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Gait-optimized locomotion of wave-driven soft
sheets†

Pearson W. Miller and Jörn Dunkel *

Inspired by the robust locomotion of limbless animals in a range of environments, the development of

soft robots capable of moving by localized swelling, bending, and other forms of differential growth has

become a target for soft matter research over the last decade. Engineered soft robots exhibit a wide

range of morphologies, but theoretical investigations of soft robot locomotion have largely been limited

to slender bodied or one-dimensional examples. Here, we demonstrate design principles regarding the

locomotion of two-dimensional soft materials driven by morphoelastic waves along a dry substrate.

Focusing on the essential common aspects of many natural and man-made soft actuators, a continuum

model is developed which links the deformation of a thin elastic sheet to surface-bound excitation

waves. Through a combination of analytic and numerical methods, we investigate the relationship

between induced active stress and self-propulsion performance of self-propelling sheets driven by

FitzHugh–Nagumo type chemical waves. Examining the role of both sheet geometry and terrain geogra-

phy on locomotion, our results can provide guidance for the design of more efficient soft crawling

devices.

1 Introduction

Nearly all motile organisms achieve locomotion through some
manner of active deformation, and soft matter researchers are
increasingly able to replicate biomechanical strategies in the
design of soft robotics.1–3 Arguably the simplest strategy for
terrestrial motion is crawling: via a temporally patterned series
of contractions and expansions, a deformable solid drags itself
along a surface.4 Crawling has the advantage over traditional
mechanical systems of being highly adaptable against changing
terrain, and it requires far fewer specialized parts than a multi-
pedal system.5–9 Until recently, most research on the topic has
focused on slender designs inspired by the peristaltic motions
found in snails, worms, and certain snakes.10,11 Locomotion of
active solids in one dimension has been studied extensively in
the context of swelling gels, shape memory polymers, or dielec-
tric and ferromagnetic materials.12–17 But nature is full of motile
organisms which possess spatially-extended, sheet-like bodies
(Fig. 1A and B), and engineers are actively exploring the high-
dimensional design space of robot morphologies (Fig. 1C–F).18–23

These efforts require new theory to be developed to address and
understand the increasingly complex patterns of deformation
and growth employed in 2D and 3D soft systems.

Fig. 1 Soft active sheets in natural and engineered contexts. (A) Flat-
worms are capable of undulating over on land and sea.24 (B) A ‘‘solar-
powered slug’’ has a leaf-like body to optimize photosynthesis.25,26

(C) A walking hydrogel driven by a Belousov–Zhabotinsky (BZ) reaction
walks along an anisotropic substrate.14 (D) Millimeter-scale soft robot
shows sustained peristaltic locomotion.27 (E) Inflation-driven soft robot
capable of multiple gaits.7 (F) Pneumatic shape-morphing elastomer
structure6 exhibits tuneable configurations.
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In this paper, we use methods from the theory of morphoelas-
ticity to examine the locomotion of an actively deformable elastic
shell crawling upon a dry frictional surface. In Section 2, a toy
model is constructed in which deformation is coupled to a surface-
bound excitable wave, mimicking, for instance, the swelling seen in
BZ-driven hydrogel actuators.28 Analysis of this model reveals
crucial qualitative differences between 1D and 2D crawling bodies:
geometric incompatibility makes the relationship between active
stress and deformation far less trivial in two dimensions. In
Section 3, this relationship is derived exactly in the small strain
limit, allowing us to demonstrate substantial deviations in the
peristalsis-induced velocity of a crawling body in 1D versus 2D.4,29

Following this, we use numerical approaches to examine larger
deformation regimes for a sheet driven by FitzHugh–Nagumo type
traveling waves. Our main focus will be on how sheet velocity can
be maximized by the choice of active coupling parameters and by
sheet geometry for a particular wave pattern. We conclude our
study by exploring the robustness of crawling locomotion over non-
uniform terrain.

