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A zero mode, or floppy mode, is a nontrivial coupling of mechanical components yielding a degree of
freedom with no resistance to deformation. Engineered zero modes have the potential to act as microscopic
motors or memory devices, but this requires an internal actuation mechanism that can overcome unwanted
fluctuations in other modes and the dissipation inherent in real systems. In this Letter, we show theoretically
and experimentally that complex zero modes in mechanical networks can be selectively mobilized by
nonequilibrium activity. We find that a correlated active bath actuates an infinitesimal zero mode while
simultaneously suppressing fluctuations in higher modes compared to thermal fluctuations, which we
experimentally mimic by high frequency shaking of a physical network. Furthermore, self-propulsive
dynamics spontaneously mobilize finite mechanisms as exemplified by a self-propelled topological soliton.
Nonequilibrium activity thus enables autonomous actuation of coordinated mechanisms engineered

through network topology.
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Soft, electronics-free assemblies capable of autonomous
motion and reconfiguration are emerging as the basis of
new adaptable smart materials. Macroscopic morphology
schemes, such as snap through [1-5] and buckling [6-8]
driven by heat [9] or chemo-fluidics [10], are comple-
mented by the robustness of topological modes [11-15] to
give a wide set of components based on elastic networks
[16-20]. In such networks, a zero mode (ZM) arises as a
degree of freedom with no resistance to small deformation,
either as an infinitesimal zero mode (IZM) with resistance
at a nonlinear order [21-29] or a mechanism with a
continuous range of motion [25-27,30,31]. A designed
ZM can potentially be exploited as a complex coupling
[32,33] in an internally driven material. However, actuation
of a ZM can be hampered by indiscriminate simultaneous
excitation of nonzero harmonic modes (HMs), particularly
in noisy microscopic systems [29,34-38]. Nonequilibrium
processes [39], which support intricate topological edge
currents [40—42] and unorthodox stress responses [43,44],
may hold the key to overcoming this actuation dilemma.

In this Letter, we show that active matter provides
effective schemes to autonomously actuate a mechanical
ZM. Active biophysical systems, such as bacterial suspen-
sions or self-propelled microswimmers, convert disperse
environmental energy into directed motion [45-47].
Tracers in an active bath, and the active particles them-
selves, then have positional statistics differing from thermal
white noise [48—50]. This statistical “color,” which depends
on properties such as fuel availability and suspension
density, can be used to drive mode actuation statistics
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away from equilibrium in a controllable fashion [51,52],
meaning features such as geometric asymmetry can be
exploited to do work [53,54]. First, we show that correlated
noise generated by an active matter bath [49] can actuate a
complex mechanical IZM while markedly suppressing
HMs to a degree dependent on temporal correlations, as
well as exemplifying experimentally that fluctuation-based
IZM actuation can be mimicked by simple high-frequency
shaking. We then broaden to self-propulsive Rayleigh
activity [55-57], appropriate for a network whose nodes
have intrinsic motility [58]. We show that this scheme
mobilizes a full mechanism comprising a propagating
domain boundary in the SSH lattice [11,27], suggesting
that Goldstone modes of arbitrary complex systems can be
mobilized by nonequilibrium driving [51,59,60].

To gain intuition about the core idea, consider this basic
example: a mass is held between two fixed points, X =
(1,0) and —%, in the plane by two identical springs of unit
natural length and stiffness [Fig. 1(a)] [38]. Let x = (x,y)
be the offset of the mass from its equilibrium (0,0). The
total elastic potential energy is

H(x) =S [(k =% = 1)+ (k+2-1)%. (1)

N[ =

If the mass is excited by thermal noise of temperature 7', its
position is Boltzmann distributed with p(x) « e~"/7. To
leading order in T < 1, p can be approximated by pg(x) «
e~Ho/T where Hy = x? + 1 y* [38]. This bare Hamiltonian
shows the two eigenmodes: an HM of frequency v/2
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FIG. 1. Zero mode actuation in a bead—spring model. (a) Single
mass at offset (x,y), with HM in x and IZM in y [38].
(b) Comparison of 7= 0.01 exact marginal densities of x and
yat 7 = 0 (black) with 7 = 2 densities from simulation (blue) and
approximated from Eqs. (1) and (2) (red dashed). Histogram for
7 = 2 from 50 000 samples, others by quadrature (Supplemental
Material [61]). (c) Variance ratio r(z) = (y?)/(x*) from simu-
lations (markers) with approximations for small z (solid lines)
and large 7 (dashed lines) from Egs. (3) and (4): 5000 samples
per marker; 95% CIs smaller than markers (Supplemental
Material [61]).

parallel to the springs, and an IZM perpendicular to the
springs. Scaling considerations then imply that the varian-
ces (x?) and (y?) vary as T and /T, respectively. The fine
details can be seen by formal expansion in /T
(Supplemental Material [61]), in which interaction cross
terms are negligible as 7 — 0; this does not hold in the
more complex examples below, where broken symmetries
induce non-negligible interactions o xy> in H, that can
cause strong violation of naive equipartition (x?) ~ T/w?.
Either way, the basic T-scalings still hold, so (y?)/(x*)— oo
as T — 0. Thus fluctuations in the IZM dominate those in
the HM at a low temperature.

Uncorrelated noise is a crude tool, with only one control
parameter. Actuation by biological or chemical active
matter [58,66] can allow finer tuning. The forces generated
by a motile bath can be modelled by an Ornstein—
Uhlenbeck process & obeying 7€ = —€ +n, where 7 is a
thermal process with variance 2yT for amplitude 7 and
friction y, and 7 is the correlation time [50,67]. These
parameters depend on the properties of the active medium
[49], and so by changing these properties—density, temper-
ature, fuel concentration—the statistics can be tuned. In the
overdamped limit with y rescaled to one, it was shown in
Ref. [50] that small 7 <1 adjusts H to an effective
potential

Hye = H + TB |VH|?> — TVZH] +0(7%). (2

For our example in Fig. 1, this (or the unified colored
noise approximation [68,69]) gives a low-T expansion
Hyge = (14 2’[))62 + %y‘l + - -+, implying
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for small 7 and 7 {Supplemental Material [61]; Fig. 1(c)}.
This is reflected in the 7 = 2 marginal densities [Fig. 1(b)]:
x contracts, while y is unchanged except for a small
bimodality directly analogous to boundary accumulation
of microswimmers [70]. In the opposite limit z > 1, where
Eq. (2) does not hold, we show in the Supplemental
Material [61] that separation of time scales gives the
asymptotic power law

0% 2R <1) 2/3, (4)

(o) A2 \T

—~
~

(3)

as 7/T grows large [Fig. 1(c)]. These results demonstrate
that active noise is an effective means to actuate an IZM.

