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Ferromagnetic and antiferromagnetic order in
bacterial vortex lattices
HugoWioland1,2†, Francis G. Woodhouse1,3†, Jörn Dunkel4 and Raymond E. Goldstein1*
Despite their inherently non-equilibrium nature1, living
systems can self-organize in highly ordered collective states2,3
that share striking similarities with the thermodynamic
equilibrium phases4,5 of conventional condensed-matter and
fluid systems. Examples range from the liquid-crystal-like
arrangements of bacterial colonies6,7, microbial suspensions8,9
and tissues10 to the coherent macro-scale dynamics in schools
of fish11 and flocks of birds12. Yet, the generic mathematical
principles that govern the emergence of structure in such
artificial13 and biological6–9,14 systems are elusive. It is not clear
when, or even whether, well-established theoretical concepts
describing universal thermostatistics of equilibrium systems
can capture and classify ordered states of living matter. Here,
we connect these two previously disparate regimes: through
microfluidic experiments and mathematical modelling, we
demonstrate that lattices of hydrodynamically coupled
bacterial vortices can spontaneously organize into distinct
patterns characterized by ferro- and antiferromagnetic order.
The coupling between adjacent vortices can be controlled
by tuning the inter-cavity gap widths. The emergence of
opposing order regimes is tightly linked to the existence of
geometry-induced edge currents15,16, reminiscent of those in
quantum systems17–19. Our experimental observations can
be rationalized in terms of a generic lattice field theory,
suggesting that bacterial spin networks belong to the same
universality class as a wide range of equilibrium systems.

Lattice field theories (LFTs) have been instrumental in
uncovering a wide range of fundamental physical phenomena,
from quark confinement in atomic nuclei20 and neutron stars21 to
topologically protected states of matter22 and transport in novel
magnetic23 and electronic24,25 materials. LFTs can be constructed
either by discretizing the spacetime continuum underlying classical
and quantum field theories20, or by approximating discrete
physical quantities, such as the electron spins in a crystal lattice,
through continuous variables. In equilibrium thermodynamics,
LFT approaches have proved invaluable both computationally
and analytically, for a single LFT often represents a broad class
of microscopically distinct physical systems that exhibit the
same universal scaling behaviours in the vicinity of a phase
transition4,26. However, until now there has been little evidence
as to whether the emergence of order in living matter can be
understood within this universality framework. Our combined
experimental and theoretical analysis reveals a number of striking
analogies between the collective cell dynamics in bacterial fluids

and known phases of condensed-matter systems, thereby implying
that universality concepts may be more broadly applicable than
previously thought.

To realize a microbial non-equilibrium LFT, we injected dense
suspensions of the rod-like swimming bacterium Bacillus subtilis
into shallow polydimethyl siloxane (PDMS) chambers in which
identical circular cavities are connected to form one- and two-
dimensional (2D) lattice networks (Fig. 1, Supplementary Fig. 6
and Methods). Each cavity is 50 µm in diameter and 18 µm deep,
a geometry known to induce a stably circulating vortex when a
dense bacterial suspension is confined within an isolated flattened
droplet15. For each cavity i, we define the continuous vortex spin
variable Vi(t) at time t as the total angular momentum of the local
bacterial flow within this cavity, determined by particle imaging
velocimetry (PIV) analysis (Fig. 1b,f; Supplementary Movies 1
and 2 and Methods). To account for the e�ect of oxygenation
variability on suspension motility9, flow velocities are normalized
by the overall root-mean-square (r.m.s.) speed measured in the
corresponding experiment. Bacterial vortices in neighbouring
cavities interact through a gap of predetermined width w
(Fig. 1f). To explore di�erent interaction strengths, we performed
experiments over a range of gap parameters w (Methods). For
square lattices, we varied w from 4 to 25 µm and found that for
all but the largest gaps, w w⇤ ⇡20 µm, the suspensions generally
self-organize into coherent vortex lattices, exhibiting domains
of correlated spins whose characteristics depend on coupling
strength (Fig. 1a,e). If the gap size exceeds w⇤, bacteria can move
freely between cavities and individual vortices cease to exist. Here,
we focus exclusively on the vortex regime w < w⇤ and quantify
preferred magnetic order through the normalized mean spin–spin
correlation � = h6i⇠jVi(t)Vj(t)/6i⇠j|Vi(t)Vj(t)|i, where 6i⇠j
denotes a sum over pairs {i, j} of adjacent cavities and h · i denotes
time average.

Square lattices reveal two distinct states of preferred magnetic
order (Fig. 1a,e,i), one with � <0 and the other with � >0,
transitioning between them at a critical gap width wcrit ⇡ 8 µm
(Fig. 1j). For subcritical values w < wcrit, we observe an
antiferromagnetic phase with anti-correlated (� < 0) spin
orientations between neighbouring chambers on average (Fig. 1a
and Supplementary Movie 1). By contrast, for w >wcrit, spins are
positively correlated (� >0) in a ferromagnetic phase (Fig. 1e and
Supplementary Movie 2). Noting that the r.m.s. spin hVi(t)2i1/2
decays only slowly with increasing gap width w !w⇤ (Fig. 1k),
and that the chambers do not impose any preferred handedness
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Figure 1 | Edge currents determine antiferromagnetic and ferromagnetic order in a square lattice of bacterial vortices. a, Three domains of
antiferromagnetic order highlighted by dashed white lines (gap width w=6 µm). Scale bar, 50 µm. Overlaid false colour shows spin magnitude (see
Supplementary Movie 1 for raw data). b, Bacterial flow PIV field within an antiferromagnetic domain (Supplementary Movie 1). For clarity, not all velocity
vectors are shown. Largest arrows correspond to speed 40 µm s�1. Scale bar, 20 µm. c, Schematic of bacterial flow circulation in the vicinity of a gap. For
small gaps w<wcrit, bacteria forming the edge currents (blue arrows) swim across the gap, remaining in their original cavity. Bulk flow (red) is directed
opposite to the edge current15,16 (Supplementary Movie 3). d, Graph of the Union Jack double-lattice model in an antiferromagnetic state with zero net
pillar circulation. Solid and dashed lines depict vortex–vortex and vortex–pillar interactions of respective strengths Jv and Jp. Vortices and pillars are
colour-coded according to their spin. e, For supercritical gap widths w>wcrit, extended domains of ferromagnetic order predominate (Supplementary
Movie 2; w= 11 µm). Scale bar, 50 µm. f, PIV field within a ferromagnetic domain (Supplementary Movie 2). Largest arrows: 36 µm s�1. Scale bar, 20 µm.
g, For w>wcrit, bacteria forming the edge current (blue arrows) swim along the PDMS boundary through the gap, driving bulk flows (red) in the opposite
directions, thereby aligning neighbouring vortex spins. h, Ferromagnetic state of the Union Jack lattice induced by edge current loops around the pillars.
i, Trajectories of neighbouring spins (⇤-symbols in a,e) fluctuate over time, signalling exploration of a fluctuating steady state under a non-zero e�ective
temperature (top, antiferromagnetic; bottom, ferromagnetic). j, The zero of the spin–spin correlation � at wcrit ⇡8 µm marks the phase transition. The
best-fit Union Jack model (solid line) is consistent with the experimental data. k, R.m.s. vortex spin hV2

i i1/2 decreases with the gap size w, showing
weakening of the circulation. R.m.s. pillar spin hP2

j i1/2 increases with w, reflecting enhanced bacterial circulation around pillars. Each point in j,k represents
an average over �5 movies in 3 µm bins at 1.5 µm intervals; vertical bars indicate standard errors (Methods).