2 Model

We consider hyperelastic, neo-Hookean elastic sheets subject
to isotropic, non-homogeneous contraction, expansion, and
curvature: this approach is a good match to the known behavior
of already existing sheet-like devices.30 Equations of motion are
obtained variationally from energy functionals based on the
standard Koiter shell model.31–33 Elastic dynamics are over-
damped, consistent with growth processes in both living and
engineered systems.28 As a consequence, it is assumed at any
time t that the system is in its minimal energy configuration.
For our system, these energy functionals are given in terms of
the difference between the instantaneous metric a and curva-
ture b tensors of the surface, and prescribed reference tensors %a
and %b which define the local equilibrium behavior:32,34

ES ¼
h

8 1� n2ð Þ

ð
�o
d�o ð1� nÞTr ða� �aÞ2

� �
þ n Trða� �aÞ½ �2

n o
; (1a)

EB ¼
h3

24 1� n2ð Þ

ð
�o
d�o ð1� nÞTr ðb� �bÞ2

� �
þ n Trðb� �bÞ½ �2

n o
;

(1b)

These equations have been non-dimensionalized by choosing units
such that the sheet length L and Young modulus Y are equal to one,
along with the characteristic velocity associated with eqn (3) below.
Throughout, we consider a constant Poisson ratio n = 0.5, and the
ratio of sheet thickness of length h is set to 0.03. The integration
domain �o is the undeformed reference surface of the sheet, and d�o
is the corresponding surface area element. Note that the configu-
ration with minimal energy generally has nonzero energy: for
arbitrary growth, the reference tensors are not necessarily compa-
tible and thus the zero-energy state cannot be embedded in 3D
Euclidean space.35 The elastic sheet is placed in a gravitation field,
Fg = �rgẑ. In our simulations, we chose the gravitational force per
unit area rg = 2.5 � 10�4, ensuring that gravitational effects on
deformation are negligible. Further, the sheet rests upon a rigid

surface, represented by the repulsive force

Fn ¼
kz2 � bvz
� �

ez; if z � 0

0 otherwise

(
(2)

where k = 0.5, b = 2.5 � 10�7, and z and vz are the distance and
velocity of the sheet normal to the ground. This contact force model
was chosen because it produces an effectively rigid ground (with only
negligible penetration by the sheet during deformation) with mini-
mal numerical instability. Restricting ourselves to a rigid ground is
essential, as feedback between deformable sheets and a soft floor
can trigger complex patterns which would greatly increase the diffi-
culty of analysis.36 We focus on floors with dry interfaces, described
by the traditional Coulomb friction Ff =�m|Fn|v̂t, where v̂t is the local
sheet velocity unit vector tangent to the ground. To ensure numerical
stability, our simulations replace this law with the approximation

Ff ¼ �m Fnj j tanh vt=v0j jð Þ vt
vtj j

(3)

with m = 0.7 and velocity normalization is chosen so that v0 = 1.
Together with L = 1, units of time in this normalization are thus
t0 = L/v0. While some biological crawlers feature more complex
surface interactions because of lubricating mucous layers or cilia,10

this choice of friction is consistent with prior theoretical work on
locomotion,37 and avoids many of the common numerical difficul-
ties associated with discontinuities in sliding friction. Active defor-
mation is induced according to a time-varying scalar field c(x,y,t)
defined over the reference sheet, which can be taken as a proxy for a
surface-bound chemical or otherwise excitable process (see Fig. 2D).
This field exerts active mechanical stress on the sheet by direct
modification of the reference tensors described above, consistent
with prior work on the active deformation of thin shells:33,34,38

%a - exp(2ac)%a, %b - �bc%a, (4)

The exponential form used above prevents the reference metric
from becoming negative in the high contraction limit, which would
raise concerns of unphysical stresses. In all simulations described
below, we numerically integrate the equations of motions acquired
by summing the combined effects of internal forces derived from
the potential energy in eqn (1) and the external forces described
above. Further details on these equations of motion and the
numerical methodology can be found in the Appendix. Overall,
this model represents a general formulation for isotropic deforma-
tions of a soft sheet, and, when coupled to regular wave pulses,
exhibits sustained locomotion (Fig. 2).

