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Recent experiments demonstrate the importance of substrate curvature for actively forced fluid
dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows
on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant
Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical
tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical
bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to
an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov
turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices
into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an
active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism
for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional
energy cascade in classical 2D turbulence.
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Substrate geometry profoundly affects dynamics and
energy transport in complex fluids flowing far from
equilibrium [1–3]. Examples range from magnetohydrody-
namic turbulence on stellar surfaces [1] to the rich micro-
scale dynamics of topological defects in active nematic
vesicles [2,3]. Studying the interplay between spatial
curvature and actively driven fluid flows is also essential
for understanding microbial locomotion [4], biofilm for-
mation [5] and bioremediation [6] in soils [7], tissues [8],
and water [9–11]. Over the past two decades, important
breakthroughs have been made in characterizing active-
stress driven matter flows in planar Euclidean geometries
both theoretically [12–15] and experimentally [16–18].
More recently, theoretical work has begun to focus on
incorporating curvature effects into active matter models
[19–25]. Despite some promising progress, the hydro-
dynamic description of pattern-forming nonequilibrium
liquids in non-Euclidean spaces continues to pose con-
ceptual challenges, attributable to the difficulty of formu-
lating exactly solvable continuum models and devising
efficient spectral methods in curved geometries.
Aiming to help improve upon these two issues, we

introduce and investigate here the covariant extension of a
generalized Navier-Stokes (GNS) model [26–29] describ-
ing incompressible active fluid flow on an arbitrarily
curved surface. Focusing on a spherical “bubble” geom-
etry, we derive exact stationary solutions and numerically
explore the effects of curvature on the steady-state flow

dynamics, using the open-source spectral code DEDALUS

[30]. The numerically obtained phase diagrams, energy
spectra, and flux curves predict an anomalous turbulent
phase when the spectral bandwidth of the active stresses
becomes sufficiently narrow. This novel type of 2D
turbulence supports an unexpected upward energy transfer
mechanism, mediated by the large-scale collective dynam-
ics of self-organized vortex chains, akin to actively
moving antiferromagnetic spin chains. At high curvature,
the anomalous turbulence transforms into a quasista-
tionary burst phase, whereas for broadband spectral
forcing the flow dynamics transitions to classical 2D
Kolmogorov turbulence, accumulating energy in a few
large-scale vortices. We next motivate and define the
covariant GNS model for an arbitrary 2D surface; ana-
lytical and numerical results for the sphere case will be
discussed subsequently.
Recent experiments have investigated the collective

dynamics of swimming bacteria [16] and algae [31] in
thin quasi-2D soap films held by a coplanar wire frame.
Generalizing to non-Euclidean geometries [2,3], which can
be realized with soap bubbles or curved wire frames [32],
we consider here a freestanding nonplanar 2D film in which
the fluid flow is driven by active stresses, as in suspensions
of swimming bacteria [33,34] or ATP-driven microtubule
networks [35,36]. On a curved manifold, the fluid velocity
field components va satisfy incompressibility and Cauchy
momentum conservation [37,38],
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∇ava ¼ 0; ð1aÞ

∂tva þ vb∇bva ¼ ∇aσ þ∇bTab; ð1bÞ

where ∇bva denotes the covariant derivative of va, a,
b ¼ 1, 2 and σ is the (surface) tension. The stress tensor Tab

includes passive and active contributions from the solvent
fluid viscosity and the stresses exerted by the micro-
swimmers on the fluid. Below, we study the covariant
version of the linear active-stress model [26–29]

Tab ¼ fð∇2Þð∇aub þ∇buaÞ;
fð∇2Þ ¼ Γ0 − Γ2∇2 þ Γ4∇2∇2; ð1cÞ

where ∇2 ¼ ∇a∇a is the tensor Laplacian. In qualitative
agreement with experimental observations for active sus-
pensions [16,18,36,39], the polynomial ansatz for f in
Eq. (1c) generates vortices of characteristic size Λ and
growth time τ, provided that Γ2 < 0, which introduces a
bandwidth κ of linearly unstable modes [28]. General
mathematical stability considerations demand Γ0, Γ4 > 0.
The phenomenological model defined in Eq. (1) is minimal
in the sense that it assumes the active stresses create to
leading order a linear instability, while neglecting energy
transfer within the active component. As verified in
Ref. [29], the linear active-stress model, Eq. (1c), suffices
to quantitatively reproduce the experimentally measured
velocity distributions and flow correlations in 3D bacterial
[18] and ATP-driven microtubule [36] suspensions. More
generally, closely related GNS models have also been
studied in the context of soft-mode turbulence and seismic
waves [26,27]. Numerical solutions of the GNS Eqs. (1)
show significant phenomenological similarities with mag-
netohydrodynamic (MHD) flows driven by electromag-
netic stresses [40], suggesting that the results below may
also apply to astrophysical systems.
Exact stationary solutions of Eqs. (1) for a sphere of

radius R can be constructed from the vorticity-stream
function formulation (Supplemental Material [41])

Δψ ¼ −ω; ð2aÞ

∂tωþ fω;ψg ¼ fðΔþ 4KÞðΔþ 2KÞω; ð2bÞ

where ψ and ω are the stream function and vorticity.
The advection term in spherical coordinates ðθ;ϕÞ reads
fω;ψg ¼ ð∂θω∂ϕψ − ∂ϕω∂θψÞ=ðR2 sin θÞ. K ¼ R−2 is
the Gaussian curvature and Δ the standard spherical
Laplacian. Since the spherical harmonics Ym

l diagonalize
the Laplacian, ΔYm

l ¼ −R−2lðlþ 1ÞYm
l for integers l, m

such that l ≥ 0 and jmj≤ l, an arbitrary superposition

ψ ¼
X

jmj≤l
ψmlYm

l ð3Þ

solves the system Eq. (2) exactly, provided that the
eigenvalue l is an integer root of f½−lðlþ 1Þ þ 4& ¼ 0
(Supplemental Material [41]). As usual, the velocity field is
tangent to the level sets of the stream function. Two
particular exact solutions are shown in Fig. 1. The first
example, Fig. 1(a), is reminiscent of the square lattice
solutions found earlier in the flat 2D case [28]. The second
example in Fig. 1(b) illustrates a flow field with fivefold
symmetry, obtained by applying the superposition pro-
cedure of Ref. [46]. Although these exact solutions are
not stable, they provide some useful intuition about the
instantaneous flow patterns expected in dynamical simu-
lations (Fig. 2), similar to exact coherent structures [47] in
conventional turbulence [48].
To find and analyze time-dependent solutions of Eqs. (1),