In a general mechanical network, the same ideas can be
used to actuate an IZM with many masses moving
in a complex, coordinated fashion. A stable mechanical
network comprises nodes a with rest positions x¥, and
Hookean elastic bonds (a, #) between nodes a and f§ of

natural lengths Zq = [xg —x}| and stiffnesses kqy > 0.

When the nodes are perturbed to x,, the network has elastic
energy

1
H({xa}) = Ezkaﬁ(l'xa _xﬁ’| - ?’ﬂaﬂ>2a
(a.B)

which is minimized if (but not always only if) x, = x9.

Node a then feels an elastic force F, = =V, H, where we
notate V, = 0/0x,. Large real-world systems also possess
dissipation, which we include as a linear friction force yx,,.
In general, dissipation within bonds [1] could also be
included as forces o x, — X giving a nondiagonal friction
matrix [71]. We further restrict to two dimensions, and
assume all nodes are identical, adopting units in which
node masses are one and other constants are scaled by a
characteristic stiffness and length (Supplemental Material
[61]). Finally, we pin boundary nodes (Figs. 2 and 3) or
particular interior nodes (Fig. 4) to eliminate rigid body
translations and rotation.

Without any actuation, the mobile nodes obey passive
force balance, namely ¥, = —V,H — yx,. Consider a small
perturbation x, = x% + ¢, of the rest state, and let e
be the vector obtained by flattening €,. To first order,
e obeys é; = — Ej Djje; —ye;, where the Hessian D;; =
0;0;H(x") is the dynamical matrix [11]. The orthonormal
eigenvectors {v;} of D,; give the fundamental modes of the
elastic network, whose non-negative eigenvalues {w?}
determine if each mode is an HM (w% >0) or a ZM
(w? = 0). These then form a basis for configurations x,,.
Writing ¢ (#) for the component of mode k at time 7, given
by dotting the flattened x,(¢) with v,, we define the

178001-2



PHYSICAL REVIEW LETTERS 121, 178001 (2018)

VA

infinitesimal zero mode «— thermal noise

\/ \/ (c) zero mode
g Fa Nl Vi e i —
[}
©
2
> harmonic modes
IS
@
[}
=
A A s
£ 0
correlated noise T= 10 0 correlation time 10

FIG. 2. Active noise actuates an IZM while suppressing HMs in a mechanical network (Supplemental Material Videos 1 and 2 [61]).
(a) A network of unit length, unit stiffness springs is designed to contain exactly one IZM (arrows). White nodes are pinned.
(b) Histograms of node positions in highlighted area of (a) when actuated by thermal noise (left) and correlated noise with z = 10 (right)
of strength 7 = 1073. The IZM is more cleanly actuated by correlated noise while HMs are suppressed. (c) Thermal-relative amplitude

i i

u?)_/{(u?)__, of the 21 lowest eigenvalue modes u; of (a) from numerical integration at 0 < z < 10, with 7 = 1073 fixed to maintain
T =0

constant intensity (v,;(0)vg,(#)). The IZM (red) is barely affected, while HMs (blues) diminish. Grey areas are estimated 95% CIs; data
from 20 realizations to ¢ = 2 x 10* with 6t = 10~* at each of 20 values of = (Supplemental Material [61]).

amplitude of mode & to be the time average of its squared
coefficient, (cy(7)?). Our goal is to show that the ampli-
tudes of ZMs can be selectively actuated in suitably
designed networks.

When a network is actuated by active forces on its nodes,
its dynamics depends on both its structure and the type of
activity. The positions x,, obey the general actuated dynamics

xa = _VaH - yxa + Fa(i?a; t)’ (5)

where F, represents the actuation process. For this process
we will consider not only the thermal and correlated active
bath processes exemplified above, but also strong self-
propulsive activity through internal energy depot actuation.
These incorporate increasing levels of nonequilibrium
dynamics, which progressively actuate infinitesimal and
finite zero modes.

Generalizing the single mass example above, a mechanical
network driven by Ornstein-Uhlenbeck noise can be for-
mulated with an extra vector &, for each node [50,70,72].
These follow

Tga = _ga + 1, (6)

for independent Gaussian noise processes {7,; } of variances
2yT. We set F, = €,, giving actuation forces correlated as
(E4i(1)E5; (1)) = 84p0:j(yT /7)€ "1/7. The limitz — O then
gives thermal noise. We also again take the overdamped
limit, appropriate for immersion in an active matter bath.
After rescaling to set y to 1, this gives first-order dynamics

xa = _VaH + ga’ (7)
which are subject to Eq. (6). Varying = while holding 7 fixed

then probes the effect of increasing activity-driven correla-
tions at constant actuation intensity (£,;(0)&;(1)).

For a mechanical network designed to have a nontrivial
isolated IZM {Fig. 2(a); Supplemental Material [61]},
correlated noise highlights the IZM and suppresses fluc-
tuations at other nodes. Numerical integration of Eq. (7)
shows that, while thermal noise (z = 0) actuates the IZM
with significant surrounding fluctuations {Fig. 2(b);
Supplemental Material Video 1 [61]}, an active process
with 7 > 0 damps HM fluctuations relative to those of the
IZM {Fig. 2(b); Supplemental Material Video 2 [61]}.
This is confirmed in the mode amplitudes (c?), shown in
Fig. 2(c): the IZM amplitude remains at its 7 = 0 level,
while HMs decay as 7 increases. Two further examples
showing IZM preservation and HM suppression are given
in the Supplemental Material [61]. The same suppression is
not guaranteed if the ZM contains a low-coordination node
with bistability in its position (Supplemental Material [61]),
since the fluctuation basis depends on the state of the
bistable node, but this can typically be avoided in design.

