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Discovering dynamics and parameters of nonlinear oscillatory and chaotic systems
from partial observations
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Despite rapid progress in data acquisition techniques, many complex physical, chemical, and biological
systems remain only partially observable, thus posing the challenge to identify valid theoretical models and
estimate their parameters from an incomplete set of experimentally accessible time series. Here, we combine
sensitivity methods and ranked-choice model selection to construct an automated hidden dynamics inference
framework that can discover predictive nonlinear dynamical models for both observable and latent variables
from noise-corrupted incomplete data in oscillatory and chaotic systems. After validating the framework for
prototypical FitzHugh-Nagumo oscillations, we demonstrate its applicability to experimental data from squid
neuron activity measurements and Belousov-Zhabotinsky reactions, as well as to the Lorenz system in the chaotic
regime.
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Nonlinear oscillations and chaotic dynamics are ubiquitous
in natural and man-made systems [1], from neurons [2,3] and
biochemical networks [4] to power grids [5,6], lasers [7], and
the Earth’s climate [8]. In many complex physical, chemical,
and biological systems exhibiting these kinds of dynamics,
direct measurements are limited to a few experimentally ac-
cessible observables [9] while essential components of the
underlying dynamical circuit stay hidden [10]. Limited ob-
servability has led to the emergence of competing theoretical
models for neuronal networks [11], gene-regulatory dynamics
[10], and chemical oscillators [12] among many other sys-
tems, and identifying valid models and their parameters from
incomplete data remains a central challenge. Here, we com-
bine sensitivity methods [13] for differential equations with
ranked-choice voting [14,15] to construct a hidden dynam-
ics inference (HDI) framework that can discover predictive
nonlinear dynamical models for both observable and latent
variables from noise-corrupted incomplete data in oscillatory
and chaotic systems.

Driven by rapidly advancing data acquisition techniques
[16–20], dynamical model inference from time-series data is
becoming increasingly important [21,22] in climate physics
[23–25], fluid mechanics [26,27], and biophysics [28–30].
In canonical form, data-driven dynamics discovery con-
sists of fitting the parameters p of an ordinary differential
equation (ODE) ẋ = f (x, p) to a given data set. Serious
consideration has been given to the problem of dynamical
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system discovery ever since early computers were used to
numerically solve differential equations [31]. Renewed inter-
est in model discovery came with increasing computational
power in the 1980s and 1990s [21]. With the rising prevalence
of machine learning techniques and the explosion of high-
resolution data acquisition, once again attention has turned
to this problem in recent years [13,32–35]. One class of
approaches, encompassing methods for “equation-based” dis-
covery [22,36], has shown promise in learning interpretable
dynamical models from partially observed data using physics-
informed neural networks [32,34,37–39], manifold methods
[40], or data assimilation [33], enabling prediction of non-
linear and chaotic dynamics in mechanical, electrical, and
hydrodynamic systems.

Complementary approaches to account for unobserved
variables have frequently relied on time-delay embeddings
[41–43], recurrent neural networks [44], or autoencoders [45]
to estimate hidden dimensions and forecast complex dynam-
ics [46]. These “equation-free” approaches, however, often
cannot reveal coupling mechanisms and their dependencies
on experimental conditions. Despite substantial progress in
dynamical systems inference techniques, applications to par-
tially observed experimental data from nonlinear biophysical
and biochemical systems still face many open problems, as
existing methods require long time-series recordings with low
noise (e.g., to construct time-delay embeddings or train neural
networks) and do not ensure stability of learned models.

In Sec. I we review previous approaches to ODE model in-
ference focusing on techniques that can be extended to partial
observations in the context of the HDI approach introduced
here. We then discuss several important dynamical system
model families in Sec. II. Our HDI framework is presented
in Sec. III, where it is illustrated on the inference problem of a
prototypical neuronal oscillator. Model inference from partial
observations is not unique, and in Sec. IV we study how to
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compare different models learned from the same partial obser-
vations and test whether they are structurally equivalent under
a change of coordinates. Lastly, in Sec. V we show how our
HDI framework is capable of discovering the chaotic Lorenz
model from one to two coordinates, and in Sec. VI we use it
to infer models from experimental recordings of squid axon
neuron spike trains and the oscillatory color change dynamics
of the Belousov-Zhabotinsky chemical reaction.

I. OVERVIEW OF DYNAMICAL SYSTEMS
INFERENCE APPROACHES

We begin here by reviewing several major classes of dy-
namical systems models, namely parametric, nonparametric,
and higher-order models, along with the methods used to
optimize and search through these model classes.

A. Parametric models

The simplest setting for learning a dynamical system
model is when it takes a parametric form, where the
ODE right-hand side ẋ = f (x, p) is fixed ahead of time by
some knowledge of the system. Frequently, p will be low-
dimensional, consisting of only a few parameters, as for
example in the nonlinear pendulum (ẋ, v̇) = (v, A sin(ωx))
with parameters p = (A, ω).

B. Nonparametric models

Parametric models are only applicable when we have some
prior knowledge about the form of the model governing the
dynamics in our data, which is frequently not the case for
experimental systems. If we cannot assume a particular para-
metric form of the equations, a more expressive and less
constrained flow map f in ẋ = f (x, p) is needed. Taking
f (x, p) to be a general function with a large set of model
parameters ||p||0 � 1, for instance a neural network or Gaus-
sian process, results in a so-called nonparametric model.
Here, nonparametric means that the large set of parameters p
has no inherent interpretation. Examples of such functions f
within the context of dynamical inference include locally lin-
ear models [47,48], basis expansions [49] (sometimes referred
to as atlases or libraries including polynomial [22], rational
polynomial [50,51], wavelet [52], and radial basis functions
[53]), discrete-time perceptrons [54,55], or neural networks
(referred to as neural ODEs) [13].

C. Reduced higher-order models

When some coordinates of a dynamical system are not
observed, another approach is to learn a higher-order model in
the coordinates which can be observed. We call such a model a
reduced model. This can be done directly by taking continuous
derivatives [56] of the observed coordinates [57] or indi-
rectly by constructing a state vector from successive time lags
[32,42,43]. However, even simple multivariate systems give
rise to complicated reduced higher-order equations, which
often have many terms, are implicit, and contain fractional
powers [58–66]. Learning reduced models directly requires
learning dense implicit ODEs with many candidate terms
[51,67], a challenging approach that can be ill-posed [68].