we performed numerical simulations using DEDALUS [30],
an open-source framework for solving differential equa-
tions with spectral methods. The Eqs. (1) were solved
directly as a coupled partial differential-algebraic system
for the scalar tension σ and vector velocity va. To spatially
discretize the system, we used spin-weighted spherical
harmonics, which are a parameterized family of basis
functions that correctly capture the analytical behavior of
spin-weighted functions on the sphere (Supplemental
Material [41]). Under this spectral expansion, the system
Eq. (1) is reduced to a set of coupled ordinary differential-
algebraic equations for the time evolution of the expansion
coefficients. We solve these equations using mixed
implicit-explicit time stepping, in which the linear terms
of the evolution equations are integrated implicitly, the
linear constraints are enforced implicitly, and the nonlinear
terms are integrated explicitly. This allows us to simulta-
neously evolve the velocity field while enforcing the
incompressibility constraint, and with a time step that is
limited by the advective Courant-Friedrichs-Lewy time
condition rather than the diffusive time at any scale.
The parameters (Γ0, Γ2, Γ4) in Eqs. (1) define a

characteristic time scale τ, a characteristic vortex diameter

(a) (b)

FIG. 1. Stationary solutions of Eqs. (2) are superpositions of the
form Eq, (3) with f½−lðlþ 1Þ þ 4& ¼ 0. (a) An exact stationary
solution with l ¼ 6 which is also approximately realized as a
transient state in the time-dependent burst solution of Fig. 2
(movie 1). (b) Complex symmetric solutions can be constructed
by choosing the expansion coefficients ψml accordingly [46]. In
both panels, the stream functions are normalized by their
maxima; see Supplemental Material [41] for coefficients ψml.
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Λ, and a characteristic spectral bandwidth κ, which can be
directly inferred from experimental data [29]; explicit
expressions are derived in the Supplemental Material
[41]. Given a sphere of radius R, fixing ðτ;Λ; κÞ uniquely
determines the parameters (Γ0, Γ2, Γ4). To explore the
interplay between curvature and activity, we run 351
simulations, using R=Λ ∈ ½2; 10& and κ · Λ ∈ ½0.1; 2.0&.
Typical vortex diameters for bacterial and microtubule
suspensions are Λ ∼ 50–100 μm with τ of the order of
seconds [16,18,36,39]. Time steps were in the range
[5 × 10−4τ, 5 × 10−3τ] with a total simulation time 100τ,
allowing the system to fully develop its dynamics after an
initial relaxation phase during which active stresses inject
energy until the viscous dissipation and activity balance on
average. In the remainder, it will be convenient to regard Λ
as reference length and compare the flow topologies across
the (κ, R) parameter plane.
Our simulations reveal three qualitatively distinct flow

regimes (Fig. 2): a quasistationary burst phase for κR≲ 1
[domain B in Fig. 2(a); movies 1–3], an anomalous
turbulence for R−1 < κ < Λ−1 [domain A in Fig. 2(a);
movie 4], and normal 2D turbulence for κΛ > 1 [domain T
in Fig. 2(a); movie 5]. Representative vorticity and tension

fields from the corresponding steady-state dynamics are
shown in Figs. 2(c)–2(e).
In the B phase, the energy injection bandwidth κ is

close to the wave number spacing set by the sphere
curvature R−1, leaving only a single active wave number
l. Decreasing κ further completely suppresses active modes
resulting in globally damped fluid motion [white domain in
Fig. 2(a)]. The B phase is characterized by the formation
of intermittent quasistationary flow patterns that lie in
the vicinity of the exact stationary solutions, Eq. (3),
cf. Fig. 1(a) and Fig. 2(c). Once formed, the amplitude
of these flow patterns grows exponentially (Fig. S3) until
nonlinear advection becomes dominant and eventually
causes energy to be released through a rapid burst.
Afterwards, the dynamics becomes quasilinear again with
the flow settling into a new quasistationary pattern. These
burst cycles are continuously repeated (movies 1–3).
The two turbulent phases A and T in Fig. 2(a) can be

distinguished through topological, geometric, and spectral
measures. We demonstrate this by determining the topo-
logy of the vorticity fields, the geometry of the high-tension
domains, and the energy spectra for each simulation after
flows had reached the chaotic steady state.

(a) (c) (d) (e)

(b)

FIG. 2. Phase diagrams [(a),(b)] and representative still images [(c)–(e)] from simulations showing quasistationary burst dynamics
(B phase), anomalous vortex-network turbulence (A phase), and classical 2D turbulence (T phase). (a), (b) The A and T phase are
approximately separated by the condition κΛ ¼ 1 (vertical dashed line) and differ by the average number of vortices (a), the branch
geometry of the tension field (b), and the energy spectra (Fig. 3). The B phase arises for narrow-band energy injection κR ≲ 1 when only a
single l mode is active (region right below the dash-dotted line); decreasing κ further gives a passive fluid (white region). (c)–(e) Top:
Instantaneous vorticity fields normalized by their maxima. Bottom: Surface tension fields normalized by the maximum deviation from the
mean. (c) Quasistationary preburst state frommovie 1 resembling the exact solution in Fig. 1(a); see movies 2 and 3 for additional examples
labeled by ' in panel (a). (d) For subcritical curvature and intermediate energy injection bandwidths, R−1 < κ < Λ−1, the flows develop a
percolating vortex-chain network structure (movie 4), with accumulation of tension and vorticity along the edges. (e) For broadband energy
injection κΛ > 1, smaller eddies merge to create larger vortices, as typical of classical 2D turbulence (movie 5). Parameters: (a) αω ¼ 0.5;
(c) R=Λ ¼ 2, τ ¼ 4.9 s, κΛ ¼ 0.29; (d) R=Λ ¼ 10, τ ¼ 14.9 s, κΛ ¼ 0.5; (e) R=Λ ¼ 10, τ ¼ 11.7 s, κΛ ¼ 2.0. Panels (a),(b) show
steady-state time averages over ½50τ; 100τ&. Solid curves in (c)–(e) indicate stream lines of the velocity fields.
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To study the vortex topology, we fix a threshold αω ∈
½0; 1& and identify regions in which the vorticity is larger
(or smaller) than αω times the maximum (or minimum)
vorticity (Supplemental Material [41]). This thresholding
divides the sphere into patches of high absolute vorticity
(Fig. S1). The number of connected domains, given by the
zeroth Betti number, counts the vortices in the system. For a
fixed pair ðκ; RÞ, we denote the vortex number at time t by
Nωðκ; R; tÞ. Although more sophisticated methods for
vortex detection exist [49], the thresholding criterion
proved to be sufficient for our analysis (Fig. S2). To
normalize vortex numbers across the parameter space,
we fix a reference value κ' ¼ 0.3=Λ. With this, we can
define a normalized Betti number as