Even without correlation, persistent low-temperature
ZM-HM coupling enhances mode amplitudes and causes
naive equipartition to fail. In a system comprising only
HMs u; of frequencies ;, two-mode interactions are
diagonalized away and the lowest-order terms remaining
are at best third order. For low temperatures 7 < 1,
interactions can thus be neglected relative to harmonic
energies u? and simple equipartition of independent modes
(u?) ~ T/w? is a good amplitude estimate. However, with a
quartic ZM v present, there are three types of lowest-order
term in 7 < 1: the independent mode energies v* and u?,
and ZM-HM interactions u,;v>. Interactions contribute an
effective repulsive quartic potential on the ZM, causing its
amplitude (v?) to increase with every additional HM
interaction (Supplemental Material [61]). Moreover, the
HM amplitudes (u?) are also increased by their interactions
with the ZM (Supplemental Material [61]).

Small- and large-z asymptotics provide general princi-
ples for the behavior of network modes. When 7 < 1,
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FIG. 3. Shaking actuates the IZM of a stiff mechanical network
(Supplemental Material Video 3 [61]). (a) Photograph of network
with isolated IZM (arrows) constructed from plastic. Joints are
freely rotating pins, with boundary nodes fixed in position.
(b) Actuating the network by high frequency shaking mobilizes
the IZM, shown by node positional histograms for the subregion
indicated in (a) computed by particle tracking over 14 min with
distances rescaled by mean edge length. (See Supplemental
Material [61] for experimental methods.)

computing the effective potential in Eq. (2) [50] for an
arbitrary small-7" expansion H ~ > ; au? + >_; biujv* +
Av* in HMs u; and a quartic IZM v gives new effective
coefficients incorporating 7 to leading order (Supplemental
Material [61]). In particular, the stiffnesses «@; become
a;(1 4 2za;), showing that weaker modes have a propor-
tionally weaker response to increasing 7, while (v?) is
unchanged. Conversely, as 7 — oo, a scaling analysis
shows that an IZM has amplitude proportional to
(T/7)'/3 while all HMs have amplitude proportional to
(T /7) (Supplemental Material [61]), generalizing our ear-
lier example. Physical dependencies are clarified by restor-
ing dimensionful parameters, turning 7'/7 into yT /x>t for
typical spring stiffness x and length A.

In a real mechanical network, local activity can be
mimicked by the randomization generated through high
frequency shaking. We fabricated a stiff-edged network
designed to contain an isolated IZM [Fig. 3(a)] by connecting
plastic edges with freely rotating joints. We then actuated the
network by mounting it on a baseboard, with fixed edge
nodes, and securing this board to a loudspeaker
(Supplemental Material [61]). The speaker was driven at
49 Hz with 20% Ornstein-Uhlenbeck noise of correlation
time (1/345) s to prevent metastable sticking (Supplemental
Material [61]). The baseboard collisions generated by the
high-frequency shaking randomizes the motion of the IZM,
actuating it through motion allowed by slight pliability in the
pin joints {Fig. 3(b) and Supplemental Material Video 3
[61]}. The effective activity, and so the relative actuation of
the IZM and HMs, can be controlled by changing the
actuation frequency (Supplemental Material [61]). Thus
even elementary actuation strategies can be of practical
use for IZM mobilization.

We now turn to a stronger form of activity. If the masses
themselves are motile, able to convert chemical energy to
kinetic energy, an effective model is to introduce what

amounts to a negative frictional response at low speeds
[56,57]. Appealing to expansion techniques, as in the
Toner-Tu model [73], we use simple Rayleigh activity
[71] with a velocity-dependent propulsive force

Fa = 7f(1 - |ia|2/v2>xav (8)

where y  sets the force strength and v is a natural speed in
the absence of friction. The overall effective friction force
can then be viewed as yx, — F, = f(|x,|)x, with effective
friction coefficient f (1) = y — y + y,u*/v*. Provided that
Yo=y—vs <0, this gives a natural speed vy =
vlyo/vs|"* below which f(u) < 0. The quiescent state is
then rendered unstable: to linear order, a perturbation of any
eigenmode grows at least as fast as el70/2I' (Supplemental
Material [61]). Nonlinear effects bound this growth, giving
oscillatory trajectories for constrained systems [56].
Under Rayleigh actuation, deviations in the ZM domi-
nate those in the HM at small v, as for correlated noise,
with extra oscillatory structure in time. Take once more the
example in Fig. 1. At small y,, the leading order behavior is
a conservative oscillator ¥ = —VH whose amplitude

FIG. 4. Self-propulsive activity spontaneously mobilizes a
complex mechanism (Supplemental Material Video 5 [61]).
(a) Mechanical SSH model [11,27], which has a periodic
mechanism comprising progressive flipping of the masses from
right to left and back again. Black nodes are fixed, blue nodes are
mobile. (b) Endowing a 21-node chain with self-propulsive
activity spontaneously mobilizes the mechanism. The progres-
sion speed depends on the propulsion v, seen through the time-
dependent offsets Ax; of mobile nodes from their pinning points.
All bonds of strength k = 10 with y, = 1, integrated at 5t = 107>
from initial random perturbation.
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is set by kinetic-to-potential energy balance v}~ H
(Supplemental Material [61]). The ZM-HM variance ratio
therefore scales as (y?)/(x?) ~ 1/v,y, which diverges as
vy — 0. A similar divergence occurs in the “overdamped”
case yo > 1. This same suppression of HMs persists in
more complex networks (Supplemental Material [61];
Supplemental Material Video 4 [61]).

Beyond IZMs, self-propulsion distinguishes itself from
an active bath in its ability to fully mobilize free-moving
mechanisms [36] even in topologically complex cases. For
a node tethered to just one fixed point, invariance means
that the dynamics of the rotation angle 6 has no elastic term.
The node therefore accelerates and sustains an angular
velocity ~v, in the finite mechanism. This principle
generalizes to intricate mechanisms of large mechanical
networks. Recently, a mechanical chain inspired by the
SSH model of polyacetylene [Fig. 4(a)] has emerged as a
rich source of topological phenomena [11,27]. This chain
possesses a ZM localized at the boundary [11], which gives
rise to a finite mechanism manifesting as a domain
boundary propagating along the chain [27]. Ordinarily,
to begin propagating an external energy input is needed,
either by a manual “kick” of the end nodes or by a global
force field. But persistent propagation is difficult: motion
by a “kick” will inevitably slow and stop due to dissipation,
while an external field needs regular adjustment to keep the
defect moving between the two ends of the finite chain.
Endowing each node with active propulsion spontaneously
actuates the ZM, mobilizing the boundary and causing a
domain wall soliton to propagate autonomously along the
chain {Fig. 4(b); Supplemental Material Video 5 [61]}.
While under passive dynamics the propagation speed of the
topological soliton is set by the initial kinetic energy or the
external force strength, here this is controlled by v, the
effective self-propulsive speed [Fig. 4(b)]. The defect can
propagate cleanly for multiple cycles up and down the
chain, with occasional stalls or reversals caused by the
complex interactions of the fluctuating active nodes
(Supplemental Material [61]).

