂H
∂X

)
+
∂H

∂X

(
∂H

∂P

)
≡ 0 (76)
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That is, the energy value of the Hamiltonian is given by the initial condition

H(P,X) = H(p0, x0) =
p2

0

2m
+
kx2

0

2
. (77)

So far, we have focussed on a particle-based description of the harmonic oscillator in terms
of an ODE system; we now transition to a PDE-based description.

Phase space distribution. Each particle trajectory (X(t;x0, p0), P (t;x0, p0)) defines
a fine-grained probability density function2 (PDF)

ρ(t, x, p|x0, p0) = δ
(
x−X(t;x0, p0)

)
δ
(
p− P (t;x0, p0)

)
(78)

This is a family of delta-distributions localized along the trajectory. Given an ensemble
of initial conditions, described by another PDF f0(x0, p0), we can define the associated
‘smeared-out’ phase space PDF by integrating over the initial conditions

f(t, x, p) =

∫
dx0dp0 f0(x0, p0) ρ(t, x, p|x0, p0) (79a)

In particular, we then have

f(0, x, p) = f0(x, p) (79b)

Liouville equation. The Liouville equation is the PDE that describes the time-
evolution of the phase space PDF f(t, x, p). To derive this PDE, let’s differentiate ρ using
the Hamilton equations of motion

∂tρ = ∂t
[
δ
(
x−X(t;x0, p0)

)
δ
(
p− P (t;x0, p0)

)]
= −Ẋ∂xρ− Ṗ ∂pρ
= −[∂pH(x, p)] ∂xρ+ [∂xH(x, p)]∂pρ

This equation is linear in ρ(t, x, p|x0, p0), so it also holds for f(t, x, p). We thus have the
Liouville equation

∂tf = [−(∂pH) ∂x + (∂xH) ∂p] f ≡ Lf (80)

where the expression in square brackets defines the Liouville operator, which for the har-
monic oscillator takes the explicit form

L = − p

m
∂x + kx ∂p (81)

Before we discuss solutions, let’s emphasize an important conceptual point. In deriving
the linear Liouville equation (80), we did not need to make specific assumptions about
the Hamiltonian, except that it doesn’t explicitly depend on time. i.e. does not contain
time-varying parameters other than X and P . This means that the Liouville equation will
be linear even if the Hamiltonian particle dynamics is nonlinear. As we will see soon, this
remains true for higher dimensional problems.

2A PDF is a function that is non-negative everywhere and integrates to 1.
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Stationary solutions. Although the Liouville equation (80) is linear, it is often difficult
to construct exact time-dependent solutions. It is, however, easy to find stationary solutions
fs(x, p), which by definition satisfy the time-independent Liouville equation

0 = [−(∂pH) ∂x + (∂xH) ∂p] fs (82)

In other words, stationary solutions fs(x, p) are eigenfunctions of the Liouville operator L

with eigenvalues 0. Indeed, every non-negative function fs(x, p) = g(H) will do the job,
since by chain rule

[−(∂pH) ∂x + (∂xH) ∂p] g(H) = [−(∂pH) (∂xH) + (∂xH) (∂pH)] g′(H) ≡ 0 (83)

Particularly important stationary solutions are the microcanonical distribution at constant
energy E,

gE(H) =
δ(H − E)

ω(E)
(84a)

and the canonical distribution at constant temperature T ,

gT (H) =
e−E/(kBT )

Z(T )
, (84b)

where ω(E) and Z(T ) are normalization constants, and kB = 1.38 × 10−23 J/K is the
Boltzmann constant.

4.2 Hamiltonian dynamics of many-body systems

In the remainder of this course, we will be interested in classical (non-quantum) systems
that consist of N � 1 particles. The complete microscopic dynamics of such systems is
encoded in their Hamiltonian

H =
N∑
n=1

p2
n

2mn
+ U(x1, . . . ,xN ), (85a)

where mn, pn(t) and xn(t) denote the mass, momentum and position of the nth particle.
As in the oscillator example, the first contribution on the rhs. of Eq. (85a) is the kinetic
energy, and U is the potential energy. For our purposes, it is sufficient to assume that we
can decompose (85a) into a sum of pair interactions

U(x1, . . . ,xN ) =
1

2

∑
n,k:n6=k

Φ(xn,xk). (85b)

Given H, Newton’s equations can be compactly rewritten as

ẋn = ∇pnH , ṗn = −∇xnH (86)

That this higher-dimensional Hamiltonian dynamics is equivalent to Newton’s laws of mo-
tion can be seen by direct insertion, which yields

ẋn =
pn
mn

, ṗn = mnẍn = −∇xnU (87)
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An important fact is that many physical systems obey certain conservation laws (to very
good approximation). For instance, the Hamiltonian (85a) itself remains conserved under
the time-evolution (86)

d

dt
H =

∑
n

[
(∇pnH) · ṗn + (∇xnH) · ẋn

]
=

∑
n

[
(∇pnH) · (−∇xnH) + (∇xnH) · ∇pnH

]
≡ 0 (88)

which is just the statement of energy conservation. Other important examples of conserved
quantities are total linear momentum and angular momentum,

P =
∑
n

pn , L =
∑
n

xn ∧ pn (89)

if the pair potentials Φ only depend on the distance between particles.
There exists a deep mathematical connection between such invariants and symmetries of

the underlying Hamiltonian, known as Noether’s theorem. For example, energy conservation
is a consequence of the fact that the Hamiltonian (85a) is not explicitly time-dependent and,
hence, invariant under time translations. Similarly, conservation of linear momentum is
linked to spatial translation invariance and conservation of angular momentum to rotational
invariance.

For the remainder of this course, it will be important to keep in mind that microscopic
symmetries and conservation laws must be preserved in coarse-grained macroscopic contin-
uum descriptions.

Writing (xα, pβ) = (x1, . . . ,xN ,p1, . . . ,pN ) and using Einstein’s summation convention,
the Liouville equation for the N -particle phase space density f(t, xα, pβ) takes the form

∂tf =
[
−(∂pαH) ∂xα + (∂xβH) ∂pβ

]
f, (90)

with functions fs = g(H) being stationary solutions.

4.3 Practical limitations

The critical number of ODEs for complicated (’chaotic’) things to happen is typically three,
and yet any relevant problem in the world contains many more than three degrees of free-
dom. Indeed a physical problem typically contains 1023 interacting particles (Avogadro’s
number), which is so great a number that it is unclear if the mathematical techniques de-
scribed above are of any use. The central aim of this course is to make theoretical progress
towards understanding systems with many degrees of freedom. To do so we shall invoke the
“continuum hypothesis”, imagining that the discrete variable (e.g. the velocity of a partic-
ular molecule of fluid) can be replaced with a continuum (e.g. the velocity field v(x, t)).
There are many subtleties that arise in trying to implement this idea, among them;

(i) How does one write down macroscopic descriptions in a systematic way? It would be
terrible to have to solve 1023 coupled differential equations!
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(ii) Forces and effects that a priori appear to be small are not always negligible. This
turns out to be of fundamental importance, but was not recognised universally until
the 1920’s.

(iii) The mathematics of how to solve ‘macroscopic equations’, which are nonlinear partial
differential equations, is non-trivial. We will need to introduce many new ideas.

In tackling these problems we will spend some time doing fluid mechanics, the reason being
that it is by far the most developed field for the study of these questions. Experiments are
readily available and the equations of motion are very well known (and not really debated!).
Furthermore, fluid dynamics is an important subject in its own right, being relevant to many
different scientific disciplines (e.g. aerospace engineering, meteorology, coffee cups). We will
also introduce other examples (e.g. elasticity) to show the generality of the ideas.