Bettiωðκ; RÞ ¼
hNωðκ; R; tÞ − Nωðκ'; R; tÞi

hNωðκ'; R; tÞi
; ð4Þ

where the time average h( ( (i is taken after the initial
relaxation period. Intuitively, large values of Bettiω indicate
many vortices of comparable circulation, whereas small
values suggest the presence of a few dominant eddies. The
variation of Bettiω in the ðκ; RÞ-parameter plane is color
coded in Fig. 2(a). In the anomalous turbulent A phase,
vortices of diameter ≈Λ eventually cover the surface of the
sphere, with stronger vortices forming chains of anti-
ferromagnetic order [Fig. 2(d) top; movie 4]. By contrast,
in the T phase characterized by broadband energy injection
κ > Λ−1, smaller eddies merge to create a small number of
larger vortices, as typical of classical 2D turbulence [50]
[Fig. 2(e) top; movie 5]. Interestingly, the A phase shares
phenomenological similarities with the low-entropy states
found in quasi-2D superfluid models [51], while the vortex
condensation in the T phase corresponds approximately
to the negative “temperature” regime in Onsager’s statis-
tical hydrodynamics [52]. Moreover, the upper region of
Fig. 2(a), which corresponds to the small-curvature limit
R=Λ ≫ 1, suggests that the two phases extend to planar
geometries, provided boundary effects remain negligible.
To obtain a more detailed geometric characterization

of the turbulent A and T phases, we next consider the
corresponding tension fields. Analogously to the case of
vorticity above, we focus on regions where the local tension
σðt; xÞ is larger than the instantaneous global mean value.
For each connected component of the identified high-
tension regions, we denote by A its total area and by ∂A
its total boundary area in pixels. The ratio ∂A=A is a
measure of chainlike structures in the tension fields, a
large value signaling a highly branched structure,
whereas smaller values indicate less branching.
Denoting the instantaneous sum of the ratios ∂A=A over
all connected high-tension domains by Aσðκ; R; tÞ, a
normalized branching index can then be defined by
(Supplemental Material [41])

Branchσðκ; RÞ ¼
hAσðκ; R; tÞ − Aσðκ'; R; tÞi

hAσðκ'; R; tÞi
; ð5Þ

where the time average is again taken after the initial
relaxation. As evident from the phase diagram in Fig. 2(b)
and the corresponding tension fields in Figs. 2(d) and 2(e),
and movies 4 and 5, the geometric characterization con-
firms the existence of an anomalous turbulent phase, in
which vortices combine to form percolating dynamic net-
works with high tension being localized along the edges
[Fig. 2(d) bottom; movie 4].
To compare the energy transport in the anomalous

turbulent phase with classical 2D turbulence, we analyze
the energy spectra and fluxes for the A and T phases.
Expanding in spherical harmonics, ψ ¼

P
m;lψmlYm

l , the
energy of mode l is EðlÞ ¼

P
jmj≤llðlþ 1Þjψmlj2. The

corresponding mean energy flux across l in the statistically
stationary state is obtained as (Supplemental Material [41])

ΠðlÞ¼−2
X

l0≥l
f½4−l0ðl0þ1Þ&½2−l0ðl0þ1Þ&hEl0 i; ð6Þ

where f is the polynomial defined in Eq. (1c). Figure 3
shows the numerically obtained energy spectra EðlÞ and
fluxes ΠðlÞ for four active bandwidths κ. In all four cases,
the kinetic energy produced in the injection range

(a) (b)

FIG. 3. Time-averaged energy spectra and fluxes indicate two
qualitatively different types of upward energy transport. (a) For
narrow-band energy injection κΛ < 1, the energy spectrum
exhibits a peak corresponding to the dominant vortex size Λ
(red curve). For broadband injection κΛ ∼ 2, the spectra decay
monotonically (blue and black curves). (b) In all four examples,
the fluxes confirm inverse energy transport, albeit with different
origins. For broadband energy injection (blue and black curves),
the upward energy flux to larger scales is due to vortex mergers
[Fig. 2(e); movie 5]. By contrast, for narrow-band injection (red
curve), a relatively stronger upward energy flux arises from the
collective motion of vortex chains [Fig. 2(d); movie 4]. The
shaded regions indicate the energy injection ranges with colors
matching those of the corresponding curves, respectively. Param-
eters: R=Λ ¼ 10 for a unit sphere, τ ¼ 11.7 s, time step
5 × 10−4τ, total simulation time 500τ. Spectra and fluxes were
determined after relaxation by averaging over ½150τ; 500τ&. For
κΛ ≫ 1, energy steadily accumulates at larger scales and the
absence of a large-scale dissipative mechanism leads to a
divergent total enstrophy and kinetic energy on the sphere.
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(l ∼ πR=Λ) propagates to both large (l < πR=Λ) and
small (l > πR=Λ) scales, as indicated by negative and
positive values of ΠðlÞ, respectively. Energy transfer to
large scales is a prominent feature of classical 2D turbu-
lence [50,53,54] and our results show that it also occurs in
active turbulence. However, the transfer mechanisms can be
dramatically different, as already implied by the preceding
analysis of the vorticity and tension fields. For broadband
spectral forcing κΛ ≫ 1, the classical 2D turbulence
picture of vortex mergers and energy condensation at large
scales prevails [Fig. 2(e); movie 3]. For κΛ≲ 2 the
spectrum follows a k−1 scaling, indicating the formation
of a dilute-vortex system [55]. For even larger values of κ,
additional large-scale dissipation is needed to bound the
upward energy transfer, in which case the spectrum is
expected to approach the Kolmogorov k−5=3 scaling [50].
By contrast, for narrow-band driving κΛ≲ 1, the upward
energy transfer is realized through the coherent motion of
high-tension vortex chains. Interestingly, only this anoma-
lous type of inverse energy cascade appears to persist in 3D
active bulk fluids [29], where it is sustained by spontaneous
chiral symmetry breaking [56].
In summary, we have presented analytical and numerical

solutions for generalized Navier-Stokes equations describ-
ing actively driven nonequilibrium flows on a sphere. Our
calculations predict that spectrally localized active stresses
can induce a novel turbulent phase, in which finite-size
vortices self-organize into chain complexes of antiferro-
magnetic order that percolate through the surface [57]. The
collective motion of these chain networks enables a
significant upward energy transport and may thus provide
a basis for efficient fluid mixing in quasi-2D active and
magnetohydrodynamic flows. Future generalizations to
rotating spheres could thus promise insights into pattern
formation in planetary and stellar atmospheres [58].
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VORTICITY-STREAM FORMULATION