To conclude, we have shown that both nonequilibrium
active baths and intrinsic self-propulsion can actuate infini-
tesimal and finite zero modes of mechanical networks. Rapid
progress in developing artificial active systems [58,66]
suggests practical routes to engineer active mechanical
networks exhibiting fine-tuned fluctuation spectra or even
complex response phenomena, such as nonreciprocity
[23,74] enabled by asymmetric nonlinear zero modes and
nonequilibrium steady state statistics. These networks could
be used to perform complex mechanical tasks, such as
enhancing transport of transiently bound colloids, or to
extract work from an active medium [59] by attaching
magnetic beads to drive a miniature dynamo, for example.
In general, we expect that any Goldstone mode of a complex
mechanical system can be selectively mobilized by non-
equilibrium activity of this kind [51].
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SINGLE MASS

Low temperature expansion

Here, we evaluate the low temperature expansion of
the energy

H(z,y) =5 [(|(1 = 2,9)| = 1)* + (|1 + 2,9)| - 1)?]

corresponding to the simple bead-spring model in Fig. 1
of the main text.

To lowest order in x and y, the non-interacting terms
in the expansion H(z,y) = 2 + iy“ + .-+ imply scalings
x~ TV y ~ TV Let o = TY?u and y = TV 0.
Then, expanding H in powers of T2, write

T YH(z,y) = ho(u,v) + T2hy (u,v) + O(T),

where

2,2 1,6

ho(u,v) = u® + 30, hi(u,v) = —u“v® — gv°.

We seek an expansion in T for the moment

o ffooo ffooo z™y"e /T dx dy
@™y = [ [ e T dady

First, consider the partition function Z in the denomina-
tor. Changing to v and v, this reads

7 = T3/4 // e—ho(u,v)e—T1/2h1(u7v)+O(T) du dv. (Sl)
Define the integral

11f (u, )] = / / Fu, 0)e=00) gy dy,

Since T <« 1, the leading exponent in Eq. (S1) decays
much faster than any others. Thus Z can be approxi-
mated by expanding e~ T/ *h+0(T) = 1 _ T'Y2h; 4+ O(T)
to obtain

Z =13/ {1[1] — V2[R + O(T)} .

An identical derivation gives

// 2"y e /T d dy

_ T3/4+m/2+n/4 {I[umvn] . T1/2I[umv”h1} + O(T)} .

We can now assemble (z™y™). The above implies

I[u™v™) — TY2T[u™v™hy] + O(T)
I[1] = TY2Ih] 4+ O(T)

T—m/2—n/4<xmyn> —

Let Jf] = I[f]/I[1].

the general result

Expanding once more in T gives

Tfm/27n/4<xmyn>
= Ju™"] — T2 {J[u™v"h1] — J[u™v"]J[h1]} + O(T).

Thus the expansion amounts to the moment in the bare
non-interacting Hamiltonian Hy = 2% + iy‘l corrected by
its covariance with the strongest interactions.

Particular cases may be computed by evaluating the
integrals. This can be done symbolically for general m, n;
the particular cases of (z2) and (y?) read

(22) = %T+pT3/2 +O(T?),
2
(y*) = 2pT"/% + {z - Z)}T+ o(T*?),

with p = I'(3/4)/T(1/4) ~ 0.34.

Correlated noise: small 7

Upon introducing exponentially correlated noise gener-
ated by independent Ornstein—Uhlenbeck processes, the
statistical distribution of the bead changes. We specialise
to the overdamped limit, and rescale time to set v = 1.
Through an expansion in the correlation time 7, Ref. [1]
shows that the mass follows an effective potential

Heg=H + 7 [3|VH]? = TV*H]| + O(7%). (S2)

For the single bead, the full potential H(z,y) can be sub-
stituted and moments of Heg numerically evaluated, as
shown in Fig. 1 of the main text with moments evaluated
by quadrature in Mathematica.

To see the essential behaviour, we use expansion tech-
niques at low temperature and small 7. When T <« 1,
the scaling © ~ T2, y ~ T'/* still holds provided 7 is
small. Given this, the leading order terms read

1
H.g = (const) + (1 + 27)2” + Zy‘l 4.



Thus the base effect of 7 is to tighten the stiffness in x
but leave y unchanged. This leading-order behaviour can
also be captured by the unified coloured noise approxi-
mation [2, 3].

Provided the additional T factor in Heg is carefully
accounted for, the same low-temperature expansion as
in the thermal case above can be applied. Omitting the
irrelevant constant, He.g has expansion terms

ho(u,v) = (1 + 27)u® + %1)4,

() = (1 +47)ue? = (§ = bt — o,

Note the emergent v? term at non-zero 7 in h;, which
will act to confine fluctuations in y as the temperature in-
creases. Performing the integrations and expanding in 7
eventually gives the leading order dependence of the vari-
ance ratio as

<y2> —1/2

25t =4p(1 +2r) T

(27 p( )

+ 92— 1507 — (50p* = 1) 7+ O(T*/?).

Recasting this as a series first in 7, namely

2
Y _
éaﬂi =4pT71? + - 1507

+ (8pT 12 = 50p2 + ) 7

reveals the temperature-dependent effect of correlation.

Correlated noise: large 7

In the limit of large 7, we can appeal to separation of
equilibration time scales to derive an approximate distri-
bution for the position = = (z,y).

In the overdamped limit, as before,  obeys

&= -VH(z)+&, (S3)
r€=—€t+m. (S4)

First, Eq. (S4) implies that the stationary distribution of
¢ is normal, with p.d.f. pe(§) e~ TIEP /2T Now, when
T is large, « equilibrates much faster than £&. Thus given
the distribution of £ we can approximate that of x by
assuming & = 0 on time scales comparable with 7. Thus
Eq. (S3) gives the relationship & ~ VH(x) between &
and x. Given pg, we can therefore approximate the p.d.f.
Pz () of & through the inversion formula

pa(@) = |[VVH|| pe(VH ()
o ||[VVH| e TIVH@F/T, (S5)

where ||VV H|| denotes the absolute value of the deter-
minant of the Hessian VV H (that is, the Jacobian of
the transformation by VH).