3 Results
3.1 Flat crawling sheets

Crawling is perhaps the most extensively studied gait for soft robots
because it is ubiquitous in nature and easy to reproduce
mechanically.4,39 So we first consider the simple motion of a crawling
elastic sheet with no out-of-plane deformation. We employ an
approximate analytical approach for the overdamped 1D regime in
which elastic forces dominate over friction, and the temporal period
of the wave is much longer than the elastic equilibration timescale.
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Such an approximation is suitable for cases in which mechanical
equilibration occurs must faster than growth processes, and is a
common assumption in morphoelastic processes.32 Because elasti-
city dominates over damping, we assume that at each instant,
the system is in its reference configuration and is quasi-statically
evolving from one moment to the next. Although friction accounts
for the net motion of the body, elasticity is so dominant that it can be
assumed that friction affects the center-of-mass position only and
not the shape. In the regime where coupling a { 1, b = 0, it is
possible to linearize the deformation dependence in eqn (4) and
solve the system to the lowest order to find how net velocity averaged
over time scales with a.

Before addressing the more complex 2D case, it is instructive
to consider a 1D body, for which growth induced geometric
incompatibility does not occur.40 Because the instantaneous
configuration in 1D is identical to the reference configuration
induced by the wave, the deformation at a point S A [0, 1] in the
undeformed reference coordinates can be written as:

uðS; tÞ ¼
ðS
0

dS0acðS0; tÞ (5)

Assuming that the effect of friction on the body shape is
negligible, the instantaneous velocity at each point can be
calculated for a given wave in the center of mass frame as

vcmðS; tÞ ¼ @tuðS; tÞ �
ð1
0

@tuðS; tÞdS0 (6)

In the lab frame, the total friction force acting on the sheet
must be zero, which means that

0 ¼
ð1
0

dS 1þ @Suð Þf ðS; tÞ

¼
ð1
0

dS sgn vcmðS; tÞ þ VnetðtÞð Þ þ @Su sgn vcmðS; tÞ þ VnetðtÞð Þ½ �

(7)

Here, f (S,t) is the local friction acting on the sheet at material
point S and time t. This value is a constant with the opposite
sign as the local sheet velocity in the lab frame, which is given
as vcm(S,t) + Vnet(t); that is, the sum of the local velocity in the
center of mass frame and the net velocity of the center of mass
in the lab frame. The prefactor 1 + qSu(S,t) accounts for the
modification of surface friction due to the change in surface
element size.39 This relation defines Vnet(t) as dependent on the
deformation via a nonlinear, implicit integral equation, and
deriving a closed form solution is challenging. One elementary
case for which a solution can be found is the simple traveling
sine wave c(S,t) = sin(2pnS � 2pt/T), for an arbitrary non-zero
integer n. In this case,

vcmðS; tÞ ¼
a
nT

sinð2pnS � 2pt=TÞ;

and translational symmetry allows us to ignore the time depen-
dence in eqn (7), and the integral can be solved for the fixed
value Vnet via piecewise integration to find

arcsin
nTVnet

a

� �
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2n2T2Vnet

2

a2

s
¼ 0 (8)

This equation can be solved perturbatively for small a to give

V1D ¼ �
1

nT
a2 þO a3

� �
(9)

This result presents an interesting counterpoint to existing
results for peristaltic crawling with viscous friction. In the
viscous friction case, there is also a quadratic dependence on
deformation strength, but the net velocity is in the same
direction as, rather than opposed to, the direction of wave
propagation.39

In the 2D regime, non-homogenous growth produced by a
generic wave pulse makes the sheet configuration a non-trivial
function of the concentration field c, and finding the exact
deformation field for which eqn (1) vanishes is only practical