Derivative fitting methods [58] require computing higher-
order numerical derivatives of observed coordinates, which
is prohibitive for noisy or highly oscillatory data. All such
methods face serious problems due to the appearance of ra-
tional terms that complicate the optimization as the dynamics
of the learned model can frequently set the denominator of
these terms close to zero. While reduced models for partially
observed systems are a useful tool for model comparison, as
we will demonstrate throughout this paper, they are difficult
to directly learn from data.

D. Optimization methods

The methods for fitting parametric and nonparametric
models are largely the same. One class of approaches fit an
equation of the form ẋ = f (x, p) to data {(ti, xi )}n

i=1 by mini-
mizing a data loss

∑
i |ẋi − f (xi, p)|2. Approximations of the

time derivative can be calculated by finite differences, smooth
derivative approximations [21,69,70], or weak formulations
[71]. Minimizing the data loss to find p can be done using
either linear [22,72] or nonlinear [70,73] least squares based
on the structure of the dynamical equations. For instance, the
parameters of the Lorenz system enter linearly on the right-
hand side while the parameters of the nonlinear pendulum
ẍ = −A sin(ωx) do not. For nonparametric models, a common
choice is to discretize the ODE model as xt+�t = f (xt , p) to
avoid computing derivatives of time-series data [49,50,53–
55]. These regression approaches, however, cannot be used
for partial observations, since some coordinates of the system
are not available to compute time derivatives. Furthermore,
such methods are not robust and can overfit noisy data, as they
impose no causal constraints that the observed data at time
t + �t are related to the data at time t through the evolution
of an underlying differential equation.

To avoid these issues, a second class of model fitting
techniques instead optimizes the parameters of ẋ = f (x, p)
by integrating the dynamics of x(t ) and matching it to ob-
served data {(ti, xi )}n

i=1. Such optimization techniques roughly
fall into two categories: (i) gradient-free methods like root
finding [74], multiple shooting [75], Nelder-Mead, particle
swarm optimization [76], or Kalman filters [77–79]; and (ii)
gradient-based methods like Newton’s method, ADAM [80],
and BFGS [81], where gradients with respect to parameters p
are approximated either using finite differencing on the ODE
solutions, sensitivity methods, or automatic differentiation
[13,82]. These techniques have been applied successfully to
learn periodic, chaotic, and transient dynamics [13]. When
partial knowledge of the ODE model is available, a parametric
interpretable ODE model can be added to a nonparametric
model and jointly fit to the data, an approach called hy-
brid modeling [78]. The question of parameter identifiability,
which studies whether model coefficients can be determined
uniquely from the data, has also been extensively explored for
parametric models [83,84].

E. Problem constraints

As mentioned above, in the case of partial observations or
noise corrupted data, a causal formulation of the problem is
needed, which encodes prior knowledge that observed data
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are related through the evolution of a differential equation.
When the integrated solution to the ODE model has a closed
form such as with linear time-invariant systems, least-squares
fitting can be used to match the integrated solution to the
data [85]. For more complicated models, we need to use
numerical approximations to the integrated ODE solution and
fit the parameters by solving suitably chosen often nonlinear
and nonconvex optimization problems which depend only on
the observed variables. The causal nature of the problem can
be encoded by adding additional penalty terms to the data
loss enforcing an ODE structure, leading to a large class
of approaches known as data assimilation methods [33,86].
These approaches typically enforce that the fit dynamics is
consistent with a single time step of an ODE model, although
generalizations to n steps have shown better stability and noise
robustness [87–89]. While better suited for data with partial
observations and noise, there is still no guarantee that the
integrated model is stable over long times or fits the data
when these finite steps are performed sequentially. A stronger
constraint on the ODE structure is that the solution {x(t, p)}
comes from numerically integrating the model, which is then
fitted to the data. We can achieve this hard constraint by
directly optimizing through the numerical ODE solver. This
is the technique that we will exploit in our HDI methodology
presented here.

F. Model selection

Without prior knowledge about the form of the dynamics,
nonparametric models can fit an ODE to complex dynamical
data remarkably well. Yet the resulting model lacks physical
interpretability. This drawback prompted the development of
automated methods for learning physically interpretable ODE
models without assuming prior knowledge of the dynamics. A
popular approach is to first learn a nonparametric model given
as a linear combination of basis terms (i.e., atlas, library), and
to subsequently perform model selection keeping only a few
basis terms in the expansion [22,49]. Various techniques for
basis term selection include sparse identification [22], boot-
strapping [90], information criteria (MLE, AIC, BIC, MDL)
ranking [49,91,92], and hypothesis testing [93,94]. Recent
approaches have also explored genetic algorithms [95] and
formal logic [96] for learning interpretable dynamical system
models that consist of nonlinear compositions of mathemati-
cal functions.

G. Our contribution

Our HDI methodology falls into the class of physically
interpretable methods, and learns ODE models as a sparse
combination of polynomial or trigonometric basis functions.
However, HDI uses a novel robust procedure for model
selection by sampling the space of possible ODE models,
identifying the largest cluster of the best-fit models, and keep-
ing those basis terms in our final model that have the least
variation in their coefficients across all model fits. Conceptu-
ally, this procedure is akin to a community of theoreticians
being given a time-series observation and each constructing
their own candidate model to explain the data. Then a census
is reached by finding the most popular model form (e.g.,

largest model cluster) and ranking its terms to remove those
basis terms to which the dynamics of the model are insensitive
(e.g., large changes in coefficients do not affect model fit).
This allows HDI to robustly select a few important model
terms from libraries containing on the order of 10–100 can-
didate terms, thus exploring a broad range of potential ODE
models. HDI’s core model fitting procedure uses gradient-
based sensitivity methods which are robust to high levels of
noise in the data, ensure the learned models accurately cap-
ture the experimental dynamics, and are stable over long-time
integration.