5 Random walkers and diffusion

The most important (and obvious) problem when introducing the continuum hypothesis is
to figure out how to treat Avogadro’s number of particles obeying Schrödinger’s equation
or Newton’s laws. This a little ambitious for us to start with, so we begin by trying to
understand how the simplest microscopic model for the motion of particles can lead to
macroscopic laws. We will see that the simplest model, that of a randomly moving particle,
leads to a nice derivation of the diffusion equation, whose properties will be investigated in
the next lecture.

Consider the motion of particles along one axis. The particles start at time t = 0 at
position x = 0 and execute a random walk according to the following rules:

(i) Each particle steps to the right or the left once every τ seconds, moving a distance
dxi = ±δ.

(ii) The probability of going to the right at each step is 1/2, and the probability of going
to the left is 1/2, independently of the previous history.

(iii) Each particle moves independently of all the other particles, i.e. the particles do not
interact with one another.

There are two striking consequences of these rules. Let N be the total number of
particles and xi(n) be the position of the ith particle after n steps, and denote the average
position of all particles by

X(n) =
1

N

N∑
i=1

xi(n). (91)
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The mean displacement of the particles after n steps is

〈X(n)〉 =
1

N

N∑
i=1

〈xi(n)〉

=
1

N

N∑
i=1

[〈xi(n− 1)〉+ 〈dxi〉]

=
1

N

N∑
i=1

[
〈xi(n− 1)〉+ δ · 1

2
+ (−δ) · 1

2

]

=
1

N

N∑
i=1

〈xi(n− 1)〉

= 〈X(n− 1)〉. (92)

Thus particles go nowhere on average.
Secondly, assuming that the all particles start at xi(0) = 0, the root-mean-square dis-

placement of the particles, which is a good measure of spreading, is obtained as follows:

〈[X(n)−X(0)]2〉 = 〈X(n)2〉

=

〈[
1

N

N∑
i=1

xi(n)

][
1

N

N∑
k=1

xk(n)

]〉

=
1

N2

N∑
i=1

N∑
k=1

〈xi(n)xk(n)〉

=
1

N2

N∑
i=1

〈xi(n)2〉, (93)

where we have used that, by virtue of assumption (iii),

〈xi(n)xk(n)〉 = 〈xi(n)〉〈xk(n)〉 = 0 for i 6= k.

The mean-square displacement per particle can be calculated from

〈xi(n)2〉 = 〈[xi(n− 1) + dxi]
2〉

= 〈xi(n− 1)2〉+ 2〈xi−1(n) dxi〉+ 〈dx2
i 〉

= 〈xi(n− 1)2〉+ 2〈xi−1(n)〉〈dxi〉+ δ2

= 〈xi(n− 1)2〉+ δ2. (94)

Repeating this procedure n times and recalling that xi(0) = 0, we find

〈xi(n)2〉 = 〈xi(0)2〉+ nδ2 = nδ2 (95)

and, hence, for the mean square displacement of the cloud’s mean value

〈X(n)2〉 =
1

N2

N∑
i=1

nδ2 =
δ2

N
n. (96)
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If we write n in terms of time such that t = nτ , where τ is the time in between each step,
then √

〈xi(n)2〉 =

(
t

τ

) 1
2

δ =

(
δ2t

τ

) 1
2

=

(
δ2

τ

) 1
2 √

t. (97)

The root-mean-square displacement of each particle is proportional to the square-root of
the time.

We now seek to derive a theory to predict the distribution of a cloud of random walkers
at some time t given the distribution at t = 0. There are two ways to do so, one using
particle fluxes and the other adopting a probabilistic approach.

5.1 Derivation of the diffusion equation using particle fluxes

Consider two neighbouring points on a line. At time t there are N(x, t) particles at x and
N(x+ δ, t) particles at position x+ δ. At time t+ τ half the particles at x will have stepped
across the dashed line from left to right and half of the particles at x+ δ will have stepped
across the dashed line from right to left. The net number of particles crossing to the right
is therefore

−1

2
[N(x+ δ, t)−N(x, t)] . (98)

To obtain the net flux, we divide by the area normal to the x-axis, A, and by the time
interval τ ,

Jx = − [N(x+ δ, t)−N(x, t)]

2Aτ
. (99)

Multiplying by δ2/δ2 gives

Jx = − δ
2

2τ

1

δ

[
N(x+ δ, t)−N(x, t)

Aδ

]
= −Dn(x+ δ, t)− n(x, t)

δ
(100)

where D = δ2/2τ is the diffusion coefficient and

n(x, t) =
N(x, t)

Aδ

is the particle density (i.e., the number of particles per unit volume at position x at time t).
If δ is assumed to be very small, then in the limit δ → 0, the flux becomes

Jx = −D∂n
∂x
, (101)

where we have ignored higher-order derivatives in making the approximation.
Now consider a single box with boundaries at x−δ/2 and x+δ/2. In a single time step,

Jx(x − δ/2, t)Aτ particles will enter from the left and Jx(x + δ/2, t)Aτ particles will leave
through the right boundary. The number of particles in the box changes as follows,

N(x, t+ τ)−N(x, t) = [Jx(x− δ/2, t)− Jx(x+ δ/2, t)]Aτ.
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By dividing both sides by Aδτ the number of particles per unit volume in the box n(x, t)
is seen to increase at the rate3

n(x, t+ τ)− n(x, t)

τ
= − [Jx(x+ δ/2, t)− Jx(x− δ/2, t)]

δ
(102)

In the limit τ → 0 and δ → 0, this becomes

∂n

∂t
= −∂Jx

∂x
= D

∂2n

∂x2
(103)

which is Fick’s law. This is commonly known as the diffusion equation. It tells us how
a cloud of particles will redistribute itself in time. If we know the initial distribution and
the boundary conditions, we can figure out all later distributions. It can be used to model
many things, such as the spreading of dye in water, the transport of heat in solids, and the
motion of bacteria.

5.2 Derivation using probabilities

Before going on to solve the diffusion equation, let us derive the diffusion equation using a
different approach, involving probabilities. Assuming non-interacting particles, the number
of particles in the interval [x− δ/2, x+ δ/2] at any given time is

N(x, t) = N0P (x, t) = N0p(x, t)δ, (104)

where N0 is the total number of particles in the sample. P (x, t) = p(x, t)δ the probability
of finding the particle at time t in [x − δ/2, x + δ/2] and p(x, t) the associated probability
density. If we consider discrete changes in position and time, then for particles that move
to the left or right with equal probability

P (x, t+ τ) =
1

2
[P (x+ δ, t) + P (x− δ, t)] (105)

where the size of the time step is τ and the spatial separation is δ. Upon dividing by δ, we
can rewrite (105) in terms of the associated probability density

p(x, t+ τ) =
1

2
[p(x+ δ, t) + p(x− δ, t)] . (106)

Performing a Taylor expansion about the position x and time t in the limit δ, τ → 0,

p(x, t) +
∂p

∂t
τ ≈ 1

2

[
p(x, t) +

∂p

∂x
δ +

∂2p

∂x2

δ2

2
+ p(x, t)− ∂p

∂x
δ +

∂2p

∂x2

δ2

2

]
. (107)

which simplifies to the diffusion equation for the probability density

∂p

∂t
≈ D∂2p

∂x2
, D =

δ2

2τ
. (108)

To recover Eq. (103), we note that the number density of particles is given by n = N0p,
and our derivation is complete.