Fig. 2 Active waves trigger peristalsis-like gaits in sheets. (A) Top: Snapshot of 2D simulation, with surface colored to show local concentration and
arrows indicating friction force vector Ff. The wireframe beneath indicates the undeformed simulation mesh of the sheet. Bottom: An undeformed
surface, with arrows representing gravity Fg, the normal force Fn and friction Ff. The coupling parameter a controls the local stretching of the surface in
response to the concentration field (red), while the parameter b governs local bending, see eqn (4). (B and C) Kymographs showing chemical and
mechanical time evolution of a walking sheet at a = �0.25 and b = �0.15. Values are averaged along the direction traverse to the waves propagation.
Panel B depicts the concentration profile c, and panel C shows the longitudinal displacement. (D) Snapshots of one gait over the course of a single period,
corresponding to the plots in B and C. The surface wave triggers expansion and bending of the surface, inducing backward motion of the sheet.
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for special cases. In fact, the deformed reference configuration
is not always directly embeddable in real space in two or more
dimensions, and often no stress free configuration exists: the
deformation merely minimizes our energy functional, rather
than making it vanish.35 However, working in the limit where
b = 0 and |a| { 1, it is safe to assume deformations induced by
active stress are small, so our Koiter energy equations are
replaced with a linearized set of elastostatic equations

qisij = 0 (10a)

eij = [(1 + n)sij � ndijskk] + (1 + n)acdij (10b)

Here sij and eij are the conventionally defined linear stress and
strain tensors, and dij denotes the Kronecker delta symbol. The
first equation is the usual expression for the balance of forces
at equilibrium. The second equation modifies the normal
constitutive relation for an elastic body by the addition of the
rightmost term, which represents the isotropic active stress
induced by the local concentration field. As constructed, these
equations are identical in form to the standard formulations of
linear thermo-elasticity,41 and we can borrow the results devel-
oped for that field. In the Appendix, we describe in detail the
solution of these equations for a rectangular elastic sheet with
free boundary conditions by way of the stress function formula-
tion. With the exact deformation field u(x,t) derived, where
x = (x,y) parameterizes the undeformed reference surface, the
velocity of each point in the center of mass frame can be
calculated as before. As shown in Fig. 3A, the analytical solution
obtained this way closely matches numerical simulations. In
this paper we consider waves which propagate along the y-axis,
with no x-dependence, and so in the lab frame, the only net
velocity is along the y-axis. Thus, balance of forces requiresð

A

dx
vcm;yðx; tÞ þ VnetðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vcm;yðx; tÞ þ VnetðtÞ
� �2þ vcm;xðx; tÞ

� �2q Jðx; tÞ ¼ 0 (11)

where J(x,t) = 1 + exx(x,t) + eyy(x,t) is the deformed element area
in 2D. Unlike the 1D case, this equation cannot be easily
evaluated for the exact deformation field, even if c(y,t) is as
simple as a sinusoidal wave. Numerical root-finding methods,
however, can be used to calculate Vnet to arbitrary precision,
revealing that, to the lowest order, crawling speed is also
quadratic in a (Fig. 3B). However, the net displacement greatly
underperforms in comparison to the 1D case. This result
follows directly from the nonlinearity of dry friction—with the
total magnitude of friction at a given point constant, contrac-
tion and expansion traverse to the wave reduces the net force in
the longitudinal direction (Movie 1, ESI†).

3.2 Optimal gaits for finite deformations

Thus far our analysis has been constrained to entirely in-plane
motion, but sufficiently strong deformation will produce out-of-
plane buckling of the sheet as it moves, as will waves that
induce a preferred curvature on the initially flat sheet. In such
cases, the complex shape changes generally make analytical
approaches unfeasible.42 Instead, we investigate the relation-
ship between surface activity and locomotion numerically,

using the subdivision FEM approach described in Vetter et al.
2013.43 In the interest of representing a plausible active wave,
our numerical model c(y,t) evolves according to a FitzHugh–
Nagumo type equation, which is an archetypal system for
representing traveling reaction diffusion waves

ct = g2r2c + c(1 � c)(c � n) � w (12a)

wt = e(c � kw). (12b)