II. DYNAMICAL SYSTEM MODELS

Many dynamical systems exhibit nonlinear and chaotic dy-
namics that can be modeled by polynomial nonlinearities, and
their coordinates can exhibit evolution at different timescales,
leading to relaxation oscillations and excitations. This moti-
vates us to define the following class of models, with observed
variables x1, . . . , xm and hidden variables hm+1, . . . , hM , given
by

ẋk = τk

∑
|α|�dk

ck
αxα1

1 · · · hαM
M , 1 � k � m, (1a)

ḣk = τk

∑
|α|�dk

ck
αxα1

1 · · · hαM
M , m < k � M, (1b)

which encompass a broad range of nonlinear oscillatory and
chaotic dynamics. Here, we only use polynomial terms on the
right-hand side of the equation, although this can be extended
to any other nonlinearities, such as trigonometric functions
[Sec. VII of the Supplemental Material (SM) [97]]. The power
of each monomial term above is expressed in multi-index
notation α = (α1, α2, . . . , αM ) where each entry αr ∈ N de-
notes the power of xr and we write |α| = ∑M

k=1 αk to denote
the total degree of the monomial term. To avoid scaling am-
biguities between τk and ck = {ck

α} in Eq. (1), we enforce
that each ck has unit norm. HDI models are determined
by a parameter vector p containing the initial conditions
of the variables {x0

k }m
k=1, {h0

k}M
k=m+1, frequencies {τk}M

k=1, and
polynomial coefficients {ck}M

k=1. While time-delay embed-
dings can be used to provide lower bound estimates on the
number of hidden variables M − m, here we restrict to pe-
riodic models with M = 2 variables or chaotic models with
M = 3 variables, which we find sufficient to explain the
experimental data.

An alternative class of dynamical system models are
derivative embedding or higher-order models, sometimes re-
ferred to as time delay embedding models when written in
discrete time. They take the general form

x(pk )
k =

∑
|α|�dk

ck
α(x1)α1 · · · (x(pm−1)

m

)αM
, 1 � k � m, (2)

where the notation x(p) denotes the pth time derivative of x,
and as before, xα denotes exponentiation. This model is noth-
ing more than a polynomial dynamical system whose state
consists of each observed variable xk for 1 � k � m along
with all of its derivatives up to order pk − 1, where pk � 0 is
some integer. This model assumes that the highest pkth-order
derivative of each observed variable xk can be expressed as a
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function of all other observed variables and their derivatives.
The total number of variables in the model is M as we assume
that

∑m
k=1 pk = M. We again remark that such higher-order

models can also be constructed with time lags instead of time
derivatives.

Note that higher-order models as written in (2) are a special
case of the more general polynomial hidden variable models
from (1) as every hidden variable hk can be set to one of the
higher-order derivatives of the observed variables x(p)

k . This
is the classical transformation of a higher-order differential
equation into first-order form. The benefit of higher-order
dynamical models is that all coordinates of such dynamical
systems are observed, and therefore these models hold the
promise of being easily fit to partially observed data. At this
point, one might hope to avoid using hidden variables and
their associated ambiguities by learning the reduced higher-
order equation in the observed variable directly [98,99].
However, even simple multivariate systems can give rise to
complex reduced higher-order equations that are often less
sparse, implicit (e.g., nonpolynomial), and contain fractional
powers [58–66]; for example,

ẋ = xy3, ẏ = x (3)

reduces to

xẍ = ẋ2 + 3x7/3ẋ2/3. (4)

Working with reduced models directly would thus require
learning dense implicit ODEs with more candidate terms
[51,67], a challenging approach that can be ill-posed [68].
A general advantage of “first-order” hidden variable models
is that they can find sparse and integrable differential equa-
tion models that agree with observational data, avoiding the
above complications.

III. HIDDEN DYNAMICS INFERENCE

The HDI framework integrates the robustness of sensitiv-
ity methods [13] and ranked-choice model selection [14,15]
with traditional library-based learning methods [22,90]. This
enables us to learn physically interpretable models for par-
tially hidden nonlinear systems from short, highly noisy data
trajectories in a manner that ensures correct long time dynam-
ics. Since the hidden-variable dynamical equation discovered
from partial observations may not be unique, we develop
systematic algebraic tests for comparing learned models. Af-
ter validating the HDI framework on 50% noise corrupted
simulations of the FitzHugh-Nagumo oscillator, we apply our
approach to experimental measurements of squid neuron spike
trains and video observations of Belousov-Zhabotinsky chem-
ical reactions, demonstrating how HDI can be used to measure
model parameters as a function of external experimental con-
ditions.

To illustrate the general framework of HDI, we consider as
a canonical example of a nonlinear oscillator the FitzHugh-
Nagumo (FHN) model [11]

v̇ = v − v3

3
− w + I, ẇ = τ (v + a − bw), (5)

a simplified model of a firing neuron where the membrane
voltage v undergoes a rapid increase before being diminished

by the slow recovery variable w [100]. The rapid spiking and
slow recovery arises from a separation in timescales τ � 1
between variables. FHN has become a prototypical model of
neuron spike trains, as it is stable and parsimonious, relying
only on a small number of polynomial terms. Throughout this
section, we detail the HDI framework in its full generality and
show how it performs when learning the FHN oscillator from
noisy partial recordings of its v coordinate [Fig. 1(a)]. The v

coordinate is corrupted with 50% Gaussian noise (Sec. II of
the SM) so we are performing model inference in the high
noise regime.

A. Time-series data

To begin, our framework is given m observed variables
{yi1}n

i=1, . . . , {yim}n
i=1 at n distinct time points {ti}n

i=1. Our goal
is to learn an interpretable and predictive first-order multivari-
ate model (1) with M � m variables (m observed and M − m
hidden) such that its first m coordinates match these observed
data. We will often denote the vector yi = (yi1, . . . , yim) as the
stacked vector of observables at time ti. On the example of the
FHN model, if we only observe the v coordinate and do not
observe w, then we have m = 1 observed coordinates and data
yi1 at some observation time points {ti}n

i=1.