For 7/T > 1 we can, like before, take an expansion to
approximate moments of this distribution. Provided one
accounts for the prefactor of the exponential, moments of
pe are related to moments of the Boltzmann distribution
with effective potential G(z) = 1|V H(z)* and effec-
tive temperature 77 = T/7, since py o ||[VVH|le=G/T",
Now, G has leading non-interacting terms G = 22 +
145 4 .. implying scalings = ~ T"Y/? and y ~ T"Y/6 (cf.
the small-7 scalings x ~ T/ and y ~ T'/4). Following
the same process as the low temperature expansion, by
substituting for z = 7""/2u and y = T""/%v and expand-
ing in powers of 7"*/3 moments can be approximated as
an expansion in T”. For conciseness we just compute the
leading order here. We have

IVVHle= ¢/ = [G’UQT/l/?’ +O(BY3)| g2 —"/2,

implying
// 2" Y " pe (x) da dy
~ GT'2/3+m/2+n/6 // umv2+n672u27v6/2 du dv.

Thus the normalisation Z for the p.d.f. |[VVH|le=¢/T’
is

7 ~ 6T'%/3 // v2e 20 ="/2 gy dy = 2 T'?/3

and the variances are

T/5/3 TI
(x?) ~ 6 // w222 /2 gy dy = T

Z
67" 21/31(5/6
<y2> ~ U4672u27v6/2 dudy — 1(2/ )T’1/3.
Z wl/

To lowest order, the variance ratio (y?)/(x?) for large
7/T is therefore

(y?) _273T(5/6) (T\2/3
@2~ T Az (f) '

As well as giving the power law for large 7, this shows
that the T-dependence of the variance ratio changes from
T-12 at small 7 to T~2/3 at large 7. This is driven by
the change in form of G compared to H: the prefac-
tor ||VV H|| does not affect the dominant scaling of the
moments, so they scale with T as they would in the po-
tential G.

NETWORKS: NON-DIMENSIONALISATION

The full dimensional equations of motion read

m:’éa:* *’Yw.a“i’Fa(d:oz;t)a

oz,



with energy

H({za}) = Z kap([Ta — 28] — ap)*.

(a B)

Let x and X be typical scales for the spring moduli kqp
and rest lengths £,5. Rescale space and time as x, =
AZ, and t = ty/m/k, and use primes to denote d/dt.
Then

~1 aH ~~1!

== _ F,
:Ba 8i:a ')/33 + ( ) ?

with dimensionless energy

({ma} Z kaﬁ |[Za — @g] — éaﬁ)

( 7ﬁ)

and dimensionless parameters

v = ’y/vm/{, l;'aﬁ = kaﬁ/’fv

Note that the particle mass m has been scaled
to unity. The dimensionless forcing function Fp,

relates to the dimensional forcing through F, =

(kN "LF, (M K/mZL; ty/m/k).

Cop = Lap/ .

Rescaling of noise

For white noise, F, = m4(t) with (na:(t)ns;(t")) =
29T60p0:0(t — t').  Under our rescaling, this be-
comes another white noise F,, = 7o(f) correlated as
(Nei ()13 (1)) = 23T 8,50,;0(t — t'), with dimensionless
temperature T = T/(k\?).

For exponentially correlated noise, F, = &,(t) with
(Eai()Ep; (1)) = YT dupdije 1t VT/T Under our rescal-
ing, this becomes a process F, = £,(f) correlated as
(Eai(D)Esi (")) = AT8apdize”""T1/7 /7 with dimension-
less temperature T = T/(kA?) and correlation time
7 = 74/k/m. This becomes the white noise process above
in the limit 7 — 0.

Active forcing F, = v;&o(l — |Z4|?/v?) rescales to
F, =%;&,(1 — |&,|?/9%) with dimensionless active fric-
tion coefficient 7y = 7¢/\/km and target speed 0 =

M/ K/mu.

NETWORKS: HM-ZM COUPLING
Low temperature expansion

The symmetry of the single-mass example means that
the HM and ZM decouple in the limit 7" — 0. However,
this is not necessarily the case in general: in a potential
where 22 and y* both scale with T', interaction terms zy?
will also scale with 7. Consider now a system of n + 1

degrees of freedom {z1,...,z,,y}, where the n variables
x; are HMs and y is a quartic IZM. In a low temperature
expansion, the potential energy is

H = Z a;x? + Z bixiy® + Ay* (S6)

at lowest order, where A > 0 and all a; > 0 but each b;
can be of either sign. We will evaluate the amplitudes
(y?) and (a2).

To compute (y?), we can split the Boltzmann factor
e H/T into factors which can be integrated in each coor-
dinate x; sequentially, writing

4 22 bixiu?
efH/T _ efAy /THef(ala:i+bla:1y )/T

Since
/ di, e~ (@wt +bimy®) /T _ o (0 [4ai)y' /T
with C; = /7T /a;, splitting the Boltzmann factor allows

us to reduce the computation to

[dyy e~ Av/T I1; C;elbi/4ai)y* /T
[ dy eAvt/T T, Cyevi/dau*/T

(v*) =

The constant factors cancel and the exponentials com-
bine, giving

[dyyPe 2T

%) = - T/A
<y > fdy e*Ay“/T / )
where
A=A—
Z 4da;
and p = T'(3/4)/T(1/4) as before. That is, the variance

(y?) is simply that of a single degree of freedom in an
effective quartic potential Ay‘l. Note that A < A: the
HM coupling increases the ZM amplitude.

The computation for (z2) is similar, albeit not quite
as clean since the integral in x,, must incorporate the 22,
factor. Using the integral

_ 2 2
/dl”mﬂ??ne (amz;, +bmamy®)/T

2
N (T A T
Cne <4 3 s 5. )

the same approach as for (y?) reduces the computation

to

f dy e*Ay“/T

() =

)



which is again simply a combination of moments in the
effective potential Ay*. Thus

(x2) = r <1+ b ) (S7)

B 2am 8[1am

Observe that (z2)) is only ever increased by introduc-
ing interactions b,, compared to its uncoupled amplitude
T/2a,,. Thus not only do HM—-ZM couplings increase ZM
fluctuations, but they concomitantly increase HM fluc-
tuations above those that would be guessed from naive
equipartition. This effect is illustrated in Fig. S1 for 20
HMs of the network in Fig. 2 of the main text, for which
interaction coefficients were determined by series expan-
sion of the elastic energy in Mathematica.