on the vortex spins (Supplementary Fig. 1 and Supplementary
Section 1), we conclude that the observed phase behaviour is
caused by spin–spin interactions. However, although both phases
possess a well-defined average vortex–vortex correlation, the
individual spins fluctuate randomly over time as ordered domains
split, merge and flip (Fig. 1i and Supplementary Figs 1 and 3)
while the system explores configuration space inside a statistical
steady state (Supplementary Sections 1 and 3). Thus, although
the bacterial vortex spins {Vi(t)} define a real-valued lattice field,
the phenomenology of these continuous bacterial spin lattices is
qualitatively similar to that of the classical 2D Ising model4 with
discrete binary spin variables si 2 {±1}, whose configurational
probability at finite temperature T = (kB�)�1 is described by a
thermal Boltzmann distribution / exp(��J6i⇠jsisj), where J > 0
corresponds to ferromagnetic and J <0 to antiferromagnetic order.
The detailed theoretical analysis below shows that the observed
phases in the bacterial spin system can be understood quantitatively
in terms of a generic quartic LFT comprising two dual interacting

lattices. The introduction of a double lattice is necessitated by the
microscopic structure of the underlying bacterial flows. By analogy
with a lattice of interlocking cogs, one might have intuitively
expected that the antiferromagnetic phase would generally be
favoured, because only in this configuration does the bacterial
flow along the cavity boundaries conform across the inter-cavity
gap, avoiding the potentially destabilizing head-to-head collisions
that would occur with opposing flows (Fig. 1b,c). However, the
extent of the observed ferromagnetic phase highlights a competing
biofluid-mechanical e�ect.

Just as the quantum Hall e�ect17 and the transport properties
of graphene18,19 arise from electric edge currents, the opposing
order regimes observed here are explained by the existence of
analogous bacterial edge currents. At the boundary of an isolated
flattened droplet of a bacterial suspension, a single layer of cells—
an edge current—can be observed swimming against the bulk
circulation15,16. This narrow cell layer is key to the suspension
dynamics: the hydrodynamics of the edge current circulating
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in one direction advects nearby cells in the opposite direction,
which in turn dictate the bulk circulation by flow continuity
through steric and hydrodynamic interactions16,27. Identical edge
currents are present in our lattices (Supplementary Movie 3) and
explain both order regimes as follows. In the antiferromagnetic
regime, when w < wcrit, the bacterial edge current driving a
particular vortex will pass over the gap without leaving the cavity
(Fig. 1c). Interaction with a neighbouring edge current through
the gap favours parallel flow, inducing counter-circulation of
neighbouring vortices and therefore driving antiferromagnetic
order (Fig. 1d). However, when w > wcrit, the edge currents
can no longer pass over the gaps and instead wind around the
star-shaped pillars dividing the cavities (Fig. 1g). A clockwise
(resp. anticlockwise) bacterial edge current about a pillar induces
anticlockwise (resp. clockwise) fluid circulation about the pillar
in a thin region near its boundary. Flow continuity then induces
clockwise (resp. anticlockwise) flow in all cavities adjacent to the
pillar, resulting in ferromagnetic order (Fig. 1h). Thus by viewing
the system as an anti-cooperative Union Jack lattice28,29 of both bulk
vortex spins Vi and near-pillar circulations Pj, we accommodate
both order regimes: antiferromagnetism as indefinite circulations
Pj =0 and alternating spins Vi =±V (Fig. 1d), and ferromagnetism
as definite circulations Pj =�P < 0 and uniform spins Vi =V > 0
(Fig. 1h). To verify these considerations, we determined the net
near-pillar circulation Pj(t) using PIV (Methods) and found that
the r.m.s. circulation hPj(t)2i1/2 shows the expected monotonic
increase as the inter-cavity gap widens (Fig. 1k).

Competition between the vortex–vortex and vortex–pillar
interactions determines the resultant order regime. Their relative
strengths can be inferred by mapping each experiment onto a
continuous-spin Union Jack lattice (Fig. 1d,h). In this model, the
interaction energy of the time-dependent vortex spins V={Vi} and
pillar circulations P={Pj} is defined by the LFT Hamiltonian

H(V,P) = �Jv
X

Vi⇠Vj

ViVj � Jp
X

Vi⇠Pj

ViPj

+
X

Vi

✓
1
2
avV 2

i + 1
4
bvV 4

i

◆
+
X

Pj

1
2
apP2

j (1)

The first two sums are vortex–vortex and vortex–pillar interactions
with strengths Jv, Jp <0, where ⇠ denotes adjacent lattice pairs. The
last two sums are individual vortex and pillar circulation potentials.
Vortices must be subject to a quartic potential function with bv >0
to allow for a potentially double-welled potential if av <0, encoding
the observed symmetry breaking into spontaneous circulation
in the absence of other interactions15,27. In contrast, our data
analysis implies that pillar circulations are su�ciently described
by a quadratic potential of strength ap > 0 (Supplementary Fig. 4
and Supplementary Section 4). To account for the experimentally
observed spin fluctuations (Fig. 1i and Supplementary Fig. 1), we
model the dynamics of the lattice fieldsV andP through the coupled
stochastic di�erential equations (SDEs)

dV=�(@H/@V)dt+p
2TvdWv (2)

dP=�(@H/@P)dt+p
2TpdWp (3)

where Wv and Wp are vectors of uncorrelated Wiener processes
representing intrinsic and thermal fluctuations. The overdamped
dynamics in equations (2) and (3) neglects dissipative Onsager-
type cross-couplings, as the dominant contribution to friction
stems from the nearby no-slip PDMS boundaries (Supplementary
Section 7). The parameters Tv and Tp set the strength of

random perturbations from energy-minimizing behaviour. In the
equilibrium limit when Tv =Tp =T , the stationary statistics of the
solutions of equations (2) and (3) obey the Boltzmann distribution
/e�H/T . We inferred all seven parameters of the full SDE model
for each experiment by linear regression on a discretization of
the SDEs (Supplementary Fig. 2 and Supplementary Section 2).
The di�ering sublattice temperatures Tv 6= Tp found show that
the system is not in thermodynamic equilibrium owing to its
active microscopic constituents (Supplementary Fig. 2). Instead,
the system is in a pseudo-equilibrium statistical steady state
(Supplementary Section 1), which we will soon show can be
reduced to an equilibrium-like description. As a cross-validation,
we fitted appropriate functions of gapwidthw to these estimates and
simulated the resulting SDEmodel over a range ofw on a 6⇥6 lattice
concordant with the observations (Supplementary Section 3). The
agreement between experimental data and the numerically obtained
vortex–vortex correlation �(w) supports the validity of the double-
lattice model and its underlying approximations (Fig. 1j).