B. Model optimization

The first step of HDI performs a model sweep, where it
initializes randomly many first-order hidden variable models
(1) with random coefficients and varying degree combinations
(d1, . . . , dM ).

All initialized models are dense, which means they contain
all polynomial terms up to degree dk in the kth equation for
1 � k � M. Each randomly initialized model is parametrized
by the stacked vector

p = ({xk (0)}M
k=1, {ck}M

k=1, {τk}M
k=1

)
(6)

of its initial conditions, coefficients, and timescales and is
trained for one round of optimization to minimize the objec-
tive

L(p) = MSE(p) + Reg(p), (7)

which is a sum of the mean-squared error

MSE(p) = 1

n

n∑
i=1

m∑
j=1

[x j (ti, p) − yi j]
2 (8)

and a regularization term. The regularization term in the ob-
jective function is given by

Reg(p) = λ

M∑
k=1

∑
|α|�dk

√
1 + |α||ck

α| + γ

M∑
k=1

(‖ck‖2 − 1)2.

(9)

The first term in the regularizer above penalizes the sparsity
of the learned model, since polynomial terms xα1

1 · · · xαM
M with

a higher total degree |α| = α1 + · · · + αM are more actively
down-weighted by the factor

√
1 + |α|. The choice of square

root in the regularization function was empirically chosen
over the conventional L1 regularizer |α|, as it allowed more
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FIG. 1. General HDI framework illustrated for 50% noise-corrupted FHN simulation data. (a) Algorithm flow chart: (1) ODE sensitivity
optimization [13] yields N ∼ 20 000 candidate models by tuning 20 parameters of dense two field cubic observed (blue) and hidden (dark-
gray) variable equations from random initializations. Models are filtered for stability and fit quality. (2) The remaining ∼4000 models are
hierarchically clustered using the cosine similarity between their parameter vectors (Sec. III of the SM; Model Clustering). Histograms of
parameters in the largest cluster are used to rank the terms based on their coefficient of variation. (3) Kemeny-Young ranking produces a list
of candidate models of decreasing sparsity. Models are refit at each sparsity level, and the user can select the model that best balances sparsity
and relative error (RE). (b) Using data from only the v time series corrupted by 50% noise, HDI correctly discovers a sparse first-order system
that reduces to the same second-order form as the FHN model.

flexibility in our optimization to place larger coefficient val-
ues at high-degree terms while still enforcing model sparsity.
The second term in the regularizer enforces weakly that the
norm of the coefficients in each equation is equal to unity,
allowing us to optimize the coordinate timescales contained
in {τk}M

k=1 independently of the polynomial coefficients. Our
initial model sweep tests a range of regularization parameters
λ = 10−5–100 and keeps the unity constraint weight at a suf-
ficiently large value γ = 5 × 104.

Each model is optimized for 100 000 AdaBelief [101]
iterations followed by 50 000 iterations of BFGS [102] (large
enough for our optimization to converge). In general, our
method is not overly sensitive to how these values are set.
Computing the gradient of these ODE models with respect
to the parameter vector p is performed through fast forward
sensitivity methods [13]. In Fig. 1(a,1), on the example of
FHN with only its v coordinate observed, we show the typical
list of models that result after training a batch of models to fit
the partially observed data.

After one round of optimization, we remove in an au-
tomated fashion all models that do not pass the following
dynamical criteria. Namely, for oscillatory data such as ob-
served in neuronal and chemical dynamics, we only keep
models whose fits to the data are periodic with amplitude
and frequency commensurate with the recorded data. If the
dynamics we aim to learn are chaotic instead of periodic such
as the Lorenz attractor, we remove all models with periodic
fits since periodicity is a very unlikely behavior for chaotic
systems. In general, we also remove any models whose fits to
the data converge to fixed points or diverge to infinity which

is easily checked by simulating these models for a sufficiently
long time window.

For all remaining models, their relative errors (REs) on
the training data {(ti, yi )}n

i=1 of the observed variables x(t ) =
{xk (t )}m

k=1 are computed using the formula

RE =
√√√√√ 1

m

m∑
k=1

∑n
i=1(xk (ti ) − yik )2

∑n
i=1

(
yik − 1

n

∑n
j=1 y jk

)2 . (10)

Now we need to decide which models have a sufficiently
good fit by keeping only those whose train RE is below a
certain threshold θRE. This threshold is determined automat-
ically through a histogram thresholding procedure (Fig. 2 of
the SM).

C. Computing distances between ODE models

For all remaining models with RE below the threshold
θRE, we rescale their coefficients ck

α and frequencies τk such
that the standard deviations of the trajectories of all hidden
variables hm+1, . . . , hM are equal to the standard deviation
of the trajectory of the first observed variable x1. This nor-
malization ensures that the standard deviations of the hidden
variables across all learned models are on the same scale and
hence the coefficients of these models can be compared to
each other. After normalization, we extract from each model
the stacked coefficient vector c = {τkck}M

k=1 with timescales
included. Now each model is fully described by its stacked
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FIG. 2. HDI discovers true Lorenz system from observations of
x and y coordinates. (a) Given observations of only the x and y co-
ordinates (gray region), the learned model predicts the evolution for
five to six Lyapunov timescales. (b) The correct Lorenz model terms
are discovered by HDI search solely from data in the gray region of
the previous panel. (c) Reconstructed attractor of the learned model
closely agrees with the true Lorenz attractor (simulation parameters
and noise robustness in Sec. VI of the SM).

vector of coefficients c, and this representation can be used to
compare it to other models.

To compare the learned hidden variable models, we ac-
count for certain transformations of the hidden variables
(hm+1, . . . , hM ), specifically sign flips and permutations, that
result in equivalent models (Sec. III of the SM; Model
Distance Matrix). Finally, we compute a pairwise distance
matrix using the cosine distance between every pair of models
(stacked coefficient vectors) c, c′ modulo these sign flip and
permutation symmetries.