Here, we derive the vorticity-stream function formu-
lation (2) of the Main Text from the momentum con-
servation (1b) of the Main Text for surfaces of constant
Gaussian curvature K. We proceed by first rewriting the
momentum equation explicitly in terms of the velocity
vector field v

a. This involves the standard computation
of the divergence of the rate of strain on curved sur-
faces as well as commuting covariant derivatives acting
on rank-2 symmetric traceless tensors, which generates
additional curvature terms. Once the equation for the
contravariant vector va is known, we lower the indices to
find the corresponding equation satisfied by the covariant
vector va. We then apply the Hodge decomposition [1]
to va, which determines the unique (up to a constant)
stream function  , and take the (surface) curl of the
equation of motion for va to find the equation for the
vorticity function !. Finally, we consider the case of a
sphere of radius R and introduce spherical coordinates.
The final system takes the simple form of a higher or-
der partial di↵erential equation for two scalar functions
 and ! on a sphere, where the di↵erential operators are
the familiar Jacobian and spherical Laplacian.

Divergence of rate of strain tensor

To express the momentum conservation (1b) of the
Main Text in terms of the velocity field v

a, we must com-
pute the divergence rbT

ab of the stress tensor T ab

T
ab = f(r2)2Sab

, (1a)

f(r2) = �0 � �2r2 + �2r2r2
, (1b)

where r2 = rcrc is the tensor Laplacian defined in
terms of the covariant (Levi-Civita) derivative rc and

S
ab =

1

2
(ra

v
b +rb

v
a), (2)

is the rate of strain tensor for a stationary surface [2].
To this end, we first recall the standard calculation of
the divergence of the rate of strain tensor raS

ab, see for
example [3]. By definition, the divergence is

2raS
ab = rara

v
b +rarb

v
a
. (3)

Before we simplify the last term by using the incompress-
ibility condition rav

a = 0, we must compute the com-
mutator [ra,rb]va. From the definition of the Riemann
curvature tensor Redac, we have

rarcvd �rcravd = �veRedac. (4)

For a two-dimensional surface with Gaussian curvature
K, the Riemann tensor is

Redac = K(geagcd � gecgad), (5)

and the commutator becomes

rarcvd �rcravd = �veK(geagcd � gecgad)

= �K(vagcd � vcgad).
(6)

Contracting a and d, and using the incompressibility
rav

a = 0 condition we obtain

rarcva = Kvc. (7)

Substituting this for the last term in Eq. (3), we recover
the known result [3] that the divergence of the rate of
strain tensor has the form

2raS
ab = rara

v
b +Kv

b = (r2 +K)vb, (8)

which implies that, on curved spaces, additional forces
arise due to the curvature, beyond the viscous term pro-
portional to the Laplacian.

Computing [ra,r2
] on rank-two symmetric traceless

tensors

Now that we have the divergence of the rate of strain
tensor (8), we can express the divergence of the stress
tensor rbT

ab in terms of va. To this end, we must know
how to commute the tensor Laplacian r2 = rcrc with
the operator ra. Since the velocity field is incompress-
ible, the rate of strain tensor is traceless Sa

a
= 0 and so is

any tensor Laplacian of it, r2
S
a

a
= 0 and r2r2

S
a

a
= 0.

We thus have to compute the commutator [ra,r2] on
a symmetric and traceless rank-2 tensor. The following
calculation is very similar to that presented in Section 3
in [4]. For a rank-three covariant tensor Hcde we have

[ra,rb]Hcde =�R
f
cabHfde �R

f
dabHcfe

�R
f
eabHcdf ,

(9)
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Contracting a with d and b with c yields

[ra
,rb]Hbae =�R

f ba
bHfae �R

f a
a
b
Hbfe

�R
f
e
ab
Hbaf .

(10)

The first two terms on the right hand side cancel out

R
f ba

bHfae+R
f a

a
b
Hbfe

=(Rf ba
b +R

ab
b
f )Hfae

=(Rf
b
ab +Ra

b
bf )H

fa
e

=(Rfhab +Rabhf )g
bh
H

fa
e

=0

(11)

since Rf hab = Rhfab = �Rabhf , which reduces (10) to

[ra
,rb]Hbae = R

f
e
ab
Habf . (12)

Similarly, for rank-two covariant tensors, we have

[ra,rb]Hcd = �Re
cabHed �R

e
dabHce. (13)

Contracting a and c gives

(rarb �rbra)Had = R
e
bHed �R

e
d
a
bHae, (14)

where R
e
b = K�

e
b is the Ricci tensor, and further con-

traction with rb yields

(rbrarb �rbrbra)Had =rb(Re
bHed)

�rb(Re
d
a
bHae).

(15)

We now restrict to the specific case of constant Gaussian
curvature K. Since K is constant and we are working
with the Levi-Civita connection, we have

(rbrarb�rbrbra)Had

= R
e
brb

Hed �R
e
d
a
brb

Hae

= Kre
Hed �R

e
d
a
brb

Hae.

(16)

The last term is

R
e
d
a
brb

Hae = KrdH
a

a
�Kre

Hde. (17)

Since our symmetric tensor is traceless, we have

(rbrarb �rbrbra)Had = 2Kre
Hde. (18)

We now combine Eq. (12) with Eq. (18) by settingHbae =
rbHae. For this choice, Eq. (12) gives

rarbrbHae = rbrarbHae +R
f
e
abraHbf . (19)

Using (18) to replace the first term on the right hand side
gives

rarbrbHae =rbrbra
Hae + 2Krf

Hef

+R
f
e
abraHbf .

(20)

We rewrite the last term above as

R
f
e
abraHbf = K(gfa�b

e
� g

fb
�
a

e
)raHbf

= Krf
Hef �KreH

f

f
= Krf

Hef .
(21)

Finally, we obtain the following expression

rarbrbH
ae = rbrbraH

ae + 3KraH
ae

= (r2 + 3K)raH
ae
,

(22)

which, on surfaces of constant Gaussian curvature K,
allows us to commute the tensor Laplacian with the di-
vergence operator acting on any symmetric and traceless
tensor Hae.