To reconnect with the classical 2D Ising model and understand
better the experimentally observed phase transition, we project
the Hamiltonian (1) onto an e�ective square lattice model by
making a mean-field assumption for the pillar circulations. In
the experiments, Pi is linearly correlated with the average spin
of its vortex neighbours [Pi]V = (1/4)6j :Vj⇠PiVj, with a constant
of proportionality �↵ < 0 only weakly dependent on gap width
(Supplementary Fig. 4 and Supplementary Section 4). Replacing
e�ectively Pi ! �↵[Pi]V as a mean-field variable in the model
eliminates all pillar circulations, yielding a standard quartic LFT
for V (see Supplementary Section 4 for a detailed derivation).
The mean-field dynamics are then governed by the reduced
SDE dV = �(@Ĥ/@V) dt + p

2TdW with e�ective temperature
T ⇡Tv +4TpJ 2p /a2p and energy

Ĥ(V)=�J
X

Vi⇠Vj

ViVj +
X

Vi

✓
1
2
aV 2

i + 1
4
bV 4

i

◆

which has steady-state probability density p(V) / e��Ĥ with
� =1/T , and where a = av � 4J 2p /ap and b = bv . Note that
in the limit a ! �1 and b ! +1 with a/b fixed, the
classical two-state Ising model is recovered by identifying
si =Vi/

p|a|/b2{±1}. The reduced coupling constant J relates to
those of the double-lattice model (Jv, Jp) in the thermodynamic
limit as J ⇡ Jv � (1/2)↵Jp (Supplementary Section 4), making
manifest how competition between Jv and Jp can result in
both antiferromagnetic (|Jv| > (1/2)↵|Jp|) or ferromagnetic
(|Jv| < (1/2)↵|Jp|) behaviour. We estimated �J , �a and �b
for each experiment by directly fitting the e�ective one-spin
potential V e�(V | [V ]V ) = �4�JV [V ]V + (1/2)�aV 2 + (1/4)�bV 4

via the log-likelihood logp(V | [V ]V )=�V e� +const (Fig. 2,
Supplementary Fig. 5 and Supplementary Section 5). These
estimates match those obtained independently using SDE
regression methods (Fig. 2a–c and Supplementary Section 5), and
show the transition from antiferromagnetic interaction (�J < 0)
to ferromagnetic interaction (�J > 0) at wcrit (Fig. 2a). As the gap
width increases, the energy barrier to spin change falls (Fig. 2b)
and the magnitude of the lowest energy spin decreases (Fig. 2c)
as a result of weakening confinement within each cavity, visible as
a flattening of the one-spin e�ective potential V e� (Fig. 2d–f and
Supplementary Fig. 5).

Experiments on lattices of di�erent symmetry groups lend
further insight into the competition between edge currents and bulk
flow. Unlike their square counterparts, triangular lattices cannot
support antiferromagnetic states without frustration. Therefore,
ferromagnetic order should be enhanced in a triangular bacterial
spin lattice. This is indeed observed in our experiments: at
moderate gap size w . 18 µm, we found exclusively a highly
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Figure 2 | Best-fit mean-field LFT model captures the phase transition in the square lattice. a, A sign change of the e�ective interaction �J signals the
transition from antiferro- to ferromagnetic states. b, The e�ective energy barrier, �a2/(4b) when a<0 and zero when a>0 (Supplementary Section 5),
decreases with the gap size w, reflecting increased susceptibility to fluctuations. c, The spin Vmin minimizing the single-spin potential (Supplementary
Section 5) decreases with w in agreement with the decrease in the r.m.s. vortex spin (Fig. 1k). Each point in a–c represents an average over �5 movies in
3 µm bins at 1.5 µm intervals; blue circles are from distribution fitting, red diamonds are from SDE regression, and vertical bars indicate standard errors
(Methods). d–f, Examples of the e�ective single-spin potential Ve� conditional on the mean spin of adjacent vortices [V]V . Data (points) and estimated
potential (surface) for three movies with gap widths 6, 10 and 17 µm.
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Figure 3 | Frustration in triangular lattices determines the preferred order.
a,b, Triangular lattices favour ferromagnetic states of either handedness
(Supplementary Movie 4). Vortices are colour-coded by spin. c, At the
largest gap size, bacterial circulation becomes unstable. Scale bar, 50 µm.
d, The spin–spin correlation � shows strongly enhanced ferromagnetic
order compared with the square lattice (Fig. 1j). Each point represents an
average over �5 movies in 3 µm bins at 1.5 µm intervals; vertical bars
indicate standard errors (Methods).

robust ferromagnetic phase of either handedness (Fig. 3a,b,d and
Supplementary Movie 4), reminiscent of quantum vortex lattices
in Bose–Einstein condensates30. At comparable gap size, the spin
correlation is approximately four to eight times larger than in the
square lattice. Increasing the gap size beyond 20 µm eventually
destroys the spontaneous circulation within the cavities and a
disordered state prevails (Fig. 3c,d), with a sharper transition
than for the square lattices (Fig. 1j). Conversely, a 1D line lattice
exclusively exhibits antiferromagnetic order as the suspension is
unable to maintain the very long uniform edge currents that
would be necessary to sustain a ferromagnetic state (Supplementary
Fig. 6 and Supplementary Section 6). These results manifest the
importance of lattice geometry and dimensionality for vortex
ordering in bacterial spin lattices, in close analogy with their
electromagnetic counterparts.

Understanding the ordering principles of microbial matter is a
key challenge in active materials design13, quantitative biology and
biomedical research. Improved prevention strategies for pathogenic
biofilm formation, for example, will require detailed knowledge of
how bacterial flows interact with complex porous surface structures
to create the stagnation points at which biofilms can nucleate. Our
study shows that collective excitations in geometrically confined
bacterial suspensions can spontaneously organize in phases of
magnetic order that can be robustly controlled by edge currents.
These results demonstrate fundamental similarities with a broad
class of widely studied quantum systems17,19,30, suggesting that
theoretical concepts originally developed to describe magnetism in
disordered media could potentially capture microbial behaviours in
complex environments. Future studiesmay try to explore further the
range and limits of this promising analogy.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experiments.Wild-type Bacillus subtilis cells (strain 168) were grown in Terrific
Broth (Sigma). A monoclonal colony was transferred from an agar plate to 25ml of
medium and left to grow overnight at 35 �C on a shaker. The culture was diluted
200-fold into fresh medium and harvested after approximately 5 h, when more than
90% of the bacteria were swimming, as visually verified on a microscope. 10ml of
the suspension was then concentrated by centrifugation at 1,500g for 10min,
resulting in a pellet with volume fraction approximately 20% which was used
without further dilution.

The microchambers were made of polydimethyl siloxane (PDMS) bound to a
glass coverslip by oxygen plasma etching. These comprised a square, triangular or
linear lattice of ⇠18-µm-deep circular cavities with 60 µm between centres, each of
diameter ⇠50 µm, connected by 4–25-µm-wide gaps for linear and square lattices
(Fig. 1a,e and Supplementary Fig. 6) and 10–25-µm-wide gaps for triangular lattices
(Fig. 3a–c). The smallest possible gap size was limited by the fidelity of the etching.

Approximately 5 µl of the concentrated suspension was manually injected into
the chamber using a syringe. Both inlets were then sealed to prevent external flow.
We imaged the suspension on an inverted microscope (Zeiss, Axio Observer Z1)
under bright-field illumination, through a 40⇥ oil-immersion objective. Movies
10 s in length were recorded at 60 f.p.s. on a high-speed camera (Photron Fastcam
SA3) at 4 and 8min after injection. Although the PDMS lattices were typically ⇠15
cavities across, to avoid boundary e�ects and to attain the pixel density necessary
for PIV we imaged a central subregion spanning 6⇥6 cavities for square lattices,
7⇥6 cavities for triangular lattices, and 7 cavities for linear lattices (multiple of
which were captured on a single slide).

Fluorescence in Supplementary Movie 3 was achieved by labelling the
membranes of a cell subpopulation with fluorophore FM4-64 following the
protocol of Lushi et al.16 The suspension was injected into an identical triangular
lattice as in the primary experiments and imaged at 5.6 f.p.s. on a spinning-disc
confocal microscope through a 63⇥ oil-immersion objective.