D. Model clustering

Using this distance matrix between all models, we perform
single-linkage clustering and obtain a dendogram tree which
specifies how models are sequentially grouped together into
larger and larger clusters. We then determine where to cut
this dendogram tree generated by hierarchical clustering to
split our models into separate clusters. Choosing a cutoff too
high or too low in the dendogram results in clusters that are
overestimated (too many models) or underestimated (too few
models), respectively. We develop a thresholding procedure to
select cutoffs nmin, nmax, which give us the smallest and largest
number of clusters, respectively, which we could reliably split
our N models into. In Fig. 1(a,2) we show the largest model
cluster that results when learning FHN solely from an obser-
vation of its v coordinate. Here we display a heatmap showing
typical values of coefficients for each polynomial term across
all models in this cluster.

E. Model term ranking

At every level nmin � n � nmax of the dendogram tree, we
study the largest cluster of models C(n) and sort the terms in
these models from most to least important. Namely, at a given

FIG. 3. HDI discovers a predictive model for the Lorenz system
from just the x coordinate. (a) From observations of only the x
coordinate (gray region), the learned model predicts the evolution
of true Lorenz for three to four Lyapunov timescales. (b) The learned
HDI model can be transformed into a reduced third-order model just
in x where it agrees with the true x-reduced Lorenz model except
at one term. (c) The attractor of the learned model in derivative
embedding space (x, ẋ, ẍ) matches the true Lorenz attractor.

level n we save the stacked coefficient vector c = {τkck}M
k=1

for every polynomial model in this cluster (see Fig. 3 of the
SM). Assume that in this cluster we have R models denoted
by their stacked coefficient vectors c1, . . . , cR. We would like
to understand which entries (model terms) across all r vectors
are large in magnitude and have low variability.

The ith entry cir in the stacked coefficient vector for models
r = 1, . . . , R corresponds to a polynomial term in one of the
equations of our ODE system. To test whether this term is
important for the dynamics learned by these R models, we
compute its coefficient of variation

interquartile range
({cir}R

r=1

)
median

({cir}R
r=1

) , (11)
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which is the interquartile range of the coefficient values di-
vided by their median value. The interquartile range of a set
of numbers is defined as the difference between the 75th and
25th percentiles of their distribution. Intuitively, if a term i is
consistent and tightly clustered around a large mean value for
all models ci1, . . . , ciR, then it receives a small coefficient of
variation. Otherwise, if a term i has large spread or is close to
zero across all R models, then it receives a large coefficient of
variation.

From this we can obtain a ranking rn
1 , . . . , rn

T of the T terms
in our model by sorting the coefficients of variation from
smallest to largest (breaking ties based on numeric order).
Here rn

1 , . . . , rn
T is simply a permutation of the set {1, . . . , T }.

To robustly determine the ranking of model terms from most
to least important, we create a consensus from the individual
rankings obtained at each cluster level {(rn

1 , . . . , rn
T )}nmax

n=nmin
. To

aggregate these rankings into one, we use a traditional method
for aggregating votes or ballots known as the Kemeny-Young
or VoteFair popularity ranking algorithm [14,15]. This algo-
rithm finds the average ranking that minimizes the sum of
Kendall tau distances to the list of individual rankings at each
cluster level n = nmin, . . . , nmax. Using this method, we obtain
the final aggregated ranking r1, . . . , rT of all T terms in our
ODE model.

Returning to our FHN example, in Fig. 1(a,3) we see that
this Kemeny-Young ranking of model terms returns a list
where the top six terms give a sparse and predictive polyno-
mial model for FHN of the form

v̇ = av + bh + cv3,

ḣ = e + f v + gh. (12)

Note that the top seven terms in this list from Fig. 1(a,3)
exactly recover all the polynomial terms in the true FHN
model. Next, we discuss why the six-term model above, which
misses the constant term in the v̇ equation, is mathematically
identical to the true FHN equations.

IV. HIGHER-ORDER MODEL COMPARISONS

In our example on learning FHN from partial observations,
we found several two-dimensional models that could generate
the same v dynamics in their first coordinate. In fact, there
exist many diffeomorphic transformations of the hidden w

coordinate of FHN, leading to new dynamical systems that
agree in simulations of the observed v coordinate. This ability
to transform hidden coordinates is a general degree of freedom
when inferring dynamical systems from partial observations.
This necessitates methodologies allowing us to test whether
the dynamical models we discover are indeed equivalent (un-
der hidden coordinate diffeomorphisms) to the ground-truth
dynamical systems from which we obtained partial observa-
tions. Below we propose two methods, one manual and one
automated, to test for such model equivalences. We again
illustrate these methods on the example of FHN.

A. Manually testing for model equivalence

Taking the true FHN model in Eq. (5), solving for w in
terms of v, v̇ and substituting into the ẇ equation, we obtain a

second-order reduced model solely in v. Namely, we can write

w = −v̇ + v − cv3 + I, (13)

which can be substituted into the ẇ equation of FHN (5) to
obtain

v̈ − v̇ + 3cv2v̇ = − 1

τ
v − a

τ
+ b

τ
(−v̇ + v − cv3 + I ). (14)

This equation can then be expanded into

v̈ = −3cv2v̇ +
(

1 − b

τ

)
v̇ − bc

τ
v3 + b − 1

τ
v + bI − a

τ
.

(15)

We say that Eq. (15) is in “reduced form” because it depends
solely on the value and derivatives of the observable v.

Performing a similar reduction of our learned six-term
model

v̇ = av + bh + cv3,

ḣ = e + f v + gh, (16)

we can solve for h as a function of v and v̇ and substitute in
the ḣ equation to find

v̈ = 3cv2v̇ + (a + g)v̇ − cgv3 + (b f − ag)v + be. (17)

We see that this v-reduced model has the same struc-
ture and similar coefficients as the true reduced FHN model
[Fig. 1(b)]. In fact, it is easy to check that the coefficients
(a, b, c, e, f , g) of model (16) can always be chosen appropri-
ately so that (17) matches the coefficients of true reduced FHN
(15). This confirms that HDI has recovered a two-variable
model that is structurally equivalent to ground-truth FHN. In
this example, one could argue that comparing our model to
true FHN through such higher-order reductions was unneces-
sary as our learned model (16) was structurally similar to the
true form of FHN and could be diffeomorphically transformed
into true FHN by a simple shift in its hidden coordinate. How-
ever, models that are equivalent in a subset of their coordinates
are not always so readily identified. We refer the reader to our
SM, where we show how a very different polynomial model

v̇ =
(

1 + 1

β

)
v − 1

β
h − cv3 +

(
α

β
+ I

)
,

ḣ = −cv3 −
(

b

τ
+ 1

β

)
h (18)

is again equivalent to the true FHN model in its v coordinate,
by transforming into a higher-order form. This equivalence
can likewise be seen by properly transforming the h coordi-
nate of (18) into the w coordinate of true FHN.