3For strictly one-dimensional systems, the boundary area is just a point and, hence, A = 1 in this case.
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Note that we have ignored higher-order terms in the Taylor expansion. Additional terms
would give us

∂p

∂t
+
τ

2

∂2p

∂t2
≈ δ2

2τ

∂2p

∂x2
− δ4

4!τ

∂4p

∂x4
. (109)

Are we allowed to ignore these extra terms? To see if we are, compare the ratio of the
neglected terms on the right hand side

δ4

τ

∂4p

∂x4

/
δ2

τ

∂2p

∂x2
. (110)

Now ∂p/∂x is essentially ∆p/∆x, where ∆p is a characteristic change in the value of p and
∆x is the characteristic length over which it changes. Let ∆p = P and ∆x = L; the ratio
of the two terms is

δ4

τ

P

L4

/
δ2

τ

P

L2
∼ O

(
δ

L

)2

, (111)

which is typically very small. This is an example of a scaling argument, which in this case
implies that we are justified in neglecting the extra terms provided L is much greater than δ.
You must be careful however, as this estimate is not correct everywhere. For example, in
the tails of the distribution the characteristic lengthscale over which there is a change in
p may become important. The argument of neglecting terms is therefore not always valid,
and we shall discuss this point more when we encounter singular perturbations later in the
course. The discovery of this issue and its resolution was probably the greatest achievement
of applied mathematics in the twentieth century.

5.3 Suggestions

For an excellent read on random walkers and the diffusion equation, and their applications
in biology, have a look at Random Walks in Biology by Howard C. Berg (a professor over at
Harvard). In this book, the ideas we have discussed are applied to a number of biological
phenomena, including the motion of bacteria (which would make a good course project).

6 Solving the diffusion equation

We have shown, through two different arguments, that the density of random walkers on a
one dimensional lattice obeys the diffusion equation,

∂n

∂t
= D

∂2n

∂x2
. (112)

This description is valid whenever examining the dynamics of large quantities of random
walkers on scales much larger than the lattice spacing. As the next step, it is important to
understand how to solve this equation, as the same mathematical problem will arise later on
in our studies of fluid motion. For instance we would like to know the solution to the above
equation, subject to the initial condition n(x, t = 0) = n0(x) and the boundary conditions
that n vanishes at ±∞.

There exits different techniques for solving PDEs of the type (112), each of which relies
on a different method for representing the solution. In all cases, however, the central idea
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is that since the equation is linear, it is possible to “break down” any initial state into a
linear combination of simpler problems. By solving the simpler problems explicitly it is
then possible to reconstruct the general solution.

6.1 Separation of variables and normal modes

To illustrate the first method, let’s assume diffusion is confined to the interval [0, L] and
that no particle can escape. Mathematically, this corresponds to solving

∂n

∂t
= D

∂2n

∂x2
(113a)

∂

∂x
n(0, t) = 0 ,

∂

∂x
n(L, t) = 0 for t ≥ 0 (113b)

n(x, 0) = n0(x) for x ∈ (0, L), (113c)

where n0(x) is a given initial density profile. We now use an important technique called
separation of variables. Forgetting about the initial condition n(x, 0) = n0(x) for now, we
look for nonzero solutions of the form

n(x, t) = v(x)w(t)

Substituting into the PDE gives

ẇ(t)v(x) = Dv′′(x)w(t) (114a)

⇔ ẇ(t)

w(t)
= D

v′′(x)

v(x)
(114b)

at least where w(t) and v(x) are nonzero. Whenever a function of x is equal to a function
of t there is a constant λ such that

D
v′′(x)

v(x)
= λ and

ẇ(t)

w(t)
= λ,

or in other words,
Dv′′(x) = λ v(x) and ẇ(t) = λw(t).

Substituting n(x, t) = w(t)v(x) into the first boundary condition ∂xn(0, t) = 0 gives
w(t)v′(0) = 0 for all t, but w(t) is not the zero function, so this translates into v′(0) = 0.
Similarly, the second boundary condition ∂xn(L, t) = 0 translates into v′(L) = 0. So we
have to solve

Dv′′(x) = λ v(x) , v′(0) = 0, v′(L) = 0 (115a)

Nonzero solutions v(x) exist only if

λk = −Dπ
2

L2
k2 (115b)

for some non-negative integer k, and in that case

vk(x) = Ak cos

(
k
πx

L

)
(115c)
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Since

ẇ = λw = −Dπ
2

L2
k2w (115d)

we find

wk(t) = e−
Dπ2

L2 k2t (115e)

and therefore

nk(x, t) = ake
−Dπ

2

L2 k2t cos

(
k
πx

L

)
, k ≥ 0 (116)

Each such solution nk is called a normal mode. The full solution is then given by the
superposition

n(x, t) =
∞∑
k=0

ake
−Dπ

2

L2 k2t cos

(
k
πx

L

)
. (117)

The one thing we haven’t used so far is the initial condition n0(x) = n(x, 0). This condition
determines the coefficients ak, as we we can see by setting t = 0 in the solution formula,
which gives

n(x, 0) =
∞∑
n=0

ak cos

(
k
πx

L

)
= n0(x). (118)

That is, the coefficients ak are simply the coefficients of the Fourier-cosine series of n0(x),
and we know how determine those from the scalar product of n0(x) and the basis func-
tions cos(kπx/L).

6.2 Fourier method

We now consider diffusion on an unbounded domain. The Fourier solution method relies
on the fact that it is possible to express n(x, t) in a basis of plane waves4, i.e.

n(x, t) =
1√
2π

∫ ∞
−∞

dk eikxn̂(k, t) (119a)

As a complement to (119a), the Fourier coefficients for a given distribution are found using
the Fourier transform

n̂(k, t) =
1√
2π

∫ ∞
−∞

dx e−ikxn(x, t) (119b)

and we define n̂0(k) to be the Fourier coefficients of the initial condition n0(x).

4An intuitive way of thinking is to note that a plane wave can be written as eikx = cos(kx) + i sin(kx).
The Fourier transform thus can be interpreted as expressing a (complex) function as a superposition of real
and complex sinusoidal waves. The Fourier coefficient n̂(k, t) describes how large the contribution of a wave
with wave vector k ∝ 1/λ, with λ the wavelength, is in this superposition.
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The strength of this approach is that it is simple to solve the diffusion equation for a
single plane wave. For example, integrating the diffusion equation in the following manner

1√
2π

∫ ∞
−∞

dx
∂n

∂t
e−ikx =

1√
2π

∫ ∞
−∞

dxD
∂2n

∂x2
e−ikx (120)

gives
∂n̂(k, t)

∂t
= (ik)2Dn̂(k, t) = −k2Dn̂(k, t). (121)

Given the initial condition n0(x)→ n̂0(k) the solution of (121) is

n̂(k, t) = n̂0(k)e−Dk
2t. (122)

The solution of the original problem is therefore

n(x, t) =
1√
2π

∫ ∞
−∞

dk n̂0(k)eikx−Dk
2t (123)

We note that the high-wavenumber components (which correspond to sharp gradients) are
rapidly damped, emphasizing the smoothing property of diffusion.