Analysis. For each frame of each movie, the bacterial suspension flow field
u(x ,y , t) was measured by standard particle image velocimetry (PIV) without time
averaging, using a customized version of mPIV (http://www.oceanwave.jp/
softwares/mpiv). PIV subwindows were 16⇥16 pixels with 50% overlap, yielding
⇠150 vectors per cavity per frame. Cavity regions were identified in each movie by
manually placing the centre and radius of the bottom left cavity, measuring vectors
to its immediate neighbours, and repeatedly translating to generate the full grid.
Pillar edges were then calculated from the cavity grid and the gap width (measured
as the minimum distance between adjacent pillars).

The spin Vi(t) of each cavity i at time t is defined as the normalized planar
angular momentum

Vi(t)=
ẑ ·

hP
(x ,y)i ri(x ,y)⇥u(x ,y , t)

i

U
P

(x ,y)i |ri(x ,y)|

where ri(x ,y) is the vector from the cavity centre to (x ,y), and sums run over all
PIV grid points (x ,y)i inside cavity i. For each movie, we normalize velocities by
the root-mean-square (r.m.s.) suspension velocity U = hu(x ,y , t)2i1/2, where the
average is over all grid points (x ,y) and all times t , to account for the e�ects of
variable oxygenation on motility9; we found an ensemble average
E[Ū ]=12.1 µms�1 with s.d. 3.6 µms�1 over all experiments. This definition has
Vi(t)>0 for anticlockwise spin and Vi(t)<0 for clockwise spin. A vortex of
radially independent speed—that is, u(x ,y , t)=u✓̂ , where ✓̂ is the azimuthal unit
vector—has Vi(t)=±1; conversely, randomly oriented flow has Vi(t)=0. The
average spin–spin correlation � of a movie is then defined as

� =
* P

i⇠j Vi(t)Vj(t)P
i⇠j |Vi(t)Vj(t)|

+

where 6i⇠j denotes a sum over pairs {i, j} of adjacent cavities and h·i denotes an
average over all frames. If all vortices share the same sign, then � =1
(ferromagnetism); if each vortex is of opposite sign to its neighbours, then � =�1
(antiferromagnetism); if the vortices are uniformly random, then � =0. Similarly,
the circulation Pj(t) about pillar j at time t is defined as the normalized average
tangential velocity

Pj(t)=
P

(x ,y)j u(x ,y , t) · t̂j(x ,y)
U
P

(x ,y)j 1

where t̂j(x ,y) is the unit vector tangential to the pillar, and sums run over PIV grid
points (x ,y)j closer than 5 µm to the pillar j.

Results presented are typically averaged in bins of fixed gap width. All plots
with error bars use 3 µm bins, calculated every 1.5 µm (50% overlap), and bins with
fewer than five movies were excluded. Error bars denote standard error. Bin counts
for square lattices (Figs 1j,k and 2a–c and Supplementary Figs 4 and 7) are 8, 8, 13,
14, 21, 27, 27, 22, 18, 22, 20, 11, 7, 13, 7; bin counts for triangular lattices (Fig. 3d)
are 5, 14, 16, 13, 16, 15, 5, 5, 10, 7; and bin counts for linear lattices (Supplementary
Fig. 6) are 5, 7, 8, 8, 9, 9, 6, 5, 6, 7, 6, 8, 9, 5, 6, 5, 6.
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1 Experimental consistency with theoretical model

In populating our chosen theoretical models, we make important assumptions of the experimental data
concerning spin bias, statistical steadiness, and phase-space exploration. In the following, we discuss
these assumptions and provide evidence for their validity.

1.1 Absence of spin handedness bias

In the Hamiltonian (1), we assume a symmetric local quartic potential. For this to be valid, the vortices
must be free of any handedness bias that might be induced by interactions between the chiral bacteria
and the upper and lower surfaces of the chamber. Plotting a histogram of the time-averaged spins across
all experiments shows no discernible bias towards either vorticity handedness (Supplementary Fig. 1a),
so this assumption is justified.

1.2 Statistical steady state

When estimating parameters using movies taken after 4 and 8 minutes with equal weight, we are as-
suming that the suspension has reached a sufficiently statistically-steady state no later than 4 minutes
after injection. We checked this assumption by comparing the spin–spin correlation in movies taken
at 4 and 8 minutes with identically acquired movies taken 1 minute after injection. We found that the
mean correlation changed much less between 4 and 8 minutes than between 1 and 4 minutes for experi-
ments both below and above the critical transition gap size (Supplementary Fig. 1b), indicating sufficient
equilibration to perform parameter estimation at both 4 and 8 minutes independently.

1.3 Phase-space exploration

A system following an equilibrium-like description such as the model in Eqs. (2) and (3) will not be
frozen into one configuration for all time. Rather, given sufficient time, it should explore all states of
its configuration space according to a steady-state probability distribution. Our experiments show this
exploration behaviour, with spins fluctuating and changing sign over time (Supplementary Fig. 1e,f).
This is particularly noticeable when comparing between the same experiment at the two observation
times of 4 and 8 minutes, during which time some (Supplementary Fig. 1c) or most (Supplementary
Fig. 1d) spins may have changed orientation. However, the system is always exploring a distribution
consistent with a particular preferred antiferromagnetic or ferromagnetic correlation, dependent on the
gap size.
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Supplementary Figure 1 – Experiments are unbiased and explore a statistical steady state. a, Histogram of
time-averaged vortex spin of each cavity ⟨Vi(t)⟩ across all square lattice experiments, exhibiting symmetry about
zero spin. b, Spin–spin correlation χ averaged over all movies taken 1, 4 or 8min after injection, categorised by
gap size w < wcrit or w > wcrit. The suspension is not equilibrated 1min after injection, but results are similar
between 4 and 8min indicating equilibration. c,d, Frames from movies taken from two experiments at 4 and
8min, with w = 7µm (c) and w = 11µm (d), showing phase-space exploration between the observation times.
e,f, Spin–time traces of four adjacent vortices from the experiments shown in c,d (line colours correspond to star
colours in c,d).

2 Parameter inference under the full model

For a given sequence of discrete experimental observations {V(t),P(t)}t=n∆t derived from one movie
with constant time step ∆t = 1/60 s and rescaled by U (Methods), we wish to estimate the most likely
parameter values assuming the SDE model in Eqs. (2) and (3) holds. We do this by first discretizing
Eqs. (2) and (3) and then applying linear regression. First, the rescaling by U used to eliminate variable
oxygenation effects (Methods) implies that we must also rescale the time step to δt = ∆t/τ , where
τ = ℓ/U is a time scaling with length scale ℓ = 1µm selected as the characteristic width of a bacterium.
All parameters are subsequently dimensionless under these scalings; those for an unscaled experiment
(denoted by tildes) with desired or observed RMS velocity U can then be recovered as J̃v = Jv/τ ,
J̃p = Jp/τ , ãv = av/τ , b̃v = bv/(U

2
τ), ãp = ap/τ , T̃v = U

2
Tv/τ and T̃p = U

2
Tp/τ . Now, using this

time step, Eqs. (2) and (3) discretize in the Euler–Maruyama scheme1 as

V(t+ δt) = V(t)− (∂H/∂V)tδt+
√

2TvδtNv, (S1)

P(t+ δt) = P(t)− (∂H/∂P)tδt+
√

2TpδtNp, (S2)

where Nv and Np are vectors of independent N (0, 1) random variables. Component-wise, Eqs. (S1)
and (S2) read

Vi(t+ δt) = (1− avδt)Vi(t)− bvδtVi(t)
3

+ Jvδt
∑

j :Vj∼Vi

Vj(t) + Jpδt
∑

j :Pj∼Vi

Pj(t) +
√
2TvδtNv,i, (S3)

Pi(t+ δt) = (1− apδt)Pi(t) + Jpδt
∑

j :Vj∼Pi

Vj(t) +
√

2TpδtNp,i. (S4)

By Eq. (S4), using data from all observation times and vortices to perform a linear regression of Pi(t+δt)
on the two variables

⎧
⎨

⎩Pi(t),
∑

j :Vj∼Pi

Vj(t)

⎫
⎬

⎭

yields estimates {1− âpδt, Ĵpδt} of the variables’ respective coefficients and thence estimates âp and Ĵp
of ap and Jp. Next, after substituting the estimate Jp = Ĵp into Eq. (S3) to reduce the dimensionality, a
linear regression of Vi(t+ δt)− Ĵpδt

∑
j :Pj∼Vi

Pj(t) on the three variables
⎧
⎨

⎩Vi(t), Vi(t)
3,

∑

j :Vj∼Vi

Vj(t)

⎫
⎬

⎭

yields estimates {1− âvδt,−b̂vδt, Ĵvδt} of their respective coefficients and thence estimates âv, b̂v and
Ĵv of av, bv and Jv. Finally, the variances 2T̂vδt and 2T̂pδt of the residuals to the regressions in Eqs. (S3)
and (S4) respectively yield estimates T̂v and T̂p of Tv and Tp.