There is one further effect to be noted. Not only does
coupling increase the second moment (22, ), but the mean
(x) is displaced from zero by the asymmetry of the cou-
pling. The same techniques again can be used to compute
(), this time using the integral

_ 2 2
/ diy, 0,y ¢~ (@ +bmamy®) /T

- _Cme(bfn/4am)y4/Tb7m 2
20,

bm b -
=— =—m/T/A.
<'Tm> 2, <y > 2amp /
Conversely, the ZM is not displaced: symmetry means
{y) = 0.
The interaction-driven increase in (x2) could poten-
tially be just a side effect of the non-zero mean (x,,).

However, combining these results gives the mode vari-
ance as

)

giving

4.2\p2
Var(z,,) = % (1 + A =407, )bm> .

SAam
Since 1—4p? ~ 0.54 > 0, the variance is indeed increased
by HM-ZM coupling despite the shifted mean.

Correlated noise: small 7

When weak correlated noise is introduced into a gen-
eral system with multiple HMs coupled to a ZM, its ef-
fect on the ZM can be neglected at low temperatures and
short correlation times. The calculation goes as follows.

Take the same energy form as in Eq. (S6). Follow-
ing Ref. [1] as in the single-mass example, when weak
correlated noise of non-zero correlation time 7 < 1 is
introduced the system follows an effective energy given
by Eq. (52). At low temperature, where 22 ~ T and
y* ~ T, evaluating the gradients and keeping only the
lowest order terms gives a first-order adjusted energy

Heg = Za;m? + Zngiyz + A/y4
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FIG. S1. Deviation from naive equipartition of the first 20
lowest-frequency HMs of the network in Fig. 2 of the main
text. Markers show normalised amplitude (c?)/w?T numer-
ically evaluated at T = 107 (red squares) and T' = 107*
(blue circles) compared to naive equipartition at 1 (dashed
line) and with first-order correction in Eq. (S7) for interac-
tions with the ZM (black cross). Error bars are estimated 95%
confidence intervals. Interaction coefficients were determined
by series expansion of the elastic energy in Mathematica.

where the T-adjusted coefficients read
a; = a;(1+ 27a;),
A=A+37) 0,
i

b = b;(1+ 27a;).

It is clear that correlation 7 > 0 strengthens all couplings:
a; > a;, A" > A and |b)] > |b;].

The approximate ZM amplitude (y?) is given by sub-
stituting these adjusted couplings into the formulae com-
puted above. But, on computing the coupling-adjusted
ZM amplitude

K2

~ b2
A/ — Al _ 7
Z 4(1;’

it transpires that A’ = A. Since only this and T deter-
mine (y?), to first order in 7, the effect of correlations
on the HMs is precisely compensated by its effect on the
coupling terms to leave the ZM amplitude unchanged,
that is, (y?) = (y?),—o for 7 < 1.

Correlated noise: large 7

At large 7, the same timescale separation arguments
as for the single bead can be used to derive asymptotic
scalings for mode amplitudes in the overdamped limit.
We sketch here the basic argument.

Once again take the same energy form as in Eq. (S6),
this time appealing to a low 77 = T'/7 expansion. When
7 is large, the mode degrees of freedom x; and y equili-
brate with the coloured noise much faster than the noise



changes. Equation (S5) then gives the effective p.d.f. for
the modes. In this distribution, the scaling of the modes
is driven by the exponential factor e=%/7" with potential
G(z1,...,Tn,y) = 2| VH|?, where

2
G = Z % (Z 2b;x; + 4Ay2> .

From a naive look at G one might infer that z; ~ T"1/2
and y ~ T'Y/* (provided at least one b; # 0) because
of the non-interacting z? and y* terms at lowest order.
However, there is an important subtlety: because the
terms in the first sum, which are the lowest order terms,
can be factorised as written, changing variables from x;
to 7 = 2a;x; + byy? eliminates y from the sum while
only contributing a constant Jacobian factor to moment
integrals. In other words, scalings are governed by the
transformed potential

2
. b,
G= Z 122+ 37 (Z ;i(zi —biy®) + 4Ay2) :

i

(2a;2; + biy2)2 + 397

Under G, the lowest non-interacting terms are 22 and
Y. Thus y ~ T'Y/6—not T"/* —and z ~ T'V/2 to-
gether implying x; ~ T'Y/2. Therefore, the amplitudes
(z?) and (y?) are asymptotically proportional to (T'/7)
and (T/7)'/3, respectively.

This argument shows that interaction terms do not af-
fect the asymptotic scaling of the ZM and HMs with T'/7,
with the ZM dominating HMs by a factor (y?)/(z2) ~

72/3 for large 7. Exact moments (x?) and (y2) can be for-
mulated by the same process of telescoplng x;-integrals as
above, but it is significantly more algebraically unwieldy
due to the more complex exponent and the prefactor of

202
124 — H =
: a
J

IVVH[ < 2b; +

in Eq. (S5). We therefore do not compute the exact mo-
ment formulae here.

NETWORKS: FURTHER EXAMPLES

In Fig. 2 of the main text, a network with a single IZM
is used to exemplify actuation by active correlated noise.
In Fig. S2 we extend this to large correlation 7 = 200
and add two further examples displaying the same 7-
dependent mode amplitude behaviour of HM suppresion
and ZM preservation. At long correlation times the am-
plitude asymptotics derived above for HMs ({z2) ~ 771)
and the ZM ((y?) ~ 77'/3) gradually take hold. Some
modes are well into the long-7 regime by 7 = 200 while
others are slower to approach it due to stronger higher-
order terms.

Conversely, Fig. S3 shows that under-coordinated
nodes can induce bistability in the structure, adversely
affecting the mode statistics. In particular, a 2-
coordinated node participating in the shown IZM has two
equal-energy locations, meaning that bistable state tran-
sitions are easily triggered by the ZM actuation. This
can adversely affect mode statistics if not eliminated at
design time. In this case, though, the second stable loca-
tion of the node overlaps with another, meaning that in-
corporating repulsive interactions between masses would
lessen or eliminate the problem.
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FIG. S2. Three examples of IZM actuation by correlated
noise between 7 = 0.5 and 7 = 200. (a,c,e) Networks each
with a single IZM (magenta) and pinned boundaries, with
(a) as in Fig. 2 of the main text. (b,d,f) Thermal-relative
mode amplitudes (u3),/(u?),—o for the 21 lowest-eigenvalue
modes of the networks in (a,c,e), on a log-log scale, with
ZMs the uppermost red lines. Grey regions are approximate
95% confidence intervals; data computed from 20 independent
realisations up to t = 2 x 10* with 6t = 10~ at values of 7
between 0.5 and 200 indicated by points (see Computational
Methods). Data in (a) is a superset of that of the main text
Fig. 2(c), focussing here on large-7 behaviour. Shown gradient
lines (dashed grey) are large-T asymptotic predictions for the
ZM (o 7Y/%) and HMs (o 7).