As an example, consider a distribution that is initially Gaussian (normal) about the
point x = 0 at time t = 0, with standard deviation σ,

n(x, 0) =
1√

2πσ2
e−

x2

2σ2 (124)

In the limit where σ → 0, this distribution corresponds to the Dirac delta-function δ(x), a
function which is localized at zero. We showed earlier in Sec. 1.5 that the Fourier transform
of the above initial distribution is

n̂0(k) =
1√
2π
e−

k2σ2

2 (125)

To obtain the full solution of the diffusion equation in real space, we have to insert n̂0(k)
into (123),

n(x, t) =
1

2π

∫ ∞
−∞

dk eikx−Dk
2t−k2σ2/2 (126)

We can do a bit of rearranging to get

n(x, t) =
1

2π

∫ ∞
−∞

dk eikx−k
2(Dt+σ2/2) (127)

As before we complete the square for the exponent,

k2

(
Dt+

σ2

2

)
− ikx =

(
Dt+

σ2

2

){[
k − ix

2(Dt+ σ2/2)

]2

+
x2

4 (Dt+ σ2/2)2

}
, (128)

so that the integral becomes

n(x, t) =
e
− x2

4(Dt+σ2/2)

2π

∫ ∞
−∞

dk e
−(Dt+σ2/2)

[
k− ix

2(Dt+σ2/2)

]2
(129)
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This is essentially the same integral that we had before in Sec. 1.5, so we drop the imaginary
part and change the integration variable, giving the result

n(x, t) =
e
− x2

2(2Dt+σ2)√
2π(2Dt+ σ2)

. (130)

This is the solution of the diffusion equation starting from a Gaussian distribution at time
t = 0.

Note:

• Introducing σ̃2 = 2(Dt+σ2/2), the solution is a Gaussian with a standard deviation σ̃,
i.e. the width of the solution grows like

√
Dt in time. Similarly, the amplitude

decreases like 1√
Dt

.

• Let us substitute td = σ2/(2D). The solution then can be written as

n(x, t) =
e
− x2

4D(t+td)√
4πD(t+ td)

. (131)

Remember that in the limit td = σ2

2D → 0 the initial condition (124) corresponds to
a Dirac delta function. Thus an initially Gaussian distribution of particles that is
diffusing may be viewed as having originated from a delta function a time td ago.
Indeed, it can be shown that diffusion will cause any form of particle distribution
initially localized about zero to eventually look like a Gaussian.

6.3 Green’s function method

This method relies on another trick for representing the solution, that is somewhat more
intuitive. Now, instead of representing n in a basis of plane wave states, we will express it
as a basis of states which are localised in position. This is done by using the Dirac delta
function, denoted δ(x − x0). You should think of this of a large spike of unit area that is
centered exactly at the position x0. The definition of δ is that given any function5 f(x),∫ ∞

−∞
dx′ f(x′) δ(x− x′) = f(x). (132)

5Intuitively, one can obtain the Dirac δ-function from the normalized Gaussian (124) by letting σ → 0.
Derivatives of order n of the δ-function, denoted by δ(n), can be defined by partial integration∫ ∞

−∞
dx′ f(x′) δ(n)(x− x′) = (−1)n

∫ ∞
−∞

dx′ f (n)(x′) δ(x− x′)

The Fourier transformation of the δ-function is given by

δ̂(k) =

∫ ∞
−∞

dx e−ikxδ(x) = 1.

Applying the inverse transformation yields a useful integral representation of the Dirac δ-function

δ(x) =
1

2π

∫ ∞
−∞

dk eikxδ̂(k) =
1

2π

∫ ∞
−∞

dk eikx
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We can represent the initial distribution of particles n(x, 0) = n0(x) as a superposition
of δ-functions

n0(x) =

∫ ∞
−∞

dx′ n0(x′) δ(x− x′) (133)

This formula decomposes n0 into a continuous series of “spikes”. The idea is to then
understand how each spike individually evolves and then superimpose the evolution of each
spike to find the final density distribution. We define the Green’s function G(x − x′, t) so
that G(x− x′, 0) = δ(x− x′), and

n(x, t) =

∫ ∞
−∞

G(x− x′, t) n0(x′) dx′. (134)

Plugging this into the diffusion equation we see that∫ ∞
−∞

dx′ n0(x′)
∂G(x− x′, t)

∂t
= D

∫ ∞
−∞

dx′ n0(x′)
∂2G(x− x′, t)

∂x2
(135)

Thus G(x − x′, t) obeys the diffusion equation and we have reduced the problem to the
mathematics of solving the diffusion equation for the localised initial condition δ(x− x′).

There are many ways of solving this problem. The one in most textbooks is to actually
use the Fourier decomposition of δ(x−x′) and solve the equation in Fourier space, and then
transform back into real space. This is an advisable procedure as the Fourier transform of δ
is very simple6. We will advocate another procedure however, that is more elegant and uses
an idea that we will return to later in our studies of fluids. The idea is to use dimensional
analysis to determine the solution. If we look at the diffusion equation

∂n

∂t
= D

∂2n

∂x2
(136)

we see that roughly ‘∂/∂t’ ∼ ‘∂2/∂x2’. (I’ve written this in quotes because there is a sense
in which this equality is meaningless.) What I mean by it is that if you have a function
n which obeys a diffusion equation, taking a single time derivative of the function gives
a number of about the same size as when you take two spatial derivatives. This means
that the characteristic length scale over which n varies is of order

√
t. Now, since the

initial distribution δ is perfectly localised, we expect that at time t, G(x− x′, t) will have a
characteristic width

√
t. Thus, we guess a (so-called) similarity solution

G(x− x′, t) = A(t) F

(
x− x′√

t

)
. (137)

The time dependence of A(t) is determined by the conservation of particles. Since∫ ∞
−∞

dx G =

∫ ∞
−∞

dxA(t) F

(
x√
t

)
= A(t)

√
t

∫ ∞
−∞

dy F (y) (138)

6Note that in the limit td = σ2/(2D) → 0 the initial condition (124) approaches a Dirac delta function,
so we have already ‘solved’the problem: equation (131) tells us that an initially Gaussian distribution of
particles that is diffusing may be viewed as having originated from a delta function a time td ago.
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must be constant in time (we have changed variables from x to y = x/
√
t), we see that

A(t) =
A0√
t

(139)

for some constant A0. Now let’s just plug in

G(x, t) =
A0√
t
F (x/

√
t)

into the diffusion equation. Using y = x/
√
t and the chain rule gives

∂tG = ∂t

(
A0√
t

)
F (y) +

A0√
t
∂tF (y)

= −1

2

A0

t3/2
F (y) + F ′(y)∂ty

=
A0

2t3/2
[
−F (y)− F ′(y)y

]
= − A0

2t3/2
(Fy)′ (140a)

and

∂xxG =
A0

t
3
2

F ′′ (140b)

which leads to the following ordinary differential equation for F (y)

1

t
3
2

(
−1

2
F − 1

2
yF ′
)

=
1

t
3
2

DF ′′. (141)

Cancelling out the time factors and integrating this equation once gives7

−1

2
Fy = DF ′. (142)

This equation can be immediately integrated to give F (y) = F0e
−y2/4D, and thus

G(x− x′, t) =
F0√
t
e−

(x−x′)2
4Dt , (143)

where the constant F0 = 1/
√

4πD is determined by requiring that
∫
dxG = 1.