Boundary terms are treated by assuming a truly finite system with free boundary conditions, effec-
tively fixing all pillar and vortex spins at zero outside of the observed domain. Since we do not image a
full 6× 6 offset lattice of pillars, but instead the internal 5× 5 lattice, periodic boundary conditions are
not possible; indeed, for a small system, free boundaries are often preferable over periodic boundaries
in general.

3 Simulations

To reconstruct the vortex–vortex correlation function χ(w) as a continuous function of gap width w, we
reconstructed the parameters as functions of w from the experimental data and numerically integrated
the model in Eqs. (2) and (3) over a range of w. The simulations can then be used to explore the system
on longer time scales than possible experimentally. We discuss this process further in the following
section.

3.1 Parameter reconstruction

Running the parameter estimation procedure for every suitable experimental movie (those not contain-
ing any ‘locked’ immobile cavities, occasionally seen at small w) results in a set of parameter estimates
Ei at gaps wi. Estimates for movies from the same experiment were averaged, and then placed into non-
overlapping w-bins of size 2.5µm and averaged in both w and parameter value within each bin (Supple-
mentary Fig. 2, points). Using non-linear least-squares regression estimation, the parameters were then
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linear regression of Vi(t+ δt)− Ĵpδt
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Ĵv of av, bv and Jv. Finally, the variances 2T̂vδt and 2T̂pδt of the residuals to the regressions in Eqs. (S3)
and (S4) respectively yield estimates T̂v and T̂p of Tv and Tp.

Boundary terms are treated by assuming a truly finite system with free boundary conditions, effec-
tively fixing all pillar and vortex spins at zero outside of the observed domain. Since we do not image a
full 6× 6 offset lattice of pillars, but instead the internal 5× 5 lattice, periodic boundary conditions are
not possible; indeed, for a small system, free boundaries are often preferable over periodic boundaries
in general.

3 Simulations

To reconstruct the vortex–vortex correlation function χ(w) as a continuous function of gap width w, we
reconstructed the parameters as functions of w from the experimental data and numerically integrated
the model in Eqs. (2) and (3) over a range of w. The simulations can then be used to explore the system
on longer time scales than possible experimentally. We discuss this process further in the following
section.

3.1 Parameter reconstruction

Running the parameter estimation procedure for every suitable experimental movie (those not contain-
ing any ‘locked’ immobile cavities, occasionally seen at small w) results in a set of parameter estimates
Ei at gaps wi. Estimates for movies from the same experiment were averaged, and then placed into non-
overlapping w-bins of size 2.5µm and averaged in both w and parameter value within each bin (Supple-
mentary Fig. 2, points). Using non-linear least-squares regression estimation, the parameters were then
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Supplementary Figure 2 – Parameters in the full model can be inferred using regression methods. Points are
averages within non-overlapping 2.5µm bins of parameters inferred for each experiment using linear regression
on a discretization of Eqs. (2) and (3), and lines are parametric best fits of selected functional forms to the points
(Sec. 2).

fitted with chosen functional forms: Jv, Jp, ap with a logistic function α1+α2/(1+10α3(α4−w)); av, bv
with a rational function α1/(w+α2); and Tv, Tp with a rational function (α1+α2w)/(w2+α3w+α4)
(Supplementary Fig. 2, lines). These forms were chosen as appearing to give the best representation
of the data points’ behaviour (such as not introducing maxima where none are observed for Jv, Jp, ap,
and not presuming too detailed a functional form for the noisiest parameters av and bv) with the fewest
possible fit parameters.

3.2 Simulation method

We numerically integrated Eqs. (2) and (3) using the discretization in Eqs. (S1) and (S2), wherein we
set N = 6 and δt = 1/600 (equivalent to 1/60 s when U = 10µm). We initialized V and P to zero,
and after an equilibration period of 50/δt frames we recorded every frame. Trial and error showed
an observation period of 8000/δt frames in an ensemble of 25 identical repetitions to be sufficient to
obtain a stable estimate of the average vortex–vortex correlation χ. This was evaluated at each of 101
regularly-spaced values of w in the range minwi ≤ w ≤ maxwi (Fig. 1j).

In all simulations we use free boundary conditions (that is, setting components of P and V to zero
outside of the simulation domain) consistent with the conditions used in parameter inference. Because
of the small size of the system being simulated, periodic boundary conditions are inappropriate as they
have too great a dynamical influence and do not reproduce the expected spin–spin correlation behaviour.
Simulations on moderately larger lattices with free boundary conditions retain the same form of cor-
relation curve as for the 6 × 6 grid, but as the number of grid points increases, the antiferromagnetic
phase eventually disappears. This reflects the sensitivity of the system to fluctuations as vortex and pil-
lar interactions compete near to a critical point; were experiments to be performed on larger lattices and
parameters inferred from that data, this regime would reappear in simulations.

3.3 Spin fluctuations

As in the experiments, after equilibrating during the burn-in period, each simulation explores configura-
tion space within the statistical steady state. The simulations then allow us to examine system behaviour
over time scales longer than those of the experimental movies, whose durations were constrained by

4

Supplementary Figure 3 – Simulations of the full model reproduce the spin-flip dynamics over long times.
Frames of a simulation using parameter values at w = 4µm from the reconstructions in Supplementary Fig. 2.
Top row: staggered vortex spins, corresponding to multiplying each spin site alternately by ±1 to show coherent
antiferromagnetic domains as single colours. Bottom row: unstaggered vortex spins. Domain fluctuations and
large-scale spin flips can be seen over the simulation at times extending to an equivalent of double or triple the
lengths of typical observations.

equipment data capacity. In particular, the simulations exhibit domain fluctuations and spin flipping
as observed in the experiments (Supplementary Fig. 1c–f), while better demonstrating the system fully
exploring configuration space. Supplementary Fig. 3 depicts a simulation using reconstructed parameter
values at w = 4µm, firmly inside the antiferromagnetic regime, run for a length equivalent to approxi-
mately 25 s of an experiment with RMS kinetic energy Ū = 12µms−1 (the average seen in experiments;
see Methods), exhibiting dynamic configuration exploration within an equilibrium distribution favouring
antiferromagnetic correlation.