Divergence of stress tensor and equation for va

To calculate the divergence of the stress tensor, we
combine the results of the two previous subsections. We
obtain

rbT
ab = rbf(r2)2Sab = f(r2 + 3K)2rbS

ab

= f(r2 + 3K)(r2 +K)vb,
(23)

where we used Eq. (22) in the first line, remembering that
S
a

a
= r2

S
a

a
= r2r2

S
a

a
= 0, and Eq. (8) in the second

line. We can now express the momentum conservation
equation (1b) of the Main Text solely in terms of the
velocity vector field v

a

@tv
a + v

brbv
a =f(r2 + 3K)(r2 +K)va

+ra
�.

(24)

Coordinate-free equation for va

We lower the indices in (24) to obtain the correspond-
ing equation for the covariant vector (one-form) va

@tva + v
brbva =f(r2 + 3K)(r2 +K)va

+ra�.
(25)

Since we are ultimately interested in applying the Hodge
decomposition to the one-form va, we first replace the
tensor Laplacian r2 = rcrc with the Hodge Laplacian
�H = �d + d�, where d and � are the di↵erential and
codi↵erential operators. The Weitzenböck identity [5] for
one-forms reads

�Hva = �rcrcva +Rabv
b
. (26)

As before, for two dimensional surfaces Rab = Kgab, and
the above identity reduces to

�Hva = �rcrcva +Kva. (27)

In terms of the Hodge Laplacian, the equations of motion
read

ra
va =0,

@tva + v
brbva =f(��H + 4K)(��H + 2K)va

+ra�

(28)
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To simplify the subsequent calculations, we rewrite the
above equations in the coordinate-free form. Denote by
v the contravariant field v

a and by v the corresponding
covariant one-form va. In the new notation (28) reads

�v = 0,

@tv +rvv = d� + f(��H + 4K)(��H + 2K)v,
(29)

where again, d and � denote the di↵erential and codif-
ferential operators. It is useful to apply the following
identity relating the Lie and covariant derivatives of one
forms [6]

Lvv = rvv +
1

2
dv2

, (30)

where v2
/2 = v

a
va/2 is the kinetic energy density. In

terms of the Lie derivative, the equation of motion reads

�v =0, (31a)

@tv + Lvv =f(��H + 4K)(��H + 2K)v

+ d(� +
1

2
v2).

(31b)

Hodge decomposition and vorticity-stream function
formulation

Since v is co-exact (v is divergence-free), we can use
the Hodge decomposition [1] to write v = � ̃, for some
two-form (pseudoscalar)  ̃ that we will later identify with
the stream function. Introducing  ̃ automatically satis-
fies Eq. (31a). We take the di↵erential d of Eq. (31b) to
derive the vorticity equation. The great advantage of the
above coordinate-free representation is that the di↵eren-
tial commutes both with the Lie derivative and Hodge
Laplacian. We get

@t!̃ + Lv!̃ = f(��H + 4K)(��H + 2K)!̃, (32)

where we introduced the vorticity pseudoscalar !̃ = dv =
d� ̃ = �H  ̃. Thus, the equations of motion become

�H = !̃,

@t!̃ + Lv!̃ = f(��H + 4K)(��H + 2K)!̃.
(33)

Above,  ̃ and !̃ are both pseudoscalars (two-forms in
2D). We now apply the Hodge star ⇤, which commutes
with the Hodge Laplacian, to find equations for the
scalars ! = ⇤!̃ and  = ⇤ ̃

�H = !,

@t! + ⇤Lv!̃ = f(��H + 4K)(��H + 2K)!.
(34)

Since on scalars the Hodge Laplacian equals the negative
of the familiar Laplace-Beltrami operator, �H = ��, we
finally arrive at

� = �!,
@t! + ⇤Lv!̃ = f(� + 4K)(� + 2K)!.

(35)

Spherical case

In this section, we specialize to the case of a sphere
of radius R and explicitly write Eqs. (35) in spherical
coordinates (✓,�). The metric and its inverse are gij =
R

2diag(1, sin2 ✓) and g
ij = R

�2diag(1, 1/ sin2 ✓) and the
determinant volume prefactor is

p
|g| = R

2 sin ✓.
Let the pseudoscalar stream function be

 ̃ =  (✓,�)
p
|g|d✓ ^ d�

=  (✓,�)R2 sin ✓d✓ ^ d�,

(36)

where  = ⇤ ̃ is the stream function on the sphere. We
now compute the velocity field v = � ̃. The codi↵erential
for a 2D Riemannian manifold is � = � ⇤ d⇤, and since
 = ⇤ ̃, we obtain

d ⇤  ̃ = @✓ d✓ + @� d�. (37)

Applying the Hodge star yields

⇤d ⇤  ̃ = (d ⇤  ̃)i
p
|g|✏ijdxj

= � 1

sin ✓
@� d✓ + @✓ sin ✓d�,

(38)

and the velocity one-form becomes

v = � ̃ =
1

sin ✓
@� d✓ � @✓ sin ✓d�. (39)

By raising the indices, we obtain the corresponding ve-
locity vector field

v =
1

R2

1

sin ✓
@� @✓ �

1

R2

1

sin ✓
@✓ @�. (40)

In terms of the usual unit vectors ✓̂ and �̂, this is v =
1
R

1
sin ✓

@� ✓̂ � 1
R
@✓ �̂. We now compute the vorticity

pseudoscalar

!̃ = dv = �


1

sin ✓
@�� + @✓(sin ✓@✓ )

�
d✓ ^ d�

= !(✓,�)R2 sin ✓d✓ ^ d�,

(41)

where

!(✓,�) =� 1

R2


1

sin ✓
@✓(sin ✓@✓)

+
1

sin2 ✓
@��

�
 (✓,�),

(42)

and we recover � = �! as required, since ! = ⇤!̃ =
!(✓,�). We finally compute the Lie derivative

Lv!̃ = div!̃. (43)

We start with

iv!̃ = !(✓,�)R2 sin ✓(v✓d�� v
�
d✓)

= !(✓,�)@✓ d✓ + !(✓,�)@� d�,
(44)
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then

Lv!̃ =
h
@✓(!@� )� @�(!@✓ )

i
d✓ ^ d�

=
⇣
@✓!@� � @�!@✓ 

⌘
d✓ ^ d�.

(45)

Finally,

⇤Lv!̃ =
1

R2

1

sin ✓
(@✓!@� � @�!@✓ ). (46)

To sum up, in spherical coordinates, the equations of
motion [Eq. (2) in the Main Text] read

� = �!, (47a)

@t! =
1

R2

1

sin ✓
(@✓!@� � @�!@✓ ) (47b)

+f(� + 4K)(� + 2K)!,

where ! and  are scalars (not pseudoscalars) on a sphere
and � is the usual Laplace-Beltrami operator for a sphere
of radius R.