Mean square displacement We would like to determine 〈x(t)2〉 for a collection of par-
ticles starting at x0 = 0. Since G(x − x0, t) is the solution of the diffusion equation with
initial condition δ(x− x0), we can compute the mean square displacement from〈

x(t)2
〉

=

∫ ∞
−∞

dx x2G(x, t)

=

∫ ∞
−∞

dx
x2

√
4πDt

e−
x2

4Dt

=

√
α√
π

∫ ∞
−∞

dx x2e−αx
2

(144)

7The additional constant of integration must be zero if we assume that density and flux vanish at y±∞.
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where α = 1/(4Dt). To evaluate the integral, note that∫ ∞
−∞

dx x2e−αx
2

= − d

dα

∫ ∞
−∞

dx e−αx
2

= − d

dα

√
π

α
=

π

2α3/2
. (145)

which then gives 〈
x(t)2

〉
=

1

2α
= 2Dt. (146)

We have thus recovered the fundamental result that the mean square displacement of Brow-
nian particles grows linearly in time.

7 Langevin & Fokker-Planck equation

Often, Brownian particles are not just freely diffusing but do also feel the effects of an
external field. Important examples are the sedimentation of particles in river and oceans,
the Brownian dynamics of charges particles in electric fields, or the motion of bacteria in
chemical gradient fields. These situations can be modeled using diffusion equations with an
extra flux (or drift) term or, called a Fokker-Planck equations, or by adopting an equivalent
particle dynamics picture. In this part, we will briefly look at both.

7.1 Sedimentation

7.1.1 Langevin equation

Consider a spherical Brownian particle (mass m, radius a) sedimenting under the influence
of a constant gravitational force in a quiescent fluid. Denoting the particle’s vertical position
measured relative to the bottom by by X(t) ≥ 0, it’s dynamics can be described by Newton’s
equation

mẌ = −γẊ −m∗g + FB(t) (147)

where γ = 6πηa is the Stokes friction coefficient, m∗ the buoyant mass8 , g is the gravi-
tational acceleration, and Fs(t) is a random force representing the collisions with the fluid
molecules. Considering the over-damped limit by assuming that the force on the rhs. bal-
ance, mẌ ≈ 0, Eq. (147) simplifies to a first-order ODE

Ẋ = u+ uB(t) (148)

where

u = −m∗g
γ

= − m∗g
6πηa

(149)

is the sedimentation velocity. The random Brownian velocity component

uB(t) =
FB(t)

γ
(150)

8The buoyant mass m∗ is defined as the difference between the particle mass and the mass of the liquid
that is displaced by the particle. Particles heavier than water have m∗ > 0 whereas m∗ < 0 for gas bubbles.
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has zero mean and is delta-correlated

〈uB(t)〉 = 0 , 〈uB(t)uB(t′)〉 = 2Dδ(t− t′) (151)

A quick check of dimensions shows that the parameter D, which determines the strength
of the correlations, has dimensions [D] = L2/T and hence must be a diffusion constant.

We can formally integrate equation (148) with initial condition X(0) = X0 to get

X(t)−X0 = ut+

∫ t

0
ds uB(s). (152)

Using the first property in (151), we obtain for the average

〈X(t)−X0〉 =

〈
ut+

∫ t

0
ds uB(s)

〉
= ut+

∫ t

0
ds 〈uB(s)〉 = ut (153)

That is, on average, a sinking Brownian particle moves with the sedimentation speed. Let’s
also compute the mean squared displacement (MSD)

〈[X(t)−X0]2〉 = 〈[X(t)−X0][X(t)−X0]〉

=

〈[
ut+

∫ t

0
ds uB(s)

] [
ut+

∫ t

0
ds′ uB(s′)

]〉
= (ut)2 + 2ut

∫ t

0
ds 〈uB(s)〉+

〈∫ t

0
ds uB(s)

∫ t

0
ds′ uB(s′)

〉
= (ut)2 +

∫ t

0
ds

∫ t

0
ds′
〈
uB(s)uB(s′)

〉
= (ut)2 + 2D

∫ t

0
ds

∫ t

0
ds′ δ(s− s′)

= (ut)2 + 2D

∫ t

0
ds 1

= (ut)2 + 2Dt (154)

The first part ∝ t2 is the super-diffusive ballistic contribution to the MSD due to the external
force, and the second part ∝ t is diffusive contribution. In particular, for a density-matched
particle with m∗ = 0 corresponding to u = 0, we recover our earlier result (146) for a freely
diffusing particle.

As a final remark, for computer simulations, one can rewrite Eq. (148) in the differential
form

dX(t) = −u dt+
√

2DdtZ(t) (155)

where dX(t) = X(t+ dt)−X(t) is the position increment, and the Z(t) are independently
drawn Gaussian number with mean zero µ = 0 and variance σ2 = 1. That is, at each time
step, one has to draw a new random number Z(t) from a standard normal distribution.
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7.1.2 Fokker-Planck equation & zero-flux solution

We now want describe the sedimentation problem using a continuum model. As in the
preceding part, consider spherical particles diffusing under the effect of a constant drift
velocity

u =
−gm∗
6πηa

If no particles are lost or added, then their concentration is described by the conservation
law

∂tn = −∂xJx (156)

with current
Jx = un−D∂xn. (157)

Inserting the current into the mass conservation equation gives the Fokker-Planck equation

∂tn = −u∂xn+D∂xxn (158)

This is a linear PDE and we could find the general solution by applying one of the techniques
from the previous sections.

Instead of doing this, let’s focus on the stationary (time-independent) solution, which
is of direct practical importance in many sedimentation problems. If there is no external
particle influx or outflux, then the stationary solution must have zero-current,

Jx = un−D∂xn = 0 (159)

We can integrate this equation and obtain an exponentially decaying density profile

n(x) = n0e
−x/λ (160)

with characteristic sedimentation length

λ =
D

|u|
=

6πηaD

gm∗
> 0. (161)

Sutherland and Einstein showed in 1905 that the diffusion constant D of a small particle
moving in a fluid is given by

D =
kT

6πηa
, (162)

where k is the Boltzmann’s constant and T the temperature (measured on a Kelvin scale),
implying that

λ =
kT

gm∗
. (163)

Note that particle shape (and mass density) enter through the buoyant mass m∗.
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7.2 Escape problem

Langevin and Fokker-Planck equations are extremely useful for modeling escape problems,
which are ubiquitous in biological, biophysical and biochemical processes. Prominent ex-
amples include, but are not restricted to,

• unbinding of molecules from receptors,

• chemical reactions,

• transfer of ion through through pores,

• evolutionary transitions between different fitness optima.

Their mathematical treatment typically involves models that are structurally very similar
to the one-dimensional examples discussed in this section9.

7.2.1 Generic minimal model

Consider the over-damped Langevin equation

Ẋ(t) = −U ′(X(t)) + uB(t). (164a)

with a confining effective10 potential U(x)

lim
x→±∞

U(x)→∞ (164b)

that has two (or more) minima and maxima. A typical example is the bistable quartic
double-well

U(x) = −a
2
x2 +

b

4
x4 , a, b > 0 (164c)

with minima at ±
√
a/b.

Generally, we are interested in characterizing the transitions between neighboring min-
ima in terms of a rate k (units of time−1) or, equivalently, by the typical time required for
escaping from one of the minima. To this end, we shall first discuss the general structure of
the time-dependent solution of the FPE11 for the corresponding PDF p(t, x), which reads

∂tp = −∂xj , j(t, x) = −[(∂xU)p+D∂xp], (164d)

and has the stationary zero-current (j ≡ 0) solution

ps(x) =
e−U(x)/D

Z
, Z =

∫ +∞

−∞
dx e−U(x)/D. (165)

9Although things usually get more complicated in higher-dimensions.
10The effective potential U appearing (164a) is simply the potential of the force in Newton’s equation

divided by the friction coefficient; see the sedimentation problem
11FPEs for over-damped processes are sometimes referred to as Smoluchowski equations.
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To find the time-dependent solution, we can make the ansatz

p(t, x) = %(t, x) e−U(x)/(2D), (166)

which leads to the new PDE

−∂t% =
[
−D∂2

x +W (x)
]
% =: H%, (167a)

with a transformed effective potential

W (x) =
1

4D
(∂xU)2 − 1

2
∂2
xU. (167b)

The advantage of the transformation (166) is that Eq. (167) looks like a (imaginary-time)
Schrödinger equation, for which numerous solution techniques have been developed by physi-
cists and applied mathematicians over the last century.