4 Reduction to vortex-only model

A true Langevin equation for V can be obtained by integrating Eq. (3) for P as a function of V and
back-substituting2,3. Since Eq. (3) is linear in P, we have

Pi(t) = Pi(0)e
−apt + Jp

∑

j:Vj∼Pi

∫ t

0
Vj(s)e

ap(s−t) ds+
√

2Tp

∫ t

0
eap(s−t) dW (s),

where the third term is an integral with respect to the standard Brownian motion W (t). When apt ≫ 1,
the first term decays and the second can be approximated by pulling out Vj(s) at s = t (provided V
varies sufficiently slowly over short time intervals), giving

Pi(t) ≈
Jp
ap

∑

j:Vj∼Pi

Vj(t) +
√

2Tp

∫ t

0
eap(s−t) dW (s). (S5)

This is valid here since ap ∼ 1 (Supplementary Fig. 2) and each 10 s experimental movie reaches
non-dimensional times t = (10 s)/τ ∼ 100. Thus Pi reduces to time-autocorrelated noise ν(t) =√

2Tp
∫ t
0 e

ap(s−t) dW (s) about a mean proportional to the average spin of adjacent vortices [Pi]V =
1
4

∑
j:Vj∼Pi

Vj ; that is, Pi ≈ (4Jp/ap)[Pi]V + ν. The noise has autocorrelation

C(t, t′) = E
[
ν(t)ν(t′)

]
=

Tp

ap

[
e−ap|t−t′| − e−ap(t+t′)

]
≈ Tp

ap
e−ap|t−t′|

for apt, apt′ ≫ 1. In this limit, C decays rapidly away from t = t′, and ν(t) is approximately normally
distributed at every t with variance Tp/ap.
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Supplementary Figure 2 – Parameters in the full model can be inferred using regression methods. Points are
averages within non-overlapping 2.5µm bins of parameters inferred for each experiment using linear regression
on a discretization of Eqs. (2) and (3), and lines are parametric best fits of selected functional forms to the points
(Sec. 2).
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of the data points’ behaviour (such as not introducing maxima where none are observed for Jv, Jp, ap,
and not presuming too detailed a functional form for the noisiest parameters av and bv) with the fewest
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We numerically integrated Eqs. (2) and (3) using the discretization in Eqs. (S1) and (S2), wherein we
set N = 6 and δt = 1/600 (equivalent to 1/60 s when U = 10µm). We initialized V and P to zero,
and after an equilibration period of 50/δt frames we recorded every frame. Trial and error showed
an observation period of 8000/δt frames in an ensemble of 25 identical repetitions to be sufficient to
obtain a stable estimate of the average vortex–vortex correlation χ. This was evaluated at each of 101
regularly-spaced values of w in the range minwi ≤ w ≤ maxwi (Fig. 1j).

In all simulations we use free boundary conditions (that is, setting components of P and V to zero
outside of the simulation domain) consistent with the conditions used in parameter inference. Because
of the small size of the system being simulated, periodic boundary conditions are inappropriate as they
have too great a dynamical influence and do not reproduce the expected spin–spin correlation behaviour.
Simulations on moderately larger lattices with free boundary conditions retain the same form of cor-
relation curve as for the 6 × 6 grid, but as the number of grid points increases, the antiferromagnetic
phase eventually disappears. This reflects the sensitivity of the system to fluctuations as vortex and pil-
lar interactions compete near to a critical point; were experiments to be performed on larger lattices and
parameters inferred from that data, this regime would reappear in simulations.

3.3 Spin fluctuations

As in the experiments, after equilibrating during the burn-in period, each simulation explores configura-
tion space within the statistical steady state. The simulations then allow us to examine system behaviour
over time scales longer than those of the experimental movies, whose durations were constrained by
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lengths of typical observations.

equipment data capacity. In particular, the simulations exhibit domain fluctuations and spin flipping
as observed in the experiments (Supplementary Fig. 1c–f), while better demonstrating the system fully
exploring configuration space. Supplementary Fig. 3 depicts a simulation using reconstructed parameter
values at w = 4µm, firmly inside the antiferromagnetic regime, run for a length equivalent to approxi-
mately 25 s of an experiment with RMS kinetic energy Ū = 12µms−1 (the average seen in experiments;
see Methods), exhibiting dynamic configuration exploration within an equilibrium distribution favouring
antiferromagnetic correlation.

4 Reduction to vortex-only model

A true Langevin equation for V can be obtained by integrating Eq. (3) for P as a function of V and
back-substituting2,3. Since Eq. (3) is linear in P, we have

Pi(t) = Pi(0)e
−apt + Jp

∑

j:Vj∼Pi

∫ t

0
Vj(s)e

ap(s−t) ds+
√

2Tp

∫ t

0
eap(s−t) dW (s),

where the third term is an integral with respect to the standard Brownian motion W (t). When apt ≫ 1,
the first term decays and the second can be approximated by pulling out Vj(s) at s = t (provided V
varies sufficiently slowly over short time intervals), giving

Pi(t) ≈
Jp
ap

∑

j:Vj∼Pi

Vj(t) +
√

2Tp

∫ t

0
eap(s−t) dW (s). (S5)

This is valid here since ap ∼ 1 (Supplementary Fig. 2) and each 10 s experimental movie reaches
non-dimensional times t = (10 s)/τ ∼ 100. Thus Pi reduces to time-autocorrelated noise ν(t) =√
2Tp

∫ t
0 e

ap(s−t) dW (s) about a mean proportional to the average spin of adjacent vortices [Pi]V =
1
4

∑
j:Vj∼Pi

Vj ; that is, Pi ≈ (4Jp/ap)[Pi]V + ν. The noise has autocorrelation

C(t, t′) = E
[
ν(t)ν(t′)

]
=

Tp

ap

[
e−ap|t−t′| − e−ap(t+t′)

]
≈ Tp

ap
e−ap|t−t′|

for apt, apt′ ≫ 1. In this limit, C decays rapidly away from t = t′, and ν(t) is approximately normally
distributed at every t with variance Tp/ap.
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jacent vortices. a–c, Two-dimensional histogram
of (Pi, [Pi]V ) from three example movies, show-
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widths 7, 10 and 18µm, respectively. d, The pro-
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retical result α = −4Jp/ap calculated with inferred
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errors (Methods).

Now, in Eq. (2), interaction with P arises through the term Jp
∑

j:Pj∼Vi
Pj in ∂H/∂Vi. By Eq. (S5),

this approximates to

Jp
∑

j:Pj∼Vi

Pj ≈
J2
p

ap

⎡

⎣4Vi + 2
∑

j:Vj∼Vi

Vj + (n.n.n.)

⎤

⎦+ Jp

4∑

j=1

ν(j), (S6)

where ν(j) are i.i.d. noise processes as above, and ‘n.n.n.’ denotes next-nearest-neighbour interactions
which we neglect. When substituted into Eq. (2), each noise term contributes Jpν(j)dt, which represents
a contribution of the form Jp

∫ t
0 ν

(j)(s) ds in the formal integral representation of Eq. (2). Inserting the
definition of ν into this integral and exchanging the order of integration implies

Jp

∫ t

0
ν(j)(s) ds =

Jp
√

2Tp

ap

∫ t

0
[1− eap(s−t)] dW (s).