Expansion in spin-weighted spherical harmonics

For numerical integration within Dedalus [7], each vec-
tor and tensor is expanded in terms of a basis of coherent
spin weight: e± = (e✓ ⌥ ie�)/

p
2. A unitary matrix

transforms between the spin basis and the coordinate
basis. The tensor product of unit vectors of coherent
spin weight adds their individual spin, i.e. the rank-
4 tensor basis element e+e�e+e+ carries spin-weight
+1�1+1+1 = 2. We expand the components of a tensor
in terms of spin-weighted spherical harmonics depending
on the spin-weight of their basis vectors. The surface
tension, �, is a pure spin-0 field. The velocity, v, is a
sum of ±1 components. Higher-order tensors comprise
a range of spin-weights; e.g., v ⌦ v contains components
with spin-±2 and spin-0.

For example, with an rank-r tensor,

T =
X

�i=±1

LX

m=�L

LX

`=`0

T
�1,...�r

`,m
Y

m,s

`
(✓,�)e�1 . . . e�r (48)

where s = �1 + . . .+ �r, `0 = max(|m|, |s|), and T
�1,...�r

`,m

represent an array of spectral coe�cients. The intrinsic
gradient operator on the two-sphere acts in a coherent
way with regard to spin.

r (Y m,s

`
e�1 . . . e�r )

=
⇣
k
+
`,s
Y

m,s+1
`

e+ + k
�
`,s
Y

m,s�1
`

e�
⌘
e�1 . . . e�r (49)

where

k
µ

`,s
= �µ

r
(`� µs)(`+ µs+ 1)

2
. (50)

This means that the spectral coe�cients act in a partic-
ularly simple way under di↵erentiation.

rT  ! k
±
`,s

T
�1,...�r

`,m
(51)

The spin-weighed basis renders computations in the
sphere almost identical to Fourier series from an algo-
rithmic perspective. Said another way: the gradient of a
traditional spherical harmonic function is not a series of
traditional spherical harmonic functions. But it is a very
small number of other kinds of functions. This is philo-
sophically the same a saying that the derivative of a co-
sine function is not naturally a series of cosines functions.
But it is a very simple expression in terms of sine func-
tions, and vice versa. In fact, sine and cosine functions
are the spherical harmonic basis for the one-dimensional
sphere (also known as the circle); so it’s more than just a
convenient analogy, the same underlying structure is at
play in both cases.
The spin-weighted spherical harmonic function are

each orthonormal under integration on the unit sphere.
We therefore use Gauss quadrature to transform from
field on a Legendre quadrature grid to the spectral coef-
ficients. Linear operations happen in spectral space, non-
linear multiplications happen locally on the grid. Since
the GNS equations are linearly decoupled for di↵erent
values of m, the scheme can be easily parallelized. This
is done automatically via MPI in Dedalus, allowing the
simulations to be run on up to `max cores simultaneously,
where `max is predetermined cut-o↵ of the spectral expan-
sion.
With the above definitions, we can compute the intrin-

sic Laplacian in two-dimensions. Acting on an individual
spin component,

r ·rT  !
⇣
k
�
`,s+1k

+
`,s

+ k
+
`,s�1k

�
l,s

⌘
T

�1,...�r

`,m
, (52)

where

k
�
`,s+1k

+
`,s

+ k
+
`,s�1k

�
l,s

= �`(`+ 1) + s
2
. (53)

Equation (52) gives a slightly di↵erent formula than
would result from taking the three-dimensional Lapla-
cian and restricting the result to the surface of the unit
2-sphere. In this case, additional terms result from con-
tracting in the third dimension. Equation (52) defines
what is often called the rough Laplacian, connection
Laplacian, or intrinsic Laplacian. In curved geometry,
it is possible to define several linear, second-order, ellip-
tic di↵erential operators with a reasonable claim to the
title of Laplacian. The Weitzenböck identity ensures that
any two such Laplacians di↵er by a scalar curvature term
at most; i.e., a term with no derivatives. In the case of
the restricted three-dimensional Laplacian,

r3D ·r3DT
��
S2  ! �

�
`(`+ 1)� s

2 + r
�
T

�1,...�r

`,m
,

where r gives the tensor rank of T. In the case of simple
vectors, e±, s2 = r = 1. In applications, the most appro-
priate Laplacian depends on the details of the underlying
physics.
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NONDIMENSIONALIZATION AND EXACT
SOLUTIONS

Nondimensionalization

Before we construct exact stationary solutions of (47),
we first nondimensionalize the equation by introducing
the length scale R and the time scale T , and set

 ! R
2

T
 , ! ! 1

T
!. (54)

For a sphere of radius R, the Gaussian curvature is
K = R

�2. The equations of motion (47) become

� =� !,
@t! =f(� + 4)(� + 2)!

� 1

sin ✓
(@✓!@� � @�!@✓ ),

(55)

where � = (sin ✓)�1
@✓(sin ✓@✓)+(sin ✓)�2

@�� is the usual
Laplacian on the unit sphere and

f(� + 4)(� + 2)! = [1� �2(� + 4) + �4(� + 4)2]

⇥ �0
T

R2
(� + 2)!,

(56)

where �2 = �2/(�0R
2) and �4 = �4/(�0R

4). To summa-
rize, the nondimensionalized equations are

� = �!,

@t! = � 1

sin ✓
(@✓!@� � @�!@✓ )

+ [1� �2(� + 4) + �4(� + 4)2] (� + 2)!,

(57)

where we set the time scale to T = R
2
/�0.

Exact stationary solutions

We start the construction of exact stationary solu-
tions of (57) by first noting that the spherical har-
monics Y m

`
(✓,�) are eigenstates of the Laplace operator

� = (sin ✓)�1
@✓(sin ✓@✓) + (sin ✓)�2

@��

�Y
m

`
= �`(`+ 1)Y m

`
. (58)

Taking the linear combination  =
P

m
amY

m

`
, where

�`  m  ` and am are arbitrary real numbers, an-
nihilates the nonlinear term in Eq. (47b) because ! =
`(` + 1) by Eq. (47a). This reduces (47b) to the poly-
nomial equation

0 =
n
1 + �2

⇥
`(`+ 1)� 4

⇤
+ �4

⇥
`(`+ 1)� 4

⇤2o

⇥ [`(`+ 1)� 2].
(59)

The index l is a non-negative integer; if it coincides with a
positive root of the above polynomial, we obtain an exact
stationary solution. There are two possibilities: either

1 + �2

⇥
`(`+ 1)� 4

⇤
+ �4

⇥
`(`+ 1)� 4

⇤2
= 0 (60)

or

`(`+ 1)� 2 = 0. (61)

The first possibility is a direct consequence of the higher-
order nature of Eqs (57). In this case, non-trivial roots
exist when �2 < 0, which introduces linearly unstable
modes. Example of solutions of this type are shown in
Fig. 1 of the Main Text. The second possibility gives
` = 1 as the only admissible solution and arises even for
the classical Navier-Stokes equations. Superposition of
` = 1 spherical harmonics corresponds to flow patterns
representing rigid rotation of the whole sphere with ro-
tation rate and rotation axis specified by the three con-
stants {a�1, a0, a1}. We stress that this second possibil-
ity arises only when one derives the equations of motion
from the Cauchy equations (Eq. 1 in the Main Text) in-
stead of starting with the equations for the velocity field
in the flat space and promoting the corresponding dif-
ferential operators to covariant ones, implying that the
latter approach is incorrect.