SELF-PROPULSIVE RAYLEIGH ACTIVITY

A mechanical network with Rayleigh activity has equa-
tions of motion

Fo = Vol — 72 +7(1 = |&a|>/0*)Z0- (S8)

The friction and active forcing can be condensed into a
friction-like term as

:i:a = _VaH - f(|5ba|)d3a7

where f(u) = v — ¢ + ypu?/v? is the effective friction
coefficient. If f(0) = v — v5 = v < 0, stationary states
have negative effective friction and are unstable, with
friction switching from negative to positive when f(u) =
0 at |u| =vo = v/|70|/vfv. We can rewrite f in terms of
"o and vo as f(u) = yo(1 — u®/v).

Activation

As in the main text, considering a small perturbation
of the rest state and decomposing into eigenmodes of the
dynamical matrix gives linearised equations of motion in
terms of the small mode amplitudes ¢, with |cx| < 1.
For linearised Rayleigh friction, this gives

. 2 B
Ck = —WECk — YoCk-

Elementary analysis then shows that, provided vy < 0,
solutions e’ have either a real ‘overdamped’ maximal
growth rate max or, = 3 (70| + /78 — 4w?) if [v0| > 2wy,
or a complex ‘underdamped’ growth rate with real part
Reoy, = |v0]/21if |70| < 2wg. Thus in either case, Re oy, >
[70]/2. The largest possible growth rate or = || is
achieved for a ZM, where wy = 0.

d—9—¥% -

FIG. S3. Bistability in an IZM-participating node adds com-
plexity to activation spectra. (a) A network with a single
IZM, as before, containing a two-coordinated node whose po-
sition includes another equal-energy minimum by geometric
symmetry. (b) Position histogram for the bistable node with
7 = 6. The node fluctuates into its other minimum, near
which the overall mode spectrum is different. Note that in
this case the bistability could be lessened by including hard-
core repulsions between nodes.
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FIG. S4. Self-propulsive activity actuates IZMs in an oscilla-
tory fashion (SM Video 4). (a) Per-node position histogram
for the same network region as in Fig. 2b of the main text, but
now actuated through Rayleigh forcing as in Eq. (S8). The
ZM is prominent, while other nodes barely fluctuate. Pa-
rameters are vg = 0.02, 70 = 1, and k.p = 1, integrated at
§t = 1075, (b) Example time trace over At = 1000 for the in-
stance shown in (a) of mode coefficients ¢;(t) for the ZM and
the ten lowest-frequency HMs. The ZM shows far stronger
maxima than the HMs, with notable oscillatory behaviour.

Single mass: small o

Unless mode k is a mechanism, growth of the mode
will eventually be arrested by the combination of elastic
forces and nonlinear effective friction terms, giving finite-
amplitude oscillations. For the bead—spring example in
the main text, we briefly examine this arrest process for
small 7.

Formally, approximate solution for small € = |yo]| is
achieved by series expansion (t) = xo(t) + ex1(t) +---.
At O(1), the equations of motion imply

1.1.30 = —VH((E())

Thus @ simply corresponds to motion in the potential H,
meaning Ey = 3|@o|* + H(xo) is conserved.

Now, the range of maximum spatial extent occurs
where &y ~ 0. Furthermore, higher-order dynamics set
the velocity scale as |#g| ~ wvg. Therefore, assuming
H(0) = 0 is the energy minimum, conservation of Ey
between the origin and maximum extent implies v3 ~
H(xq) at the boundary. If vy is small, H can be approx-
imated by its leading order expansion H (z,y) ~ 2%+ 1y,
meaning y ~ vé/ 2 and z ~ vo. Thus the variance ratio
{(y?)/{x?) ~ 1/vg, and so the zero mode dominates as
vg — 0, fulfilling the same role as 7' — 0 in the noise-
driven case. (Indeed even with the same effective 1/v/T
scaling, since v? is a kinetic energy scale and so corre-

sponds to T.)

Network IZM actuation

The same simultaneous ZM actuation and HM sup-
pression in networks driven by active correlated noise



FIG. S5. Active mechanical SSH model as in Fig. 4 of the main text, with a different random perturbation to the initial

conditions and 4x longer time window.

persists with Rayleigh self-propulsive activity, as il-
lustrated in Fig. S4a (see also SM Video 4). The
mode coefficients ¢;(t) have oscillatory temporal struc-
ture (Fig. S4b), giving potentially useful actuation be-
haviour that can be controlled by varying parameters of
the activity.

Active mechanical SSH soliton

In Fig. 4 of the main text, we show realisations of
the mechanical SSH model with self-propulsive activity
at three different effective propulsion speeds vy, exem-
plifying how activity excites the underlying mechanism
leading to a self-propelled soliton-like domain bound-
ary. While the domain propagates cleanly most of the
time, there are occasional defects visible where the do-
main slows, stalls or reverses because of the complex in-
teractions between the activity-driven oscillatory fluctu-
ations of the nodes (main text Fig. 4b, vy = 0.1 and
vg = 0.2). These imperfection phenomena can be seen
in more detail in Fig. S5, where we exhibit a longer-time
run of the same model and parameters as in the main
text with a different random perturbation to the initial
conditions. Stalls and reversals mid-chain are rare, with
the endpoints being, perhaps unsurprisingly, more prone
to imperfection because of the particular complexity of
the mechanism there. We emphasise that this model does
not have any random noise added, beyond an initial per-
turbation; these reversals are the result of complex inter-
actions between the fluctuating self-propelled nodes.

COMPUTATIONAL METHODS

Single bead statistics

High-quality independent position samples for the sin-
gle mass in Fig. 1 of the main text were computed by
integrating the coupled overdamped equations

$:—VH($)+£, 7'52—5‘1'777

with (n;(t)n;(t')) = 2T6;;6(t —t), up to a stopping time
t = tstop and taking the endpoint @(t = tsop) as a sam-
ple. Taking a large set of N samples was accelerated by
massively parallel GPU computing to perform each inte-
gration in one GPU thread (NVIDIA Titan X Pascal).