Because the evolution of a subset of coordinates of a
dynamical system cannot be uniquely captured by one mul-
tivariate first-order differential equation, reductions of such
multivariate first-order systems into a unique higher-order
form are a useful procedure for performing model compar-
isons. In the model equivalence tests above, we described
how two models can be shown to be equivalent in a subset
of their coordinates (e.g., v coordinate) if reducing them to
higher-order forms results in equations with the same terms
and nearby coefficient values.
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B. Robust algebraic test for model equivalence

We now discuss an alternative algebraic procedure that
allows us to automatically verify when polynomial dynamical
models are equivalent in a subset of their coordinates, using
again the idea of higher-order reductions. This second test
gives a necessary but not sufficient condition of model equiva-
lence, but is more efficient and robust than the approach above
and requires that only one of the equations being compared is
reduced into a higher-order form.

To begin, suppose we wish to test whether a learned model
such as (18) is equivalent to true FHN in its v coordinate.
Recall the higher-order form of true FHN in its v coordinate
derived in (15). We aim to test whether the model in (18) can
possibly be reduced into this form. First, we rewrite (18) with
fully general coefficients

v̇ = w1 + w2v + w3h + w4v
3,

ḣ = w5h + w6v
3. (19)

We can compute v̈ from this model by writing

v̈ = w2v̇ + w3ḣ + 3w4v
2v̇

= w1w2 + w2
2v + (w2w3 + w3w5)h + 3w1w4v

2

+ (4w2w4 + w3w6)v3 + 3w3w4v
2h + 3w2

4v
5.

Now we substitute the values of v, v̇, v̈ into the true higher-
order form of FHN (15) and test whether it can possibly be
satisfied by a model of the form (19). Specifically, we first
write the higher-order form of FHN,

g(v̈, v̇, v) = v̈ + 3cv2v̇ −
(

1 − b

τ

)
v̇

+ bc

τ
v3 − b − 1

τ
v − bI − a

τ
(20)

and substituting v, v̇, v̈ this turns into a polynomial g(v, h),
which we aim to set exactly to zero,

g(v̈, v̇, v) = g(v, h; {wk}6
k=1) ≡ 0. (21)

Note that because g is a polynomial in v, h, in order for it
to exactly equal zero, the coefficients in front of each of its
monomial terms must be zero. Enforcing that g ≡ 0 gives us
a (typically overcomplete) system of polynomial constraints
on the {wk}6

k=1 model coefficients that must be satisfied and
can be solved for through symbolic substitution or homotopy
continuation methods [103]. We refer the reader to the SM
(Sec. VIII) for more details and a general presentation of this
model comparison test.

Hence, we can now test whether there exists any set of
coefficients {wk}6

k=1 under which a model of the general form
(19) could have the correct higher-order form as true FHN.
This in turn gives us a necessary condition that the model
learned in (18) is equivalent to FHN in its v coordinate. We
show in the next section how these automatic tests are useful
in proving that HDI accurately discovers the equations of
the chaotic Lorenz attractor from partial observations of its
coordinates.

V. CHAOTIC DYNAMICS: LORENZ SYSTEM

HDI straightforwardly extends to higher-dimensional non-
linear and chaotic systems. Here we study it in the three-
variable chaotic Lorenz system

ẋ = σ (y − x), (22a)

ẏ = x(ρ − z) − y, (22b)

ż = xy − βz. (22c)

We investigate the mathematical equivalence and predictive
ability of the models that HDI learns when given one or two
of the three coordinates of Lorenz as observations. The param-
eters of the ground-truth Lorenz model are set to σ = 10, ρ =
28, and β = 8/3 for which the maximal Lyapunov timescale
under which trajectories deviate is known to be approximately
0.9056. We will use this Lyapunov timescale as a reference
time to measure the ability of our learned models to predict
the trajectory of ground-truth Lorenz when both models are
started from the same initial conditions.

A. Observations of x and y variables

We give our procedure observations of the x and y coordi-
nates of the 3D Lorenz system for one or two lobe transitions
[gray-shaded in Fig. 2(a)]. An HDI search over all polynomial
three-variable ODEs in (x, y, z) with quadratic interactions
recovers the exact Lorenz equations with correct coefficient
values (modulo a trivial scaling of the hidden z variable)
[Fig. 2(b); SM]. The learned model has the correct attractor
dynamics and can predict the x, y, and z dynamics for a bit
more than five Lyapunov timescales [Figs. 2(a) and 2(c)].

B. Observations of x variable

Even when only given observations of x, HDI learns a
predictive model for Lorenz dynamics, albeit with reduced
predictive power (Fig. 3). Our method finds a seven-term
model

ẋ = w1x + w2y,

ẏ = w3x + w4xz,

ż = w5 + w6z + w7xy, (23)

which is strikingly similar to the true Lorenz system except
that a linear term in y is missing from the ẏ equation.

As shown in Fig. 3(a), this ODE model exactly fits the
training data from the simulated Lorenz system (gray box)
on which it was trained and is capable of predicting two
additional branch switches of the Lorenz attractor which occur
for approximately two Lyapunov timescales past the training
window. We now test whether the model learned from just
the x-coordinate of the Lorenz system exactly reduces to the
true x-reduced Lorenz equation. To this end, we first compute
the form of the true higher-order model of the x coordinate of
Lorenz.

Taking (22a), we can rewrite it as

y = ẋ

σ
+ x, ẏ = ẍ

σ
+ ẋ.
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Then substituting this and (22a) into (22b) gives us

z = − 1

σ

ẍ

x
−

(
1 + 1

σ

) ẋ

x
+ ρ − 1.