Fig. 3 Sheet locomotion is exactly solvable for small deformation.
(A) Snapshots of the instantaneous surface friction on an elastic sheet
driven by a sinusoidal wave. Top panel: Friction field calculated analytically
as described in the text. Bottom: Deformed sheet according to FEM
simulations for a = 0.25, with color depicting local value of c and arrows
determined by eqn (3). For full range of motion, see Movie 1 (ESI†).
(B) Comparison of 1D and 2D locomotion. In both cases, velocity exhibits
a quadratic dependence on a to the lowest order. Symbols represent
results of simulated crawling, while lines are predicted results from theory.
In both cases, predictions closely match numerical results, but begin to
diverge slightly as a grows. The rectangular reference geometry of the
sheet has length L = 1 and width L/2, with sheet thickness set to h = 0.03.
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This model provides a generic representation of the types of
wave-driven activity required for autonomous soft robots, so
that the main results below can be expected to generalize
qualitatively to other wave propagation models.

We choose parameter values that produce traveling wave
solutions44 in the oscillatory regime: n = �0.01, k = 0.0001, e =
0.05, and g = 0.02. Initial conditions are of the form c(t = 0) =
y2/(1 + y2), w(t = 0) = 0, which produces well defined waves that
propagate perpendicular to the x-axis. Boundary conditions for
the wave along the edge of the sheet are of the Neumann type.

A rectangular crawling sheet’s motion was explored over a
range of parameters values for the coupling parameter a and b.
The range plotted corresponds to local swelling/contraction on
the order of 50–150% in undeformed size, and preferred radii
of curvatures up to the order of 0.05L. Our numerical scans of
the (a,b) space revealed a roughly saddle point shaped velocity
surface (Fig. 4A). Depending on the active surface mechanics
produced by the wave, the sheet can move in the same (Fig. 4B
and Movie 2 top, ESI†) or opposite (Fig. 4C and Movie 2 bottom,
ESI†) direction as the wave propagation. Two notable curves
can be highlighted in the (a,b) space, associated with an active
bilayer composed of one actively swelling layer and one passive
layer (one curve for the active layer being on top, and one for
the bottom), as shown by the black lines on Fig. 4A.34 Near the
origin, these curves are approximately b = �100a.

3.3 Sheet geometry

Moving on, the next question is how sheet shape influences
locomotion. We examine how the speed of the two cases shown
in Fig. 4B and C depends on different sheet shapes. In parti-
cular, a parameter space was explored in which back and front

sides of the sheet w1 and w2 were varied, while simultaneously

changing the length L0 ¼ 2L

w1 þ w2
to keep total area constant

(Fig. 5, inset). The two cases exhibit markedly different geome-
try dependence. For the case shown in Fig. 5A, the sheet
exhibits a local maximum velocity for L0 E 0.9L, where L is
the length of the sheet in Fig. 2–4. For the case corresponding
to Fig. 4C, we see consistent retrograde velocity, but with a
maximum speed around L0 E 1.4L. What is interesting is that
in both cases, the maximum speed has a monotonic depen-
dence on w1/w2: in particular, it appears preferable to widen the
leading edge and narrow the rear edge of the sheet with respect
to the direction of net velocity.

3.4 External geometry

A central difference between soft and rigid robots lies in the
former’s ability to conform to different terrains, and it is hoped
that this ability will make soft robots better at traversing
obstacles.45 We consider the behavior of a rectangular sheet
on a periodic surface with height

z ¼ A sin
2px
lx

� �
sin

2py
ly

� �
(13)

where lx and ly are the wavelengths in the directions perpendi-
cular and parallel to the sheet’s motion, and the amplitude A =
0.02, and the origin chosen to be the sheet’s initial centroid
position. The motion of the sheet was simulated over a range of
surface wavelengths, as shown in Fig. 6A and Movie 4 (ESI†),
revealing a highly nonlinear velocity landscape.