ENERGY SPECTRUM AND ENERGY FLUX

Energy spectrum

For flows on periodic domains, the energy spectrum is
typically defined by expanding energy using the Fourier
series. For flows on a sphere, the most natural analogue
is obtained by the spherical harmonics basis. The kinetic
energy density function is e = vav

a
/2. Integrating over

the sphere surface gives the total kinetic energy

E =

Z

S

ed⌦ =
1

2

Z

S

viv
i
d⌦, (62)

where d⌦ is the area element. In coordinate free notation
Z

S

viv
i
d⌦ =

Z

S

v ^ ⇤v = hv, vi, (63)

where hv, vi is the inner product of one-forms. We use
the Green’s formula [1] (integration by parts) to get

2E = hv, vi = h� ̃, � ̃i = h ̃, d� ̃i = h ̃,�H  ̃i

= h ̃, !̃i =
Z

S

 ̃ ^ ⇤!̃ =

Z

S

 ̃ ! =

Z

S

 !d⌦.
(64)

Since � = �!, we obtain for the total energy

E =
1

2

Z

S

 !d⌦ =
1

2

Z

S

 !d⌦

= �1

2

Z

S

 � d⌦.

(65)

Expanding  in the spherical harmonics basis

 =
X

m,`

 m`Y
m

`
, (66)
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and applying the orthogonality condition
Z

S

Y
m

`
Y

m
0

`0 d⌦ = �``0�mm0 , (67)

yields

E =
1

2

X

m,`

`(`+ 1)| m`|2 =
1

2

X

`

E`, (68)

where the energy in mode l is given by

E` =
X

|m|`

`(`+ 1)| m`|2. (69)

Energy flux

We derive the expression for the energy flux ⇧(`) across
the wavenumber ` shown in Fig. 3 of the Main Text.

Denote by S the spherical harmonics transform, that
maps a function defined on a sphere to its coe�cients in
the spherical harmonics basis. Apply S to the equations
of motion to get

!m` = `(`+ 1) m`, (70a)

@t!m` = �Sm`

n 1

sin ✓
(@✓!@� � @�!@✓ )

o
(70b)

+F(`)!m`,

where

F(`) =
n
1� �2[4� `(`+ 1)] + �4[4� `(`+ 1)]2

o

⇥
h
2� `(`+ 1)

i
.

(71)

Since the energy spectrum is given by E` =
P

|m|`
`(`+

1)| m`|2, we use (70a) to substitute for !m` in (70b) to
find the evolution equation for  m`

`(`+ 1)@t m` =� Sm`

n 1

sin ✓
(@✓!@� � @�!@✓ )

o

+ F(`)`(`+ 1) m`.

(72)

We multiply both sides by  
⇤
m`

and add the resulting
equation to its complex conjugate to get

`(`+ 1)@t| m`|2

=2F(`)`(`+ 1)| m`|2

�
⇣
 
⇤
m`

Sm`

n 1

sin ✓
(@✓!@� � @�!@✓ )

o
+ c.c.

⌘
.

(73)

Suming over |m|  ` and rearranging yields the evolution
equation for E`

@tE` � 2F(`)E` = �
X

|m|`

⇣
 
⇤
m`

Sm`

n 1

sin ✓
(@✓!@� 

� @�!@✓ )
o
+ c.c.

⌘
.

(74)

Since for the Euler equations on a sphere F(`) = 0
holds, we identify the right hand side above as the
nonlinear energy transfer into mode `. In the statisti-
cally stationary state and after time averaging we expect
h@tE`i = 0 and hence

�2hF(`)E`i = �
⌧ X

|m|`

⇣
 
⇤
m`

Sm`

n 1

sin ✓
(@✓!@� 

� @�!@✓ )
o
+ c.c.

⌘�
.

(75)

The energy flux across ` is then finally given by

⇧(`) = �2
X

`0�`

hF(`0)E`0i. (76)

In Eq. (6) of the Main Text, we express the prefactor
F(`) in terms of the polynomial f defined in Eq. 1(c) of
the Main Text as

F(`) = f
�
4� `(`+ 1)

�
[2� `(`+ 1)]. (77)

EXPANSION COEFFICIENTS FOR EXACT
SOLUTIONS

The spectrum of the instantaneous snapshot in
Fig 2(c) shows a peak at ` = 6, with values three
orders of magnitude larger than other values of `.
Extracting the values  m6 from this snapshot, we
constructed the exact solution in Fig 1(a) in the
Main Text by letting it have only these non-vanishing
expansion coe�cients. This results in  06 = �4.4,
 16 = �2.4� 1.8i,  26 = 0.4 + 1.3i,  36 = 143.9 + 40.8i,
 46 = �15.2+2.5i,  56 = �2.9�20.0i,  66 = 40.8+14.5i,
and  �m` = (�1)m 

m`
. The exact solution in Fig 1(b)

in the Main Text has ` = 30 and non-vanishing
expansion coe�cients  0` = 8

p
95993978542907,

 ±5` = ±6
p
2266150070307981,  10` =

369
p
6048837670715,  ±15` = ±496

p
5224419474285,

 20` = 6483
p
5330890838,  ±25` = ±30502

p
8224777,

 30` = 79290599
p
77.

DERIVATION OF CHARACTERISTIC
PARAMETERS

Before non-dimensionalizing the time scale, the lin-
earized equation for the stream function on a sphere of
radius R has the form

@t! = f(� + 4K)(� + 2K)!. (78)

Writing the shorthand � = (`(`+1)� 4)/R2 and moving
to the spherical harmonics basis, this becomes

@t!m` = �
✓
� +

2

R2

◆
(�0 + �2� + �4�

2)!m`. (79)
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FIG. S1. Vortex detection scheme. Miller cylindrical projection of the sphere showing the unprocessed normalized vorticity

field (a), and the thresholded vorticity field with values !(x, t) 2 [↵! min
x2S2

!(x, t),↵! max
x2S2

] removed for (b) ↵! = 0.25, and (c)

↵! = 0.5. The chain-like branched structures in the vorticity field remain preserved after thresholding.