Given this expression for z, we can compute its derivative as

ż = − 1

σ

˙̇ ˙x

x
+ 1

σ

ẋẍ

x2
−

(
1 + 1

σ

) ẍ

x
+

(
1 + 1

σ

) ẋ2

x2
.

Finally, we can substitute the above two expressions for y, z,
and ż into (22c) to obtain

x˙̇ ˙x − ẋẍ + (σ + β + 1)xẍ − (σ + 1)ẋ2 + x3ẋ

+ β(σ + 1)xẋ + σx4 − σβ(ρ − 1)x2 = 0. (24)

The reduction of the Lorenz equations to a higher-order
ODE in solely the x coordinate was previously derived in
[58,61]. Using our automatic verification tool for model re-
ductions described in Sec. IV, we find that our model (23)
does not reduce to this form, no matter how we set the coeffi-
cients w1, . . . ,w7.

To see why this is, we reduce our learned model (23) in the
x-coordinate and obtain the following equation:

x˙̇ ˙x − ẋẍ + (w1 + w4w6)xẍ + w1ẋ2 − w4w7x3ẋ

+ w1w4w6xẋ + w1w4w7x4 + w2(w3w6 − w4w5)x2

= 0.

The terms in this equation agree precisely with the x-reduced
equation of the true Lorenz system in (24). Given that the true
Lorenz system was simulated with parameters σ = 10, ρ =
28, β = 8/3, we now attempt to match the coefficient of our
x-reduced model with that of Lorenz. This gives us the con-
straints

w1 + w4w6 = σ + β + 1,

w1 = −σ − 1,

w4w7 = −1,

w1w4w6 = β(σ + 1),

w1w4w7 = σ,

w2(w3w6 − w4w5) = −σβ(ρ − 1), (25)

from which we derive the contradiction that w1 = −σ

and w1 = −σ − 1. This explains why our automatic tool
for model reductions could not find a set of coefficients
w1, . . . ,w7 that would satisfy the true x-reduced Lorenz equa-
tion. In fact, notice that by setting w1 = −σ − 1 we can set
w4w6 = −β and w4w7 = −σ/(σ + 1) and all except the first
and third constraint equations above will be satisfied, resulting
in a sign flip of the coefficient in front of xẍ and a slight shift
in the coefficient of x3ẋ. These are precisely the higher-order
coefficients found by our learned Lorenz model [Fig. 3(b)].
Therefore, at the expense of estimating the wrong sign in the
coefficient of xẍ, our model finds the correct coefficients for
all other terms in the higher-order equation of Lorenz.

Due to the algebraic similarity of the learned model to the
true Lorenz dynamics, this model closely matches the dynam-
ics of the x coordinate of the Lorenz system. Another way
to test this is to overlay the derivative embedded dynamics
in (x, ẋ, ẍ) of our learned model over that of true Lorenz

from which we see a close agreement of the model attrac-
tors [Fig. 3(c)]. We refer the reader to the SM (Sec. VI A)
where we in fact show how this model is similarly predictive
for several Lyapunov times when transformed into derivative
embedding space.

We next apply HDI to identify quantitative models from
experimental data for neuron activity and chemical reactions.

VI. EXPERIMENTAL APPLICATIONS

A. Squid axon voltage recordings

Figure 4(a) shows experimental measurements [104,105]
of the membrane potential v in the giant axon of the North
Atlantic longfin inshore squid (Loligo pealeii) in response
to noisy stimulus input currents. Following previous spike
train model formulations [100,107–109], we apply HDI to
the time-series data for v to learn a sparse two-variable
model [Figs. 4(a) and 4(b)]. Consistent with prior descriptions
of neuron dynamics [11], the phase portrait of the discov-
ered seven-term model is governed by a homoclinic orbit
[Fig. 4(c)]. The limit cycle that is discovered by the HDI
framework is valid in the regime of the available data. As
seen by the model sweep (SM) there are multiple models that
provide consistent limit cycle dynamics. To further distinguish
between these models, additional transient data off the limit
cycle would be needed. Importantly, the model generalizes to
describe recordings from different squids, yielding consistent
coefficients across all samples [Figs. 4(d) and 4(e)].

B. Belousov-Zhabotinsky color dynamics

For a second more challenging HDI application, we
performed Belousov-Zhabotinsky (BZ) reaction experiments
[110]. Over the course of the reaction, a substrate species is
slowly consumed that fuels the periodic rise and decay of in-
termediary reagents far from thermodynamic equilibrium. The
basic reaction scheme [111] involves more than 20 chemical
species and 40 reaction steps. A plethora of different chemical
models have been developed that capture the BZ reaction
qualitatively [106,112–115]. In our experiments, the repeated
oxidation and reduction of the metal catalyst ferroin produces
a periodic change in color of the solution from red to light
blue [Fig. 5(a)]. The recorded average color of the solution
follows a 1D curve in color space which we map to our single
observed coordinate c(t ) (Fig. 11 of the SM).

A standard three-variable ODE model for the BZ reaction
is the Oregonator model,

u̇ = v − u, (26a)

v̇ = 1

ε1
(−w(v − μ) − v2 + v), (26b)

ẇ = 1

ε2
( f u + φ − w(v + μ)), (26c)

where u, v, and w correspond to the concentrations of the
oxidized catalyst Mox, bromous acid HBrO2, and bromide
Br−, respectively. Here μ, f , φ are all non-negative. Usu-
ally we have that ε2 � ε1 so the inhibitor species w can be
adiabatically eliminated by setting f u + φ − w(v + μ) = 0.
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FIG. 4. HDI framework learns a parsimonious two-variable model from an experimental recording of the membrane potential in a squid
giant axon and reproduces the dynamics in additional squid giant axons from the SGAMP database [104,105]. (a) North Atlantic longfin inshore
squid (Loligo pealeii) with sketch of the nervous system and position of giant axons (top). Learned two-variable HDI model with nine terms
accurately fits the membrane potential v (center, line) of an experimental squid giant axon (open circles) in response to a noisy stimulus input
current. The hidden variable h (bottom) acts as a slow recovery variable. (b) Polynomial model terms in v̇ and ḣ equations ranked from most
to least important based on their coefficient of variation in the largest model cluster. Training data losses of sparse models containing only top
s ranked terms are shown, and the model with sparsity nine is chosen. (c) Limit cycle and fixed points (black) of learned model are consistent
with prior models of regular spiking neurons [11] where the proximity of the saddle fixed point to the orbit likely arises from a homoclinic
bifurcation. Nullclines of v, h plotted in blue and gray, respectively. (d) Selected nine-term model (line) generalizes to two additional squid
axon recordings (open circles). (e) Coefficients of the nine-term model align across all three train and test squid axon experiments.