Consider the extreme cases represented in our parameter
space. Point B represents the minimal observed velocity of any

Fig. 4 Velocity parameter space for a rectangular sheet as in Fig. 3 exhibits a saddle point dependence on deformation. (A) Parameter space diagram
showing mean velocity as a function of the coupling parameters a and b. The dashed (dotted) line represent the special case of coupling parameters
equivalent to the deformation of a thin bilayer with an active top (bottom) layer attached to a passive elastic bottom (top) layer, derived by equating our
model with the formulation suggested by Pezzulla et al.;34 along these lines active growth is nonzero but negligible compared with bending.
(B) Snapshots of an optimal backward moving sheet, taken at a = �0.25 and b = �0.15. Bottom panels show the center of mass position as a function
of time over the first 4 periods. (C) As in panel B, but for an optimal forward gait at a = �0.3 and b = 0.1. In all cases, h/L = 0.03, and the aspect ratio
is 2 to 1. See Movie 2 (ESI†) for full dynamics corresponding to panels B and C.
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tested terrain, and coincides with the landscape shown in
Fig. 6B. In this scenario, we observe the sheet deform down
into the ridged terrain, which reduces its forward extension and
slows net speed. Point C, by contrast, is our local maximum.
Here, traverse deformation of the substrate increases the
normal force near the center line and decreases it near the

edges, increasing net speed consistent with Fig. 5. Finally, it
should be noted that as both traverse and longitudinal wave-
lengths become sufficiently small (point D), the net speed once
again approaches its velocity on a flat surface. While some
surfaces clearly enhance motion, and some negatively impact
it, it is important to note that the sheet maintains coherent

Fig. 6 Self-propulsion of rectangular sheets exhibits complex dependence on ground topography. A sheet with the same coupling parameters as that in
Fig. 3B is placed upon a periodic curved surface defined as z = A sin(2px/lx)sin(2py/ly). (A) While the sheet is capable of navigating the surface for all
wavelengths, the dependence of velocity on either wavelength is highly nonlinear. (B) For L/ly = 7.5 and L/lx = 0, ridges perpendicular to the direction of
motion restrict deformation and reduce locomotion speed. (C) Periodic variation of the substrate along the x-axis exhibits the greatest influence on net
speed. For lx = L/5, motion is enhanced. (D) For sufficiently fine surface variation, such as this example for lx = ly = L/15, velocity approaches that of a flat
plane. See Movie 4 (ESI†) for full dynamics corresponding to panels B, C, and D.

Fig. 5 Forward (A) and backward (B) velocity is optimized by tuning the ratio of leading (w2) and rear (w1) edge widths for trapezoidal sheets. (A) Inset
diagram showing how the shape is varied: front and back widths (defined relative to the chemical wave propagation) are varied, with L chosen for each
value to preserve total area A = 0.5 between simulations. For forward-motion parameters corresponding to Fig. 4C, velocity is optimized by increasing
w2/w1. See Movie 3 (ESI†) for further comparison. (B) For backward-motion parameters as in Fig. 4B, the direction of motion remains the same over a
range of sheet shapes, but speed is maximized at a value of L0 E 1.4L, where L is the length of the rectangular sheet in Fig. 2–4.
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forward velocity in all tested cases, demonstrating that sheets
allow for robust motion on complex terrain.

4 Conclusions

Using methods from morphoelasticity, we examined how a
number of factors influence the crawling velocity of an actively
deforming soft sheet. In particular, it was demonstrated how
the relationship between velocity and active coupling para-
meters can be derived in the small strain limit, and an explicit
solution in the case of sinusoidal driving waves was provided.
For large strains, we showed that both the magnitude and
direction of motion can be tuned as a function of deformation
coupling. Interestingly, the above model predicts that an
experimentally realizable bilayer system composed of passive
and active monolayers will consistently move in the same
direction as the driving wave, regardless of whether the active
layer expands or contracts, or whether it is the top or bottom
layer that is active. Furthermore, we found that the velocity is
consistently enhanced by tail-heavy sheet geometries, and that
active sheets can effectively maneuver across a range of differ-
ent corrugated terrains. These results can help guide to future
development of sheet-like soft automata.