Using separation of variables and assuming that the linear operator H has a discrete
non-degenerate spectrum λ0 < λ1 < . . ., the general solution p(t, x) may be written as

p(t, x) = e−U(x)/(2D)
∞∑
n=0

cn φn(x) e−λnt, (168a)

where the eigenfunctions φn of H satisfy

Hφn = λnφn ,

∫
dx φ∗n(x)φm(x) = δnm, (168b)

and the constants cn are determined by the initial conditions

cn =

∫
dx φ∗n(x) eU(x)/(2D) p(0, x). (168c)

At large times, t → ∞, the solution (168a) must approach the stationary solution (165),
implying that

λ0 = 0 , c0 =
1√
Z
, φ0(x) =

e−U(x)/(2D)

√
Z

. (169)

Note that λ0 = 0 in particular means that the first non-zero eigenvalue λ1 > 0 dominates
the relaxation dynamics at large times and, therefore,

τ∗ = 1/λ1 (170)

is a natural measure of the escape time. In practice, the eigenvalue λ1 can be computed
by various standard methods (WKB approximation, Ritz method, techniques exploiting
supersymmetry, etc.) depending on the specifics of the effective potential W .
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7.2.2 Two-state approximation

We next illustrate a commonly used simplified description of escape problems, which can
be related to (170). As a specific example, we can again consider the escape of a particle
from the left well of a symmetric quartic double well-potential

U(x) = −a
2
x2 +

b

4
x4 , p(0, x) = δ(x− x−) (171a)

where

x− = −
√
a/b (171b)

is the location of the left minimum, but the general approach is applicable to other types
of potentials as well.

The basic idea of the two-state approximation is to project the full FPE dynamics onto
simpler set of master equations by considering the probabilities P±(t) of the coarse-grained
particle-states ‘left well’ (−) and ‘right well’ (+), defined by

P−(t) =

∫ 0

−∞
dx p(t, x), (172a)

P+(t) =

∫ ∞
0

dx p(t, x). (172b)

If all particles start in the left well, then

P−(0) = 1 , P+(0) = 0. (173)

Whilst the exact dynamics of P±(t) is governed by the FPE (164d), the two-state approxi-
mation assumes that this dynamics can be approximated by the set of master equations12

Ṗ− = −k+ P− + k− P+ , Ṗ+ = k+ P− − k− P+. (174)

For a symmetric potential, U(x) = U(−x), forward and backward rates are equal, k+ =
k− = k, and in this case, the solution of Eq. (174) is given by

P±(t) =
1

2
∓ 1

2
e−2k t. (175)

For comparison, from the FPE solution (168a), we find in the long-time limit

p(t, x) ' ps(x) + c1e
−U(x)/2Dφ1(x) e−λ1t, (176)

Due to the symmetry of ps(x), we then have

P−(t) ' 1

2
+ C1 e

−λ1t (177a)

where

C1 = c1

∫ 0

−∞
e−U(x)/2Dφ1(x) , c1 = φ∗1(x−) eU(x−)/(2D). (177b)

12Note that Eqs. (174) conserve the total probability, P−(t) + P−(t) = 1.
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Since Eq. (177a) neglects higher-order eigenfunctions, C1 is in general not exactly equal
but usually close to 1/2. But, by comparing the time-dependence of (177a) and (175), it is
natural to identify

k ' λ1

2
=

1

2τ∗
. (178)

We next discuss, by considering in a slightly different setting, how one can obtain an explicit
result for the rate k in terms of the parameters of the potential U .

7.2.3 Constant-current solution

Consider a bistable potential as in Eq. (171), but now with a particle source at x0 < x− < 0
and a sink13 at x1 > xb = 0. Assuming that particles are injected at x0 at constant flux
j(t, x) ≡ J = const, the escape rate can be defined by

k :=
J

P−
, (179)

with P− denoting the probability of being in the left well, as defined in Eq. (172a) above.
To compute the rate from Eq. (179), we need to find a stationary constant flux solution
pJ(x) of Eq. (164d), satisfying pJ(x1) = 0 and

J = −(∂xU)pJ −D∂xpJ (180)

for some constant J . This solution is given by

pJ(x) =
J

D
e−U(x)/D

∫ x1

x
dy eU(y)/D, (181)

as one can verify by differentiation

−(∂xU)pJ −D∂xpJ = −(∂xU)pJ −D∂x
[
J

D
e−U(x)/D

∫ x1

x
dy eU(y)/D

]
= −(∂xU)pJ − J

[
−(∂xU)

D
e−U(x)/D

∫ x1

x
dy eU(y)/D − 1

]
= J. (182)

Therefore, the inverse rate k−1 from Eq. (179) can be formally expressed as

k−1 =
P−
J

=
1

D

∫ x1

−∞
dx e−U(x)/D

∫ x1

x
dy eU(y)/D, (183)

and a partial integration yields the equivalent representation

k−1 =
1

D

∫ x1

−∞
dx eU(x)/D

∫ x

−∞
dy e−U(y)/D. (184)

13The source could be a protein production site and the barrier could present a semi-permeable membrane.
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Assuming a sufficiently steep barrier, the integrals in Eq. (184) may be evaluated by adopt-
ing steepest descent approximations near the potential minimum at x− and near the maxi-
mum at the barrier position xb. More precisely, taking into account that U ′(x−) = U ′(xb) =
0, one can replace the potentials in the exponents by the harmonic approximations

U(x) ' U(xb)−
1

2τb
(x− xb)2, (185a)

U(y) ' U(x−) +
1

2τ−
(y − x−)2, (185b)

where τb,− defined by

τ−1
− = U ′′(x−) > 0 , τ−1

b = −U ′′(xb) > 0 (186)

carry units of time. Inserting (185) into (184) and replacing the upper integral boundaries
by +∞, one thus obtains the so-called Kramers rate

k ' e−∆U/D

2π
√
τ−τb

=: kK , ∆U = U(xb)− U(x−). (187)

This result agrees with the well-known empirical Arrhenius law. Note that, because typically
D ∝ kBT for thermal noise, binding/unbinding rates depend sensitively on temperature –
this is one of the reasons why many organisms tend to function properly only within a
limited temperature range.

8 Stochastic resonance

Noise typically impairs signal transduction, but under certain conditions an optimal dose
of randomness may actually help to enhance weak signals [GHJM98]. This remarkable
phenomenon is known as stochastic resonance (SR). Whilst SR was originally proposed as
a possible explanation for periodically recurring climate cycles [NN81, BPSV83], experi-
ments suggest [FSGB+02] that some organisms like juvenile paddle-fish might exploit SR
to enhance signal detection while foraging for food.

The occurrence of SR requires three main ‘ingredients’

1. a nonlinear measurement device14,

2. a periodic signal weaker than the threshold of measurement device,

3. additional input noise, uncorrelated with the signal of interest.