Network design

We design networks containing isolated IZMs by direct
numerical minimisation of the lowest eigenvalue w? of the
dynamical matrix D;; with respect to the stiffnesses kqs.
Starting from uniformly random initial stiffnesses on a
triangular lattice and constraining them to 0 < kqg <1,
the gradient-based L-BFGS-B algorithm as implemented
in SciPy 1.0 [4] generally converges to a network in which
some of the stiffnesses and w? are exactly zero, and which
therefore exhibits an IZM. Since IZMs are topological, in-
dependent of the precise values of the nonzero kqs [5], a
network containing the same IZM is then obtained by re-
moving the zero-stiffness bonds and setting the remaining
stiffnesses to 1.



Network simulations

All numerical integration for networks was performed
by Euler/Euler-Maruyama integration of the appropri-
ate system of equations. Mode statistics were determined
from M independent trajectories. Each trajectory was
started from equilibrium, integrated over a time 100 and
discarded to randomise initial conditions, and then sam-
pled up to a time t = t,.x. The parameters M and yax
are given in figure captions.

Each trajectory was subsampled at a resolution At =1
to compute statistics on n = t,,,x samples. The variance
52 of the mean 7 of a statistic z computed from trajectory
i was estimated through [6, 7],

Lo o L7
B | —k)pi(k) |,
o= [ X e

where p;(k) is the normalised naively-estimated autocor-
relation at lag k and the upper truncation at |/n| omits
heavily biased autocorrelation estimates that are in prac-
tice expected to be near zero [6]. Per-trajectory errors
are then combined as independent variances to yield the
overall estimated standard error ¢ of Z. Approximate
95% intervals are shown in figures as T 4+ 1.965.

EXPERIMENTAL METHODS

The stiff-jointed network in Fig. 3a of the main
text was constructed using flat brackets of dimensions
3.66 cm x 0.75 cm which were laser cut from transparent
acrylic of thickness 1.2 mm. For the pin joints connecting
the brackets, 2-56 thread size, 1/2in long nylon screws
and nuts were used. Where only three or four brack-
ets were jointed together, the joints were strengthened
using nylon washers. The pins corresponding to the out-
ermost nodes were fastened directly to a 9in diameter
circular plate, laser cut from acrylic of circa 1cm thick-
ness. The plate was then mounted on top of an Eminence
Speakers Delta-12LFA, 12in, 500 W speaker (Eminence
Speaker LLC, Eminence KY), which was mounted on an
optical table and driven using a Pyle PQA4100 ampli-
fier (Pyle Audio, Brooklyn NY). Video was acquired at
1920 x 1080 pixels resolution and a frame rate of 30 Hz
using an Olympus consumer digital camera (Olympus
America Inc., Center Valley PA) at 40 mm focal length
mounted on a tripod. The positions of the nodes were
tracked using the trackpy 0.4.1 package [8].

To actuate the network, the speaker was driven by
a signal comprising a carrier frequency and Ornstein—
Uhlenbeck noise with subsecond correlation. In these
experiments, it is the carrier frequency actuation that
is mimicking the active driving, not the added corre-
lated noise, as interactions between the network and the

*°|48Hz + OU noise

7Y

*>|148Hz + white noise

it

500

zero mode «— first harmonic «— time (s)
C
(c)150 e (d) 15
55Hz 49Hz
3 S
o} S

49Hz

0 0
-0.02 stiff component  0.02 -02  soft component 02

FIG. S6. Experimental actuation method affects relative ZM—
HM statistics. (a) Diagram of the experimental network
shown in the main text Fig. 3, with both the ZM and the
lowest-frequency HM shown. (b) Traces of the soft compo-
nent cz, defined in the text, of the node highlighted in (a)
for correlated and uncorrelated additions to 48 Hz carrier fre-
quency actuation. The upper adds 15% Ornstein—Uhlenbeck
noise of correlation time (1/350)s while the lower adds 15%
white noise of identical intensity. Short-time correlation is
necessary to keep the network exploring the energy land-
scape. (c,d) Histograms of soft (c) and stiff (d) components
c1 and cp for two frequenies of actuation, both with 20%
added Ornstein—Uhlenbeck noise of correlation time (1/345)s.
Changing the carrier frequency controls the mode actuation,
with 55 Hz giving greater ZM actuation relative to non-ZM
modes compared to 49 Hz. Note the 10x larger scale in the
soft component (d) compared to the stiff component (c).

shaken baseboard drive stochastic forcing. The corre-
lated noise here functions instead as a crucial component
to prevent sticking of the network in resonance-related
metastable states, discussed below.

To explore the effect of different forms of drive, we
focus on one particular node which participates in both
the IZM and the lowest-frequency HM (highlighted in
Fig. S6a) in near-perpendicular directions. Given its po-
sitions @; = (x;,y;) at frames 4, rescaled such that the
distance between adjacent nodes is 1 in the reference con-
figuration, we compute the covariance matrix Cov(x;, ;).
The orthonormal eigenvectors vy, vs of the covariance
matrix corresponding to the eigenvalues \; < Ay then
represent the stiff (v1) and soft (v2) perpendicular di-
rections. We then use the stiff and soft components
¢y = x-v; and ¢ = x - vy as simple representations
of HM-related and ZM-dominated actuation.

Figure S6b shows the importance of short but non-zero
correlation in the noise added to the carrier frequency.
We compare the soft component ¢y from experiments us-
ing 48 Hz actuation with 15% Ornstein—Uhlenbeck noise



of correlation (1/350) s versus 15% white noise of identi-  histograms of the components ¢; and co for actuation
cal intensity. This exemplifies how correlated noise keeps ~ with carrier frequencies of 49 Hz (used in the main text
the network exploring configuration space, while even  Fig. 3) and 55 Hz plus 20% (1/345) s-correlated Ornstein—
with white noise it quickly sticks in a metastable state. Uhlenbeck noise. The latter tightens in the stiff direction
compared to the former, signifying greater ZM actuation
Changing the carrier frequency, rather than the added relative to HMs, while the soft component changes shape
noise, controls the effective activity of the nodes leading more markedly as a result of the complex interactions of
to different positional distributions. Figure S6c,d gives the network with the shaken baseboard.
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