The present study focussed on a single facet of the locomo-
tion of spatially extended soft robots, and a rich set of unan-
swered questions remain. The importance of shape and finite
size effects needs to be investigated further, and exploring
sheets with holes46 could open new design routes towards more
efficient locomotion. While our results address the case of
crawling on a dry substrate, recent theoretical work has high-
lighted the radically different behavior of active sheets
immersed in a fluid medium.47 Little is understood about the
optimization of motion through complex fluids or granular
media, or even over fluid–air interfaces along which some real-
world snails crawl.48 Furthermore, active sheets driven by
turbulent patterns, rather than the regular driving waves stu-
died here, have been examined experimentally for creating
tunable actuating films49 and merits detailed theoretical con-
sideration. Finally, recent works have highlighted the impor-
tance of mechanical feedback for tuning self-deformations50,51

– exploring how these and other feedback mechanisms could
be used to achieve adaptable locomotion offers yet another
interesting direction for future research.
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Appendix A
A.1 Linear active deformations in two dimensions

We describe the method for calculating the active-stress
induced deformation of a rectangular elastic sheet of length L
and width L/2 centered at the origin. Our discussion is confined
to the case where c(y,t) is constant along the x-axis, but the

methods described here can be adapted without difficulty to
more general cases. An extensive body of literature exists for
solving linear elasticity problems involving non-uniform isotro-
pic expansion/contraction in the context of thermoelasticity.41 In
particular, we employ a solution method originally developed for
the linear deformation of a rectangular sheet due to a non-
uniform thermal distribution.52 In terms of the Airy stress
function w, where sxx = qyyw, sxy = �2qxyw, and syy = qxxw,
eqn (10) can be expressed as

r4w = �Yar2c (14)

In a thermostatic problem, in which c(x,t) is replaced with an
equilibrium temperature field, the right hand side vanishes
except at sources and sinks. The active wave profiles discussed
in this paper, however, have no such property. Assuming free
boundary condition (qyyw = 0 at x = �L/4 and qxxw = 0 at y = �L/2)
and that the wave is dependent only on the y coordinate, the
general solution for a given equilibrium shape of the sheet is

wðx; y; tÞ ¼ aY
X1
r¼0

arðtÞ
gr2

cos gryð Þ þ aY
X1

s¼1;s odd

bsðtÞ
ds2

sin dsyð Þ

þ
X1
m¼1

AmðtÞ cos amxð Þ
am2 cosh amL=2ð Þ

� amy sinh amyð Þf

� 1þ 1

2
amL coth amL=2ð Þ

	 

cosh amyð Þ

�

þ
X1
m¼1

BmðtÞ cos amxð Þ
am2 sinh amL=2ð Þ

� amy cosh amyð Þð

� 1þ 1

2
amL tanh amL=2ð Þ

	 

sinh amyð Þ

�

þ
X1
r¼1

CrðtÞ cos gryð Þ
gr2 cosh grL=4ð Þ

� grx sinh grxð Þ � 1þ grL
4

coth
grL
4

� �	 

cosh grxð Þ

� �

þ
X1

s¼1;s odd

DsðtÞ sin dsyð Þ
ds2 cosh dsL=4ð Þ

� dsx sinh dsxð Þ � 1þ dsL
4

coth
dsL
4

� �	 

cosh dsyð Þ

� �
(15)

with ds = sp/L, am = 4pm/L, and gr = 2rp/L. The coefficients ar(t)
and bs(t) are the Fourier coefficients of the wave c(y,t), given by

arðtÞ ¼
2

L

ðL=2
�L=2

dycðy; tÞ cos gryð Þ

bsðtÞ ¼
2

L

ðL=2
�L=2

dycðy; tÞ sin dsyð Þ
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For a traveling sine wave, this reduces to ar = d1r cos(ot) and
bs(t) = d1s sin(ot), which greatly simplifies the subsequent
calculation. The requirement of free boundaries leads to the
following system of equations for the time-dependent ampli-
tudes Am(t), Bm(t), Cr(t) and Ds(t)