To provide some intuition, assume that a weak periodic signal (frequency Ω) is detected by a
particle that can move move in the bistable double well-potential (171). For weak noise, the
particle will remain trapped in one of the minima and we will be unable to infer the signal
from the particle’s motion. Similarly, not much information about the underlying signal
can be gained if the noise is too strong, for in this case the particle will jump randomly

14That is, the input-output relationship between the input signal and the observable must be nonlinear

39



back and forth between the minima. If, however, the noise strength is tuned such that the
Kramers escape rate (187) is of the order of the driving frequency,

kK ∼ Ω, (188)

then it is plausible to expect that the particle’s escape dynamics will be closely correlated
with the driving frequency, thus exhibiting SR.

8.1 Generic model

To illustrate SR more quantitatively, consider the periodically driven SDE

Ẋ(t) = −∂xU +A cos(Ωt) + uB(t), (189a)

where A is the signal amplitude and

U(x) = −a
2
x2 +

b

4
x4 (189b)

a symmetric double-well potential with minima at ±x∗ = ±
√
a/b and barrier height

∆U = a2/(4b). The Brownian velocity component satisfies

〈uB(t)〉 = 0 , 〈uB(t)uB(t′)〉 = 2Dδ(t− t′)

Introducing rescaled variables

x′ = x/x∗ , t′ = at , A′ = A/(ax∗) , D′ = D/(ax2
∗) , Ω′ = Ω/a

and dropping primes, we can rewrite (189a) in the dimensionless form

Ẋ(t) = (x− x3) +A cos(Ωt) + uB(t), (189c)

with a rescaled barrier height ∆U = 1/4. The associated FPE reads

∂tp = −∂x{[−(∂xU) +A cos(Ωt)]p−D∂xp}. (190)

For our subsequent discussion, it is useful to rearrange terms on the rhs. as

∂tp = ∂x[(∂xU)p+D∂xp]−A cos(Ωt)∂xp. (191)

To solve Eq. (191) perturbatively, we insert the series ansatz

p(t, x) =
∞∑
n=0

Anpn(t, x), (192)

which gives

∞∑
n=0

An∂tpn =

∞∑
n=0

{
An∂x[(∂xU)pn +D∂xpn]−An+1 cos(Ωt)∂xpn

}
(193)
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Focussing on the liner response regime, corresponding to powers A0 and A1, we find

∂tp0 = ∂x[(∂xU)p0 +D∂xp0] (194a)

∂tp1 = ∂x[(∂xU)p1 +D∂xp1]− cos(Ωt)∂xp0 (194b)

Equation (194a) is just an ordinary time-independent FPE, and we know its stationary
solution is just the Boltzmann distribution

p0(x) =
e−U(x)/D

Z0
, Z0 =

∫
dx e−U(x)/D (195)

To obtain a formal solution to Eq. (194b), we make use of the following ansatz

p1(t, x) = e−U(x)/(2D)
∞∑
m=1

a1m(t)φm(x), (196)

where φm(x) are the eigenfunctions of the unperturbed effective Hamiltonian, cf. Eq. (167),

H0 = −D∂2
x +

1

4D
(∂xU)2 − 1

2
∂2
xU. (197)

Inserting (196) into Eq. (194b) gives

∞∑
m=1

ȧ1mφm = −
∞∑
m=1

λma1m φm − cos(Ωt) eU(x)/(2D) ∂xp0. (198)

Multiplying this equation by φn(x), and integrating from −∞ to +∞ while exploiting the
orthonormality of the system {φm}, we obtain the ODEs

ȧ1m = −λma1m −Mm0 cos(Ωt), (199)

with ‘transition matrix’ elements

Mm0 =

∫
dx φm e

U(x)/(2D)∂xp0. (200)

The asymptotic solution of Eq. (199) reads

a1m(t) = −Mm0

[
Ω

λ2
m + Ω2

sin(Ωt) +
λm

λ2
m + Ω2

cos(Ωt)

]
. (201)

Note that, because ∂xp0 is an antisymmetric function, the matrix elements Mm0 vanish15

for even values m = 0, 2, 4, . . ., so that only the contributions from odd values m = 1, 3, 5 . . .
are asymptotically relevant.

15The potential U(x) is symmetric and, therefore, the effective Hamiltonian commutes with parity oper-
ator, implying that the eigenfunctions φ2k are symmetric under x 7→ −x, whereas eigenfunctions φ2k+1 are
antisymmetric under this map.

41



Focussing on the leading order contribution, m = 1, and noting that p0(x) = p0(−x),
we can estimate the position mean value

〈X(t)〉 =

∫
dx p(t, x)x (202)

from

〈X(t)〉 ' A

∫
dx p1(t, x)x

' A

∫
dx e−U(x)/(2D) a11(t)φ1(x)x

= −AM10

[
Ω

λ2
1 + Ω2

sin(Ωt) +
λ1

λ2
1 + Ω2

cos(Ωt)

] ∫
dx e−U(x)/(2D) φ1(x)x

Using λ1 = 2kK, where kK is the Kramers rate from Eq. (187), we can rewrite this more
compactly as

〈X(t)〉 = X cos(Ωt− ϕ) (203a)

with phase shift

ϕ = arctan

(
Ω

2kK

)
(203b)

and amplitude

X = −A M10

(4k2
K + Ω2)1/2

∫
dx e−U(x)/(2D) φ1(x)x. (203c)

The amplitude X depends on the noise strength D through kK, through the integral factor
and also through the matrix element

M10 =

∫
dx φ1 e

U(x)/(2D)∂xp0. (204)

To compute X, one first needs to determine the eigenfunction φ1 of H0 as defined in
Eq. (197). For the quartic double-well potential (189b), this cannot be done analytically
but there exist standard techniques (e.g., Ritz method) for approximating φ1 by functions
that are orthogonal to φ0 =

√
p0/Z0. Depending on the method employed, analytical

estimates for X may vary quantitatively but always show a non-monotonic dependence on
the noise strength D for fixed potential parameters (a, b). As discussed in [GHJM98], a
reasonably accurate estimate for X is given by

X ' Aa

Db

(
4k2

K

4k2
K + Ω2

)1/2

, (205)

which exhibits a maximum for a critical value D∗ determined by

4k2
K = Ω2

(
∆U

D∗
− 1

)
. (206)

That is, the value D∗ corresponds to the optimal noise strength, for which the mean
value 〈X(t)〉 shows maximal response to the underlying periodic signal – hence the name
‘stochastic resonance’ (SR).
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8.2 Master equation approach

Similar to the case of the escape problem, one can obtain an alternative description of
SR by projecting the full FPE dynamics onto a simpler set of master equations for the
probabilities P±(t) of the coarse-grained particle-states ‘left well’ (−) and ‘right well’ (+),
as defined by Eq. (172). This approach leads to the following two-state master equations
with time-dependent rates

Ṗ−(t) = −k+(t)P− + k−(t)P+, (207a)

Ṗ+(t) = k+(t)P− − k−(t)P+. (207b)

The general solution of this pair of ODEs is given by

P±(t) = g(t)

[
P±(t0) +

∫ t

t0

ds
k±(s)

g(s)

]
(208a)

where

g(t) = exp

{
−
∫ t

t0

ds [k+(s) + k−(s)]

}
. (208b)

To discuss SR within this framework, it is plausible to postulate time-dependent Arrhenius-
type rates,

k±(t) = kK exp

[
±Ax∗

D
cos(Ωt)

]
(209)

with kK denoting Kramers rate as defined in Eq. (187).
Considering the asymptotic limit t0 → −∞, one can Taylor-expand the rates for Ax∗ �

D to obtain

k±(t) = kK

[
1± Ax∗

D
cos(Ωt) +

(
Ax∗
D

)2

cos2(Ωt)± . . .