In our experiments, we found |Jp/ap| ≈ 1/10 and Tp ! Tv over all gap widths (Supplementary Fig.
2), so these are weak contributions to the noise in V. Indeed, the integral has variance t − 3/(2ap) +
O(e−apt) as t → ∞, so for large ap its effect can be approximated by the pure Brownian motion∫ t
0 dW (r) (whose variance is t). Thus the contributions Jpν(j)dt reduce to small Brownian noise terms
(Jp

√
2Tp/ap)dW , which combine with the existing noise into one single term

√
2TdW of slightly

increased temperature T = Tv + 4TpJ2
p/a

2
p. Substituting Eq. (S6) into Eq. (2) yields new approximate

V dynamics obeying dV = −(∂Ĥ/∂V)dt+
√
2TdW with effective Hamiltonian

Ĥ(V) = −J
∑

Vi∼Vj

ViVj +
∑

Vi

(
1
2aV

2
i + 1

4bV
4
i

)
,

where the effective coupling constants are J = Jv + 2J2
p/ap, a = av − 4J2

p/ap and b = bv.
Though this reduction will only be achieved exactly in the thermodynamic limit when boundary ef-

fects are eliminated, this still serves as a good approximation for a finite system. To verify this reduction
with our experimental data, we compared Pi with [Pi]V . Consistent with Eq. (S5), we found Pi to be
linearly correlated with [Pi]V in every square-lattice experiment (Supplementary Fig. 4a–c), confirming
our use of a quadratic potential for P. Writing −α for the correlation coefficient, we found α ≈ 0.5
with weak dependence on the gap width; this compares well with the analytic result α = −4Jp/ap from
Eq. (S5) when calculated using experimentally inferred parameters (Supplementary Fig. 4d).
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Now, in Eq. (2), interaction with P arises through the term Jp
∑

j:Pj∼Vi
Pj in ∂H/∂Vi. By Eq. (S5),

this approximates to

Jp
∑

j:Pj∼Vi

Pj ≈
J2
p

ap

⎡

⎣4Vi + 2
∑

j:Vj∼Vi

Vj + (n.n.n.)

⎤

⎦+ Jp

4∑

j=1

ν(j), (S6)

where ν(j) are i.i.d. noise processes as above, and ‘n.n.n.’ denotes next-nearest-neighbour interactions
which we neglect. When substituted into Eq. (2), each noise term contributes Jpν(j)dt, which represents
a contribution of the form Jp

∫ t
0 ν

(j)(s) ds in the formal integral representation of Eq. (2). Inserting the
definition of ν into this integral and exchanging the order of integration implies

Jp

∫ t

0
ν(j)(s) ds =

Jp
√

2Tp

ap

∫ t

0
[1− eap(s−t)] dW (s).

In our experiments, we found |Jp/ap| ≈ 1/10 and Tp ! Tv over all gap widths (Supplementary Fig.
2), so these are weak contributions to the noise in V. Indeed, the integral has variance t − 3/(2ap) +
O(e−apt) as t → ∞, so for large ap its effect can be approximated by the pure Brownian motion∫ t
0 dW (r) (whose variance is t). Thus the contributions Jpν(j)dt reduce to small Brownian noise terms
(Jp

√
2Tp/ap)dW , which combine with the existing noise into one single term

√
2TdW of slightly

increased temperature T = Tv + 4TpJ2
p/a

2
p. Substituting Eq. (S6) into Eq. (2) yields new approximate

V dynamics obeying dV = −(∂Ĥ/∂V)dt+
√
2TdW with effective Hamiltonian

Ĥ(V) = −J
∑

Vi∼Vj

ViVj +
∑

Vi

(
1
2aV

2
i + 1

4bV
4
i

)
,

where the effective coupling constants are J = Jv + 2J2
p/ap, a = av − 4J2

p/ap and b = bv.
Though this reduction will only be achieved exactly in the thermodynamic limit when boundary ef-

fects are eliminated, this still serves as a good approximation for a finite system. To verify this reduction
with our experimental data, we compared Pi with [Pi]V . Consistent with Eq. (S5), we found Pi to be
linearly correlated with [Pi]V in every square-lattice experiment (Supplementary Fig. 4a–c), confirming
our use of a quadratic potential for P. Writing −α for the correlation coefficient, we found α ≈ 0.5
with weak dependence on the gap width; this compares well with the analytic result α = −4Jp/ap from
Eq. (S5) when calculated using experimentally inferred parameters (Supplementary Fig. 4d).
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Supplementary Figure 5 – Parameters in the reduced model can be inferred by fitting effective single-spin
potentials. Reduced model parameters βJ , βa and βb are estimated by fitting the antisymmetric and symmetric
parts of the effective potential Veff(Vi | [Vi]V ) (Sec. 5.1). Data shown from three example movies of square lattices
with gap widths 7µm (a,d), 10µm (b,e) and 18µm (c,f). a–c, The antisymmetric part of the effective potential
reveals the vortex–vortex coupling βJ , spanning the range J < 0 (a), J ≈ 0 (b) and J > 0 (c). Estimated Veff

anti

(points), coloured by mean adjacent spin [Vi]V . d–f, The symmetric part of the effective potential reveals the
non-interacting single-spin potential, which flattens with increasing gap width. Estimated Veff

sym (points) coloured
by mean adjacent spin [Vi]V , with fitted single-spin potentials (lines).

5 Parameter inference under the reduced model

5.1 Distribution fitting

We assume that V obeys a Boltzmann distribution p(V) ∝ e−βĤ(V). The probability density p(Vi | [Vi]V )
of one spin Vi conditional on the mean of its adjacent spins [Vi]V = 1

4

∑
j :Vj∼Vi

Vj satisfies

log p(Vi | [Vi]V )− log p(0 | [Vi]V ) = −Veff(Vi | [Vi]V ), (S7)

where we have defined the effective single-vortex potential

Veff(Vi | [Vi]V ) = −4βJVi[Vi]V + 1
2βaV

2
i + 1

4βbV
4
i .

We estimate p(Vi | [Vi]V ) for each movie by forming a two-dimensional histogram in Vi and [Vi]V and
then normalizing at every fixed Vi. In forming the histogram, we exploit the invariance of Veff under the
transformation Vi → −Vi and [Vi]V → −[Vi]V to double the number of data points.

Taking the antisymmetric part Veff
anti = 1

2

[
Veff(Vi | [Vi]V )− Veff(−Vi | [Vi]V )

]
eliminates the non-

interacting terms, so Eq. (S7) implies

1
2 [− log p(Vi | [Vi]V ) + log p(−Vi | [Vi]V )] = −4βJVi[Vi]V .

This allows estimation of the interaction constant βJ from the density p(Vi|[Vi]V ) (Fig. 2a and Supple-
mentary Fig. 5a–c). The symmetric part Veff

sym = 1
2

[
Veff(Vi | [Vi]V ) + Veff(−Vi | [Vi]V )

]
eliminates the

interaction term in a similar fashion, so Eq. (S7) now implies

1

2
[− log p(Vi | [Vi]V )− log p(−Vi | [Vi]V )] + log p(0 | [Vi]V ) =

1

2
βaV 2

i +
1

4
βbV 4

i .
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Typically there are fewer observations near Vi = 0, so p(0 | [Vi]V ) can be difficult to infer directly. In-
stead, we adjust log p(0 | [Vi]V ) for each [Vi]V bin to minimize the difference between Veff

sym(V | [Vi]V )

and Veff
sym(V | 0). We then fit the remaining single vortex potential with parameters βa and βb (Supple-

mentary Fig. 5d–f), from which we compute the spins ±Vmin (Vmin > 0) minimizing the local effective
single-spin energy Veff

sym, namely

Vmin =

{√
|a|/b if a < 0,

0 if a > 0,

and the effective spin-flip energy barrier

Veff
sym(0)− Veff

sym(±Vmin) =

{
βa2/(4b) if a < 0,

0 if a > 0,

which together characterize the single-spin symmetric quartic potential (Fig. 2b,c).
To ensure boundary conditions do not have a strong effect on the inferred parameters by compar-

ison with those used in the SDE discretization method (see below), boundary terms are treated in this
method using neighbour averaging whereby the mean adjacent spin [Vi]V is computed as an average
over only two spins (in a corner) or three spins (at an edge). This corresponds to assuming that, in each
computation of [Vi]V , spin sites absent from the lattice are the mean of the sites present in the sum.