0 ¼ Am 1þ amL
sinh amLð Þ

	 


þ
X1
r¼1
ð�1Þmþr8am

2gr tanh amL=4ð Þ
L am2 þ gr2ð Þ2

Cr

0 ¼ Bm 1� amL
sinh amLð Þ

	 


þ
X1

s¼1;s odd
ð�1Þmþðs�1Þ=28am

2ds tanh amL=4ð Þ
L am2 þ ds2ð Þ2

Ds

aYar ¼ Cr 1þ grL
2 sinh grL=2ð Þ

	 


þ
X1
m¼1
ð�1Þmþr8amgr

2 tanh amL=2ð Þ
L am2 þ gr2ð Þ2

Am

aYbs ¼ Ds 1þ dsL
2 sinh dsL=2ð Þ

	 


þ
X1
m¼1
ð�1Þmþðs�1Þ=28amds

2 coth amL=2ð Þ
L am2 þ ds2ð Þ2

Bm

Practically speaking, the solutions of these linear amplitude
equations for only a finite number of nodes rapidly converge,
and modes much smaller than that of the dominant mode of c
produce only negligible changes to the resulting deformation
field. For a traveling sine wave, we find that using the first 20
modes produced reliable solutions. The full series form of
f(x,y,t), and the stresses and strains derived from it, are too
lengthy to reproduce directly, but a plot of values of the
amplitudes is included for reference (Fig. 7).

A.2 Numerical methods

Numerical FEM simulations are carried out using the following
method. Let aab = 1

2(aab � %aab) and bab = %bab � bab. The Koiter
potential energy per unit area can be rewritten as

W ¼ 1

2
KaabHabgdagd þ

1

2
DbabH

abgdbgd

where K = h/(1 � n2) and D = h3/12(1 � n2).43 Habgd is the isotropic
plane-stress elasticity tensor in curvilinear coordinates

Habgd ¼ n�aab�agd þ 1� n
2

�aag�abd þ �aad�abg
� �

From this energy density, we can derive the curvilinear
membrane stress

nab ¼ @W

@aab
¼ KHabgdagd

and the bending stress

mab ¼ @W

@bab
¼ DHabgdbgd

Following the usual subdivision finite elements approach, the
surface is divided using the libMesh finite element framework
into Ne elements, and on each element e the trial space is
spanned by a set of shape functions NIx, Z for I = 1,. . .,N f

e. Under
this discretization, the deformation field and its derivatives may
be written as a linear combination of the test functions

u ¼
XNf

e

I¼1
uINI

The generalized forces acting on each node are written in this
formulation as

f intI ¼
XNp

e

p¼1
wp

@aab
@uI

nab þ
@bab
@uI

mab�j

� �� �
e;qp

fextI ¼
XNp

e

p¼1
wp qNI

�jf ge;qp

The bracketed terms {�}e,qp
represent evaluation at the quadrature

point qp on element e; wp is the weight at point p associated with
our quadrature rule; and %j is the Jacobian determinant of the
reference surface. The equations of motion areX

J

MIJ€uJ þ f intI ¼ fextI (16)

with the mass matrix MIJ ¼
PNp

e

p¼1
wp hrNINJ

�jf ge;qp . Integration of

the equations of motion in time is performed via a Newmark-
beta method with integration parameters b = 1/4 and g = 1/2.
Further details on this approach can be found in Vetter et al.
2013.43 Simulations were performed on a triangular mesh with
3720 elements, and integration was carried out with timestep
dt = 5 � 10�3. The integration of eqn (12) is carried out
simultaneously according to Euler’s method.

Fig. 7 Amplitudes of the first twenty modes for the solution of the 2D
rectangular sheet as deformed by a traveling sine wave of wavelength
equal to sheet length L. The rapid decay of amplitude allows us to truncate
the infinite sum in eqn (15).
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and A. Estévez-Torres, Proc. Natl. Acad. Sci. U. S. A., 2019,
116, 22464–22470.
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