]
These approximations are valid for slow driving (adiabatic regime), and they allow us to
compute expectation values to leading order in Ax∗/D. To first order, one then finds for
the conditional probability

P+(t|x0, t0) = 1− P−(t|x0, t0)

=
1

2

{
e−2kK(t−t0) [2δx0,x∗ − 1− κ(t0)] + 1 + κ(t)

}
(210a)

where

κ(t) =
Ax∗
D

cos(Ωt− ϕ)

(
4k2

K

4k2
K + Ω2

)1/2

, ϕ = arctan

(
2Ω

kK

)
. (210b)

Note that the conditional probability P+(t|x0, t0) satisfies the initial condition

P+(t0|x0, t0) = δx0,x∗ =

{
1, x0 = x∗

0, otherwise
, (211)
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where x∗ = x± depending on whether the particle starts in the left or right well. Further-
more, one then finds for the mean position the asymptotic linear response result

〈X(t)〉 = X cos(Ωt− ϕ) (212a)

where

X =
Ax2
∗

D

(
4k2

K

4k2
K + Ω2

)1/2

, ϕ = arctan

(
Ω

2kK

)
. (212b)

Note that Eqs. (212) are consistent with our earlier result (203).

9 Quantum mechanics

The examples of linear PDEs we have discussed so far involved real-valued fields such as the
concentration profile of a collection of non-interacting Brownian particles or the phase-space
density in the Liouville equation. There exist, however, important classes of physical sys-
tems that have natural descriptions in terms of complex-valued fields. The arguably most
import ones are quantum-mechanical systems, whose behavior can be modeled using a com-
plex wavefunction ψ(t, x) that is governed by a linear PDE called Schrödinger’s equation.
There are many subtleties and some controversies associated with the interpretation of quan-
tum mechanics, but the mathematical description is well-defined and pretty straightforward.
For our (and many other) purposes, it will be sufficient to consider quantum mechanics as
continuum model that describes the energy states and dynamics of microscopic systems in
terms of a complex field.

Historically, several phenomena observed in experiments at the end of the 19th and be-
ginning of the 20th century demanded a departure from a purely particle-based description
of microscopic matter; these included

• the stability and the discrete spectral lines of atoms and molecules, and

• the wave-like defraction and interference of single electrons in double slit experiments,

Conversely, other experiments suggested that certain systems that were long thought to be
purely wave-like also carry some inherently discrete properties, as exemplified by

• the shape of the blackbody spectrum, or

• the photo-electric effect.

In essence, what was needed to reconcile these observations was a continuum theory that
provides discrete energy levels.

9.1 Bohr’ model

The first semi-quantum-mechanical model to explain the discrete spectral lines of the hy-
drogen atom was introduced by Niels Bohr in 1913, who postulated that the electron’s
trajectory around the nucleus forms a standing wave-pattern, i.e.

2πr = nλ , n = 1, 2, . . . (213)
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Combining this with de Broglie’s hypothesis that a particle of momentum p has an associated
wave-length

λ =
h

p
, (214)

where h = 6.6260701510−34Js is Planck’s quantum of action, Bohr concluded that the
electron’s angular momentum must be quantized

` = rp =
h

2π
n = ~n , n = 1, 2, . . . (215)

i.e., take integer multiples of ~ = h/(2π).
This allowed him to explain the experimentally observed discrete energy spectra of

hydrogen and hydrogen-like ions as follows. The classical energy of an electron on a spherical
orbit is given by

E =
mv2

2
− kZe2

r
(216)

where k = 1/(4πε0) is Coulomb’s constant, and Z denotes the proton number of the nucleus.
Equating centripetal and Coulomb force gives

mv2

r
=
kZe2

r2
(217)

so that one can rewrite the energy as

E = −kZe
2

2r
(218)

Furthermore, multiplying (217) by mr3 and using the quantization condition (215), one
finds

m2v2r2 = kmZe2r = ~2n2 , n = 1, 2, . . . (219)

implying discrete radii

rn =
~2n2

kmZe2
, n = 1, 2, . . . (220)

Finally inserting into (218), we get the discrete energy levels

En = −Z2ER
n2

= −Z2 13.6

n2
eV , ER =

m(ke2)2

2~2
(221)

which explains the key features of the spectra of the hydrogen atom (Z = 1) and hydrogen-
like ions (Z > 1). ER = 13.6 eV is called the Rydberg energy.

Bohr’s model was not yet a satisfactory theory but nevertheless provided essential guid-
ance for the development of modern quantum mechanics.
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9.2 Schrödinger’s equation

In 1921, Erwin Schrödinger succeeded in constructing a linear PDE that produced the
spectrum (221). The essential steps underlying the construction of Schrödinger’s wave
equation can be summarized as follows:

1. Start from a classical Hamiltonian system whose dynamics conserves the energy

E = H(p,x) =
p2

2m
+ U(x) (222a)

2. Reinterpret E and p as operators,

E → i~∂t , p→ −i~∇ (222b)

acting on a complex wave function ψ(t,x).

3. Substitute the operators into the Hamiltonian H(p, q) to obtain the wave equation

i~∂tψ =

[
−~2∇2

2m
+ U(x)

]
ψ ≡ Hψ (222c)

4. Interpret

ρ(t,x) = |ψ(t,x)|2 (222d)

as probability density of finding the quantum particle at time t at position x.

The linear PDE (222c) is called the time-dependent Schrödinger equation. Note that the
linear differential operator H on the rhs. of (222c) has exactly the same structure as the
one derived from the Fokker-Planck equation in Eq. (167). However, the factor i on the
lhs. of (222c) makes things very different: Solutions to the Fokker-Planck equation are
damped whereas solutions to the Schrödinger equation are oscillatory in time. Despite this
difference, we can solve both equations with similar methods.

The interpretation of |ψ(t,x)|2 as probability density is due to Max Born and nowadays
widely accepted. This interpretation requires that∫

dx |ψ(t,x)|2 = 1 (223)

That is, the complex wave function must decay sufficiently fast at infinity. This boundary
condition implies a discrete spectrum of the Hamilton operator H. Indeed separation of
variables

ψ(t,x) = h(t)φ(x)

and subsequent superposition yields a general solution of the form16

ψ(t,x) =

∞∑
n=1

cne
−iλnt/~φn(x) (224a)

16We assume here that the eigenvalues are non-degenerate λ1 < λ2 < λ2 < . . .
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where λn and φn(x) are the eigenvalues and eigenfunctions of the Hamilton operator

Hφn(x) =

[
−~2∇2

2m
+ U(x)

]
φn(x) = λnφn(x) (224b)

One typically refers to this eigenvalue problem as the time-independent Schrödinger equa-
tion. For confining potentials, the eigenfunctions can be chosen orthonormal∫

dxφ∗m(x)φn(x) = δnm (224c)

The complex coefficients cn are then determined by the initial condition

cm =

∫
dxφ∗m(x)ψ(0,x) (224d)

This can be seen by considering the solution (224a) at time t = 0, multiplying by φ∗m and
integrating over space using (224c). In particular, when inserting the Coulomb potential

U(x) = −kZe
2

|x|
(225)

into (222c), one finds17 that the spectrum of the corresponding Hamilton operator is given
by the Bohr formula (221).
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