5.2 SDE discretization

Estimations made by the above method were verified by estimations obtained through the same SDE dis-
cretization method used in the full model. Though the absence of pillars now means periodic boundary
conditions could be used, we retain the free boundary conditions to maintain consistency with the full
model and for comparison with the averaging conditions used above. The components of the reduced
model SDE dV = −(∂Ĥ/∂V)dt+

√
2TdW have Euler–Maruyama discretization

Vi(t+ δt) = (1− aδt)Vi(t)− bδtVi(t)
3 + Jδt

∑

j :Vj∼Vi

Vj(t) +
√
2T δtNi,

where Ni are independent N (0, 1) random variables. Performing linear regression of Vi(t+ δt) on the
three variables

⎧
⎨

⎩Vi(t), Vi(t)
3,

∑

j :Vj∼Vi

Vj(t)

⎫
⎬

⎭

then gives estimates {1 − âδt,−b̂δt, Ĵδt} of the respective coefficients, from which estimates â, b̂ and
Ĵ of the variables a, b and J can be deduced. The estimate T̂ of the fluctuation strength T is estimated
via the variance 2T̂ δt of the residuals to the regression, which gives an estimate β̂ = 1/T̂ of the inverse
‘temperature’ β in the Boltzmann distribution. The non-dimensional combinations β̂Ĵ , β̂â and β̂b̂ can
then be directly compared with the estimates obtained using the distribution-fitting method.

Though SDE discretization independently gives both temperature and coupling constants, it is likely
to possess greater intrinsic bias than distribution fitting. Discretization was the only method open for
the full model, as the SDE steady state cannot be solved analytically. However, since the reduced model
allows for distribution fitting, coupling constant values obtained using that method are preferable, with
SDE discretization functioning as an independent verification.

6 One-dimensional geometries

As well as the square and triangular lattices discussed in the main text (Figs. 1 and 3), we also per-
formed experiments on lines of connected vortices (Supplementary Fig. 6). As the finite-circumference
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Supplementary Figure 6 – One-dimensional
lattices adopt antiferromagnetic states. a, At
the smallest gap widths, vortices interact weakly
resulting in strong but randomly oriented circula-
tion. Gap width 7µm. b,c, Intermediate and large
gaps show strong antiferromagnetic order. Gap
widths 16 and 28µm. False colour in a–c denotes
measured vortex spin. Scale bar: 50µm. d, The
spin–spin correlation χ shows the antiferromag-
netic state to be largely favoured in lines of cav-
ities. Each point represents an average over ≥ 5
movies in 3µm bins at 1.5µm intervals; vertical
bars indicate standard errors (Methods).

pillars are no longer present in a line of vortices, it is not clear whether the same edge-current-mediated
ferromagnetism should be expected. Indeed, we did not observe significant ferromagnetic behaviour at
any gap sizes (Supplementary Fig. 6d), suggesting that it is difficult to maintain the single long, uniform
edge current that would be necessary for a positively-correlated state. Furthermore, experiments per-
formed on isolated pairs of vortices support these results, in which 76% of the vortex pairs adopted an
antiferromagnetic state (out of 34 pairs) with gap sizes between 20µm and 38µm.

7 Model generalizations

There are more general forms of the model in Eqs. (2) and (3) which preserve at least some form of local
equilibrium. These add flexibility through further couplings or fields at the expense of increased com-
plexity. Though we did not find a need for any further generality, they cannot necessarily be disregarded
a priori, which we discuss further here.

7.1 Cross-coupled models with frictional dissipation

One generalization of Eqs. (2) and (3) is to add dissipative cross-couplings. Write X = (V,P) for the
concatenation of the vectors V and P. In this formalism, Eqs. (2) and (3) read

dXi = − ∂H

∂Xi
dt+

√
2TidWi, (S8)

where Ti is Tv or Tp as appropriate and the Wi are uncorrelated Wiener processes as before. (Repeated
indices do not imply summation.) However, in general, we need not have diagonal coupling to deriva-
tives of H . We could instead write4

dXi = −
∑

j

Mij
∂H

∂Xj
dt+

∑

j

mij

√
2TjdWj ,

where the Mij are the components of a more general coupling matrix, and m is the square-root matrix
such that m2 = M. Onsager reciprocity would then demand Mij = Mji if the vortex spins and pillar
flows were relaxing to a true thermodynamic equilibrium with Tv = Tp.

The simplest form of this generalization would be to posit a constant coupling between a vortex
Vi and the gradients ∂H/∂Pj of its neighbouring pillars Pj , plus the corresponding reverse coupling.
However, a single bacterial vortex experiences most frictional dissipation against the confining upper
and lower walls of the cavity, rather than against the much smaller and more porous contact area of
the edge currents. Similarly, a single pillar edge current experiences most friction against the solid
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Supplementary Figure 7 – Vortices and pillars show low variability in their
individual fluctuation strengths. Relative standard deviations ρv and ρp of per-
site temperatures for vortices (red circles) and pillars (blue diamonds), as defined
in the text, are small across gap sizes, only rising at the smallest gaps before the
antiferromagnetic–ferromagnetic transition.

pillar walls rather than the porous vortex boundary. This implies that vortex–pillar frictional couplings
through a non-diagonal matrix Mij are small, and for this reason we have neglected them here. Indeed,
including such couplings would add further parameters to fit in an already strongly fluctuating system,
necessitating much more data to statistically distinguish these parameters from zero.

7.2 Spatially variable temperature

Another generalization would be to regard each vortex (and pillar) as possessing its own intrinsic temper-
ature, introducing spatial dependence to the fluctuations. In this scenario, Eq. (S8) would still hold but
with the vector of temperatures Ti now no longer constrained to be Tv or Tp. Since the random fluctua-
tions are likely the result of microscopic cell–cell interactions, similar to Brownian motion, temperature
variation would be driven by inhomogeneous initial conditions of the suspension, whereby differences
in cell or oxygen concentration across the grid of chambers could induce some vortices to fluctuate with
greater strength than others. These temperature inhomogeneities may then equilibrate on a time scale
beyond that of the experiments due to poor inter-cavity mixing of cells, particularly at the smallest gap
sizes. However, provided the fluctuations are zero-mean, inhomogeneous vortex and pillar temperatures
should not have a strong effect on the parameters inferred by the linear regression method described in
Section 2.

To gauge the extent of any such inhomogeneities, we computed the per-site fluctuation strength Ti as
the variance of the residuals to the regression fit for each individual vortex or pillar i. We then computed
the relative spatial standard deviations ρv and ρp for vortices and pillars as ρ{v,p} =

√
Var{v,p} Ti/T{v,p},

where Tv and Tp are the overall vortex temperatures as in Section 2. This gives a measure of spatial
variability suitable for comparison between experiments. For most gap sizes, ρv and ρp averaged be-
tween 0.1 and 0.2, with ρv only rising above 0.2 at the smallest gap sizes before the antiferromagnetic–
ferromagnetic transition (Supplementary Fig. 7). This suggests that the bulk of any variability is indeed
driven by inhomogeneous initial conditions which do not dissipate quickly at small gap sizes. Though
these values do indicate non-trivial spatial variability, they are not great enough to warrant detailed in-
clusion into our model as they would likely not have a great impact on the transition dynamics observed
in simulations.
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of Lecture Notes in Physics, 15–22 (Springer, Heidelberg, 1997).

[3] Dunkel, J. & Hänggi, P. Relativistic Brownian motion. Phys. Rep. 471, 1–73 (2009).
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