The time-dependent solution of this is

!m`(t) = !m`(0)e
�m`t, (80)

where

�m` = �
✓
� +

2

R2

◆
(�0 + �2� + �4�

2). (81)

The flow of Eq. (80) exhibits a characteristic wave num-
ber `c given by the maximum of �m`. We approximate
this maximum by the maxmimum of the function

�(�0 + �2� + �4�
2). (82)

This results in �c = � �2
2�4

and

`c =
1

2

 
�1 + 2

r
17

4
� �2

2�4
R2

!
. (83)

There is then an associated wavelength �c = 2⇡R/`c,
corresponding to two vortices - each of characteristic di-
ameter

⇤ =
2⇡R

2
q

17
4 �

�2
2�4

R2 � 1
. (84)

Next, at the characteristic wave number `c, the flow of
Eq. (80) has the characteristic time-scale

⌧ = �
�1
m`c

=

✓
�2

2�4
� 2

R2

◆
·
✓

�0 �
�2
2

4�4

◆��1

, (85)

and a characteristic spectral bandwidth , defined by

 =
`+ � `�

R
, (86)

where `± are the `-values corresponding to the positive
roots �± of

�0 + �2� + �4�
2 = 0. (87)

We have (remember that ��2 > 0)

�± =
1

2�4
(��2 ±

q
�2
2 � 4�0�4). (88)

This results in

`± =
1

2
(�1 +

p
17 + 4�±R2), (89)

so the bandwidth is

 =
1

2R

np
17 + 4�+R2 �

p
17 + 4��R2

o
. (90)

We further manipulate

 =
n 17

2R2
+ �+ + ��

� 1

2R2

h
(17 + 4�+R

2)(17 + 4��R
2)
i 1

2
o 1

2

=
n 17

2R2
+ �+ + ��

�

172

4R4
+

17

R2
(�+ + ��) + 4�+��

� 1
2 o 1

2

=

vuut 17

2R2
� �2

�4
� 2

s
172

16R4
� 17

4R2

�2

�4
+

�0

�4
.

(91)

In the limit R ! 1, we recover  !q
��2/�4 � 2

p
�0/�4 which is the expression for the

bandwidth in the flat case [8, 9].

VORTEX DETECTION SCHEME

We fix a threshold ↵! 2 [0, 1] and define

e!(x, t)=
(
0, if min

x2S2
!(x, t)< !(x,t)

↵!
<max

x2S2
!(x, t),

!(x, t), otherwise.
(92)

The number of vortices present on the sphere at time t,
N!(, R; t), is then defined to be the number of con-
nected components of the region {x : e!(x, t) 6= 0}.
Fig. S1 demonstrates this procedure. The large-scale
branched structure of the vorticity field is captured well
after thresholding, justifying this simple vortex detection
scheme.
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Next, we characterize the geometrical di↵erence in the
behavior of the surface tension chains. Calculating the
average surface tension �(t) on the sphere, we define a
thresholded surface tension by

e�(x, t) =
(
�(t), if min

x2S2
�(x, t)< �(t),

�(x, t), otherwise.
(93)

For each connected component of the region where
e�(x, t) > �(t), we measure its area A, together with the
area of its boundary pixels @A. The ratio @A/A is then a
measure of the chain-like structure in the tension fields,
with a large value signaling a highly branched structure,
whereas smaller values indicate less branching.

We denote the Betti number of vortices for a param-
eter pair (, R) at time t as N!(, R; t), and the sum of
the ratios @A/A for every connected component in the
region where e�(x, t) 6= 0 by A�(, R; t). To normalize
these quantities, we define a reference value ⇤ = 0.3/⇤,
corresponding to a flow pattern exhibiting the anomalous
turbulent phase, for all measured values of ⇤. With this,
we can define a normalized Betti number of vortices as

Betti! =
hN!(, R; t)�N!(⇤, R; t)i

hN!(⇤, R; t)i (94)

and a relative branching index for the high-tension areas

Branch� =
hA�(, R; t)�A�(⇤, R; t)i

hA�(⇤, R; t)i , (95)

where the averages are taken over time after the initial
relaxation period.
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FIG. S2. Phase diagram for ↵! = 0.25 (a) and ↵! = 0.75 (b),

showing that qualitative changes in the di↵erent turbulent

phases are robust with regard to variations in ↵!; cf. Fig. 2(a)

in the Main Text. Color scales show normalized Betti number

defined in Eq. (94).

Robustness of phase transition to thresholding

Fig. S2 shows phase diagrams using the thresholding
parameters ↵! = 0.25 (a) and ↵! = 0.75 (b). The phase
transition exhibits the same qualitative behavior for these
parameter value as compared to Fig. 2(a) in the Main
Text, indicating robustness to the method used.
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FIG. S3. Enstrophy normalized by mean after relaxation for

each of Movies 1-4.

ENSTROPHY EVOLUTION

Fig. S3 shows the evolution of the total enstrophy
Z

S

!
2
d⌦, (96)

for each of Movies 1-4. Movies 1 and 2 exhibit a sig-
nificantly longer relaxation time and their dynamics are
given by periods of energy storage interchanged with
burst-like movement and corresponding decrease in en-
strophy.
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FIG. S4. The ratio between the mean kinetic energy and mean

enstrophy also di↵erentiates between the A- and T- phases in

Fig. 2(a) of the Main Text, which are approximately separated

by the dashed vertical line ⇤ = 1.

The stationary mean of the enstrophy, together with
the mean kinetic energy, provides another useful charac-
terization of the A- and T-phases in Fig. 2(a) of the Main
Text. Figure S4 shows the ratio of the mean kinetic en-
ergy and mean enstrophy normalized by the characteris-
tic pattern scale ⇤2, which gives an estimate of an average
kinetic energy per vortex. For ⇤ < 1 (A-phase), the en-
ergy spectra tend to be concentrated around the forcing
scale ⇡/⇤, see Fig. 3 of the Main Text, in which case we
expect the ratio to be approximately ⇡

�2 ⇠ 0.1 which
is close to the measured value in Fig. S4. For ⇤ > 1
(T-phase), the spectra are broadband and kinetic energy
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concentrates around few large vortices; this is reflected
by the increase of the energy-enstrophy ratio.
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