Solving for w, we get that

w = f u + φ

v + μ
, (27)

which leads to the two-component Oregonator model

u̇ = v − u, (28a)

v̇ = 1

ε1

(
v(1 − v) − v − μ

v + μ
( f u + φ)

)
. (28b)

To build a two-variable polynomial HDI model that can match
the dynamics of our experimental BZ recordings, we take in-
spiration from the two-component Oregonator model derived
above. The first equation (28a) in u̇ is already of polynomial
form and is in fact linear. The second equation (28b) in v̇

has a nonpolynomial rational term of the form v−μ

v+μ
which

we must approximated through a polynomial expansion. A
polynomial expansion is indeed possible because the coordi-
nate trajectories of both Oregonator models (26) and (28) stay
non-negative with v > μ if initialized in this way. The Taylor
series expansion of this rational function contains monomi-
als of all integer degrees, and hence we must decide where

to truncate its polynomial expansion. In the region v > μ,
since μ � 1 the rational function v−μ

v+μ
plateaus quickly to 1,

and hence is well-approximated by a cubic polynomial in v.
Therefore, the entire right-hand side for the v̇ equation (28b)
can be approximated by a quartic polynomial in u, v.

The concentration of the oxidized catalyst u is most closely
related to our observable, the color of the solution c, while the
bromous acid concentration v is unobserved so we now denote
it by the variable h. The two-component Oregonator model
motivates us to search over all two-variable polynomial ODE
models which are linear in their first equation and quartic in
their second equation,

ċ = w1 + w2c + w3h, ḣ = qw(c, h), (29)

where the first variable c predicts the color dynamics and the
second variable h is hidden. Here qw is notation for a quartic
polynomial in c, h with learnable weights w. From this class
of models, HDI discovers a seven-term model that accurately
fits the color dynamics c(t ) for BZ reactions [Figs. 5(a) and
5(d)] with parameters that vary smoothly across the differ-
ent reactant concentrations in each experiment [Fig. 5(e)].

043062-10



DISCOVERING DYNAMICS AND PARAMETERS OF … PHYSICAL REVIEW RESEARCH 6, 043062 (2024)

FIG. 5. HDI applied to our experimental BZ reaction data learns a two-variable linear-quartic model that generalizes under catalyst
variations. (a) Experimental snapshots of the BZ reaction showing periodic color oscillations (top). Input data (open circles) and observed and
hidden variables (solid line) integrated from the learned polynomial ODE model. Using data from three oscillations, the learning framework
finds that a seven-term ODE can accurately describe the dynamics. (b) Polynomial ODE terms appearing in ċ and ḣ equations ranked from
most to least important based on their coefficient of variation. Model terms are added one-at-a-time in order of importance with the seventh
term leading to a drop in the training loss. (c) Phase plane diagram of learned seven-term ODE from the previous panel contains crucial
features found in most two-variable BZ models [106]. Limit cycle contains an unstable fixed point (black) with a monotonic x-nullcline (blue)
and an h-nullcline (dark gray) in the form of a “cubic” curve as found in the FHN, Rovinsky, and ZBKE models. (d) Resulting seven-term
model (solid line) accurately fits the dynamics of the color of the chemical solution (open circles) in two new BZ experiments. (e) Coeffi-
cients of the model remain consistent across all three experimental BZ reactions. Chemical concentrations: 0.20 M H2SO4, 0.11 M NaBrO3,
0.05 M CH2(COOH)2, 0.03 M NaBr, 0.3 mM ferroin (blue), 0.41 M H2SO4, 0.17 M NaBrO3, 0.03 M CH2(COOH)2, 0.02 M NaBr, 0.3 mM
ferroin (green), 0.51 M H2SO4, 0.10 M NaBrO3, 0.03 M CH2(COOH)2, 0.02 M NaBr, 0.3 mM ferroin (red).

Furthermore, the phase portrait of the learned model correctly
captures the dynamical properties of the BZ reaction [110],
showing an unstable fixed point enclosed in a stable limit
cycle with a typical cubic-shaped nullcline ḣ = 0 [Fig. 5(c)].

VII. CONCLUSION

By combining sensitivity methods and ranked choice vot-
ing, HDI can discover parsimonious predictive models from
partial noisy observations of oscillatory and chaotic dynam-
ics without extensive preprocessing of time-series data. The
above framework can be directly applied to experimental ob-
servations of biophysical, ecological, and other systems, for
which ODE models can inform the prediction, control, and op-
timal perturbations [116] of dynamical behavior. Extensions
of HDI in the future to stochastic dynamics are possible due
to recent advances in automatic differentiation of stochastic
algorithms [117]. By mapping time series to ODE model co-
efficients, HDI can help facilitate the clustering of dynamical
data, such as those appearing in health [118] and climate [8]
studies.

The data that support the findings of this article are openly
available. All source code for our HDI methodology and in-
structive examples are available [119]. Time-series data from
the FHN oscillator and Lorenz attractor are generated by
the authors’ computer simulations with standard model and
ODE solver parameters as described in the main text and the
accompanying SM of this paper. Recordings from the giant
axons of North Atlantic longfin inshore squids are taken from
the publicly available SGAMP database [104,105]. Finally,
the four BZ reactions studied in this paper were produced by
coauthor J. Totz at MIT (reaction setup details in Sec. V of the
SM [97]), and video recordings of the color change dynamics
of these reactions are included along with this paper in the
Supplemental Material, video file SI_movie.mp4 [97].
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